577 research outputs found

    Remote Sensing for Monitoring the Mountaintop Mining Landscape: Applications for Land Cover Mapping at the Individual Mine Complex Scale

    Get PDF
    The aim of this dissertation was to investigate the potential for mapping land cover associated with mountaintop mining in Southern West Virginia using high spatial resolution aerial- and satellite-based multispectral imagery, as well as light detection and ranging (LiDAR) elevation data and terrain derivatives. The following research themes were explored: comparing aerial- and satellite-based imagery, combining data sets of multiple dates and types, incorporating measures of texture, using nonparametric, machine learning classification algorithms, and employing a geographical object-based image analysis (GEOBIA) framework. This research is presented as four interrelated manuscripts.;In a comparison of aerial National Agriculture Imagery Program (NAIP) orthophotography and satellite-based RapidEye data, the aerial imagery was found to provide statistically less accurate classifications of land cover. These lower accuracies are most likely due to inconsistent viewing geometry and radiometric normalization associated with the aerial imagery. Nevertheless, NAIP orthophotography has many characteristics that make it useful for surface mine mapping and monitoring, including its availability for multiple years, a general lack of cloud cover, contiguous coverage of large areas, ease of availability, and low cost. The lower accuracies of the NAIP classifications were somewhat remediated by decreasing the spatial resolution and reducing the number of classes mapped.;Combining LiDAR with multispectral imagery statistically improved the classification of mining and mine reclamation land cover in comparison to only using multispectral data for both pixel-based and GEOBIA classification. This suggests that the reduced spectral resolution of high spatial resolution data can be combated by incorporating data from another sensor.;Generally, the support vector machines (SVM) algorithm provided higher classification accuracies in comparison to random forests (RF) and boosted classification and regression trees (CART) for both pixel-based and GEOBIA classification. It also outperformed k-nearest neighbor, the algorithm commonly used for GEOBIA classification. However, optimizing user-defined parameters for the SVM algorithm tends to be more complex in comparison to the other algorithms. In particular, RF has fewer parameters, and the program seems robust regarding the parameter settings. RF also offers measures to assess model performance, such as estimates of variable importance and overall accuracy.;Textural measures were found to be of marginal value for pixel-based classification. For GEOBIA, neither measures of texture nor object-specific geometry improved the classification accuracy. Notably, the incorporation of additional information from LiDAR provided a greater improvement in classification accuracy then deriving complex textural and geometric measures.;Pre- and post-mining terrain data classified using GEOBIA and machine learning algorithms resulted in significantly more accurate differentiation of mine-reclaimed and non-mining grasslands than was possible with spectral data. The combination of pre- and post-mining terrain data or just pre-mining data generally outperformed post-mining data. Elevation change data were shown to be of particular value, as were terrain shape parameters. GEOBIA was a valuable tool for combining data collected using different sensors and gridded at variable cell sizes, and machine learning algorithms were particularly useful for incorporating the ancillary data derived from the digital elevation models (DEMs), since these most likely would not have met the basic assumptions of multivariate normality required for parametric classifiers.;Collectively, this research suggests that high spatial resolution remotely sensed data are valuable for mapping and monitoring surface mining and mine reclamation, especially when elevation and spectral data are combined. Machine learning algorithms and GEOBIA are useful for integrating such diverse data

    Multi-Decadal Changes in Mangrove Extent, Age and Species in the Red River Estuaries of Viet Nam

    Get PDF
    This research investigated the performance of four different machine learning supervised image classifiers: artificial neural network (ANN), decision tree (DT), random forest (RF), and support vector machine (SVM) using SPOT-7 and Sentinel-1 images to classify mangrove age and species in 2019 in a Red River estuary, typical of others found in northern Viet Nam. The four classifiers were chosen because they are considered to have high accuracy, however, their use in mangrove age and species classifications has thus far been limited. A time-series of Landsat images from 1975 to 2019 was used to map mangrove extent changes using the unsupervised classification method of iterative self-organizing data analysis technique (ISODATA) and a comparison with accuracy of K-means classification, which found that mangrove extent has increased, despite a fall in the 1980s, indicating the success of mangrove plantation and forest protection efforts by local people in the study area. To evaluate the supervised image classifiers, 183 in situ training plots were assessed, 70% of them were used to train the supervised algorithms, with 30% of them employed to validate the results. In order to improve mangrove species separations, Gram–Schmidt and principal component analysis image fusion techniques were applied to generate better quality images. All supervised and unsupervised (2019) results of mangrove age, species, and extent were mapped and accuracy was evaluated. Confusion matrices were calculated showing that the classified layers agreed with the ground-truth data where most producer and user accuracies were greater than 80%. The overall accuracy and Kappa coefficients (around 0.9) indicated that the image classifications were very good. The test showed that SVM was the most accurate, followed by DT, ANN, and RF in this case study. The changes in mangrove extent identified in this study and the methods tested for using remotely sensed data will be valuable to monitoring and evaluation assessments of mangrove plantation projects

    Land use/cover classification in the Brazilian Amazon using satellite images.

    Get PDF
    Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation?based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi?resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical?based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data

    Efficacy of multi-season Sentinel-2 imagery for compositional vegetation classification

    Get PDF
    Vegetation maps are essential tools for the conservation and management of landscapes as they contain essential information for informing conservation decisions. Traditionally, maps have been created using field-based approaches which, due to limitations in costs and time, restrict the size of the area for which they can be created and frequency at which they can be updated. With the increasing availability of satellite sensors providing multi-spectral imagery with high temporal frequency, new methods for efficient and accurate vegetation mapping have been developed. The objective of this study was to investigate to what extent multi-seasonal Sentinel-2 imagery can assist in mapping complex compositional classifications at fine spatial scales. We deliberately chose a challenging case study, namely a visually and structurally homogenous scrub vegetation (known as kwongan) of Western Australia. The classification scheme consists of 24 target classes and a random 60/40 split was used for model building and validation. We compared several multi-temporal (seasonal) feature sets, consisting of numerous combinations of spectral bands, vegetation indices as well as principal component and tasselled cap transformations, as input to four machine learning classifiers (Support Vector Machines; SVM, Nearest Neighbour; NN, Random Forests; RF, and Classification Trees; CT) to separate target classes. The results show that a multi-temporal feature set combining autumn and spring images sufficiently captured the phenological differences between the classes and produced the best results, with SVM (74%) and NN (72%) classifiers returning statistically superior results compared to RF (65%) and CT (50%). The SWIR spectral bands captured during spring, the greenness indices captured during spring and the tasselled cap transformations derived from the autumn image emerged as most informative, which suggests that ecological factors (e.g. shared species, patch dynamics) occurring at a sub-pixel level likely had the biggest impact on class confusion. However, despite these challenges, the results are auspicious and suggest that seasonal Sentinel-2 imagery has the potential to predict compositional vegetation classes with high accuracy. Further work is needed to determine whether these results are replicable in other vegetation types and regions

    Improvement in Land Cover and Crop Classification based on Temporal Features Learning from Sentinel-2 Data Using Recurrent-Convolutional Neural Network (R-CNN)

    Get PDF
    Understanding the use of current land cover, along with monitoring change over time, is vital for agronomists and agricultural agencies responsible for land management. The increasing spatial and temporal resolution of globally available satellite images, such as provided by Sentinel-2, creates new possibilities for researchers to use freely available multi-spectral optical images, with decametric spatial resolution and more frequent revisits for remote sensing applications such as land cover and crop classification (LC&CC), agricultural monitoring and management, environment monitoring. Existing solutions dedicated to cropland mapping can be categorized based on per-pixel based and object-based. However, it is still challenging when more classes of agricultural crops are considered at a massive scale. In this paper, a novel and optimal deep learning model for pixel-based LC&CC is developed and implemented based on Recurrent Neural Networks (RNN) in combination with Convolutional Neural Networks (CNN) using multi-temporal sentinel-2 imagery of central north part of Italy, which has diverse agricultural system dominated by economic crop types. The proposed methodology is capable of automated feature extraction by learning time correlation of multiple images, which reduces manual feature engineering and modeling crop phenological stages. Fifteen classes, including major agricultural crops, were considered in this study. We also tested other widely used traditional machine learning algorithms for comparison such as support vector machine SVM, random forest (RF), Kernal SVM, and gradient boosting machine, also called XGBoost. The overall accuracy achieved by our proposed Pixel R-CNN was 96.5%, which showed considerable improvements in comparison with existing mainstream methods. This study showed that Pixel R-CNN based model offers a highly accurate way to assess and employ time-series data for multi-temporal classification tasks

    Characterizing and mapping cropping patterns in a complex agro-ecosystem: An iterative participatory mapping procedure using machine learning algorithms and MODIS vegetation indices

    Get PDF
    Accurate and up-to-date spatial agricultural information is essential for applications including agro-environmental assessment, crop management, and appropriate targeting of agricultural technologies. There is growing research interest in spatial analysis of agricultural ecosystems applying satellite remote sensing technologies. However, usability of information generated from many of remotely sensed data is often constrained by accuracy problems. This is of particular concern in mapping complex agro-ecosystems in countries where small farm holdings are dominated by diverse crop types. This study is a contribution to the ongoing efforts towards overcoming accuracy challenges faced in remote sensing of agricultural ecosystems. We applied time-series analysis of vegetation indices (Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI)) derived from the Moderate Resolution Imaging Spectrometer (MODIS) sensor to detect seasonal patterns of irrigated and rainfed cropping patterns in five townships in the Central Dry Zone of Myanmar, which is an important agricultural region of the country has been poorly mapped with respect to cropping practices. To improve mapping accuracy and map legend completeness, we implemented a combination of (i) an iterative participatory approach to field data collection and classification, (ii) the identification of appropriate size and types of predictor variables (VIs), and (iii) evaluation of the suitability of three Machine Learning algorithms: Support Vector Machine (SVM), Random Forest (RF), and C5.0 algorithms under varying training sample sizes. Through these procedures, we were able to progressively improve accuracy and achieve maximum overall accuracy of 95% When a small sized training dataset was used, accuracy achieved by RF was significantly higher compared to SVM and C5.0 (P < 0.01), but as sample size increased, accuracy differences among the three machine learning algorithms diminished. Accuracy achieved by use of NDVI was consistently better than that of EVI (P < 0.01). The maximum overall accuracy was achieved using RF and 8-days NDVI composites for three years of remote sensing data. In conclusion, our findings highlight the important role of participatory classification, especially in areas where cropping systems are highly diverse and differ over space and time. We also show that the choice of classifiers and size of predictor variables are essential and complementary to the participatory mapping approach in achieving desired accuracy of cropping pattern mapping in areas where other sources of spatial information are scarce

    Assessing the capabilities of high-resolution spectral, altimetric, and textural descriptors for mapping the status of citrus parcels

    Full text link
    [EN] Agricultural land abandonment is an increasing phenomenon around the world with relevant environmental and socio-economic implications. In the European Union about 11 % of agricultural land is at high risk of abandonment. The Comunitat Valenciana region (Spain) is the most important citrus producer in Europe suffering from this problem. Identifying the status of citrus crops at the parcel level is essential for policymakers in agriculture. This work assessed the use of WorldView-3 data, Very High-Resolution Airborne Images, and Structure from Motion point clouds to identify the status of citrus parcels using two machine learning algorithms: Random Forest and Support Vector Machines. Different analyses involving combinations of the three data sources were carried out to assess the impact on classification accuracy. The results showed the high potential of airborne imagery (OA ¿ 0.967) and WorldView-3 (OA ¿ 0.936) to detect parcel status using a single image. The SfM data showed a lower potential (OA ¿ 0.825). Adding SfM point cloud to the multispectral information produced small improvements (0.4¿2.0 %) in classification accuracy. The class separability analysis showed the importance of WV-3 SWIR bands to detect abandoned parcels as they produce more spectral separability over the productive parcels in the 1570 nm ¿ 2330 nm spectrum. The results also show the importance of GLCM texture features extracted from sub-metric images due to their ability to model spatial planting patterns typical of fruit cropsThis research was funded by regional government of Spain, Generalitat Valenciana, within the framework of the research project AICO/2020/246. Funding for open access charge: CRUE-Universitat Politecnica de Valencia.Morell-Monzó, S.; Estornell Cremades, J.; Sebastiá-Frasquet, M. (2023). Assessing the capabilities of high-resolution spectral, altimetric, and textural descriptors for mapping the status of citrus parcels. Computers and Electronics in Agriculture. 204:1-11. https://doi.org/10.1016/j.compag.2022.10750411120

    Large Area Land Cover Mapping Using Deep Neural Networks and Landsat Time-Series Observations

    Get PDF
    This dissertation focuses on analysis and implementation of deep learning methodologies in the field of remote sensing to enhance land cover classification accuracy, which has important applications in many areas of environmental planning and natural resources management. The first manuscript conducted a land cover analysis on 26 Landsat scenes in the United States by considering six classifier variants. An extensive grid search was conducted to optimize classifier parameters using only the spectral components of each pixel. Results showed no gain in using deep networks by using only spectral components over conventional classifiers, possibly due to the small reference sample size and richness of features. The effect of changing training data size, class distribution, or scene heterogeneity were also studied and we found all of them having significant effect on classifier accuracy. The second manuscript reviewed 103 research papers on the application of deep learning methodologies in remote sensing, with emphasis on per-pixel classification of mono-temporal data and utilizing spectral and spatial data dimensions. A meta-analysis quantified deep network architecture improvement over selected convolutional classifiers. The effect of network size, learning methodology, input data dimensionality and training data size were also studied, with deep models providing enhanced performance over conventional one using spectral and spatial data. The analysis found that input dataset was a major limitation and available datasets have already been utilized to their maximum capacity. The third manuscript described the steps to build the full environment for dataset generation based on Landsat time-series data using spectral, spatial, and temporal information available for each pixel. A large dataset containing one sample block from each of 84 ecoregions in the conterminous United States (CONUS) was created and then processed by a hybrid convolutional+recurrent deep network, and the network structure was optimized with thousands of simulations. The developed model achieved an overall accuracy of 98% on the test dataset. Also, the model was evaluated for its overall and per-class performance under different conditions, including individual blocks, individual or combined Landsat sensors, and different sequence lengths. The analysis found that although the deep model performance per each block is superior to other candidates, the per block performance still varies considerably from block to block. This suggests extending the work by model fine-tuning for local areas. The analysis also found that including more time stamps or combining different Landsat sensor observations in the model input significantly enhances the model performance
    • …
    corecore