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ABSTRACT 

Monitoring the Mountaintop Mining Landscape:  Remote Sensing of Land Cover at the 

Individual Mine Complex Scale 

Aaron E. Maxwell 

 

The aim of this dissertation was to investigate the potential for mapping land cover 
associated with mountaintop mining in Southern West Virginia using high spatial resolution 

aerial- and satellite-based multispectral imagery, as well as light detection and ranging (LiDAR) 
elevation data and terrain derivatives. The following research themes were explored: comparing 

aerial- and satellite-based imagery, combining data sets of multiple dates and types, 
incorporating measures of texture, using nonparametric, machine learning classification 
algorithms, and employing a geographical object-based image analysis (GEOBIA) framework. 

This research is presented as four interrelated manuscripts. 
In a comparison of aerial National Agriculture Imagery Program (NAIP) 

orthophotography and satellite-based RapidEye data, the aerial imagery was found to provide 
statistically less accurate classifications of land cover. These lower accuracies are most likely 
due to inconsistent viewing geometry and radiometric normalization associated with the aerial 

imagery. Nevertheless, NAIP orthophotography has many characteristics that make it useful for 
surface mine mapping and monitoring, including its availability for multiple years, a general lack 
of cloud cover, contiguous coverage of large areas, ease of availability, and low cost. The lower 

accuracies of the NAIP classifications were somewhat remediated by decreasing the spatial 
resolution and reducing the number of classes mapped.  

Combining LiDAR with multispectral imagery statistically improved the classification of 
mining and mine reclamation land cover in comparison to only using multispectral data for both 
pixel-based and GEOBIA classification. This suggests that the reduced spectral resolution of 

high spatial resolution data can be combated by incorporating data from another sensor. 
Generally, the support vector machines (SVM) algorithm provided higher classification 

accuracies in comparison to random forests (RF) and boosted classification and regression trees 
(CART) for both pixel-based and GEOBIA classification. It also outperformed k-nearest 
neighbor, the algorithm commonly used for GEOBIA classification. However, optimizing user-

defined parameters for the SVM algorithm tends to be more complex in comparison to the other 
algorithms. In particular, RF has fewer parameters, and the program seems robust regarding the 

parameter settings. RF also offers measures to assess model performance, such as estimates of 
variable importance and overall accuracy.  

Textural measures were found to be of marginal value for pixel-based classification. For 

GEOBIA, neither measures of texture nor object-specific geometry improved the classification 
accuracy. Notably, the incorporation of additional information from LiDAR provided a greater 

improvement in classification accuracy then deriving complex textural and geometric measures. 
Pre- and post-mining terrain data classified using GEOBIA and machine learning 

algorithms resulted in significantly more accurate differentiation of mine-reclaimed and non-

mining grasslands than was possible with spectral data. The combination of pre- and post-mining 
terrain data or just pre-mining data generally outperformed post-mining data. Elevation change 



 

 

data were shown to be of particular value, as were terrain shape parameters. GEOBIA was a 
valuable tool for combining data collected using different sensors and gridded at variable cell 

sizes, and  machine learning algorithms were particularly useful for incorporating the ancillary 
data derived from the digital elevation models (DEMs), since these most likely would not have 

met the basic assumptions of multivariate normality required for parametric classifiers. 
Collectively, this research suggests that high spatial resolution remotely sensed data are 

valuable for mapping and monitoring surface mining and mine reclamation, especially when 

elevation and spectral data are combined. Machine learning algorithms and GEOBIA are useful 
for integrating such diverse data. 
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CHAPTER 1 

 

Introduction 

 

1. Motivation and Aim 

 

 As the human population has increased in size, and developed tools to alter and shape 

the landscape on an industrial scale, the role of humans as agents of landscape change is 

becoming increasingly important. Anthropogenic geomorphic alteration, land use/land cover 

change, agricultural conversion, urbanization, increases in atmospheric CO2, and biodiversity 

reduction have prompted many to argue for the addition of a third epoch to the Quaternary 

Period, the Anthropocene. The concept of the Anthropocene is based on the suggestion that 

human activities now rival the forces of nature and are key processes in producing a less 

biodiverse, less forested, and warmer Earth (Meybeck, 2003; Steffen et al., 2007; Zalasiewicz et 

al., 2010; Zalasiewicz et al., 2011; Steffen et al. , 2011). Although the concept of an 

Anthropocene Epoch is currently in debate, the impacts of humans on the landscape should be of 

upmost concern to the geologist and the landscape scientist. This dissertation therefore addresses 

the need to monitor and map human-induced landscape change in an accurate and efficient 

manner.  

 The overarching aim of this dissertation is to investigate high spatial resolution 

remotely sensed data (aerial- and satellite-based multispectral imagery, light detection and 

and ranging (LiDAR), and terrain derivatives) and advanced classification methods 

(machine learning algorithms and geographical object-based image analysis (GEOBIA) 

classification) for mapping mine disturbance. It addresses basic research questions that are 

currently of interest within the fields of remote sensing, land cover mapping, and image analysis. 

The following research themes were explored: comparing aerial- and satellite-based high spatial 
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resolution imagery, combining multiple data sets to increase classification accuracy, and 

increasing classification accuracy by using nonparametric, machine learning algorithms, 

measures of texture, and object-based classification. Table 1, at the end of this chapter, provides 

a list of common acronyms used in this dissertation. 

 This research investigates fundamental and timely questions applied to the problem of 

mapping land cover in a terrain that is complex as a result of steep topography and spectrally 

similar pre- and post-mining classes. The applied research component of this work addresses 

mapping needs within this landscape and explores the utility of techniques and available data for 

operational mine monitoring. Accurate maps of surface mine disturbance and surface mine 

reclamation are essential for understanding the long-term impacts of mining (Townsend et al., 

2009). For example, land cover data have been shown to be essential in quantifying hydrologic 

impacts (Negley and Eshleman, 2006; Zégre et al., 2013), modeling water quality impacts 

(Merriam et al., 2013), and modeling terrestrial habitat impacts (Wickham et al., 2007) of surface 

mining. 

3. Mapping Mountaintop Mining  

Surface coal mining, and in particular mountaintop mining, is the dominant agent 

controlling both land cover change and geomorphic alteration in the southern coalfields of the 

eastern United States (Hooke, 1999; Saylor, 2008; Townsend et al., 2009; Drummond and 

Loveland, 2010). Mountaintop coal mining causes more material to be moved, and faster 

landscape alterations, than more traditional surface coal mining techniques such as auger, 

contour, and highwall mining (Fritz et al., 2010). The mountaintop mining process also results in 

the clearing of forests, the removal of top soil, and recontouring of the landscape (Palmer et al., 

2010; Bernhardt and Palmer, 2011). It has been estimated that surface mining in the Appalachian 
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region has resulted in a net loss of 420,000 ha of forest between 1973 and 2000, resulting in the 

fragmentation of core forest interiors, and this forest loss continues to date due (Wickham et al., 

2007; Drummond and Loveland, 2010). Generally, mines in this region are reclaimed to 

grasslands or shrublands (Simmons et al., 2008; Kazar and Warner, 2013), although more 

recently there has been interest in reclamation using native forest species (Zipper et al., 2011). 

Hooke (1994; 1999) estimated that surface mining is responsible for displacing more material in 

the southern coalfields of West Virginia than river systems and other natural geomorphic 

processes.  

Over the last few decades, surface mining and reclamation have been mapped using 

moderate resolution satellite data, such as Landsat Multispectral Scanner (MSS), Thematic 

Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and SPOT data, with varying degrees 

of success (Anderson and Schubert, 1976; Irons and Kennard, 1986; Parks et. al., 1987; Rathore 

and Wright, 1993; Anderson et al., 1997; Prakash and Gupta, 1998; Yuill, 2003; Townsend et al., 

2009; Sen et al., 2012). Rathore and Wright (1993) noted that active mines can generally be 

mapped with high accuracy; mine reclamation, however, has proven more difficult to map. Mine 

reclamation is of specific interest as this imprint of mining generally persists as a legacy 

landscape alteration (Negley, 2002).  

Multi-temporal imagery provides a promising approach for mapping surface mines. For 

example, Townsend et al. (2009) made use of a Landsat image time series to differentiate active 

mine disturbance and mine reclamation from similar non-mining cover, such as development and 

grasslands, achieving accuracies above 85%. Sen et al. (2012) made use of a chronosequence of 

23 Landsat TM and ETM+ images to separate mining disturbance from other forest-replacing 

disturbance using disturbance/recovery trajectories.  
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This work adds to previous work relating to surface mine mapping by investigating the 

mapping of surface mine land cover at the individual mine complex scale using high resolution 

data. Many of the research questions posed here, such as GEOBIA classification, use of textural 

measures, and exploitation of high resolution data, were suggested as future research needs and 

knowledge gaps by Townsend et al. (2009) for mapping surface mines and mine reclamation.  

3. Research Questions 

 

This work focuses on mine mapping from high resolution data and mapping using 

advanced image processing techniques, machine learning algorithms and object-based analysis, 

by addressing the following research questions: 

 

Question 1: Does satellite imagery have inherent benefits (such as radiometric consistency over 

large areas) compared to aerial imagery that makes satellite imagery preferable for mapping 

mine-landscapes? 

Question 2: What image processing techniques (e.g. textural measures) can be used to increase 

the classification accuracy for mapping of mining-related land cover from single-date aerial 

imagery? 

Question 3: In comparison to only using multispectral data, does combining LiDAR-derivatives 

or terrain variables with multispectral data, increase the classification accuracy of mapping mine-

landscapes using: 

 (a) pixel-based classification? 

 (b) GEOBIA classification? 

Question 4: What derived features (such as measures of central tendency, variability, texture, 

etc.) calculated from multispectral imagery and LiDAR data are most important for classification 

of mine-related land cover using GEOBIA? 
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Question 5: How does the classification performance of different machine learning classifiers 

(random forests (RF), boosted classification and regression trees (CART), and support vector 

machines (SVM)) compare for mapping of mine-landscapes from high resolution data? 

4. Presentation 

 The research is presented in four research papers, included in this dissertation as the 

following four chapters. 

Chapter 2: Maxwell, A.E., T.A. Warner, M.P. Strager, and M. Pal, 2014. Combining 

RapidEye satellite imagery and LiDAR for mapping of mining and mine reclamation, 

Photogrammetric Engineering & Remote Sensing, 80(2): 179-189. 

 doi: 10.14358/PERS.80.2.179-189. (Received 10 June 2013, Accepted 25 August 2013) 

 

Chapter 3: Maxwell, A.E., M.P. Strager, T.A. Warner, N.P. Zégre, and C.B. Yuill, 2014. 

Comparison of NAIP orthophotography and RapidEye satellite imagery for mapping of 

mining and mine reclamation, GIScience & Remote Sensing, 51(3): 301-320.  

doi: 10.1080/15481603.2014.912874. (Received 20 December 2013, Accepted 26 March 

2014) 

 

Chapter 4: Maxwell, A.E., T.A. Warner, M.P. Stager, J.F. Conley, and A.L. Sharp, 

2015. Assessing machine- learning algorithms and image- and lidar-derived variables for 

GEOBIA classification of mining and mine reclamation, International Journal of Remote 

Sensing, 36(4): 954-978. doi: 10.1080/01431161.2014.1001086. (Received 7 September 

2014, Accepted 29 November 2014) 

 

Chapter 5: Maxwell, A.E., and T.A. Warner, 2015. Differentiating mine-reclaimed 

grasslands from spectrally similar land cover using terrain variables and object-based 
machine learning classification, International Journal of Remote Sensing (In Press).  

doi: 10.1080/01431161.2015.1083632. (Received 6 April 2015, Accepted 11 August 
2015) 
 

Each chapter has been formatted in the style of the journal to which it was submitted. The final 

chapter, Chapter 6, offers a synthesis of the research relative to the aims and questions posed in 

this dissertation.  
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5. List of Acronyms 

A list of acronyms is provided below to aid in the reading of this dissertation. 

Table 1. Acronym list. 

Acronym Meaning 

CART classification and regression trees 

CTMI compound topographic moisture index 

DEM digital elevation model 

DT decision tree 

ETM+ Enhanced Thematic Mapper Plus 

GEOBIA geographical object-based image analysis 

GLCM grey level co-occurrence matrix 

GME Geospatial Modeling Environment 

GPS global positioning system 

GSD ground sampling distance 

k-NN k-nearest neighbor 

LiDAR light detection and ranging 

LULC land use/land cover 

MMU minimal mapping unit 

MODIS Moderate Resolution Imaging Spectrometer 

MSS Multispectral Scanner 

NAIP National Agriculture Imagery Program  

nDSM normalized digital surface model 

NIR near infrared 

OOB out-of-bag 

RBF radial basis function 

RF random forests 

SMCRA Surface Mine Control and Reclamation Act 

SPOT Satellite Pour l’Observation de la Terre 

SVM support vector machines 

TM Thematic Mapper 
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CHAPTER 2 

Combining RapidEye Satellite Imagery and LiDAR for Mapping of Mining and 

Mine Reclamation1 

Aaron E. Maxwell, Timothy A. Warner, Michael P. Strager, and Mahesh Pal 

Abstract 

The combination of RapidEye satellite imagery and light detection and ranging 

(LiDAR) derivatives was assessed for mapping land cover within a mountaintop coal 

surface mine complex in the southern coalfields of West Virginia, USA. Support vector 

machines (SVM), random forests (RF), and boosted classification and regression trees 

(CART) algorithms were used. Incorporation of the LiDAR-derived data increased map 

accuracy in comparison to using only the five imagery bands, and SVM generally 

produced a more accurate classification than the ensemble tree algorithms based on 

overall map accuracy, Kappa statistics, allocation disagreement, quantity disagreement, 

and McNemar’s test of statistical significance. Based on measures of predictor variable 

importance within the ensemble tree classifiers, the normalized digital surface model 

(nDSM) was found to be more useful than first return intensity data for differentiating the 

classes. 

 

                                                                 
1 This is an Accepted Manuscript of an article published by the American Society for 

Photogrammetry and Remote Sensing (ASPRS) in Photogrammetric Engineering & 

Remote Sensing in February 2014, [10.14358/PERS.80.2.179-189]. Maxwell, A.E., T.A. 

Warner, M.P. Strager, and M. Pal, 2014. Combining RapidEye satellite imagery and 

LiDAR for mapping of mining and mine reclamation, Photogrammetric Engineering & 

Remote Sensing, 80(2): 179-189. (Received 10 June 2013, Accepted 25 August 2013) 
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Introduction 

Commercial satellite imagery such as IKONOS, GeoEye, and RapidEye provide 

high spatial resolution but low spectral resolution compared to sensors such as Landsat 

Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), or Moderate 

Resolution Imaging Spectrometer (MODIS) (Warner et al., 2009). Although high spatial 

resolution can yield fine detail for land cover and vegetative mapping, classification is 

complicated by the increased spatial resolution and decreased spectral resolution. Fine 

spatial resolution tends to generate high internal variability within land cover classes, 

which can lead to decreases in classification accuracy (Townshend, 1981; Cushnie, 1987; 

Townshend, 1992; Baker et al., 2013). This research investigated a potential means to 

enhance classification accuracy by combining high resolution commercial satellite 

imagery with light detection and ranging (LiDAR) data.  

The analysis focused on mapping land cover classes in a mountaintop coal surface 

mine complex in the southern coalfields of the eastern United States. Because surface 

mine complexes experience rapid change due to human disturbance and reclamation, they 

are particularly good examples of disturbed landscapes. Although this research focuses 

on mapping land cover within a mountaintop coal mine, the challenges in mapping 

mining landscapes are typical of other disturbances, such as timber harvesting, urban 

sprawl, etc. 

This work adds to prior remote sensing of surface mine research by investigating 

information gained by combining LiDAR and commercial satellite data for mapping land 

cover (Cowen et al., 2000). This research had two components. First, we assessed 
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LiDAR-derived inputs as predictor variables when combined with commercial satellite 

imagery to enhance land cover mapping. Second, we compared three machine learning 

algorithms for the classification: support vector machines (SVM), random forests (RF), 

and boosted classification and regression trees (CART). The image data consisted of 

commercial RapidEye imagery. LiDAR-derived predictor variables included the 

normalized digital surface model (nDSM) generated by subtracting ground return data 

from the first return data, first return intensity data, and the first return intensity range 

within raster grid cells. 

Background 

Machine learning classification 

Research has highlighted the improvement in classification accuracy when 

LiDAR is combined with optical data, suggesting that LiDAR can provide important 

predictor variables for mapping land cover (Cowen et al., 2000; Brennan and Webster, 

2006; Bork and Su, 2007; Chust et al., 2008; Chen et al., 2009; Guo et al., 2011). The 

combination of imagery and LiDAR data has been investigated in heterogeneous 

rangeland environments (Chen et al., 2009), urban landscapes (Brennan and Webster, 

2006; Guo et al., 2011), and coastal estuary environments (Brennan and Webster, 2006; 

Chust et al., 2008). Guo et al. (2011) specifically noted the usefulness of nDSM data for 

mapping urban landscapes. 

Combining disparate data such as imagery and LiDAR poses distinct challenges 

because the combined data set may not meet distribution assumptions required for 

traditional parametric classifiers. Machine learning algorithms have emerged as an 
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alternative to parametric classifiers and have been shown to be more accurate and 

efficient when faced with high dimensional and complex data (Hansen et al., 1996; 

Huang et al., 2002; Rogan et al., 2003; Pal, 2005; Na et al., 2010; Ghimire et al., 2012). 

Machine learning algorithms, such as artificial neural networks (Del Frate et al., 2003), 

SVM (Pal and Mather, 2005; Pal, 2005), and decision trees (Waske and Braun, 2009), do 

not make assumptions regarding the data distribution (Loosvelt et al., 2012). In summary, 

in remote sensing, machine learning algorithms are of interest because they offer the 

potential to handle complex spectral measurement space, multidimensional data, and 

large volumes of data with reduced processing time compared to traditional classifiers 

(Hansen and Reed, 2000). 

For this study, SVM, RF, and boosted CART algorithms were assessed. SVM and 

RF have been shown to have comparable accuracies; however, optimizing the RF 

algorithm is simpler (Pal, 2005). RF and boosted CART have also been shown to provide 

similar accuracies, though RF provides shorter classification time (Gislason et al., 2006). 

However, boosted CART has been shown to be more suited for large-area mapping 

because it is marginally less sensitive to training data size and less sensitive to training 

data noise (Ghimire et al., 2012).  

SVMs make use of statistical learning theory and optimization algorithms to 

locate decision boundaries between classes using structural risk minimization to find a 

multi-dimensional plane (hyperplane) that separates two classes with the maximum 

margin (Vapnik, 1995; Joachims, 1998; Burges, 1998; Pal and Mather, 2005; Pal, 2005; 

Warner and Nerry, 2009). The points that lie near the hyperplane define the margin and 
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are therefore termed “support vectors.” Because SVM algorithms are designed for two 

class problems only, strategies have been developed incorporating multiple SVM 

algorithms to produce a multi-class classification (Vapnik, 1995; Pal and Mather, 2005; 

Pal, 2005). SVM within the e1071 package, used in this research, uses a “one-against-

one” approach for multiclass-classification in which binary classifiers are trained and the 

appropriate class is found by a voting scheme (Meyer et al., 2012).  

RF, introduced by Breiman (2001), uses multiple decision trees to improve upon 

the accuracy and consistency of single tree classifications. As a result, RF is an ensemble, 

non-parametric learning algorithm. A random bootstrap sample of the data with 

replacement (called “bagging” (Breiman, 1996)) is drawn for each tree generated instead 

of using the entire training dataset. In addition, an out-of-bag (oob) random sample is 

withheld that can be used for accuracy assessment. To grow a tree, RF uses a random 

subset of the predictor variables (the number of which is defined by user) while growing 

each tree of the ensemble. This results in a decrease in the strength of a single tree, 

however, the correlation between trees is reduced. As a result, the randomized predictor 

variable selection reduces the generalization error. The Gini index, a measure of impurity 

of a given class with respect to the rest of the classes, is used to select the best predictor 

among the randomly selected predictor variables available at each node. RF has been 

used for classification in remote sensing (Ghimire et al., 2010; Burkholder et al., 2011; 

Rodríguez-Galiano et al., 2011; Ghimire et al., 2012), and it has many attributes that 

make it effective for image classification. It can generally model complex interactions 

between predictor variables, perform supervised and unsupervised classification tasks, 
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handle data with missing values, and provides high classification accuracies. It also 

provides measures of predictor variable importance, as will be described below (Steele, 

2000; Cutler et al., 2007). 

Although boosted CART, like RF, also implements an ensemble classification of 

decision trees, the algorithm is fundamentally different in that it uses the entire training 

dataset for classification of each tree as opposed to a subset for each tree as used with RF 

(Freund and Schapire, 1996; Ghimire et al., 2012). Misclassified samples in prior trees 

are given higher weights in subsequent trees, which tends to reduce misclassification in 

subsequent trees. However, it has been shown that this weighting procedure may overfit 

the training data (Bauer and Kohavi, 1999). Many studies have shown boosted CART to 

produce more accurate classifications than individual trees (DeFries and Chan, 2000; 

Muchoney et al., 2000; Friedl et al., 1999; Friedl et al., 2002; McIver and Friedl, 2002; 

Lawrence et al., 2004; Ghimire et al., 2012). Friedl et al. (1999) found that boosting can 

reduce misclassification rates by 20% to 50% in comparison to single classification trees, 

whilst Lawrence et al. (2004) found an improvement of 9%.  

LiDAR is an active remote sensing technology that relies on the timing of the 

two-way travel of laser pulses, differential global positioning system (GPS), and inertial 

navigation measurements to map the height of the terrain and objects on the ground 

surface. When LiDAR systems are mounted in aerial platforms, large areas can be 

surveyed in a relatively short period of time (Lillesand et al., 2008). In addition to 

elevations, most systems record the return pulse intensity, which is in part a function of 

the reflectance of the surfaces returning the laser pulse (Brantberg, 2007). However, 
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return intensity is also influenced by other factors, including footprint size, scan angle, 

return number, and range distance (Lin and Mills, 2010). Although some studies have 

demonstrated the benefit of using intensity for land cover classification (Brennan and 

Webster, 2006), the use of LiDAR return intensity has not been as widely explored as 

elevation data in land cover mapping due to the difficulty of radiometric calibration of the 

returned laser intensity (Flood, 2001; Kaasalainene et al., 2005). In this research, both 

LiDAR elevation and intensity data were used. 

Description of Study Area 

The study area in in the southern coalfields of the eastern United States, which are 

found predominantly within the Appalachian Plateau physiogeographic province, a 

dissected, westward-tilted plateau dominated by Pennsylvanian strata. Pennsylvanian 

stratigraphy is characterized by cyclic sequences of sandstone, shale, clay, coal, and 

limestone (Ehlke et al., 1982; WVGES, 2005). The terrain is dissected by a dendritic 

stream network and show moderate to strong relief with steep slopes. The forests are 

characterized by mixed mesophytic communities, deciduous species, and high 

biodiversity (Strausbaugh and Core, 1977). 

In the southern coalfields, mountaintop coal mining is the leading cause of land 

use/land cover (LULC) change (Hooke, 1999; Saylor, 2008; Townsend et al., 2009; 

Drummond and Loveland, 2010). This mining process causes more material to be moved 

and faster landscape alterations than more traditional surface coal mining techniques such 

as auger, contour, and highwall mining (Fritz et al., 2010).The mountaintop mining 

process results in the clearing of forests, the removal of top soil, and recontouring of the 
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landscape (Palmer et al., 2010; Bernhardt and Palmer, 2011). It has been estimated that 

surface mining in the Appalachian region has resulted in a net loss of 420,000 ha of forest 

between 1973 and 2000, resulting in the fragmentation of core forest interiors (Wickham 

et al., 2007; Drummond and Loveland, 2010). Generally, mines in this region are 

reclaimed to grasslands or shrublands (Simmons et al., 2008; Kazar and Warner, 2013), 

although more recently there has been interest in reclamation using native forest species 

(Zipper et al., 2011). Hooke (1994; 1999) estimated that surface mining is responsible for 

displacing more material in the southern coalfields of West Virginia than river systems 

and natural geomorphic processes.  

Over the last few decades, surface mining and reclamation have been mapped 

from Landsat MSS, TM, ETM+, and SPOT data with varying degrees of success 

(Anderson and Schubert, 1976; Irons and Kennard, 1986; Parks et. al., 1987; Rathore and 

Wright, 1993; Anderson et al., 1997; Prakash and Gupta, 1998; Yuill, 2003; Townsend et 

al., 2009; Sen et al., 2012). Rathore and Wright (1993) found that active mines could 

generally be mapped with high accuracy; mine reclamation, however, has proven more 

difficult to map. Mine reclamation is of specific interest as the imprint of mining 

generally persists as a legacy landscape alteration (Negley, 2002). Multi-temporal 

imagery provides a promising approach for mapping surface mines. For example, 

Townsend et al. (2009) made use of a Landsat image time series to differentiate active 

mine disturbance and mine reclamation from similar non-mining cover, such as 

development and grasslands, achieving accuracies above 85%. Sen et al. (2012) made use 
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of a chronosequence of 23 Landsat TM and ETM+ images to separate mining disturbance 

from other forest-replacing disturbance using disturbance/recovery trajectories. 

Study Area 

The study area is the Hobet-21 mountaintop mine in Boone and Lincoln counties, 

West Virginia, USA, shown in Plate 1. This is the largest mine complex in the 

Appalachian region (Keene and Skousen, 2010). This mine was selected because of the 

wide variety in age of disturbance, vegetation, and land cover. Historical imagery shows 

that some of the mine disturbance predates 1987, while portions of the mine were still 

active at the time of the writing. The mine complex boundary was derived from Surface 

Mine Control and Reclamation Act (SMCRA) surface mine permit boundaries provided 

by the West Virginia Department of Environmental Protection (WVDEP) and additional 

ancillary data. The boundary of the Hobet-21 mine encompasses an area of 5,500 ha of 

disturbance, reclaimed, and forested (i.e. not disturbed) land. 

Methods 

Data 

The primary optical dataset was a RapidEye multispectral satellite image 

collected on 1 April 2010, prior to spring leaf out. The scene has an average center image 

view angle of -2.82˚, azimuth angle of 110.2˚, sun azimuth of 171.2˚, and sun elevation 

of 56.5˚. The RapidEye system consists of a constellation of 5 satellites that were 

launched in August 2008. The satellites have sensors with five spectral bands: blue (440-

510 nm), green (520-590 nm), red (630-730 nm), red edge (690-730 nm), and near 

infrared (NIR) (760-850 nm) (Tyc et al., 2005). The ground sampling distance of the 
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system is 6.5 m. For this project, the 3A product was obtained, which has radiometric, 

sensor, geometric corrections, and orthorectification applied, including a resampling of 

the pixels to 5 m. The Hobet-21 mine complex is covered by a single image tile. 

LiDAR data were collected for the study area on 12 April 2010, using an aircraft 

flying height at 1524 m above ground level (AGL) at a speed of 125 knots. The Optech 

ALTM 3100 C sensor was set to a pulse frequency of 70 kHz, a scan frequency of 35 Hz, 

and a scan angle of 36˚ (full) to generate points with a nominal pulse spacing of 1 m. A 

30% overlap was acquired between swaths. The LiDAR system recorded up to 4 returns 

per laser pulse. The point data were classified by the vendor as ground, non-ground, or 

outliers, and delivered in LAS 1.2 format. The point classifications were utilized as they 

were provided, and no additional point classification or editing was performed. 

The imagery and LiDAR datasets were acquired within two weeks of each other. 

Visual comparison of the RapidEye data and LiDAR-derivatives throughout the mine 

complex showed little evidence of landscape alterations within this two week period.  

Pre-Processing 

Trial-and-error experimentation of raster interpolation methods and settings was 

performed, and an optimal approach was chosen based on a subjective evaluation of the 

products generated. The point data were first converted to raster data using the LAS 

Dataset to Raster utility in ArcMap (ESRI, 2012). A digital elevation model (DEM) was 

produced from the ground return point data on a 5 m grid matching that of the RapidEye 

imagery. A digital surface model (DSM) was then produced using the first returns. The 

raster grids were produced using the average value within each 5 m pixel and a linear 
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interpolation to fill data gaps with no returns within a grid cell. The DEM was subtracted 

from the DSM to produce an nDSM, a measure of height of objects on the ground, such 

as vegetation or buildings. 

A raster of first return intensity was produced using the ArcMap LAS Dataset to 

Raster utility. The point values were gridded using the average value within each 5 m 

grid cell. Data gaps were labeled with a value of zero, because lack of returns could be a 

result of complete absorption of the laser pulse, for example by water. The range of 

intensity values within each 5 m pixel was also calculated, with data gaps also labeled as 

zero. Only first returns were used for the intensity products as intensity values of 

subsequent returns should not be mixed with first returns (Brantberg, 2007). 

All data layers were converted to a data range appropriate for a 16 bit radiometric 

resolution. An image stack was produced using ERDAS Imagine 9.3 (ERDAS, 2002) 

comprising eight layers: the five RapidEye bands and the three LiDAR layers, the nDSM, 

first return intensity, and first return intensity range. This layer stack was used as the 

predictor variables used to map land cover. Co-registration can be a problem when data 

sets acquired with different sensors and at different times are integrated in a single 

analysis. For this study, the LiDAR data have a nominal horizontal error of 0.3 m and 

vertical error of 0.12 m (Optech, 2008; RAMPP, 2011). The RapidEye data were 

provided by the supplier as an orthorectified product (termed 3A), which has a nominal 

error of potentially less than 1 pixel under ideal circumstances (e.g. nadir view and flat 

terrain) (RapidEye, 2009). The RapidEye data over the study site were acquired at a view 

angle of -2.82˚(i.e. close to nadir), but the topography of the study site is complex, 
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therefore the error may be greater than 1 pixel.  Nevertheless, a visual inspection of an 

overlay of the two datasets did not show noticeable differences, suggesting that the 

registration was adequate for the analysis and not likely to affect the classification. 

Land Cover Classes of Interest 

Five land cover categories were mapped: forested, reclaimed-herbaceous 

vegetation, reclaimed-woody vegetation, barren, and water (Table 1). These classes were 

chosen based on prior experience of typical land cover conditions within surface mines 

and reclaimed surface mines in the region. It should be noted that the term “forested land 

cover” is used to indicate forests in the permit area not yet removed for the mountaintop 

removal mining.  The term does not necessarily imply that the area has never been 

disturbed at all; West Virginia’s landscape records extensive historical disturbances 

ranging from clear-cutting to prior surface coal mining. 

Training Data  

Training areas were delineated by manual interpretation of 1 m high resolution 

orthophotography and checked against the RapidEye imagery, LiDAR nDSM, and 

LiDAR bare earth contour data, which were useful for differentiating the vegetation 

classes and reclaimed surfaces. The orthophotography was collected as natural color 

images by Pictometry International Corporation (Rochester, New York) in March of 2010 

for the state of West Virginia, approximately one month before the LiDAR and RapidEye 

data acquisition. The number of training polygons collected is summarized in Table 2. 

Using Geospatial Modeling Environment (GME) (Beyer, 2012), 1,000 point 

examples of each class were randomly selected from the digitized polygons as training 
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pixels. Due to the small proportion of water within the mine complex, it was not possible 

to collect 1,000 examples for that class. In total, 4,517 pixels were utilized to train the 

models as summarized in Table 2. 

Classification Methods 

Per-pixel classifications were performed using the three machine learning 

algorithms within the statistical software tool R (R Core Team, 2012). SVM classification 

was performed using the e1071 package (Meyer et al., 2012), RF using the randomForest 

package (Liaw and Wiener, 2002), and boosted CART using the adabag package (Alfaro-

Cortes et al., 2012). 

In order to optimize the parameters required for the SVM and RF algorithms in 

this study, a grid search of the specified parameters was undertaken in R. Optimal 

parameters were estimated based on the minimum classification error obtained for the 

training data using a 10-fold cross validation, in which the data were partitioned into ten 

unique training sets, using a random assignment. The classifier was then trained ten 

times, and each time the remaining data, not used for training in that instance, were used 

for validation. Overall accuracy was calculated as the average across the ten 

classifications. Optimization was performed for each of the three combinations of 

predictor variables (bands) used to produce a classification. This ensured that each 

classification used optimal parameters for the particular set of predictor variables tested. 

For SVM a radial basis function (RBF) kernel was used and the cost (C) and gamma (γ) 

parameters were optimized. Once a coarse grid search on a wide range of parameter 

values was performed, a second grid search of values centered on the optimal settings 
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predicted was performed in order to further refine the estimate. For RF the number of 

predictor variables randomly sampled as candidates at each node (m) and also the number 

of trees to grow (k) were selected using a grid search procedure.  

Classifications were performed for three combinations of the predictor variables for 

each machine learning algorithm in order to assess their performance in terms of 

classification accuracy. The combinations included the following:  

1. Image Bands (5) = 5 Predictors Variables 

2. LiDAR-Derived Data (3) = 3 Predictor Variables 

3. Image Bands (5) + LiDAR-Derived Data (3) = 8 Predictor Variables 

Error Assessment 

Classification accuracy was assessed through an independent dataset, separate 

from the training data. A total of 1,325 pixels were randomly collected, 265 in each of the 

five land cover classes. No pixels from within the training areas were used. A stratified 

sample for the accuracy assessment was chosen because reclaimed-woody vegetation and 

water classes are not common cover types in the study area and thus would typically be 

only rarely selected in a purely random approach.  

At each of the 1,325, 5 m x 5 m validation pixels, the dominant land cover 

category was visually interpreted from the Pictometry, RapidEye, and LiDAR data. Each 

pixel was assessed twice to ensure consistency in the interpretation.  

From the randomly selected accuracy assessment data, error matrices and Kappa 

statistics were produced. As this was a stratified sample, overall accuracy was calculated 



 
 

25 
 

by weighting the class accuracies by the proportion of land cover within the study area 

(Stehman and Foody, 2009). Following Pontius and Millones (2011), quantity 

disagreement and allocation disagreement were also calculated. These two measures 

segment disagreement between maps into difference in proportion of the classes and 

spatial allocation of the classes. Although the value of Kappa is questioned by Pontius 

and Millones (2011), the statistic was nevertheless provided for potential comparisons to 

other studies. 

In order to evaluate the statistical significance of any differences in the 

classifications, the results were compared on a pairwise basis using McNemar’s test 

(Dietterich, 1998; Foody, 2004). From the accuracy assessment data, which were used to 

assess all models, and classification results, 2-by-2 confusion matrices were produced 

that summarized which pixels were correctly classified by both classifiers, which were 

incorrectly classified by both, and which were classified correctly by one classifier and 

not the other. McNemar’s test is a non-parametric test of statistical difference that allows 

for the calculation of a z-score from this 2-by-2 matrix. A z-score larger than 1.645 

indicates a 95% confidence interval of statistical significance for the one-directional test 

of whether one classification is better than the other (Bradley, 1968; Dietterich, 1998; 

Foody, 2004; Agresti, 2007).  

The RF algorithm generates an estimate of predictor variable importance during 

training by excluding each variable sequentially and recording the resulting increased oob 

error (Breiman, 2001; Rodríguez-Galiano et al., 2012). This approach was used to 
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determine which predictor variables were most important in the model given all input 

predictor variables, both the multispectral bands and the LiDAR-derivatives. 

Results and Discussion 

 The optimized algorithm parameter settings for the classifiers for each input 

variable combination are listed in Table 3. For SVM, the optimal setting for gamma (γ) 

and cost (C) were different for all band combinations. For RF, the optimal number of 

input variables sampled at each node (m) varied between 2 and 3 input variables. A total 

of 500 trees (k) was used for all band combinations for both RF and boosted CART 

because this was found to be sufficient to stabilize the classification regardless of band 

combinations used. Breiman (2001) notes that as the number of trees grown increases, 

generalization error converges and overfitting should not be a problem due to the “strong 

law of large numbers.” Parameter optimization was the most time consuming process in 

producing the classification models. SVM took the longest time to optimize and was the 

most complex to optimize because a wide range of values for γ and C had to be tested 

(Pal, 2005). 

The SVM algorithm using the combination of the multispectral and LiDAR-

derived predictor variables resulted in the classification with the highest overall accuracy, 

86.4% (Table 4). The resulting map is shown in Plate 2 with area and percentage of cover 

types within the mine permit summarized in Table 5. The map shows that reclaimed-

herbaceous vegetation is the most common cover type within the mine permit followed 

by barren areas. A smaller percentage of the reclaimed area was classified as reclaimed-
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woody vegetation, mostly in the eastern portion of the mine, where reclamation is older 

and more established.  

 The highest classification accuracies were achieved by the combination of the 

multispectral and LiDAR-derived data, then the image data alone, and finally the LiDAR-

derivatives, regardless of the algorithm used, as shown by Table 4. The McNemar’s tests, 

summarized in Table 6(a), 6(b), and 6(c), indicate the differences between the 

classification accuracies using the different combinations of predictor variables were 

generally statistically significant. The only exceptions are the RF and boosted CART 

algorithms ((Table 6(b) and (c)) for which the classification of the multispectral imagery 

was not statistically more accurate than classification using the LiDAR-derivatives.  

 Table 4 indicates that the SVM algorithm outperformed the ensemble methods 

regardless of the predictor variable combinations used: for all data combinations, the 

SVM algorithm provided the highest map accuracy. Table 6(d) and 6(f) show that 

difference was statistically significant between RF and also boosted CART for the 

classification of the imagery and the combined imagery and LiDAR; however, none of 

the algorithms were shown to be statistically different for the classification of the 

LiDAR-derivatives (Table 6(e)). 

 Allocation disagreement is generally larger than quantity disagreement, and also 

varies over a wide range of values (Table 4). The SVM classification using the imagery 

and LiDAR-derived predictor variables has the lowest allocation disagreement, and the 

second to lowest quantity disagreement. These measures also suggest that there is merit 

in combining the data sources and using the SVM algorithm. 
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 In summary, for the comparison of different predictor variables (Table 6(a) – (c)), 

only two combinations were reported as not statistically different out of the possible nine 

combinations; for the comparison of classification algorithms (Table 6(d) – (f)), five of 

the possible nine combinations were shown not to be statistically different, and the z-

scores were often lower than those for the input band combinations. The largest z-score, 

or most significant difference, is for the comparison of the LiDAR data and the 

combination of imagery and LiDAR, classified using the SVM algorithm. The variables 

used generally had a larger impact on final map accuracy than the algorithm. Even 

though the SVM algorithm generated the most accurate output, it was the most difficult 

to optimize because a wide range of values for γ and C must be tested for optimization, as 

already noted above. Fewer unique values for m and k must be tested for RF, and only k 

must be specified for boosted CART. Even though the classifications using the different 

methods showed statistical differences, the question arises as to whether a 1 to 3% 

increase in map accuracy merits the increased complexity required for optimizing SVM. 

Perhaps a simpler method, that has a 1-2% lower accuracy, may be a better choice for 

routine mapping, for the sake of simplicity. 

 On the other hand, SVMs have been shown to be relatively robust with respect to 

parameter settings (Melgani and Bruzzone, 2004), and as parameter optimization was the 

most time consuming step in the SVM analysis, the question arises as to whether this step 

is necessary. To address this question, a classification using the default R parameter 

settings (kernel=RBF, C=1, γ=1/8) (Meyer et al., 2012) using the combined imagery and 

LiDAR data was generated. The resulting overall accuracy was 86.3%, compared to 
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86.4% for the classification produced using the optimal parameters, a decrease of only 

0.1%. There was no statistical difference between the default and optimal classifications 

using McNemar’s test (z-score=0.254). If, as this result would suggest, optimization does 

not have to be performed to obtain an accurate classification, this further strengthens the 

argument for the use of the SVM algorithm. 

 As the SVM algorithm provided the most accurate classifications, those results 

will be used to compare error matrices for the three combinations of variables. Tables 7, 

8, and 9 show the error matrices for the image bands only, LiDAR-derivatives only, and 

the imagery bands and the LiDAR-derivatives, respectively. In comparison with image 

variables alone, the combined LiDAR and image variables show an increase in the 

number of pixels correctly classified for all land cover classes, other than water. This 

suggests that the addition of the LiDAR-derived data provided enhanced separation of 

multiple classes rather than improving only one class. Generally, the LiDAR-derived 

predictor variables alone provided the lowest accuracy per class. These tables show the 

benefit for all classes of combining the LiDAR and multispectral image data sources, and 

they also suggest that LiDAR-derivatives are not a substitute for image data for land 

cover classification as they do not provide comparable accuracies. Instead, LiDAR data 

should be used to enhance classification using multispectral data. 

 The error matrices (Tables 7-9), generally speaking, suggest that reclaimed-

herbaceous cover was commonly confused with the reclaimed-woody vegetation, 

forested, and barren classes. The confusion with barren cover may be attributed to the 

patchy, heterogeneous nature of some reclaimed areas, which likely resulted in a mixed 
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pixel problem. Such areas may be in the early stage of reclamation, in which vegetation is 

just beginning to regrow on the barren landscape. This issue highlights the complexity of 

land cover mapping of surface mine complexes in which a wide range of vegetation, 

disturbance, and historical reclamation practices exist on a steep and heterogeneous 

landscape. Producer’s accuracy for water was also generally low, likely a result of the 

variability in water reflectance on mine sites. Small settlement ponds, water retention 

ponds, and treatment ponds may have a wide variety of chemical precipitates, dissolved 

chemicals, sediment levels, and other factors, which can make them spectrally varied and 

difficult to classify accurately. 

 Figure 1 shows predictor variable importance as estimated by the oob mean 

decrease in accuracy for a classification using the combination of LiDAR and 

multispectral data. The most important variable in the model was RapidEye Band 5 (NIR) 

followed by the nDSM. The fact that the nDSM was found to be more important in the 

model for predicting cover than four of the five spectral bands emphasizes the value of 

the height information. The LiDAR intensity data were found to be less important than 

the nDSM and all the image bands, with the exception of Band 4 (Red Edge). The first 

return intensity range showed the lowest importance. Similar results were found by Chust 

et al. (2008). Although they found improvements in coastal habitat mapping by 

combining LiDAR-derived data and mutlispectral imagery, the classification accuracy 

was most increased by the incorporation of a LiDAR-based digital surface model (DSM) 

as opposed to other LiDAR-derivatives including intensity, slope, and aspect. Guo et al. 

(2011) also found height differences, or nDSM, to be the most useful LiDAR-derived 
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dataset, and they attributed this to the ability of the nDSM to help distinguish between 

above ground and ground features in an urban setting.  

 For operational mine monitoring at the scale of individual mine permits, the 

approach suggested here may provide accurate classification (on the order of 85%) of 

mine disturbance and reclamation. In this research, visually interpreted high resolution 

orthophotography was used to facilitate the collection of training data, but this may not 

be necessary as the RapidEye imagery and LiDAR data provide adequate resolution to 

interpret the land cover class of the training polygons. The proposed mapping approach 

could be extended from the individual mine to a regional scale, although potential 

limitations in doing so could include cloud cover, phenological and illumination changes 

between RapidEye tiles, and the need for LiDAR data over a large area, which would be 

expensive to collect, if it were not already available. In addition, for regional studies it 

may be harder to get LiDAR and RapidEye data that are at least approximately 

temporally coincident. 

Conclusions 

High spatial resolution can yield fine detail for land cover mapping; however, 

reduced classification accuracy is expected due to internal variability within classes and 

decreased spectral resolution. This poses a problem when high resolution land cover data 

are required, for example mapping of mine permitted lands as investigated here. One 

means to combat this problem is combining multiple data sources including imagery and 

LiDAR. Machine learning algorithms, which tend to be robust in dealing with complex 

predictor variables, are powerful tools for classifying such data. In a landscape where the 
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land cover changes rapidly, such as the southern coalfields of the eastern United States, 

planning and coordinating multiple data collections within a short time period may be of 

particular importance. 

The combination of LiDAR-derived data, including a nDSM, first return intensity, 

and first return intensity range, together with commercial satellite imagery, aided in the 

classification of accurate land cover within the surface mine permitted area. The input 

variable combinations used had a larger impact on final classification accuracy than the 

algorithm used; however, SVM provided a more accurate classification than the ensemble 

tree algorithms. Finding the optimal parameters for the SVM classification was time 

consuming. However, the classification accuracy using the default parameters in R was 

not statistically different from the accuracy of the classification using the optimal 

parameters. Thus, omitting the optimization step may not have a major effect on the 

classification. The highest classification accuracy was produced by a SVM algorithm 

using a combination of multispectral image bands and LiDAR-derivatives. The nDSM 

proved to be a particularly important predictor variable for the RF algorithm, and was 

found to be more useful than the intensity data. 
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Table 1: Land cover class definitions.  

Class Description 

Forested  

Land dominated by mature, woody vegetation that has not been 

directly disturbed by surface mining; mature forest that generally 
represents pre-mining conditions of the slopes 

Reclaimed- 
herbaceous 

vegetation 

Reclaimed areas dominated by herbaceous/non-woody vegetation  

Reclaimed- 
woody 

vegetation 

Reclaimed areas dominated by clumped or clustered woody plants 
that include shrubs and immature trees 

Barren 
Barren land lacking vegetation; manmade structures; haul roads; 
active quarries; lands disturbed by mining  

Water Water, including retention ponds, streams, and standing water 
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Table 2: Number of training polygons, area (ha) of training polygons, and number of 

randomly selected training pixels for each land cover class based on manual photograph 

interpretation of high resolution aerial orthophotography. 

Land Cover Class 

Number of 

Training 

Polygons 

Area of Training 

Polygons (ha) 

Number of 

Training Pixels 

Randomly 

Selected From 

Within The 

Training 

Polygons 

 

Forested 81 77.0 1000  

Reclaimed-herbaceous 

vegetation 
121 37.9 1000 

 

Reclaimed-woody 
vegetation 

59 9.0 1000 
 

Barren 106 44.7 1000  

Water 22 1.3 517  
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Table 3: Optimized parameter settings for SVM, RF, and boosted CART. 

Parameters Selected 

Band Combinations 
SVM 

(γ, C) 

RF 

(m, k) 

Boosted 

CART 

(k) 

Imagery 1.5, 4 3, 500 500 

Imagery + LiDAR 0.14, 35 2, 500 500 

LiDAR 1.2, 105 2, 500 500 
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Table 4: Performance of the different classifiers and variable combinations; overall 

accuracy (OA), Kappa (K), allocation disagreement (AD), and quantity disagreement 

(QD), respectively. 

Band 

Combinations 

(Number of Bands) 
Measures SVM RF 

Boosted 

CART 

Imagery (5) 

OA (%) 

K (%) 
AD (%) 
QD (%) 

80.6 

73.4 
11.4 
8.0 

77.4 

69.2 
13.0 
9.6 

77.6 

79.6 
12.8 
9.6 

Imagery + LiDAR 

(8) 

OA (%) 
K (%) 

AD (%) 

QD (%) 

86.4 
81.2 
7.6 

6.0 

84.1 
78.1 
8.8 

7.1 

83.5 
77.2 
9.2 

7.3 

LiDAR (3) 

OA (%) 
K (%) 

AD (%) 
QD (%) 

76.1 
67.3 

18.2 
5.7 

75.9 
67.0 

18.0 
6.1 

75.6 
66.8 

17.7 
6.7 

OA = Overall Accuracy     K = Kappa Statistic 
AD = Allocation Disagreement     QD = Quantity Disagreement 
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Table 5: Area (ha) and percentage of land cover classes for the surface mine complex 

shown in Figure 2. 

Land Cover Class Area (ha) 

Percentage 

of Permitted 

Areas 

Forested 1,132 20.5% 

Reclaimed-herbaceous 
vegetation 2,315 41.7% 

Reclaimed-woody vegetation 854 15.4% 

Barren 1,201 21.6% 

Water 48 0.9% 
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Table 6: McNemar’s test to assess statistical differences between classifications produced 

given different input predictor variables and classification algorithms. A z-score larger 

than 1.645 (*) indicates a 95% confidence interval of statistical significance for the one-

directional test of whether one classification is better than the other. 

a) Comparison of Input Variables Classified Using SVM 

  LiDAR Imagery + LiDAR 

Imagery 2.105* 4.969* 

LiDAR   6.074* 

b) Comparison of Input Variables Classified Using RF 

  LiDAR Imagery + LiDAR 

Imagery 0.810 5.802* 

LiDAR   5.800* 

c) Comparison of Input Variables Classified Using 

Boosted CART 

  LiDAR Imagery + LiDAR 

Imagery 1.535 3.467* 

LiDAR   4.811* 

d) Comparison of Classification Method Using Image 

Data 

  RF Boosted CART 

SVM 4.303* 2.466* 

RF   1.539 

e) Comparison of Classification Method Using LiDAR 

Data 

  RF Boosted CART 

SVM 1.627 1.360 

RF   0.098 

f) Comparison of Classification Method Using Image 

and LiDAR Data 

  RF Boosted CART 

SVM 2.621* 3.464* 

RF   1.287 
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Table 7: Error matrix for SVM with imagery bands only. Overall accuracy is 80.6%. 

 

  
Reference Data (Pixels)  

 

  
Forested  

Reclaimed 
herbaceous 

vegetation 

Reclaimed 
woody 

vegetation 

Barren Water Totals 
User's 

Accuracy 

Classified 
Data 

(Pixels) 

Forested  238 35 42 2 21 338 70.4% 

Reclaimed 

herbaceous 
vegetation 

14 193 20 6 0 233 82.8% 

Reclaimed 

woody 
vegetation 

13 20 203 0 0 236 86.0% 

Barren 0 16 0 247 40 303 81.5% 

Water 0 1 0 10 204 215 94.9% 

 Totals 265 265 265 265 265 

 

Producer's 

Accuracy 
89.8% 72.8% 76.6% 93.2% 77.0% 
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Table 8: Error matrix for SVM with LiDAR-derivatives only. Overall accuracy is 76.1%. 

 

  
Reference Data (Pixels)  

 

  
Forested  

Reclaimed 
herbaceous 

vegetation 

Reclaimed 
woody 

vegetation 

Barren Water Totals 
User's 

Accuracy 

Classified 
Data 

(Pixels) 

Forested  217 10 39 2 6 274 79.2% 

Reclaimed 

herbaceous 
vegetation 

8 192 19 34 1 254 75.6% 

Reclaimed 

woody 
vegetation 

38 21 204 1 3 267 76.4% 

Barren 2 41 3 210 31 287 73.2% 

Water 0 1 0 18 224 243 92.2% 

 Totals 265 265 265 265 265 

 

Producer's 

Accuracy 
81.9% 72.5% 77.0% 79.2% 84.5% 
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Table 9: Error matrix for SVM with imagery bands and LiDAR-derivatives. Overall accuracy is 86.4%. 

 

  
Reference Data (Pixels)  

 

  
Forested  

Reclaimed 

herbaceous 
vegetation 

Reclaimed 

woody 
vegetation 

Barren Water Totals 
User's 

Accuracy 

Classified 
Data 

(Pixels) 

Forested  253 11 24 1 7 296 85.5% 

Reclaimed 

herbaceous 
vegetation 

5 210 11 5 0 231 90.9% 

Reclaimed 

woody 
vegetation 

6 23 230 0 0 259 88.8% 

Barren 1 21 0 248 55 325 76.3% 

Water 0 0 0 11 203 214 94.9% 

 Totals 265 265 265 265 265 

 

Producer's 

Accuracy 
95.5% 79.2% 86.8% 93.6% 76.6% 
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Figure 1: Relative importance of predictor variables as estimated by the out-of-bag (oob) 

mean decrease in accuracy by RF. This analysis suggests that the most important 

predictor variables in the classification were RapidEye Band 5 (NIR), followed by the 

LiDAR-derived nDSM. 
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Plate 1: Hobet-21 surface mine complex. Base image is the RapidEye scene acquired on 

April 1, 2010 and displayed in simulated natural color (Bands 3, 2, 1 as RGB). The 

depicted mine extent is based on the surface mining permit obtained from WVDEP. The 

map is projected in NAD83 UTM Zone 17 N. © (2013) BlackBridge S.àr.l. All rights 

reserved. 
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Plate 2:  Land cover classification of the Hobet-21 mine complex using all RapidEye 

imagery bands and LiDAR-derivatives. SVM was used with a radial basis function (RBF) 

kernel, a gamma value (γ) of 0.14, and a cost value (C) of 35. 
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CHAPTER 3 

Comparison of NAIP orthophotography and RapidEye satellite imagery for mapping of 

mining and mine reclamation1 

Aaron E. Maxwell, Michael P. Strager, Timothy A. Warner, Nicholas P. Zégre, and Charlie Yuill 

Abstract 

 National Agriculture Imagery Program (NAIP) orthophotography is a 

potentially useful data source for land cover classification in the United States due 

to its nation-wide and generally cloud-free coverage, low cost to the public, 

frequent update interval, and high spatial resolution. Nevertheless, there are 

challenges with working with NAIP imagery, especially regarding varying viewing 

geometry, radiometric normalization, and calibration. In this paper we compare 

NAIP orthophotography and RapidEye satellite imagery for high resolution 

mapping of mining and mine reclamation within a mountaintop coal surface mine 

in the southern coalfields of West Virginia, USA. Two classification algorithms, 

support vector machines (SVM) and random forests (RF), were used to classify 

both data sets. Compared to the RapidEye classification, the NAIP classification 

resulted in lower overall accuracy and Kappa, and higher allocation disagreement 

and quantity disagreement. However, accuracy of the NAIP classification was 

improved by reducing the number of classes mapped, using the near infrared (NIR) 

band, using textural measures and feature selection, and reducing the spatial 

                                                                 
1 This is an Accepted Manuscript of an article published by Taylor & Francis in GIScience and 

Remote Sensing on 09 May 2014, available online: http://wwww.tandfonline.com/doi/abs/ 

10.1080/15481603.2014.912874.  Maxwell, A.E., M.P. Strager, T.A. Warner, N.P. Zégre, and 

C.B. Yuill, 2014. Comparison of NAIP orthophotography and RapidEye satellite imagery for 

mapping of mining and mine reclamation, GIScience & Remote Sensing, 51(3): 301-320. 

(Received 20 December 2013, Accepted 26 March 2014) 
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resolution slightly by pixel aggregation or by applying a Gaussian low pass filter. 

With such strategies, NAIP data can be a potential alternative to RapidEye satellite 

data for classification of surface mine land cover. 

Keywords: National Agriculture Imagery Program; NAIP; RapidEye; Mountaintop 

removal coal mining; surface coal mining; land cover classification; machine 

learning 
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Introduction 

 The United States Department of Agriculture (USDA) National Agriculture Imagery 

Program (NAIP) orthophotography offers high spatial resolution (1 m ground sampling distance 

(GSD)), up to four spectral bands, nearly cloud-free coverage of large areas (e.g. entire states) 

acquired during a single growing season, and low cost to the user. For the state of West Virginia 

it is available for the growing seasons of 2007, 2009, and 2011 (Aerial Photography Field Office, 

2012), potentially allowing multi-temporal analysis. Because of these characteristics, it is 

compelling to consider these data for land cover mapping and monitoring. However, prior 

research has found that high spatial resolution, variable viewing geometry and illumination, and 

in some cases limited spectral resolution, can complicate mapping tasks from aerial data 

(Cushnie, 1987; Myeong et al., 2001; Bozheva et al., 2005; Guo et al., 2007; Baker et al., 2013). 

In comparison, high-spatial resolution commercial satellite images can potentially offer large 

scenes with relatively consistent viewing and illumination geometry and four to eight well-

characterized spectral bands (Toutin, 2009).  

This research compares the use of NAIP orthophotography and RapidEye satellite 

imagery for the mapping of mining and mine reclamation within an individual mine complex in 

the southern coalfields of the eastern United States. RapidEye satellite data offers five spectral 

bands and a 5 m cell size (Tyc et al., 2005). RapidEye data were used, as opposed to IKONOS or 

other high resolution satellite data, because cloud free coverage was available that was acquired 

at a time nearly coincident with the NAIP collection, because the RapidEye constellation of five 

satellites offers a frequent return time (5.5 days at nadir) (Tyc et al., 2005), and because the 

researchers have previously used this imagery for mapping surface mine land cover (Maxwell et 

al., 2014) with promising results. The following factors were investigated: 
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1. Comparative classification accuracy for five land cover classes under various processing 

scenarios (at the original cell size of each data set, at a common cell size, at a common 

radiometric resolution, and at a common cell size and radiometric resolution). 

2. The relative importance of different image bands in the random forests (RF) 

classification. 

3. The relative importance of multi-seasonal data. 

4. The relative importance of the near-infrared (NIR) band for NAIP classification. 

5. The relative improvement in classification accuracy as the number of classes is reduced. 

6. Improvement in classification accuracy of NAIP with the incorporation of texture 

measures from the gray level co-occurrence matrix (GLCM). 

7. Improvement in classification accuracy of NAIP resulting from image smoothing using a 

Gaussian low pass filter. 

Background 

 In recent years, data selection for fine-scale mapping has become more complex due to 

the wide range of choices of both aerial- and satellite-based high spatial resolution data. 

Determining which sensors offers the appropriate spatial, spectral, temporal, and radiometric 

scales to meet specific mapping needs may not be a simple task as multiple criteria must be 

considered and evaluated (Phinn, 1998). Variations in the cost of data further complicate data 

selection (Tarnavsky et al., 2004; Warner et al., 2009).  

 The complexity of land cover mapping from high resolution aerial imagery has been 

previously explored. For example, Myeong et al. (2001) noted that shadows and similarity in 

spectral response between mapping classes complicated the mapping of urban cover from high 
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resolution (0.61 m pixel size) color-infrared imagery. There is also a growing literature on the 

use of NAIP orthophotography for land cover mapping. For example, Davies et al. (2010) used 

NAIP to map juniper cover in Idaho, USA, while Meneguzzo et al. (2013) attempted to classify 

isolated trees in Steele County, Minnesota, USA. Baker et al. (2013) compared pixel-based and 

object-based classification methods for mapping forest clearings associated with natural gas 

drilling operations in Greene County, Pennsylvania, USA. They noted the challenges of using 

NAIP data for image classification, including issues related to the range in time of day and 

season of acquisition, which resulted in differences in digital number (DN) values between tiles, 

differences in shadow length and direction, and phenological differences. A search of the current 

literature suggests that there is little work published on comparison of NAIP and high resolution 

satellite data or NAIP for the classification of mining and mine reclamation. 

 Mountaintop mining occurs in southern West Virginia, eastern Kentucky, eastern 

Tennessee, and southwestern Virginia, a region known as the southern coalfields of the eastern 

United States (USEPA, 2005). In this region, mountaintop coal mining is the leading cause of 

land use/land cover change (Saylor, 2008; Townsend et al., 2009; Drummond and Loveland, 

2010). Coal extraction results in forest clearing (for example, 420,000 ha in Appalachia between 

1973 and 2000 (USEPA, 2005)) and fragmentation (Wickham et al., 2007), removal of top soil, 

and a recontouring of the landscape (Palmer et al., 2010; Bernhardt and Palmer, 2011). 

Furthermore, mountaintop mining causes faster landscape alteration than more traditional mining 

methods such as auger, contour, and highwall mining (Fritz et al., 2010). After mining is 

complete, the disturbed areas are reclaimed, commonly to grasslands or shrublands (Simmons et 

al., 2008; Kazar and Warner, 2013). More recently, there has been increased interest in 

reclamation to native forest species on the topographically altered terrain (Zipper et al., 2011). 
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Remote sensing has been investigated as a means to map landscape change due to mining 

and mine reclamation using data from the Landsat Multispectral Scanner (MSS), Thematic 

Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and SPOT (Rathore and Wright, 1993; 

Townsend et al., 2009; Sen et al., 2012; Zégre et al., 2013). Mapping mine reclamation is of 

specific concern as this is commonly the legacy imprint of mining on the landscape (Negley, 

2002), although Rathore and Wright (1993) found that mine reclamation was mapped with lower 

accuracy than active mining. Recently, there has been an interest in multi-temporal imagery for 

separating mining and non-mining as a way to overcome the spectral similarities of reclaimed 

and undisturbed landscapes such as pastureland or herbaceous cover (Townsend et al., 2009; Sen 

et al., 2012). Textural measures have been investigated as a means to increase classification 

accuracy using single-date data (Warner, 2011), and such variables have been shown to improve 

land cover classification in multiple studies (for example, Chica-Olmo and Abarca-Hernández, 

2000; Agüera et al., 2008; Ghimire et al., 2010; Rodríguez-Galiano et al., 2012b).  

Machine learning algorithms such as support vector machines (SVM) and RF offer 

particular advantages for classifying high spatial resolution imagery of mined landscapes. 

Machine learning algorithms have been shown generally to be more accurate and efficient than 

parametric classifiers, which make assumptions regarding the data distribution (Hansen et al., 

1996; Huang et al., 2002; Rogan et al., 2003; Pal, 2005; Ghimire et al., 2012; Loosvelt et al., 

2012). Pal (2005) suggests that SVM and RF can provide comparable map accuracies, though RF 

is simpler to apply. Previous work by the authors (Maxwell et al., 2014) suggests that SVM 

provided a more accurate classification than RF for classification of surface mine land cover 

from high resolution satellite imagery. In addition, optimizing the SVM algorithm, often the 

most time consuming step in executing the algorithm, did not statistically increase the accuracy 
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of the classification, suggesting that the method is relatively robust (Maxwell et al., 2014), 

although other studies have suggested that optimization may be of importance (Pal, 2005). 

SVMs make use of structural risk minimization to find the hyperplane that separates two 

classes with the maximum margin; it is an implementation of statistical learning theory and 

optimization algorithms to locate decision boundaries between data classes (Vapnik, 1995; 

Burges, 1998; Pal and Mather, 2005; Pal, 2005; Su and Huang, 2009). The points that lie closet 

to the hyperplane, termed “support vectors,” define the margin. Because SVM algorithms are 

designed for two-class problems only, strategies have been developed incorporating multiple 

SVM algorithms to generate a multi-class classification (Vapnik, 1995; Pal and Mather, 2005; 

Pal, 2005). The e1071 package in R, which is the implementation of SVM used in this research, 

uses a “one-against-one” approach for multiclass-classification in which binary classifiers are 

trained and the appropriate class is found by a voting scheme (Meyer et al., 2012).  

RF, introduced by Breiman (2001), uses multiple decision trees as a means to improve 

the accuracy and consistency of single tree classifications. RF functions as an ensemble of 

decision trees and is a non-parametric learning algorithm. Bagging, which comprises bootstrap 

sampling with replacement (Breiman 1996), is used to generate a subset of the data to train each 

tree instead of using the entire training data set. The remaining data, termed out-of-bag (oob) 

data, are withheld and can be used for accuracy assessment. Instead of using all predictor 

variables in each tree, RF uses a random subset of the predictor variables (the number of which is 

defined by the user) to grow each tree of the ensemble. Although the use of a subset of variables 

decreases the classification accuracy of any one tree, correlation between trees is also reduced, 

resulting in a reduction in generalization error, which is the strength of RF. The Gini index, 

which provides a measure of impurity of a given class with respect to the rest of the classes, is 
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used to select the best predictor among the randomly selected predictor variables available at 

each node (Breiman, 2001; Ghimire et al., 2010; Rodríguez-Galiano et al., 2011; Ghimire et al., 

2012; Rodríguez-Galiano et al., 2012a; Rodríguez-Galiano et al., 2012b).  

Study area 

 The study area is a single large mine complex, the Hobet-21 mountaintop mine in Boone 

and Lincoln counties, West Virginia, USA (Figure 1). It is the largest surface mine complex in 

the Appalachian region (Keene and Skousen, 2010), with a wide variety in age of disturbance, 

vegetation, and land cover. Historical imagery shows that some of the mining disturbance 

predates 1987, while portions of the mine were still active at the time of this study. Multiple 

remotely sensed data sets are available for this site, including NAIP orthophotography, light 

detection and ranging (LiDAR) data, multiple RapidEye scenes, and high resolution imagery 

from Pictometry International Corporation (Rochester, New York). Multiple data sources 

allowed the collection of accurate training and assessment data, making this an excellent location 

to study surface mine mapping. A total area of 5,500 ha was classified within the extent of the 

Hobet-21 mine.  

Methods 

Data 

The characteristics of the NAIP and RapidEye data used are described in Table 1. The 

RapidEye data were provided by the supplier as an orthorectified product (termed 3A), which 

has a nominal error of potentially less than 1 pixel under ideal circumstances (e.g. nadir view and 

flat terrain) (RapidEye, 2009). The primary RapidEye data over the study site were acquired at a 

view angle of 6.72˚ (i.e. close to nadir), but the topography of the study site is complex, therefore 

the error may be greater than 1 pixel.  Nevertheless, a visual inspection of an overlay of the two 

image data sets did not show noticeable differences, suggesting that the registration was adequate 
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for the analysis and not likely to affect the classification. However, as a precaution in case of co-

registration problems or potential changes in land cover between the data set acquisitions, each 

pixel in the training and assessment data sets was checked to ensure that the assigned land cover 

class for that location was the same in each data set. Any samples that failed this test (less than 

5% of all samples) were excluded from the analysis. In this study, single-date imagery in which 

the training, assessment, and image data were on the same scale were used; as a result, as 

suggested by Song et al. (2001), DN values were used as delivered, not converted to reflectance 

or with atmospheric corrections applied. 

The NAIP orthophotography was collected with an Integraph Z/I Imaging Digital 

Mapping Camera (DMC) on 14 July, 2011, and thus leaf-on conditions during the growing 

season were captured. This imagery has a 1 m GSD and four spectral bands (blue, green, red, and 

NIR) as described in Table 1. The data were provided by the Aerial Photograph Field Office 

(APFO) of the USDA Farm Service Agency (FSA) as uncompressed quarter quadrangles. These 

tiles were mosaicked to produce a single image covering the mine.  

 The RapidEye data were collected on 1 August, 2011. The scene has an average center 

azimuth angle of 279.6˚, sun azimuth of 165.1˚, and sun elevation of 69.6˚. The satellites have 

sensors with five spectral bands, as described in Table 1 (Tyc et al., 2005). The GSD of the 

system is 6.5 m. The 3A product used in this study has radiometric, sensor, and geometric 

corrections applied, and is orthorectified to a 5 m grid. The Hobet-21 mine complex is covered 

by a single image tile so there was no need to mosaic multiple tiles.  

 A second RapidEye image was also used in the analysis in order to assess the benefit of 

multi-season data. The image was collected on 1 April 2010, prior to spring leaf out. The scene 

has an average center image view angle of -2.82˚, azimuth angle of 110.2˚, sun azimuth of 
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171.2˚, and sun elevation of 56.5˚. Although the multi-season data were combined to assess the 

potential benefits of multi-season data, which is not possible with NAIP, the primary objective of 

this study was to compare leaf-on, single-date imagery.  

Image processing 

 Resampling was necessary in order to compare the images at a common cell size. As the 

RapidEye data are collected at a 6.5 m resolution then subsequently resampled to 5 m, the 

coarsest resolution of the two data sets, 6.5 m, was used as the common cell size for analysis. 

Due to the much smaller original cell size of the NAIP imagery (1 m), it was resampled using 

pixel aggregation to 6.5 m, while the RapidEye data were resampled using cubic convolution. As 

cubic convolution resampling may smooth the image, nearest neighbor resampling was also 

tested, and no statistical difference in classification was noted between the resulting 

classifications using the two resampling methods. As a result, cubic convolution was used in the 

subsequent analyses. Also, each image was converted to an 8-bit stretch using a linear rescaling 

in order to allow for comparison of the images at a common radiometric scale. 

 GLCM texture measures (Haralick et al., 1973) were calculated from the NAIP 

orthophotography. To facilitate comparison between the data sets, the texture calculations were 

applied to the imagery at the common 6.5 m pixel size.  The following textural bands were 

calculated: variance, homogeneity, contrast, dissimilarity, entropy, second moment, and 

correlation. The mean was not included as the impact of smoothing the data was assessed 

separately. The textural measures were calculated from the red and green bands and also the first 

and second principle component bands. In order to assess texture at different spatial scales, three 

different offsets, 3, 2, and 1 pixels, were tested. The kernel size, which determines the amount of 

smoothing (Warner, 2011), was set to be close to the minimum possible given the offset distance. 
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The kernel size was set at 11 x 11 for the 3 pixel offset, 7 x 7 for the 2 pixel offset, and 5 x 5 for 

the offset of 1. Texture was calculated in the vertical, horizontal, and diagonal directions and 

then averaged in order to produce a composite, non-directionally-sensitive value (Warner, 2011). 

A total of 84 textural measures were produced. 

 A visual comparison of the 6.5 m NAIP and RapidEye data suggested that the latter 

image has a smoother texture (i.e. more autocorrelation), even though both images had the same 

nominal pixel size. Therefore, as an experiment, the 6.5 m NAIP was smoothed with a Gaussian 

low pass filter with kernel sizes of 3 x 3, 5 x 5, and 7 x 7 pixels. Although applying a simple 

Gaussian low pass filter does not replicate the modulation transfer function (MTF) (Myneni et 

al., 1995) of the RapidEye sensor, this method provides a simple means to assess whether or not 

blurring the image (i.e. reducing the effective spatial resolution) would improve the classification 

accuracy of the NAIP data. 

 In summary, the NAIP imagery provided four bands, or predictor variables, for the 

classification. These four bands were used in the classification algorithms at the original cell size 

(1 m), resampled to 6.5 m, and also smoothed using the Gaussian filter. After calculating the 

textural measures, 88 predictor variables were available from NAIP (the four image bands and 

84 textural measures). RapidEye provided five image bands, which were used in the 

classification algorithms at the original cell size, resampled to 6.5 m, and reduced to an 8-bit 

radiometric range. Combining the primary, leaf-on RapidEye data with the leaf-off scene 

resulted in a total of ten predictor variables available to classify land cover.  

Land cover classes  

Five land cover classes were mapped within the surface mine: forested, reclaimed-

herbaceous vegetation, reclaimed-woody vegetation, barren, and water (Table 2). It should be 
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noted that the term “forested land cover” is used to indicate forests in the permit area not yet 

removed for the mountaintop removal mining.  The term does not necessarily imply that the area 

has never been disturbed at all; West Virginia’s landscape records extensive historical 

disturbances ranging from clear-cutting to prior surface coal mining. In order to assess potential 

increases in classification accuracy when the number of classes is reduced, the data were also 

classified with the forested and reclaimed-woody vegetation classes combined, resulting in a 

four-class problem: woody vegetation, herbaceous vegetation, barren, and water. In addition, the 

data were also classified with the vegetation classes combined, resulting in just three classes: 

vegetated, barren, and water. 

Training data 

Training data polygons were delineated by manual interpretation of multiple sources 

including the following: NAIP orthophotography, RapidEye imagery (both leaf-on and leaf-off), 

1 m resolution Pictometry orthphotography, and LiDAR-derived topographic slope, first return 

intensity, and normalized digital surface model (nDSM) raster grids. As this data spans the 

period from March 2010 (Pictometry orthphotography) to August 2011 (most recent RapidEye 

image), there was potential for landscape change during the data collection period due to mine 

expansion or reclamation activities. Therefore, the training data were screened for potential 

change, and only samples where the land cover appeared to be the same in all data sets were 

used. The number of training polygons collected is summarized in Table 3. 

 The software tool Geospatial Modeling Environment (GME) (Beyer, 2012) was used to 

draw a random sample of training pixels from the polygons; 1,000 pixel examples of each class 

were randomly selected. Because water is not a common cover type in the mine complex, it was 
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not possible to collected 1,000 examples for that class. In total, 4,386 pixels were utilized to train 

the models as summarized in Table 3. 

Classification methods 

In order to generalize the results of this study, two different per-pixel classifiers were 

utilized, SVM and RF, as implemented within the statistical software tool R (R Development 

Core Team, 2012), using the e1071 package (Meyer et al., 2012) and the randomForest package 

(Liaw and Wiener, 2002), respectively. 

Optimization of the parameters for the SVM and RF algorithms was carried out using a 

ten-fold cross validation grid search approach using the e1017 package in R (Meyer et al., 2012).  

This tuning function partitions the data into ten disjoint training sets, using a random assignment. 

The classifier is then trained ten times, and each time the remaining 10% of the data not used for 

training in that instance is used for validation to test for optimal parameter settings. Overall 

accuracy is calculated as the average across the ten cross validations. This function offers a 

means to test parameter combinations relative to how well withheld training data are classified. 

Once a coarse grid search using a wide range of parameter values was performed, a second grid 

search of values centered on the initial optimal value, and with a narrow range, was performed in 

order to further refine the estimate. Optimization was performed for each classification 

separately to ensure optimal parameters for the particular set of predictor variables tested. For 

SVM a radial basis function (RBF) kernel was used, and it was necessary to optimize the cost 

(C) and gamma (γ) parameters using the tuning function. For RF it was necessary to optimize the 

number of predictor variables randomly sampled as candidates at each node (m) and also the 

number of trees to grow (k). 

Error assessment 
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Classification accuracy was assessed through an independent data set, which did not use 

any pixels from the training data or from within the training polygons from which they were 

selected. A stratified sample for the accuracy assessment was chosen because reclaimed-woody 

vegetation and water classes are not common cover types in the study area and thus would 

typically be only rarely selected in a purely random approach. A total of 1,300 pixels were 

randomly selected, 260 in each of the five land cover classes.  

For each of the validation pixels, the dominant land cover category over the 6.5 x 6.5 m 

nominal area of the pixel was visually interpreted from the Pictometry, RapidEye, NAIP, and 

LiDAR data. As one goal of this work was to compare the statistical difference in map output, it 

was necessary to use the same validation data for all predictor variable combinations. Also, only 

validation points that were interpreted as the same cover type in all of the reference data sets 

were used in the analysis. This may have resulted in a slight inflation of map accuracy as mixed 

pixels may have been excluded.  

From the randomly selected accuracy assessment data, error matrices and Kappa statistics 

were produced. Since stratified random sampling was implemented, it was necessary to calculate 

overall accuracy by weighting the class accuracies by the proportion of land cover within the 

study area (Stehman and Foody, 2009). Following Pontius and Millones (2011), quantity 

disagreement and allocation disagreement were also calculated. Quantity disagreement provides 

a measure of error in the proportions of the categories, while allocation disagreement provides a 

measure of error in the spatial allocation of the categories (Pontius and Millones, 2011). 

Allocation and quantity disagreement sum to overall error. Although the value of Kappa is 

questioned (Pontius and Millones, 2011), the statistic was nevertheless provided for potential 

comparisons to other studies. 
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In order to evaluate the statistical significance of any differences in the classifications, the 

results were compared on a pairwise basis using McNemar’s test (Dietterich, 1998; Foody, 

2004). First, 2-by-2 confusion matrices were produced that summarized the number of pixels 

correctly classified by both of the methods being compared, the number incorrectly classified by 

both methods, and the number classified correctly by one attempt but not the other. McNemar’s 

test is a test of statistical difference that generates a z-score from this 2-by-2 matrix and is based 

on a chi-square test that compares the distribution of error expected under the null hypothesis 

(that the classifications have the same error rates) and the observed error. A z-score larger than 

1.645 indicates a 95% confidence of statistical significance for the one-directional test of 

whether one classification is more accurate than the other (Bradley, 1968; Dietterich, 1998; 

Foody, 2004; Agresti, 2007).  

Importance in random forest model 

The RF algorithm generates an estimate of predictor variable importance during training 

by excluding each variable sequentially and recording the resulting increased oob error 

(Breiman, 2001; Rodríguez-Galiano et al., 2012a; Rodríguez-Galiano et al., 2012b). This feature 

of RF was used as a means to assess the importance of predictor variables, including raw image 

bands and textural measures. For example, the importance of the NAIP and RapidEye spectral 

bands were assessed in a model using both image data sets. 

Results and discussion 

 Table 4 compares the NAIP and RapidEye data at the original cell sizes of each data set 

(i.e. 1 m for NAIP, 5 m for RapidEye), a common cell size (6.5 m), a common radiometric 

resolution (8-bit) and the original cell sizes, and a common cell size and radiometric resolution 

(6.5 m, 8-bit). At the original cell size, the RapidEye imagery was found to provide an overall 

accuracy for mapping the five classes 9.6% greater than the NAIP imagery using the SVM 
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algorithm and 10.6% greater using the RF algorithm, and both these differences were found to be 

statistically significant using McNemar’s test (z-score (SVM) = 8.062 and z-score (RF) = 8.322). 

This higher accuracy for RapidEye data compared to NAIP is also reflected in Kappa, allocation 

disagreement, and quantity disagreement; the classification of the RapidEye data had lower 

allocation and quantity disagreement and a higher Kappa.  

 With a coarsening of the NAIP data to a 6.5 m pixel, accuracy increased by 2.3% for the 

SVM algorithm and by 3.4% for the RF algorithm. Both increases were shown to be statistically 

significant (z-score (SVM) = 2.668 and z-score (RF) = 3.621). Reduced spatial resolution 

associated with an increase in the cell size or with smoothing may result in a less complex and 

heterogeneous signatures for the map classes, producing increased classification accuracy (Latty 

et al., 1985; Warner et al., 2009). However, the NAIP 6.5 m data classification was still found to 

be less accurate than the RapidEye 6.5 m classification (Table 4) (z-score (SVM) = 5.852 and z-

score (RF) = 6.041), though the z-scores were smaller than those for the comparison at the 

original cell sizes. Allocation and quantity disagreement were also reduced. This suggests that 

coarsening the NAIP data increased classification accuracy, but not to the level obtained from 

the RapidEye data. Baker et al. (2013) also found that coarsening NAIP improved classification 

accuracy for a pixel-based classification. 

 Table 4 suggests that radiometric resolution had little impact on the classification 

accuracy. For example, reducing the RapidEye data to an 8-bit radiometric range only decreased 

the accuracy by 0.3% using the SVM algorithm, which was not a statistically significant 

difference (z-score (SVM) = 1.347 and z-score (RF) = 0.714). Also, the RapidEye data on an 8-

bit scale were still found to be statistically more accurate than the NAIP data at the original cell 

size and at a common cell size. This finding suggests that decreasing the radiometric resolution, 
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perhaps to reduce the file size, may not have a large impact on classification accuracy for this 

specific classification task. 

 Figure 2 shows the relative importance of predictor variables as estimated by the oob 

mean decrease in accuracy for a RF model using both the RapidEye and NAIP spectral bands at 

the original cell sizes. The analysis suggests that all of the RapidEye bands were more useful in 

the model than the NAIP bands. The greater importance of the RapidEye bands is likely due to a 

more consistent viewing geometry and illumination conditions for satellite data in comparison to 

an aerial image mosaic, perhaps resulting in a more consistent class signature throughout the 

extent of the mapped area. Figure 3 provides the same comparison of relative importance, except 

for the data at a common cell size (6.5 m). Once the NAIP data were coarsened, the NAIP bands 

take on a greater importance in the model, particularly the NAIP blue and NAIP NIR bands. This 

supports the finding discussed above: coarsening the data improves classification accuracy of 

NAIP orthophotography for this mapping task. As an improvement in classification was found 

when the NAIP data were coarsened to 6.5 m, the 6.5 m data were used for the rest of the 

analysis.  

NAIP orthophotography is not always provided with a NIR band. For example, the 2009 

collection for the state of West Virginia was only a true color collection. Therefore, the 

usefulness of the NIR band was tested here. Removing the NIR band from the analysis resulted 

in a 5.7% decrease in classification accuracy for the SVM algorithm and a 6.0% decrease in 

accuracy for the RF algorithm. The overall accuracy dropped below 80% for both the SVM and 

RF models, and both allocation and quantity disagreement increased. Removing the NIR band 

resulted in a statistically significant decrease in accuracy for both classifiers (z-score (SVM) = 
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7.993 and z-score (RF) = 8.459). This confirms the expected finding that there is merit in using 

the NIR band if NAIP data are to be used for classification tasks and NIR data are available. 

 As NAIP is acquired during the growing season, leaf-off data are not available, unlike 

satellite data where phenology can potentially be captured through multi-temporal imagery. To 

assess the merit of multi-season data, leaf-on and leaf-off RapidEye data were compared, and 

then combined for a classification using leaf-on and leaf-off bands. Leaf-on data provided a 

statistically more accurate classification than the leaf-off data using both the SVM and RF 

algorithms (z-score (SVM) = 3.273 and z-score (RF) = 4.020), however, the accuracy difference 

is much less than the difference between classification of NAIP and leaf-on RapidEye data. In 

comparison to the leaf-off data, classification of the leaf-on data resulted in only a 0.9% increase 

in accuracy using SVM and a 3.2% increase using RF, however, the differences were in both 

cases statistically significant (z-score (SVM) = 4.020 and z-score (RF) = 3.273). This suggests 

that leaf-on data are marginally more useful for this classification task. When the data were 

combined in a multi-season layer stack, the accuracy statistically improved compared to the leaf-

on and leaf-off models, resulting in a 3.7% increase over the leaf-on data using the SVM 

algorithm and a 3.3% increase using the RF algorithm. Figure 4 indicates that both leaf-on and 

leaf-off bands were important to the RF model. In summary, multi-season data increased map 

accuracy for this classification task. This is of concern for NAIP, as multi-season data are not 

available.  

 The error matrix for the NAIP (6.5 m) classification using RF is shown in Table 5, and 

the error matrix for the RapidEye classification using RF is shown in Table 6. Four classification 

results are shown in Figure 5, using both the RF and SVM classifiers. The error trends are very 

similar for both the SVM and RF models, with the reclaimed-woody vegetation class having the 
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lowest producer’s accuracy for both the NAIP and RapidEye classifications. This can be 

attributed to confusion with forest cover and somewhat to confusion with reclaimed-herbaceous 

cover. This is expected, as reclaimed-woody vegetation has similar spectral characteristics to 

both of these classes. For both image data sets, reclaimed-herbaceous vegetation was confused 

with barren cover; this confusion may be attributed to the patchy, heterogeneous nature of the 

vegetation in some reclaimed areas, which likely resulted in a mixed pixel problem. In the early 

stage of reclamation, in which vegetation is just beginning to regrow on the barren landscape, 

herbaceous cover is often present but can be sparse. In active surface mines where a wide range 

of disturbance and reclamation classes exist on a steep and heterogeneous landscape, the 

separation of these two classes is complex, and the boundary between them may be gradational 

as barren cover transitions to herbaceous cover.  

For the NAIP classification, producer’s accuracy for water was also generally low, likely 

a result of the variability in water reflectance on mine sites. Spectral reflectance may vary 

between small settlement ponds, water retention ponds, and treatment ponds that may have a 

wide variety of chemical precipitates, dissolved chemicals, and sediment levels. This complicates 

the classification of water in surface mines.  

In comparison to the NAIP classification, producer’s accuracy was greater for all classes 

for the RapidEye classification using either the SVM or RF algorithm, and the user’s accuracy 

was higher in comparison to NAIP for all classes except barren for the RF model. This generally 

suggests that the increase in accuracy associated with RapidEye cannot be attributed to 

alleviating a single misclassification problem; RapidEye allows for enhanced separation of most 

classes in comparison to NAIP.   
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Since the reclaimed-woody vegetation class showed confusion with forest cover, it was 

combined with the forest class to produce a woody vegetation class and, in doing so, simplifying 

the classification to a four-class problem. This increased the classification accuracy of the NAIP 

(6.5 m) data by 5.4% using the SVM algorithm and 5.2% using the RF algorithm. Although the 

reduction in the number of classes resulted in a substantial improvement in classification 

accuracy for NAIP, these results were still significantly less accurate than the RapidEye 

classification with four classes (z-score (SVM) = 4.469 and z-score (RF) = 4.833). Combining all 

vegetation classes to create a three-class problem increased the accuracy by 10.7% in comparison 

to the five class classification for the NAIP classification using the SVM algorithm and 10.7% 

using the RF algorithm. Nevertheless, the RapidEye results with just three classes were still more 

accurate than the NAIP classification (z-score (SVM) = 4.181 and z-score (RF) = 3.579). Even 

though RapidEye provided a higher classification accuracy, the NAIP classification accuracy 

was nevertheless high (SVM = 94.3% and RF = 96.7%), suggesting that NAIP may be 

appropriate if a relatively small number of classes are to be separated. Although the 

simplification of the classification scheme is generally likely to improve the overall classification 

accuracy by reducing the chance for confusion, this research suggests that if the number of 

classes being separated is less important than the overall classification accuracy, it may be of 

value to combine classes. 

Although many studies suggest an improvement in classification with the inclusion of 

textural measures (for example, Ghimire et al., 2010; Rodríguez-Galiano et al., 2012b), in this 

study, incorporating all 84 textural measures derived from the NAIP data did not increase 

accuracy to that of the RapidEye spectral data alone. Improvements were observed for the NAIP 

spectral and texture bands compared to classification using only the image bands from NAIP, but 
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only in some cases was this improvement statistically significant. On the other hand, in some 

cases, the addition of the textural bands decreased the overall accuracy, especially for the SVM 

algorithm. For all bands used (red, green, first principle component, and second principle 

component), the textural measures were found to be much less important than the spectral bands, 

suggesting they provide little additional information for the classification.  

It has been suggested that increasing the number of predictor variables can cause a 

decrease in classification accuracy, contrary to what might be expected, a phenomenon known as 

the Hughes effect or “curse of dimensionality” (Hughes, 1968; Rodríguez-Galiano et al., 2012b). 

For the RF algorithm, this decrease in performance with additional predictor variables was noted 

by Evans et al. (2011) and Hastie et al. (2009). As a result, feature selection was tested as a 

means to increase the classification accuracy when using measures of texture. The feature 

selection method implemented is after Murphy et al. (2010) and uses a model selection approach 

that uses variable importance measures to select a model with reduced dimensionality and 

potentially increased classification accuracy. Models using the top 10%, 20%, 50%, 70%, 90%, 

and all the variables were tested. The greatest accuracy was found using the top 10% of the 

variables, which included all the image bands and a subset of the spectral bands. Even though an 

increase in accuracy was observed using the top 10% of the predictor variables, all of the image 

bands were nevertheless found to be of greater importance than the selected textural measures. 

Using the top 10% of the bands resulted in a statistically significant increase in accuracy relative 

to using all bands and textural measures (z-score = 2.090) and a statistically significant increase 

relative to using just the spectral bands (z-score = 4.016) for the RF algorithm. However, it was 

still less accurate than the RapidEye classification (z-score = 3.491). 
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Given that producing these texture bands is time-consuming, deciding upon which 

measures to use, appropriate kernel sizes and offset distances, and which spectral bands to 

calculate them from, can be subjective, and feature selection may be required to reap the full 

benefit of these measures, it is questionable whether there is merit in calculating these measures 

as the potentially slight classification improvement is outweighed by complexity and the time-

consuming nature of the task.  

 The NAIP data were also smoothed using a Gaussian low pass filter with kernel sizes of 3 

x 3, 5 x 5, and 7 x 7 pixels. Smoothing was found to produce a greater increase in accuracy than 

adding texture bands. Smoothing with a 3 x 3 pixel kernel did not statistically increase the 

classification accuracy with the SVM algorithm (z-score = 0.686); however, it did for RF (z-

score = 2.546). At kernel sizes of 5 x 5 and 7 x 7 pixels, a statistically significant increase was 

observed, and the highest classification accuracy for the five class-problem using the NAIP 

imagery was obtained using the RF algorithm with the image resampled to 6.5 m and a Gaussian 

low pass filter with a 7 x 7 pixel kernel size applied. An overall accuracy of 88.1% was obtained 

(a 4.7% increase in accuracy relative to the NAIP 6.5 m classification without smoothing and a 

8.1% increase in accuracy relative to the NAIP 1 m classification without smoothing), however 

this classification was still found to be statistically less accurate than the classification of the 

RapidEye data without any smoothing (z-score = 2.965). The model using the top 10% of the 

image bands and textural measures was found to be statistically comparable to this output (z-

score = 0.825). 

 Comparing the results using the textural measures and the Gaussian low pass filter 

indicates that smoothing the data yielded a higher increase in classification accuracy than 

utilizing texture unless feature selection was implemented. Perhaps this is a result of reduced 
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heterogeneity within class signatures. Minimizing this heterogeneity using smoothing may be an 

alternative to trying to characterize the heterogeneity using textural calculations. 

Conclusions  

 In this study, the accuracy of classification with NAIP was statistically less accurate than 

that of RapidEye satellite imagery for classification of five classes within a surface mine permit. 

This suggests that RapidEye satellite data are more suited for this mapping task. Nevertheless, 

NAIP orthophotography has many characteristics that make it useful for surface mine mapping 

and monitoring, including its availability for multiple years, a general lack of cloud cover, 

contiguous coverage of large areas, availability, and low cost to the user.  

 Although the accuracy of classification with NAIP was not found to be comparable to 

that of RapidEye, the NAIP imagery provided a high classification accuracy when the number of 

classes was reduced to four or fewer classes. If the aim of a mapping project is only to 

differentiate vegetated and non-vegetated cover, or to differentiate woody vegetation from non-

woody vegetation, NAIP may be adequate. Reducing the spatial detail, either by simply 

increasing the pixel size or by smoothing the data using a Gaussian low pass filter, also increased 

classification accuracy. Textural measures from the GLCM were of value, but feature selection 

was necessary to select amongst the large number of derived texture variables. If NAIP data are 

to be used for classification, the NIR band is of value and should be acquired and used, if 

available.  

 In summary, NAIP orthphotography offers a wealth of data and should not be ignored as 

a potential data set for classification. Although perhaps not as useful as satellite imagery for 

image classification, NAIP does offer many favorable characteristics for mapping changing 

terrains, such as the mountaintop mining region of the eastern United States.  
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Table 1: Characteristics of NAIP orthophotography and RapidEye satellite imagery used. 

Sensor and Data 

Attributes 

National Agriculture 

Imagery Program (NAIP) 

Orthophotography 

RapidEye Satellite 

Imagery 

Collection Date 14 July 2011 1 August 2011 

Platform Aircraft Satellite 

Sensor Type 

Digital camera 
(Intergraph Z/I Imaging 

Digital Mapping Camera 
(DMC)) 

Multi-spectral push broom 
imager 

Spatial Resolution 1 m GSD 
6.5 m GSD 

(Resampled to 5 m) 

Spectral Resolution 

Blue (400 nm – 580 nm) 
Green (500 nm – 650nm) 
Red (590 nm – 675 nm) 
NIR (675 nm – 850 nm ) 

Blue (440 nm – 510 nm) 
Green (520 nm – 590 nm) 
Red (630 nm – 685 nm) 

Red Edge (690 nm – 730 nm) 
NIR (760 nm – 850 nm ) 

Radiometric 

Resolution 

12-bit 
(Provided at 8-bit) 

12-bit 
(Provided at 16-bit) 

Temporal Resolution 
Potentially every other 

growing season 
Potentially daily  

(5.5 days at nadir) 

Seasonality Growing season (leaf-on) Potentially multi-seasonal 
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Table 2: Land cover class definitions. 

Class Description 

Forested  

Land dominated by mature, woody vegetation that has not been 

directly disturbed by surface mining; mature forest that generally 
represents pre-mining conditions of the slopes 

Reclaimed- 
herbaceous 

vegetation 

Reclaimed areas dominated by herbaceous/non-woody vegetation  

Reclaimed- 
woody 

vegetation 

Reclaimed areas dominated by clumped or clustered woody plants 
that include shrubs and immature trees 

Barren 
Barren land lacking vegetation; manmade structures; haul roads; 
active quarries; lands disturbed by mining  

Water Water, including retention ponds, streams, and standing water 
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Table 3: Number of training polygons, areas (ha) of training polygons, and number of randomly 

selected training pixels manually interpreted for each land cover class based on manual 

interpretation of multiple sources.  

Land Cover Class 

Number of 

Training 

Polygons 

Area of Training 

Polygons (ha) 

Number of 

Training Pixels 

Randomly 

Selected From 

Within The 

Training 

Polygons 

Forested 81 77.0 1000 

Reclaimed-herbaceous 

vegetation 
85 25.5 1000 

Reclaimed-woody 

vegetation 
55 8.7 1000 

Barren 64 21.7 1000 

Water 30 1.7 386 
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Table 4: Comparison of map accuracy for NAIP and RapidEye. A z-score for McNemar’s test 

larger than 1.645 (*) indicates a 95% confidence interval of statistical significance for the one-

directional test of whether one classification is more accurate than the other. 

Method Parameter NAIP RapidEye McNemar z-score 

Comparisons at Original Cell Size (1 m NAIP, 5 m RapidEye) 

SVM 

OA (%) 

K (%) 
AD (%) 
QD (%) 

81.2 

74.5 
10.1 
8.7 

90.8 

87.4 
2.9 
6.3 

8.062* 

RF 

OA (%) 

K (%) 
AD (%) 

QD (%) 

80.0 

73.0 
10.2 

9.8 

90.6 

87.1 
3.4 

6.0 

8.322* 

Comparisons at Common Cell Size (6.5 m NAIP and RapidEye) 

SVM 

OA (%) 
K (%) 

AD (%) 
QD (%) 

83.6 
77.8 

7.0 
9.4 

90.3 
86.6 

3.5 
6.2 

5.852* 

RF 

OA (%) 
K (%) 

AD (%) 
QD (%) 

83.4 
77.4 

8.8 
7.8 

90.9 
87.4 

4.3 
4.8 

6.041* 

Comparison at Same Radiometric Scale (8-bit)  

and Original Cell Size (1 m NAIP, 5 m RapidEye) 

Method Parameter NAIP RapidEye McNemar z-score 

SVM 

OA (%) 
K (%) 

AD (%) 
QD (%) 

81.2 
74.5 

10.1 
8.7 

90.5 
87.1 

3.3 
6.2 

7.673* 

RF 

OA (%) 
K (%) 

AD (%) 
QD (%) 

80.0 
73.0 

10.2 
9.8 

91.1 
87.8 

3.0 
5.9 

8.806* 

Comparison at Common Cell Size (6.5 m)  

and Same Radiometric Scale (8-bit) 

SVM 

OA (%) 
K (%) 

AD (%) 
QD (%) 

83.6 
77.8 

7.0 
9.4 

90.2 
86.5 

3.2 
6.6 

5.826* 

RF 

OA (%) 
K (%) 

AD (%) 
QD (%) 

 83.4 
77.4 

8.8 
7.8 

91.1 
87.7 

3.3 
5.6 

6.652* 
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OA = Overall Accuracy     K = Kappa Statistic 
AD = Allocation Disagreement     QD = Quantity Disagreement 
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Table 5: Error matrix for NAIP (6.5 m cell size, 8-bit) classification using RF. Overall accuracy 

is 83.4%. 

  
Reference Data 

 

  
Forested  

Reclaimed- 
herbaceous 

vegetation 

Reclaimed- 
woody 

vegetation 

Barren Water 
User's 

Accuracy 

Classification 

Forested  238 0 67 0 6 76.5% 

Reclaimed
- 

herbaceous 

vegetation 

10 232 11 8 12 84.0% 

Reclaimed 
-woody 

vegetation 

12 21 182 0 15 79.1% 

Barren 0 7 0 241 22 89.3% 

Water 0 0 0 11 205 94.9% 

 
Producer's 
Accuracy 

91.5% 89.2% 70.0% 92.7% 78.8% 
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Table 6: Error matrix for leaf-on RapidEye (6.5 m cells size, 12-bit) classification using RF. 

Overall accuracy is 90.9%. 

  
Reference Data 

 

  
Forested  

Reclaimed- 
herbaceous 

vegetation 

Reclaimed- 
woody 

vegetation 

Barren Water 
User's 

Accuracy 

Classification 

Forested  245 0 29 0 0 89.4% 

Reclaimed
- 

herbaceous 

vegetation 

0 238 13 3 2 93.0% 

Reclaimed 
-woody 

vegetation 

15 4 218 0 0 92.0% 

Barren 0 18 0 251 19 87.2% 

Water 0 0 0 6 239 97.6% 

 
Producer's 
Accuracy 

94.2% 91.5% 83.8% 96.5% 91.9% 
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Figure 1: Hobet-21 surface mine complex. Base image for the top image is the NAIP 

orthophotography acquired on 14 July 2011. Base image for the bottom image is the RapidEye 

satellite imagery (© (2013) BlackBridge S.àr.l. All rights reserved.) acquired on 1 August 2011. 

The depicted mine extent is based on the surface mining permit obtained from WVDEP. The 

map is projected in NAD83 UTM Zone 17 N. 
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Figure 2: Relative importance of predictor variables for NAIP and RapidEye at provided cell size 

as estimated by the oob mean decrease in accuracy by RF.  
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Figure 3: Relative importance of predictor variables for NAIP and RapidEye at common cell size 

(6.5 m) as estimated by the oob mean decrease in accuracy by RF.  
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Figure 4: Relative importance of predictor variables for leaf-on and leaf-off RapidEye bands as 

estimated by the oob mean decrease in accuracy by RF.  
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Figure 5: Land cover classification using (A) NAIP orthophotography (6.5 m) and SVM, (B) 

NAIP orthophotography (6.5 m) and RF, (C) RapidEye (6.5 m) and SVM, (D) RapidEye (6.5 m) 

and RF.  
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CHAPTER 4 

 

Assessing machine learning algorithms and image- and LiDAR-derived variables for 

GEOBIA classification of mining and mine reclamation1  

A.E. Maxwell, T.A. Warner, M.P. Strager, J.F. Conley, and A.L. Sharp 

Abstract 

 This study investigates machine learning algorithms and measures 

derived from RapidEye satellite imagery and light detection and ranging 

(LiDAR) data for geographic object-based image analysis (GEOBIA) 

classification of mining and mine reclamation. Support vector machines (SVM), 

random forests (RF), and boosted classification and regression trees (CART) 

classification algorithms were assessed and compared to the k-nearest neighbor 

(k-NN) classifier. For GEOBIA classification of mine landscapes, the use of 

disparate data (i.e. LiDAR data) improved overall accuracy whereas the use of 

complex, object-oriented variables such as object geometry measures , first-order 

texture, and second-order texture from the grey level co-occurrence matrix 

(GLCM) decreased or did not improve the classification accuracy. SVM 

generally outperformed k-NN and the ensemble tree classifiers when only using 

the band means. With the incorporation of LiDAR-descriptive statistics, all four 

algorithms provided statistically comparable accuracies . K-NN suffered reduced 

classification accuracy with high dimensional feature spaces, suggesting that 

                                                                 
1 This is an Accepted Manuscript of an article published by Taylor & Francis in the International 

Journal of Remote Sensing on 17 February 2015, available online:   

http://www.tandfonline.com/doi/abs/10.1080/01431161.2014.1001086 

Maxwell, A.E., T.A. Warner, M.P. Stager, J.F. Conley, and A.L. Sharp, 2015. Assessing 

machine- learning algorithms and image- and lidar-derived variables for GEOBIA classification 

of mining and mine reclamation, International Journal of Remote Sensing, 36(4): 954-978. 
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more complex machine learning algorithm may be more appropriate when a 

large number of predictor variables are used.  

Keywords: GEOBIA; object-based classification; machine learning; LiDAR; RapidEye  

1. Introduction 

In recent years, pixel-based classification has been called into question, as image objects, 

defined as contiguous regions of pixels that are relatively spectrally homogenous, may better 

represent real objects on the ground than the original individual pixels. The process of 

segmenting an image and labeling the resulting image objects is commonly termed geographic 

object-based image analysis (GEOBIA). The GEOBIA approach has been described as a 

paradigm shift in remote sensing, and the number of papers referencing this technique has 

increased rapidly over the last decade (Blaschke and Strobl 2001; Walter 2004; Chubey, 

Franklin, and Wulder 2006; Drăgut and Blaschke 2006; Blaschke 2010; Baker et al. 2013; 

Meneguzzo, Liknes, and Nelson 2013; Blaschke et al. 2014). In applying supervised 

classification for labeling the image objects, GEOBIA differs from pixel-based classification in 

important ways that may have implications for designing an optimal classification strategy.   

In GEOBIA, the original image digital number (DN) values are not normally used 

directly in the classification, instead summary attributes of the object are normally employed.  

These summary attributes can include features such as measures of central tendency of the 

individual bands or combinations of those bands, spectral variability (e.g. standard deviation 

(SD) or other texture measures), and object geometry (e.g. compactness) (Trimble 2011).  

Although many studies have demonstrated the benefit for classification of such object-derived 

variables, including object geometry (for example, Guo et al. 2007) and texture (Kim, Madden, 

and Warner 2009), there is not a clear consensus, especially with regards to their value in general 

land cover classification. For example, Yu et al. (2006) found that geometric features were of 
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little value for mapping detailed vegetation at the alliance level from Digital Airborne Imaging 

System (DAIS) imagery.   

As an alternative to deriving additional variables from the objects, information from 

another sensor, such as light detection and ranging (LiDAR), can be integrated into the analysis 

to potentially improve the classification accuracy (Ke, Quackenbush, and Im 2010; Maxwell et 

al. 2014b), if such data are available. LiDAR data can provide information that is fundamentally 

different from that of spectral image data, and therefore may have more potential for increasing 

classification accuracy than the use of additional object-derived measures. 

Because variables derived for image objects do not necessarily obey parametric statistical 

distributions, machine learning approaches are typically used for GEOBIA classification, with k-

nearest neighbor (k-NN) classification, implemented in eCognition (Trimble 2011), the most 

commonly used method. However, k-NN is a relatively simple machine learning method, and 

may be less effective in the presence of high-dimensional data (Platt and Rapoza 2008). There 

are many other, potentially more powerful, machine learning algorithms that can be used for 

GEOBIA classification. For example, Duro, Franklin, and Dubé (2012a) found that support 

vector machines (SVM) and random forests (RF) were valuable for classifying image objects in 

agricultural landscapes. However, few studies have compared the effectiveness of k-NN 

classification to other machine learning approaches in the context of GEOBIA. One exception is 

Mallinis et al. (2008), who found that a decision tree (DT) classifier outperformed k-NN. 

 The goal of this research was to assess GEOBIA classification for mapping mining and 

mine reclamation land cover. It was anticipated that the incorporation of additional measures 

would improve the classification accuracy in comparison to just using spectral means and that 

more complex machine learning algorithms will outperform k-NN, resulting in improved 
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classifications for monitoring mining and mine reclamation. The following research questions 

were investigated: 

1. Does incorporating object geometry or texture measures (first-order and second-order) 

improve GEOBIA classification accuracy? 

2. Does incorporating LiDAR with multispectral data improve classification accuracy using 

GEOBIA? 

3. How does the typically used k-NN compare to SVM, RF, and boosted classification and 

regression trees (CART) for GEOBIA classification? 

2. Background 

2.1. Mountaintop removal mining  

Mountaintop removal coal mining is currently the leading cause of land cover change in 

the southern coalfields of the eastern United States including southern West Virginia, eastern 

Kentucky, and southwestern Virginia (Saylor 2008; Townsend et al. 2009; Drummond and 

Loveland 2010). It is estimated that 420,000 ha of land has been modified by surface mining in 

the Appalachian region between 1973 and 2000 (Wickham et al. 2007; Drummond and Loveland 

2010). Surface mining reclamation typically results in the replacement of the original biodiverse 

forests (Master, Flack, and Stein 1998; Stein, Kutner, and Adams 2000; Wickham et al. 2007) 

with grasslands or shrublands (Simmons et al. 2008; Kazar and Warner 2013), removal of 

topsoil, and recontouring of the landscape (Palmer et al. 2010; Bernhardt and Palmer 2011), with 

associated impacts on water quality (for example, Merriam et al. 2003) and water quantity (Zégre 

et al. 2014). 

Mapping this land cover alteration has historically focused on classification of moderate 

spatial resolution data such as Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), 
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Enhanced Thematic Mapper Plus (ETM+), and Satellite Pour l‟Observation de la Terre (SPOT) 

data (Anderson and Schubert 1976; Irons and Kennard 1986; Parks, Petersen, and Baumer 1987; 

Rathore and Wright 1993; Anderson et al. 1997; Prakash and Gupta 1998; Yuill 2003; Townsend 

et al. 2009; Sen et al. 2012). Less research has focused on the use of higher resolution data for 

mapping mining disturbance, although mine reclamation typically results in complex patterns of 

reclamation. 

This paper is a part of a larger, on-going project that addresses the mapping of surface 

mines using high spatial resolution remotely sensed data. In our previous work, we addressed the 

relative benefits of different data and machine learning algorithms for pixel-based classification 

of mining and mine reclamation (Maxwell et al. 2014b). The incorporation of a LiDAR-derived 

normalized digital surface model (nDSM) statistically improved the classification accuracy for 

mapping land cover in comparison to only using spectral data from RapidEye satellite imagery. 

In addition, SVM outperformed the two ensemble decision tree classifiers, RF and boosted 

CART. A second study (Maxwell et al. 2014a) compared National Agriculture Imagery Program 

(NAIP) aerial orthophotography and satellite imagery for mapping surface mines, finding that 

satellite data resulted in a statistically more accurate classification, presumably due to the 

relatively more consistent viewing geometry and illumination provided by the satellite sensor. 

This paper expands upon our previous research by comparing k-NN to alternative machine 

learning algorithms for GEOBIA classification, investigating whether the incorporation of object 

attributes such as object geometry and object-specific first- and second-order texture increase 

classification accuracy, and evaluating any increase in comparison to adding disparate data, such 

as LiDAR.  

2.2. Incorporating texture in GEOBIA 
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 Image texture, a measure of local spatial variability in DN values, has been shown to 

improve land cover classification, especially when utilizing high spatial resolution data with low 

spectral resolution (Chica-Olmo and Abarca-Hernández 2000; Franklin et al. 2000; Asner et al. 

2002; Chan, Laporte, and Defries 2003; Johansen et al. 2007; Agüera, Aguilar, and Aguilar 

2008; Ghimire, Rogan, and Miller 2010; Rodríguez-Galiano et al. 2012b). However, previous 

studies provide contradictory evaluations regarding the benefit of the incorporation of texture 

(Warner 2011), possibly because of the difficulty in separating within-class texture, which is 

assumed to be of interest, from between-class texture (Ferro and Warner 2002). Texture derived 

over image objects may be more useful than the conventional texture derived from fixed-sized 

kernels generally used in per-pixel classification. This is because texture calculated over 

appropriately segmented objects should only capture within-class texture. 

Texture can be categorized as either first- or second-order. First-order texture measures 

do not consider spatial location within the local region (i.e. kernel or object) over which texture 

is being calculated. The commonly used object variable SD is an example of a first-order texture. 

Second-order measures calculate texture only for pixels separated by a defined distance and 

direction. These second-order textural spatial associations are stored in a matrix, the grey level 

co-occurrence matrix (GLCM), and statistical measures of texture are then produced from this 

matrix (Haralick, Shanmugan, and Dinstein 1973; Haralick and Shanmugan 1974; Warner 2011). 

Previous research has assessed the incorporation of texture in GEOBIA. For example, 

Kim, Madden, and Warner (2009) found an increase in classification accuracy when multiple 

measures of object-specific texture from the GLCM were incorporated for forest type mapping 

using IKONOS imagery. Yu et al. (2006) found that object-specific GLCM measures, including 

contrast, correlation, and dissimilarity, were of importance in detailed vegetation classification at 
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the alliance level from high spatial resolution DAIS imagery. However, Duro, Franklin, and 

Dubé (2012b) found that GLCM angular moment calculated from SPOT-5 normalized difference 

vegetation index (NDVI) was of little value in comparison to band means and SDs for GEOBIA 

classification of an agricultural landscape. 

2.3. Combining multispectral data and LiDAR 

Previous research has highlighted the improvement in classification accuracy when 

LiDAR is combined with optical data for mapping land cover (Cowen et al. 2000; Brennan and 

Webster 2006; Bork and Su 2007; Chust et al. 2008; Chen et al. 2009; Ke, Quackenbush, and Im 

2010; Guo et al. 2011; Maxwell et al. 2014b). Also, LiDAR data have been integrated into 

different GEOBIA analysis approaches in various fields of application (for example, Blanchard, 

Jakubowski, and Kelly 2011; O‟Neil-Dunne et al. 2013; Stal et al. 2013; Zhou 2013). The 

combination of imagery and LiDAR data has been investigated for mapping heterogeneous 

rangelands (Chen et al. 2009), urban landscapes (Brennan and Webster 2006; Guo et al. 2011), 

and coastal estuaries (Brennan and Webster 2006; Chust et al. 2008). Guo et al. (2011) 

specifically noted the usefulness of nDSM data for mapping urban landscapes. Ke, 

Quackenbush, and Im (2010) found that combining LiDAR and Quickbird multispectral imagery 

improved both the quality of segmentation and classification accuracy for forest species mapping 

using GEOBIA. 

As an active remote sensing technology, LiDAR relies on recorded two-way travel time 

of transmitted laser pulses and precise geolocation derived from differential global positioning 

system (GPS) and inertial measurement unit (IMU) measurements (Lillesand, Kiefer, and 

Chipman 2008). In addition to elevation of the reflecting surface, most LiDAR systems record 

the return pulse intensity, which is in part a function of the reflectance of the surfaces returning 
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the laser pulse (Brantberg 2007). However, return intensity is also influenced by footprint size, 

scan angle, return number, and range distance (Lin and Mills 2010). Although some studies have 

demonstrated the benefit of using intensity for land cover classification (Brennan and Webster 

2006), the use of LiDAR return intensity has not been as widely explored as elevation data in 

land cover mapping due to the difficulty of radiometric calibration of the returned laser intensity 

(Flood 2001; Kaasalainene et al. 2005).  

2.4. Machine learning algorithms 

In remote sensing, machine learning algorithms are of interest because they offer the 

potential to handle complex spectral measurement space, multidimensional data, and large 

volumes of data with reduced processing time compared to traditional classifiers (Hansen and 

Reed 2000). In this section, we discuss four machine learning algorithms:  k-NN classification, 

SVM, RF, and boosted CART. 

The k-NN classifier (Yu et al. 2006; Mallinis et al. 2008) classifies unknown samples by 

comparing their location in the feature space to those of the training samples. The unknown 

sample is assigned to the class most commonly found in the nearest k training object(s) within 

the feature space, where k is specified by the user (Steele, Winne, and Redmond 1998; Yu et al. 

2006). K-NN is used widely in GEOBIA classification because it is nonparametric and because 

image segmentation commonly results in fewer samples to classify, so execution time is usually 

not an issue. K-NN is generally not used for pixel-based classification due to slow execution, 

when a large number of pixels must be classified (Hardin and Thomson 1992; Yu et al. 2006). 

SVMs separate two classes with a multi-dimensional hyperplane that provides the 

maximum margin or best separation between the classes. A transformation to a higher 

dimensional space, where the training samples may be linearly separable, is accomplished using 
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a kernel function, such as a polynomial or radial basis function (RBF). A penalty parameter (C), 

penalizes training samples located on the “wrong” side of the decision boundary, allowing a 

degree of generalization (Vapnik 1995; Joachims 1998; Burges 1998; Tso and Mather 2003; Pal 

and Mather 2005; Pal 2005; Warner and Nerry 2009). Because SVM algorithms were originally 

designed for two class problems only, strategies have also been developed incorporating multiple 

SVM algorithms to produce a multi-class classification (Vapnik 1995; Tso and Mather 2003; Pal 

2005; Pal and Mather 2005).  

RF is a non-parametric learning algorithm that uses an ensemble of classification trees to 

improve upon the accuracy and consistency of single DT classifications. Each tree is generated 

from a subsample of the data obtained from random bootstrap sampling of the training data with 

replacement, a process known as bagging (Breiman 1996; Breiman 2001). The withheld, or out-

of-bag (oob), samples can be used for accuracy assessment. A random subset of the predictor 

variables (the number of which is defined by user) is used for growing each tree of the ensemble. 

The random selection of training data and variables decreases the correlation between trees, and, 

in doing so, decreases the generalization error (Breiman 2001). RF has many attributes that make 

it attractive for image classification, including the capacity to model complex interactions 

between predictor variables, handling data with missing values, generating high classification 

accuracies, and providing measures of predictor variable importance (Steele 2000; Cutler et al. 

2007). 

Boosted CART, like RF, is also an ensemble classification of decision trees; however, the 

method used to generate the ensemble is fundamentally different. First, the entire training data 

set is used in each tree as opposed to a bootstrap sample (Freund and Schapire 1996; Ghimire et 

al. 2012). Second, misclassified samples in prior trees are given higher weights in subsequent 
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trees in order to address misclassification problems in the prior trees. This process, termed 

boosting, has been found to improve upon the classification of a single tree by as much as 50% 

(DeFries and Chan 2000; Muchoney et al. 2000; Friedl et al. 1999; Friedl et al. 2002; McIver and 

Friedl 2002; Lawrence et al. 2004; Ghimire et al. 2012), but may also result in overfitting of the 

training data (Bauer and Kohavi 1999). 

3. Study area and data 

 The study area for this research is the 5,500 ha Hobet-21 mountaintop surface mine 

located in Boone and Lincoln counties, West Virginia, USA (Figure 1). In Figure 1, red hues 

generally indicate vegetation whereas blue and gray hues indicate barren areas within the mine in 

this leaf-off false colour composite. This mine is currently the largest permitted mine in the 

southern coalfields and the Appalachian region (Keene and Skousen 2010). The age of mine 

disturbance and reclamation varies; historical imagery shows that some of the mine disturbance 

predates 1987, while portions of the mine were still active at the time of the writing. This mine 

was selected because of its large spatial extent, wide variety in age of disturbance, vegetation, 

and land cover, and because imagery and LiDAR data were available that are nearly temporally 

coincident. 

 RapidEye data are the primary optical data in the study. The mine is covered by a single 

image tile, and this image was collected on 1 April 2010, prior to spring leaf out. The scene has 

an average center image view angle of -2.82˚, azimuth angle of 110.2˚, sun azimuth of 171.2˚, 

and sun elevation of 56.5˚. The RapidEye system consists of a constellation of five satellites that 

were launched in August 2008. The RapidEye sensors have five spectral bands: blue (440-510 

nm), green (520-590 nm), red (630-730 nm), red edge (690-730 nm), and near infrared (NIR) 

(760-850 nm) (Tyc et al. 2005). The ground sampling distance of the sensors is 6.5 m. For this 
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project, the 3A product was used, which has radiometric, sensor, and geometric corrections 

applied, and is orthorectified to a 5 m grid.  

LiDAR data were collected on 12 April 2010, within two weeks of the RapidEye data 

acquisition. Flight specifications were selected to support a nominal pulse spacing of 1 m. Using 

an aircraft flying at 1524 m above ground level and a flight speed of 125 knots (232 km hr-1), the 

Optech ALTM 3100 C sensor was set to a pulse frequency of 70 kHz, a scan frequency of 35 Hz, 

and a scan angle of 36˚ (full swath). A 30% overlap was acquired between swaths. The LiDAR 

system recorded up to four returns per laser pulse, as well as both height and intensity 

information. The point data were classified by the vendor as ground, non-ground, or outliers, and 

delivered in LAS 1.2 format. The point classifications were utilized as they were provided, and 

no additional point classification or editing was performed. 

4. Methods 

4.1. Data segmentation 

 Image segmentation was performed in eCognition 8.0 (Trimble, Sunnyvale, California) 

using the multi-resolution image segmentation algorithm. This algorithm requires the user to 

define three parameters: scale, shape, and compactness (Trimble 2011). The scale parameter 

controls the size of the image objects (Liu and Xia 2010; Kim et al. 2011), and it has been 

suggested that this parameter has the largest impact on resulting classification accuracy 

(Blaschke 2003; Meinel and Neubert 2004, Kim, Madden, and Warner 2009; Liu and Xia 2010; 

Smith 2010; Myint et al. 2011). The shape parameter quantifies the relative weight assigned to 

the shape of the object versus the so-called color (or spectral properties), while compactness 

controls the balance between the form and edge length of the object (Baatz and Schäpe 2000). 

Methods to determine the optimal segmentation parameters have been proposed (for example, 
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Costa et al. 2008); however a test using the method suggested by Kim, Marguerite, and Warner 

(2009), which selects an optimal scale based on minimal spatial autocorrelation between adjacent 

objects, was not successful. Therefore, a trial-and-error approach using expert judgment to 

evaluate the segmentations was implemented, as is common in many object-based classifications 

(e.g. Laliberte, Fredrickson, and Rango 2007; Mathieu, Aryal, and Chong 2007, Dingle 

Robertson and King 2011; Myint et al. 2011; Pu, Landry, and Yu 2011; Duro, Franklin, and 

Dubé 2012a; Duro, Franklin, and Dubé 2012b). On this basis, the optimal parameters were 

judged to be 100 for scale, 0.1 for shape, and 0.5 for compactness. Only the spectral data were 

used to create the image objects, with each band equally weighted. This segmentation was used 

in all the classification experiments. The LiDAR data were not used in the segmentation process 

as one goal of this study was to assess the impact of including LiDAR data for classifying image 

objects. Including LiDAR in the segmentation process would have made all the classifications 

partially reliant on the LiDAR data, so this was avoided. 

 Table 1 lists the input predictor variables used in the GEOBIA classifications. The 

LiDAR variables were generated from point data gridded to match the 5 m RapidEye image. The 

nDSM was generated by subtracting the gridded ground surface from the gridded first return 

data. A first return intensity grid was also generated. The intensity data were not normalized for 

distance or other factors as this was not possible based on the limited LiDAR metadata, and our 

previous work indicated that despite not making these corrections, the LiDAR data were 

nevertheless very useful for land cover classification of mining and mine reclamation (Maxwell 

et al. 2014b). For each image object, a total of 74 predictor variables were calculated: five 

variables comprising the mean for all five spectral bands, five variables comprising the SDs for 

all five spectral bands, the eight object-specific GLCM textural measures calculated from each of 
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the five spectral bands (40 in total), 14 measures of object geometry, and five LiDAR-derived 

measures for both the nDSM and first return intensity (i.e. 10 in total). 

 The first- and second-order texture calculations resulted in 45 bands. It is well known that 

texture bands tend to have redundant information, which potentially could reduce classification 

accuracy. Therefore, to decrease the dimensionality of the texture data set, and reduce the 

correlation between the texture measures, principle component analysis was undertaken. In the 

resulting transformation, the first 10 principle components captured nearly 95% of the variability 

of the entire data set. 

4.2. Data classification 

 Five land cover categories were mapped: forested, reclaimed-herbaceous vegetation, 

reclaimed-woody vegetation, barren, and water, as described in Table 2. These classes were 

chosen based on prior experience of typical land cover conditions within surface mines and 

reclaimed surface mines in the region. It should be noted that the term “forested land cover” is 

used to indicate forests in the permit area not yet removed for the mountaintop removal mining.  

The term does not necessarily imply that the area has never been disturbed at all; West Virginia‟s 

landscape records extensive historical disturbances ranging from clear-cutting to prior surface 

coal mining. 

 Table 3 describes the number of training objects used for each class. A total of 921 

training objects were selected by manual interpretation of multiple data sources including the 

following: 1 m natural color imagery collected approximately one month prior to the LiDAR and 

RapidEye data by Pictometry International Corporation (Rochester, New York), the RapidEye 

imagery, LiDAR nDSM, and LiDAR bare earth contour data.  
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All classifications were performed using the statistical software tool R (R Core 

Development Team, 2012). K-NN classification was performed using the kknn package in R 

(Schliep and Hechenbichler 2014), SVM using the e1071 package (Meyer et al. 2012), RF using 

the randomForest package (Liaw and Wiener 2002), and boosted CART using the adabag 

package (Alfaro-Cortes, Gamez-Martinez, and Garcia-Rubio 2012). In order to obtain the most 

accurate classification for a specific classifier and input variable combination, parameter 

optimization was performed. For k-NN the k and the kernel parameters were optimized using 

leave-one-out cross validation as implemented in the kknn package in which one sample is 

withheld for validation and all other samples are used for training. The other classifiers were 

optimized using 10-fold cross validation. This optimization was conducted using a grid search of 

the specified parameters in R. Optimal parameters were estimated based on the minimum 

classification error obtained for the training data, with the data partitioned into 10 unique training 

sets, using a random assignment. The classifier was then trained 10 times using 90% of the data, 

and each time the remaining 10% of the data, not used for training in that instance, were used for 

validation. The goal of the optimization was to ensure that each classification algorithm used 

optimal parameters for the particular set of predictor variables tested. For RF and boosted CART 

a total of 500 trees were used in the ensemble, as this was found to be adequate to produce a 

stable classification result. For SVM a RBF kernel was used and the C and kernel-specific 

gamma (γ) parameters were optimized. For RF the number of predictor variables randomly 

sampled as candidates at each node (m) was optimized. 

4.3. Error assessment 

Classification accuracy assessment was performed at the object-level as suggested by 

Congalton and Green (2009) using 1,000 image objects that were randomly selected. The 
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validation objects were independent from the training objects, with no overlap. The dominant 

land cover class was assessed within the validation objects using Pictometry, RapidEye, and 

LiDAR data, and the interpretation was performed twice to ensure consistency. In constructing 

the error matrices, each randomly selected object was weighted by its area (Stehman and 

Czaplewski 1998; Congalton and Green 2009).  

Quantity and allocation disagreement were calculated, as suggested by Pontius and 

Millones (2011). These two measures sum to overall error. Quantity disagreement provides a 

measure of error in the proportions of the categories, while allocation disagreement provides a 

measure of error in the spatial allocation of the categories (Pontius and Millones 2011).  

In order to evaluate the statistical significance of any differences in the classifications the 

results were compared on a pairwise basis using McNemar‟s test (Dietterich 1998; Foody 2004). 

McNemar‟s test is a test of statistical difference that generates a z-score under the null hypothesis 

that the classifications are not different. A z-score larger than 1.645 indicates a 95% confidence 

of statistical significance for the one-directional test of whether one classification is more 

accurate than the other (Bradley 1968; Dietterich 1998; Foody 2004; Agresti 2007). Objects were 

weighted by area to calculate this statistical measure. 

The relative importance of predictor variables was assessed from the oob mean decrease 

in accuracy from RF. The RF algorithm generates this measure during the training process by 

excluding each variable sequentially and recording the resulting increased oob error (Breiman 

2001; Rodríguez-Galiano et al. 2012a; Rodríguez-Galiano et al. 2012b). This ancillary output of 

RF was used to assess the contribution of specific measures calculated for image objects (e.g. 

mean of image bands, SD of image bands, LiDAR descriptive statistics, object geometry 

measures, and measures of object-specific texture). 
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5. Results and discussion 

5.1. Object geometry and texture measures for GEOBIA classification 

 Table 4 shows the overall accuracy, allocation disagreement, and quantity disagreement 

for the GEOBIA classifications using different predictor variable combinations. The overall 

accuracy varied from 70.7% (spectral means and geometry classified with k-NN) to 86.6% 

(spectral means and LiDAR classified with either SVM or boosted CART).   

The incorporation of geometry decreased the classification accuracy for k-NN, SVM, and 

RF compared to only using spectral means, and this decrease was shown to be statistically 

significant in all cases (Table 5). The incorporation of geometry increased the classification 

accuracy for boosted CART; however, this increase was not statistica lly significant. Figure 2 

shows the relative importance of predictor variables as band means and object geometry 

measures as estimated by the oob mean decrease in accuracy measure as determined by the RF 

classifier. These data suggest that object geometry measures were of little importance for 

classifying the land cover of interest and only complicated the feature space. 

 The incorporation of SD as a first-order texture calculated from the RapidEye spectral 

bands decreased the classification accuracy for all four classifiers compared to only using the 

spectral band means, and this decrease was statistically significant for k-NN and boosted CART 

(Tables 4 and 5). This is notable because SD is a standard object variable, typically used in 

GEOBIA classification. Further, the oob mean decrease in accuracy measure suggests that all 

band means are more important in the classification model than band SDs (Figure 3). Thus, 

object-specific first-order texture did not improve the classification accuracy over just using the 

band means when using RapidEye imagery. The incorporation of object-specific texture 
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measures from the GLCM also decreased the classification accuracy using k-NN, SVM and RF, 

and the classifications were shown to be statistically different (Tables 4 and 5).  

Figure 4 showing the oob mean decrease in accuracy measure indicates that texture was 

of little importance in the classification, even after the principal component transformation was 

applied to the entire 45 texture variables to produce 10 uncorrelated variables. All spectral band 

means were of greater importance than the 10 principle component texture measures. The 

reduction of the number of texture variables from 45 to 10 did not improve the classification 

performance in comparison to just using the band means, confirming that texture is simply not of 

value for the classification of mining and mine reclamation using RapidEye satellite imagery. 

This finding may not be applicable if different image data were used or different classes were 

defined. To fully assess the use of texture for mapping mining and mine reclamation, it would be 

necessary to assess multiple data sets at varying spatial resolutions.  

5.2. LiDAR for GEOBIA classification 

As shown in Table 4, the inclusion of descriptive statistics derived from LiDAR 

improved the GEOBIA classification accuracy in comparison to just using the spectral band 

means alone and the classifications using the combined data set were statistically more accurate 

for all four algorithms (Table 5). Figure 5 further supports this conclusion; variable importance 

measures derived from RF as mean decrease in oob accuracy indicate that out of the top five 

predictor variables in the model, three were derived from the LiDAR nDSM data. Mean nDSM 

in the object was found to be the most important predictor variable in the model. Other important 

LiDAR-derived measures include SD for the nDSM, mean first return intensity, and maximum 

nDSM value within the object. Our previous research suggests that the incorporation of LiDAR-

derived predictor variables can provide a substantial improvement in classification accuracy for 
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pixel-based classification in comparison to just using imagery data (Maxwell et al. 2014b). This 

research expands that conclusion to GEOBIA. 

The most accurate classifications were achieved with the SVM and boosted CART 

algorithms using all band means plus 10 descriptive statistics derived from LiDAR as predictor 

variables. The SVM result is shown in Figure 6 with the error matrix provided as Table 6. An 

overall accuracy of 86.6% was obtained (Table 4).  The 8.8% allocation disagreement and 4.6% 

quantity disagreement indicate that generally the error is a result of the mislabeling of objects, 

rather than the overall proportions of the areas of each class mapped. Producer‟s accuracy was 

79.8% for the reclaimed-herbaceous vegetation class and 77.3% for the reclaimed-woody 

vegetation class. Confusion in the classification was noted between the reclaimed-herbaceous 

vegetation class and the barren class. This is attributed to mixed pixels as areas in an early stage 

of reclamation are often characterized by a sparse vegetative cover. Confusion was also noted 

between forest and reclaimed-woody vegetation; however, this confusion was reduced by the 

inclusion of LiDAR data.  

In summary, the incorporation of LiDAR statistically improved the classification in 

comparison to just using the spectral band means whereas incorporation of geometry or texture 

did not improve or decreased the accuracy, especially for k-NN. This supports the assumption 

that one means to combat the low spectral resolution and high class heterogeneity inherent to 

high spatial resolution data, such as RapidEye satellite imagery, is to combine the spectral data 

with other data sources that provide additional predictor variables to augment the reduced 

spectral resolution. If classification accuracy is to be improved over that made available by just 

using image band means, it may be necessary to incorporate information from another sensor, 

such as LiDAR data. 
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Although the utility of geometry and texture may be sensor-specific, LiDAR data should 

be of value for this mapping task regardless of the spectral data source because it provides 

additional predictor variables that increase the separability of the land cover classes in the feature 

space. However, incorporating LiDAR will required further data collection whereas geometry 

and texture measures can be calculated directly from the spectral data or derived image objects. 

Issues of temporal alignment, practicality, and cost may limit the applicability of combining 

spectral and LiDAR data, especially over large areas.  

5.3. Comparison of machine learning algorithms for GEOBIA 

For k-NN the incorporation of GLCM measures decreased the accuracy by 8.8% in 

comparison to just using the spectral band means. Similarly, the incorporation of object 

geometry measures decreased k-NN accuracy by 12.4% in comparison to just using band means. 

Thus, in general, k-NN was not found to be robust within a complex measurement space, 

specifically a high-dimensional feature space with many redundant bands. This is notable 

because k-NN is commonly used in GEOBIA classification because it is provided in the 

eCognition program (Trimble 2011). If a large number of predictor variables are to be used, a 

more complex learning algorithm may provide a more accurate classification in comparison to k-

NN.  

For boosted CART, the accuracy was increased by the incorporation of GLCM measures 

by 0.3% in comparison to just using the band means, however this was not a statistically 

significant difference. We attribute this difference in performance between boosted CART and 

the other three classifiers to the means by which boosted CART selects variables for splitting at 

each node. Boosted CART does not implement random variable selection for each tree as is the 

case for RF. This means that the best predictor variables are potentially available for splitting in 
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each tree and less important variables can be ignored in the model. In contrast, in a RF model in 

which many variables are not useful, many individual trees may be dominated by not useful 

variables, potentially resulting in a reduction in accuracy. The accuracy of SVM may decrease as 

a hyperplane must be selected using many variables that complicate the feature space and do not 

greatly increase the separability of the classes. Thus, boosted CART may be more appropriate for 

classifying data in which a large number of predictor variables of low importance are included in 

the model.  

Tables 7 shows the z-scores comparing the k-NN GEOBIA classification to 

classifications using the other three algorithms when using just the spectral band means and the 

spectral band means plus LiDAR descriptive statistics as predictor variables. When only the 

spectral band means were used, SVM statistically outperformed k-NN. The ensemble tree 

algorithms provided lower overall accuracies for this classification in comparison to k-NN (Table 

4), however the difference was not statistically significant. For a classification using the spectral 

band means plus the LiDAR descriptive statistics, none of the algorithms provided statistically 

more accurate classification accuracies than k-NN. This suggests that the choice of classification 

algorithm may be of greater importance when classes of interest are less separable in the feature 

space. With the addition of LiDAR data, overall accuracy increased, and the choice of 

classification algorithm was less important. 

Table 8 shows the z-scores comparing the SVM GEOBIA classification to classifications 

using the other three algorithms when using just the band means and the band means plus 

LiDAR. SVM significantly outperformed the other three algorithms when using just the spectral 

band means. Although it provided the highest classification accuracy when using the band means 

plus the LiDAR data, SVM was not statistically more accurate than the other three algorithms 
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given this combination of predictor variables. SVM generally provided higher classification 

accuracy than the ensemble tree classifiers for this classification task, similar to the results 

observed from our previous pixel-based analysis (Maxwell et al., 2014b), suggesting that SVM is 

a robust classifier for both GEOBIA and pixel-based classification. However, for GEOBIA 

classification, this increase may not be statistically significant given a feature space where the 

classes are more separable, such as when LiDAR is combined with optical data. 

For most of the classifications allocation disagreement was greater than quantity 

disagreement (Table 4). A notable exception was RF, which for all data sets except spectral 

means and GLCM measures had a higher quantity disagreement than allocation disagreement, 

suggesting RF is less successful than the other classifiers at balancing errors of omission and 

commission and thus is less successful at estimating the proportions of the various cover types 

accurately.  

6. Conclusions 

For the mapping of mining and mine reclamation using RapidEye satellite data and 

LiDAR, SVM generally outperformed k-NN and the ensemble tree classifiers for GEOBIA 

classification. K-NN was not robust when used with high dimensional, redundant data, in that it 

produced reduced classification accuracy with the incorporation of object geometry and GLCM 

texture measures. This suggests that a more complex machine learning algorithm than k-NN, 

which is commonly used in GEOBIA analysis, may be more appropriate with a high dimensional 

feature space.  

For GEOBIA, LiDAR-derived summary statistics improved the classification accuracy 

whereas object-specific geometry, first-order texture (including SD, a commonly used object 

variable), and second-order texture generally decreased or did not improve the accuracy. If 
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classification accuracy is to be improved from the relatively low values obtained from using 

image spectral band means, it may be necessary to incorporate information form another sensor, 

such as LiDAR data.  

Although the methods outlined above show promise for mapping and monitoring change 

within individual mine permit areas at a fine scale, these methods are not without challenges. 

Combining disparate data, such as satellite imagery and LiDAR, requires multiple acquisitions, 

raising issues of practicality, temporal alignment, and cost. Such problems are exacerbated in a 

landscape experiencing rapid change, and where planning and coordinating multiple collections 

within a short period of time may be of importance. 

Nevertheless, this study demonstrates that the combination of high spatial resolution 

multispectral satellite data and LiDAR can offer a means to map mining and mine reclamation 

with more spatial detail in comparison to moderate resolution sensors. Using machine learning 

algorithms to classify data from multiple sensors potentially allows monitoring environmental 

change and implementation of these technologies at an operational level.  
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Table 1: Input predictor variables for GEOBIA classification. 

Classification 

method 

Total 

number of 

variables 

Variables 

Spectral and texture 

bands 

Object 

geometry LiDAR 

GEOBIA 74 For each of the 5 
spectral bands: 

Mean 

SD 
GLCM 2nd 

angular moment 
GLCM contrast 
GLCM correlation 

GLCM 
dissimilarity 

GLCM entropy 
GLCM mean 
GLCM SD 

GLCM 
homogeneity 

Area 
Asymmetry 
Border index 

Border length 
Compactness 

Density 
Elliptic fit 
Length 

Length/width 
Rectangular fit 

Roundness 
Shape index 
Volume 

Width 
 

nDSM mean 
nDSM SD 
nDSM minimum 

nDSM maximum 
nDSM range 

Intensity mean 

Intensity SD 
Intensity minimum 

Intensity 
maximum 

Intensity range 
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Table 2: Land cover class definitions. 

Class Description 

Forested  

Land dominated by mature, woody vegetation that has not been 

recently disturbed by surface mining; mature forest that generally 
represents pre-mining conditions of the slopes 

Reclaimed- 
herbaceous 

vegetation 

Reclaimed areas dominated by herbaceous/non-woody vegetation  

Reclaimed- 
woody 

vegetation 

Reclaimed areas dominated by clumped or clustered woody plants 
that include shrubs and immature trees 

Barren 
Barren land lacking vegetation; manmade structures; haul roads; 
active quarries; lands disturbed by mining  

Water Water, including retention ponds, streams, and standing water 
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Table 3: Number of training objects. 

Land cover class 

Number of training 

objects for GEOBIA 

classification 

Forested 230 

Reclaimed-herbaceous 
vegetation 

241 

Reclaimed-woody 

vegetation 
82 

Barren 342 

Water 26 

Total 921 
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Table 4: Comparison of classification accuracy using different input variable combinations for GEOBIA. 

  Predictor variables 

Classification 

method 

Accuracy 

measure  

Spectral 

means 

Spectral means 

+ geometry 

Spectral 

means + 

SDs 

Spectral 

means + 

GLCM 

measures 

Spectral 

means + 

texture 

PCA 

Spectral 

means + 

LiDAR 

k-NN 

OA (%) 

AD (%) 
QD (%) 

83.1 

9.6 
7.3 

70.7 

15.3 
14.0 

79.0 

13.1 
7.9 

74.3 

14.0 
11.8 

80.0 

12.7 
7.3 

85.9 

8.7 
5.3 

SVM 

OA (%) 

AD (%) 
QD (%) 

84.5 

8.2 
7.3 

80.9 

11.4 
7.7 

84.0 

6.5 
9.5 

80.6 

9.6 
9.8 

80.8 

6.5 
12.8 

86.6 

8.8 
4.6 

RF 

OA (%) 
AD (%) 

QD (%) 

81.8 
8.1 

10.1 

79.1 
7.9 

13.1 

81.3 
8.0 

10.6 

80.2 
10.1 

9.7 

80.4 
8.0 

11.6 

85.6 
6.9 

7.5 

Boosted CART 

OA (%) 
AD (%) 

QD (%) 

82.6 
9.4 

8.0 

83.1 
8.6 

8.3 

80.7 
9.8 

9.5 

82.9 
8.6 

8.6 

81.4 
8.9 

9.7 

86.6 
6.5 

6.9 

 

Note: OA = Overall accuracy (%), AD = Allocation disagreement (%), and QD = Quantity disagreement (%)
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Table 5: Z-scores comparing the classification to a classification using just the spectral means. 

 
z-score compared to classification using just the spectral means 

Classification 

method 

Spectral 

means + 

geometry 

Spectral means 

+ SDs 

Spectral 

means + 

GLCM 

measures 

Spectral 

means + 

texture 

PCA 

Spectral 

means + 

LiDAR 

k-NN 8.828* 3.593* 6.455* 2.582* 2.497* 

SVM 3.862* 0.560 3.847* 3.685* 1.983* 

RF 4.573* 0.790 1.941* 2.424* 3.729* 

Boosted CART 0.863 2.801* 0.442 1.784* 3.544* 

 

Note: A z-score larger than 1.645 (*) indicates a 95% confidence interval of statistical significance for the one-directional test of 

whether one classification is more accurate than the other. 
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Table 6: Error matrix for GEOBIA classification using SVM with imagery bands and LiDAR-derivatives based on relative area of the 

sampled objects. Overall accuracy is 86.6% 

  
Reference data  

 

  
Barren  Forested 

Reclaimed- 
herbaceous 

vegetation 

Reclaimed
-woody 

vegetation 

Water Totals 
User's 

accuracy 

Classified 
data 

 

Barren 0.136 0.000 0.028 0.000 0.002 0.167 81.6% 

Forested 0.004 0.339 0.015 0.023 0.001 0.383 88.6% 

Reclaimed-

herbaceous 
vegetation 

0.022 0.000 0.258 0.014 0.000 0.293 87.8% 

Reclaimed-
woody 

vegetation 

0.001 0.001 0.021 0.126 0.000 0.149 84.7% 

Water 0.001 0.000 0.000 0.000 0.007 0.008 83.5% 

 Totals 0.164 0.340 0.323 0.163 0.011 

 

Producer's 

accuracy 
83.3% 99.8% 79.8% 77.3% 63.7% 
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Table 7: Z-score comparing k-NN to other classifiers using band means and band means + 

LiDAR. 

  
z-score 

  SVM compared to  

k-NN 

RF compared to  

k-NN 

Booted CART 

compared to  

k-NN   

Input 

variables 

Sepctral 

means 
2.034* 1.639 0.773 

Spectral 
means +  
LiDAR 

1.002 0.537 0.756 

 

Note: A z-score larger than 1.645 (*) indicates a 95% confidence interval of statistical 

significance for the one-directional test of whether one classification is more accurate than the 

other. 
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Table 8: Z-score comparing SVM to other classifiers using band means and band means + 

LiDAR. 

  
z-score 

  k-NN compared to  

SVM 

RF compared to  

SVM 

Booted CART 

compared to  

SVM   

Input 

Variables 

Spectral 

means 
2.034* 3.506* 2.814* 

Spectral 
means +  
LiDAR 

1.326 0.011 1.002 

 

Note: A z-score larger than 1.645 (*) indicates a 95% confidence interval of statistical 

significance for the one-directional test of whether one classification is more accurate than the 

other. 
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Figure 1: Hobet-21 surface mine complex. Base image is RapidEye scene acquired on 1 April 

2010 and displayed in simulated color infrared (Bands 5, 3, 2 as red, green, and blue) (© (2015) 

BlackBridge S.àr.l. All rights reserved). The depicted mine extent is based on a surface mining 

permit obtained from the West Virginia Department of Environmental Protection (WVDEP). The 

map is projected in NAD83 UTM Zone 17 N.  
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Figure 2: Relative importance of predictor variables as estimated by oob mean decrease in 

accuracy by RF for model using object band means and object geometry variables. 
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Figure 3: Relative importance of predictor variables as estimated by oob mean decrease in 

accuracy by RF for model using object spectral means and SDs. 
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Figure 4: Relative importance of predictor variables as estimated by oob mean decrease in 

accuracy by RF for model using spectral data as spectral means and texture principle components 

(PCs). 
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Figure 5: Relative importance of predictor variables as estimated by oob mean decrease in 

accuracy by RF for model using object spectral means and descriptive statistics derived from 

LiDAR



 

157 
 

 

 

Figure 6: (a) GEOBIA land cover classification of the Hobet-21 mine complex using all RapidEye imagery band means and 10 

LiDAR-derived descriptive statistics. SVM was used with a radial basis function (RBF) kernel, a gamma value (γ) of 0.0001, and a 

cost value (C) of 1300. Refer to Figure 1 for location information. (b) Example of RapidEye data (© (2015) BlackBridge S.àr.l. All 

rights reserved). (c) Example of image segmentation. (d) Example of classification results. 
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CHAPTER 5 

Differentiating mine-reclaimed grasslands from spectrally similar land cover using terrain 

variables and object-based machine learning classification1 

Aaron E. Maxwell and Timothy A. Warner 

Abstract 

 Incorporating ancillary, non-spectral data may improve the separability 

of land use/land cover (LULC) classes . This study investigates the use of multi-

temporal digital terrain data combined with aerial National Agriculture Imagery 

Program (NAIP) imagery for differentiating mine-reclaimed grasslands from 

non-mining grasslands across a broad region (6085 km
2
). The terrain data were 

derived from historical digital hypsography and a recent light detection and 

ranging (LiDAR) data set. A geographic object-based image analysis (GEOBIA) 

approach, combined with machine learning algorithms, random forests (RF) and 

support vector machines (SVM), was used because these methods facilitate the 

use of ancillary data in classification. The results suggest that mine-reclaimed 

grasslands can be mapped accurately, with user’s and producer’s accuracies 

above 80%, due to a distinctive topographic signature in comparison to other 

spectrally similar grasslands within this landscape. The use of multi-temporal 

digital elevation model (DEM) data and pre-mining terrain data only generally 

provided statistically significant increased classification accuracy in comparison 

to post-mining terrain data. Elevation change data were of value, and terrain 

                                                                 
1 This is an Accepted Manuscript of an article scheduled to be published by Taylor & Francis in 

the International Journal of Remote Sensing, available online:   

http://www.tandfonline.com/doi/abs/10.1080/01431161.2015.1083632 

Maxwell, A.E., and T.A. Warner, 2015. Differentiating mine-reclaimed grasslands from 

spectrally similar land cover using terrain variables and object-based machine learning 

classification, International Journal of Remote Sensing (In Press). (Received 6 April 2015, 

Accepted 11 August 2015) 

http://www.tandfonline.com/doi/abs/10.1080/01431161.2014.1001086
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shape variables generally improved the classification. GEOBIA and machine 

learning algorithms were useful in exploiting this non-spectral data, as data 

gridded at variable cell sizes can be summarized at the scale of image objects , 

allowing complex interactions between predictor variables  to be characterised.  

Keywords: GEOBIA, object-based classification, machine learning, land cover 

mapping, LULC mapping, LiDAR, hypsography  

1. Introduction 

Mapping land use change is important for studies of anthropogenic global change 

(Anderson et al. 1976; Folke et al. 1998; Walker 1998; Cihlar and Jansen 2001). Nevertheless, 

some land use/land cover (LULC) classes may not be spectrally distinctive, resulting in low 

classification accuracy when multispectral data are used to produce a thematic map. This is 

especially true when attempting to map land use classes, since the use of land does not 

necessarily result in spectrally distinctive properties. Ancillary, non-spectral data may help 

differentiate these spectrally similar LULC classes (Gislason, Benediktsson, and Sveinsoon 

2006; Treitz and Howarth 2000; Knight et al. 2013).   

Mine reclamation is an example of a land use that may not be spectrally distinguishable 

in aerial and satellite imagery. Mountaintop removal with valley fills (MTR/VF) mining is a 

resource extraction approach practiced in the Appalachian region of the United States of 

America (USA), especially in southern West Virginia, eastern Kentucky, and southwestern 

Virginia. In this region, heavy machinery and explosives are used to expose coal seams of the 

Pennsylvanian geologic subperiod. MTR/VF mining results in faster and more pervasive terrain 

alteration than more traditional mining techniques (Fritz et al. 2010). Excavation and the 

subsequent reclamation associated with MTR/VF results in considerable physical terrain 

alteration, as 50 to 200 m of rock material is commonly removed from mountaintops and the 

unconsolidated rock waste is disposed of in the adjacent valleys as so-called valley fills, filling 
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headwater streams and generally raising valley elevations (Hooke 1994; Hooke 1999; Fritz et al. 

2010; Palmer et al. 2010; Bernhardt and Palmer 2011; Bernhardt et al. 2012; Maxwell and 

Strager 2013). This practice alters the pre-mining landforms of the affected mountaintops and 

valleys, flattening the upper slopes of a landscape that was originally characterised by moderate 

to strong relief and steep slopes dissected by a dendritic stream network (Ehlke et al. 1982; 

Maxwell and Strager 2013). The resulting topographically altered terrain, which was generally 

forested before mining, is commonly reclaimed to grasslands or shrublands (Simmons et al. 

2008; Kazar and Warner 2013). Because this mining practice results in such characteristic 

topographic alteration, multi-temporal terrain data may facilitate the differentiation of MTR/VF 

reclaimed grasslands from other spectrally similar grasslands within this landscape.  

In this paper, we explore the use of multi-temporal, digital elevation model (DEM)-

derived terrain data combined with high resolution aerial orthophotography for differentiating 

mine-reclaimed grasslands from other grasslands. The study site comprises three watersheds 

covering 6085 km2 in West Virginia, USA, a region where extensive landscape alteration has 

taken place due to surface coal mining, epecially MTR/VF. A geographic object-based image 

analysis (GEOBIA) approach and machine learning algorithms are used to integrate the disparate 

data at differing scales. The following research questions are addressed: 

1. Can mine reclaimed grasslands be separated from other grasslands across broad regions 

using DEM-derived terrain characteristics? 

2. Is it necessary to use both pre- and post-mining terrain characteristics to obtain an 

accurate separation of these classes? Or, can an accurate separation be obtained using 

only topography from a single time period (e.g. the current landscape)? 
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3. Do derived terrain attributes help differentiate these grassland classes, and, if so, what 

terrain attributes are most important? 

2. Background 

2.1. Importance of mapping mine reclaimed grasslands 

Grasslands resulting from surface mine reclamation have been shown to be 

fundamentally different from other grasslands in terms of their impact on hydrology (Negley and 

Eshelman 2006; Ferrari et al. 2009; McCormick et al. 2009; Zégre, Maxwell, and Lamont 2013; 

Miller and Zégre 2014; Zégre et al. 2014), terrestrial habitat (Weakland and Wood 2005; Wood, 

Bosworth, and Dettmers 2006; Simmons et al. 2008; Wickham et al. 2007; Wickham et al. 

2013), and aquatic ecosystems (Hartman et al. 2005; Pond et al. 2008; Fritz et al. 2010; Pond, 

2010; Merriam et al. 2011; Bernhardt et al. 2012; Merriam et al. 2013). Negley and Eshleman 

(2006) found that watersheds affected by mining and mine reclamation produce increased storm 

runoff and higher peak hourly runoff rates for storm events in comparison to watersheds not 

affected by mining. These observations were attributed to the loss of tree canopy and reduced 

evapotranspiration as well as decreased infiltration due to soil compaction. However, in a review 

of the hydrologic impacts of MTR/VF mining and mine reclamation, Miller and Zégre (2014) 

suggest that hydrology of such systems are not well understood. Although traditional mining 

practices generally increase peak and total runoff, the hydrologic impacts of MTR/VF 

reclamation are confounded by the increased storage of water in valley fill spoil and the reduced 

infiltration resulting from the compaction of soils above the fill.  

Concerning the effect on terrestrial habitats, Wood et al. (2006) suggest that mine 

reclamation and loss of forest negatively affect Cerulean Warbler (Dendroica cerulean) 
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populations, a species of conservation concern. Simmons et al. (2008) document nutrient 

limitations within terrestrial ecosystems impacted by mine reclamation that may persist for 

decades or centuries. Within aquatic ecosystems, Pond (2010) found that the number and 

richness of assemblages of mayflies (Ephemeroptera), especially sensitive aquatic insect taxa, 

were reduced in streams impaired by mining in comparison to reference sites. Merriam et al. 

(2013) found a direct correlation between selenium (Se) concentrations in streams and the extent 

of surface mining and reclamation upstream. Thus, because mine reclamation has unique and 

profound impacts on hydrological processes, terrestrial habitat, and aquatic ecosystems, it is 

important to be able to map and differentiate such land use from spectrally similar classes. In 

particular, information on the extent and location within the modified topographic landscape of 

reclaimed grasslands is a foundational data layer for environmental studies of MTR/VF 

landscapes. 

2.2. Terrain data for mapping and modeling  

Terrain data have been integrated into LULC mapping in many previous studies to 

improve classification accuracy. For example, Gislason, Benediktsson, and Sveinsson (2006) 

combined elevation, topographic slope, and topographic aspect derived from DEM data with 

Landsat Multispectral Scanner (MSS) data for mapping forest types in Colorado, USA, and 

noted the value of elevation in the classification. Treitz and Howarth (2000) found DEM data 

improve classification accuracy for forest ecosystems in northern Ontario, Canada. Although 

terrain information alone provided a weak separation of the forest ecosystem classes, combining 

these data with spectral data improved the classification. Knight et al. (2013) also noted an 

improvement in classification accuracy when topographic derivatives such as compound 

topographic moisture index (CTMI), topographic slope, and slope curvature were combined with 
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spectral data for mapping palustrine wetlands. Terrain data have also been used as predictor 

variables for spatial modeling (for example, Prasad, Iverson, and Liaw 2006; Wright and Gallant 

2007; Pino-Mejías et al. 2010; Evans and Kiesecker 2014). However, a review of the current 

literature suggests that multi-temporal terrain data have not been explored for mapping LULC 

classes within landscapes characterized by extensive anthropogenic topographic alteration.  

2.3. Mapping surface mining and reclamation 

Because mine reclamation generally persists as a legacy landscape alteration, mapping 

reclamation is of particular interest. However, as Rathore and Wright (1993) note, mine 

reclamation has proven more difficult to map than active mining. Research investigating the 

mapping of LULC resulting from mining and mine reclamation has traditionally focused on 

moderate spatial resolution multispectral data, such as MSS, Thematic Mapper (TM), Enhanced 

Thematic Mapper Plus (ETM+), and Satellite Pour l’Observation de la Terre (SPOT) data 

(Anderson and Schubert 1976; Irons and Kennard 1986; Parks, Petersen, and Baumer 1987; 

Rathore and Wright 1993; Anderson et al. 1997; Prakash and Gupta 1998; Yuill 2003; Townsend 

et al. 2009; Sen et al. 2012). In contrast, our previous research has explored the use of high 

spatial resolution satellite and aerial data, the combination of spectral and light detection and 

ranging (LiDAR) data, and the implementation of GEOBIA and machine learning algorithms for 

mapping mining and mine reclamation at the scale of a single mine (Maxwell et al. 2014a; 

Maxwell et al. 2014b; Maxwell et al. 2015). This research expands upon our previous work by 

focusing particularly on the potential benefit of multi-temporal terrain data, integrated with high 

resolution aerial imagery, for differentiating mine-reclaimed grasslands for regional mapping of 

reclamation. Indeed, to our knowledge, this is the first paper on mapping grasslands associated 

with mine reclamation at a fine resolution (5 m) across a broad region. 
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A notable example of previous mapping of mining and mining reclamation with moderate 

scale data is the work of Townsend et al. (2009), who developed a classification approach for 

mapping mining and mine reclamation across a region encompassing eight river basins in the 

Central Appalachian Mountain region of the Eastern United States. Four Landsat MSS, TM, and 

ETM+ scenes from 1976, 1987, 1999, and 2006 were classified using ISODATA clustering to 

map spectrally separable land cover classes. They then used ancillary data to produce a mine 

mask and a decision tree process utilising characteristic transitions of land cover to separate 

mining and mine reclamation from other classes within the mine mask. Accuracies for mapping 

mining and mine reclamation were generally above 85% using this method. Sen et al. (2012) 

expanded upon this work using a time series of Landsat TM and ETM+ data to differentiate re-

vegetated mines from other forest-displacing disturbance such as urbanization, using disturbance 

and subsequent recovery trajectories and a GEOBIA approach across four counties impacted by 

MTR/VF mining in southwestern Virginia. An accuracy of 89% was obtained. 

These previous studies suggest that reclaimed mine lands can be separated from 

spectrally similar land cover using multi-temporal data. However, a time series is not commonly 

available when working with high resolution satellite or aerial data, suggesting that other 

methods must be explored if mapping is to be undertaken at a high spatial resolution.  

2.4. GEOBIA and machine learning algorithms 

 GEOBIA, the process of segmenting an image into objects, or contiguous groups of 

pixels that are relatively spectrally homogeneous, and labeling each resulting object as a single 

unit, has been described as a paradigm shift in remote sensing (Blaschkie et al. 2014). GEOBIA 

has been shown to be particularly applicable for the classification of high spatial resolution data 

(Blaschke and Strobl 2001; Walter 2004; Chubey, Franklin, and Wulder 2006; Drăgut and 
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Blaschke 2006; Blaschke 2010; Baker et al. 2013; Meneguzzo, Liknes, and Nelson 2013). A 

feature of GEOBIA of great significance for incorporating information from ancillary layers is 

that the spatial support (i.e. data structure and resolution) of the ancillary data does not need to 

be the same as the pixel grid used to develop the objects.   

Once image objects are produced, a wide variety of summary spectral (e.g. mean, 

standard deviation, range, minimum, maximum of image bands) and spatial (e.g. shape, size, and 

association with neighboring objects) properties can be summarized for each object (Trimble 

2011). However, many of these variables may not meet the assumptions of multivariate 

normality required for statistical classifiers, and, as a result, nonparametric, machine learning 

approaches are commonly used in GEOBIA (Ke, Quakenbush, and Im 2010; Trimble 2011; 

Duro, Franklin, and Dubé 2012a; Duro, Franklin, and Dubé 2012b; Guan et al. 2013). Machine 

learning algorithms offer the potential to handle high dimensional complex spectral measurement 

spaces and large volumes of data, with the added benefit of reduced processing time compared to 

traditional classifiers (Hansen and Reed 2000). In this study, two machine learning algorithms 

were used, support vector machines (SVM) (Vapnik 1995; Joachims 1998; Burges 1998; Tso and 

Mather 2003; Pal and Mather 2005; Pal 2005; Warner and Nerry 2009) and random forests (RF) 

(Breiman 2001).  

SVMs separate two classes by constructing a multi-dimensional hyperplane that is 

optimized as the maximum margin that provides the best separation between the classes. To 

create this decision boundary, it is usually necessary to transform the data to a higher 

dimensional space in order for the data to be linearly separable. This is accomplished using a 

kernel function, such as a polynomial or radial basis function (RBF). To facilitate generalization 

of the decision boundary, a penalty parameter (C) penalizes training samples located on the 
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“wrong” side of the decision boundary (Vapnik 1995; Joachims 1998; Burges 1998; Tso and 

Mather 2003; Pal and Mather 2005; Pal 2005; Warner and Nerry 2009). SVM algorithms were 

originally designed for two class problems, and, as a result, strategies are required to allow for 

the separation of more than two classes. For example, the “one-against-one” approach uses 

binary classifiers and a voting scheme to separate multiple classes (Vapnik 1995; Tso and 

Mather 2003; Pal 2005; Pal and Mather 2005; Meyer et al. 2012).  

RF uses an ensemble of classification trees to improve upon the accuracy and consistency 

of single decision tree (DT) classifications. RF differs from other ensemble DT methods because 

each tree is generated from a subsample of the data obtained from random bootstrap sampling of 

the training data with replacement, a process known as bagging (Breiman 1996; Breiman 2001). 

The withheld, or out-of-bag (oob), samples can be used for map accuracy assessment, assuming 

the training data were collected in a random and unbiased manner. Also, a random subset of the 

predictor variables (the number of which is defined by the user) is used for growing each tree in 

the ensemble. This is done to decrease the correlation between trees, and thereby decrease the 

generalization error (Breiman 2001). RF has many attributes that make it attractive for 

classification, including the capacity to model complex interactions between predictor variables, 

handling data with missing values, generating high classification accuracies, and providing 

measures of predictor variable importance (Steele 2000; Cutler et al. 2007). 

3. Study area 

 The study area was defined relative to Hydrologic Unit Code (HUC 8) watershed extents 

within the MTR/VF region of West Virginia, USA (Figure 1). Three adjacent watersheds were 

mapped: the Upper Kanawha, Upper Guyandotte, and Coal River, totaling 6085 km2. These 

watersheds were selected due to the availability of pre- and post-mining terrain data, digital mine 
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permit extents, and aerial orthophotography. Also, a prior land cover analysis found that within 

these watersheds surface mining and mine reclamation comprise a major component of the 

landscape, as much as 6% of the surface area (Maxwell et al. 2011). Watersheds were used to 

define the study area boundary because watersheds tend to be used as the spatial unit for both 

management and environmental research. 

4. Methods 

4.1. Overview of mapping process 

 Prior to a detailed description of the methods, we first give a brief overview of the 

mapping process (Figure 2). The classification is hierarchical, with two stages. First, after pre-

processing, the aerial orthophotography was classified using a GEOBIA approach, in which the 

imagery was segmented and then classified using SVM to produce four classes: woody 

vegetation, herbaceous vegetation, barren areas, and water. The resulting land cover 

classification was then generalized using a sieving operation to remove land cover patches less 

than 1 ha, the minimum mapping unit (MMU) for the study. Contiguous areas of herbaceous 

cover (i.e. grasses) were then merged as single objects for the second stage of the classification, 

in which the RF algorithm along with pre- and post-mining terrain variables were used to 

differentiate mine reclaimed grasslands from other grasslands. The results were then assessed 

using randomized validation data. The following sections elaborate on these methods. 

4.2. Input data and pre-processing 

 National Agriculture Imagery Program (NAIP) orthophotography was the primary image 

data used in this study. The images were collected during the growing season of 2011 between 

10 July 2011 and 6 October 2011 with an Integraph Z/I Imaging Digital Mapping Camera 

(DMC). The data were provided at a 1 m ground sampling distance (GSD) with four spectral 
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bands (blue, green, red, and near-infrared (NIR)) by the United States Department of Agriculture 

(USDA) Farm Service Agency. NAIP orthophotography has been used for LULC classification 

in previous studies (for example, Baker et al. 2013; Davies et al. 2010; Meneguzzo Liknes, and 

Nelson 2013; Maxwell et al. 2014a). In a previous study (Maxwell et al. 2014a) using NAIP 

imagery, and focusing only on land cover classes within a single mine in this region, we found 

that classification accuracies were above 90% when the number of classes was limited and the 

spatial resolution was decreased from 1 m to 5 m. In order to prepare the imagery for 

segmentation and classification, each uncompressed quarter quadrangle was resampled to a 5 m 

cell size using pixel aggregation (i.e. average of the input cells) within Erdas Imagine 2014 

(ERDAS 2013). The resampled quarter quadrangles were then mosaicked to produce a single 

image for the entire study area. 

 A pre-mining, historic DEM was produced from United States Geologic Survey (USGS) 

digital line graph (DLG) contour data derived from 1:24,000 topographic maps. These data do 

not represent a single date; source data range from 1951 to 1989, with the majority of the data 

representing topographic conditions of the 1960s and 1970s. A review of available terrain data 

for this region suggested that this is the most appropriate historic elevation data set for this 

analysis, as pre-mining DEM data are limited. Further, visual inspection of a hillshade image 

produced from these data and an elevation change image produced by subtracting the historic 

and recent DEMs both suggest that the DLG data predate almost all large scale MTR/VF activity 

in the study area, which began as early as the 1960s but was not widespread until the 1990s 

(Milici 2000; Wickham et al. 2013). The contour data were gridded on a 9 m raster using the 

Topo to Raster tool in ArcMap 10.2 (ESRI 2012). A 9 m cell size was chosen, as opposed to a 5 

m cell size to match the image data, to reflect the inherent resolution of the DLG data. 
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 A recent, post-mining DEM was made available by the West Virginia Department of 

Environmental Protection (WVDEP). This DEM was produced using aerial LiDAR, which is an 

active remote sensing technique that uses the two-way travel time of emitted laser pulses and 

precise geolocation derived from differential global positioning system (GPS) and inertial 

measurement unit (IMU) data to calculate the elevation of the ground surface and the height of 

objects above the ground surface (Hyyppä et al. 2009). The LiDAR data were collected between 

9 April 2010 and 29 March 2011 during leaf-off conditions to maximize the number of ground 

returns. Flight specifications were selected to support a nominal average pulse spacing of 1 m. 

The Optech ALTM 3100 C sensor was set to a pulse frequency of 70 kHz, a scan frequency of 

35 Hz, and a scan angle of 36˚ (full swath). A 30% overlap was acquired between swaths. The 

aircraft flew at an average of 1524 m above ground level and at a speed of 125 knots (232 km hr-

1). The LiDAR system recorded up to four returns per laser pulse, and each return was classified 

by the vendor as ground, non-ground, or as an outlier, and delivered in LAS 1.2 format. The 

DEM provided by the WVDEP was resampled using pixel aggregation to a 9 m cell size, to 

match that of the pre-mining DEM. 

4.3. Image segmentation and classification 

 The NAIP orthophotography was segmented using the multi-resolution image 

segmentation algorithm within eCognition 8.0 (Trimble, Sunnydale, California). This algorithm 

requires the user to define three parameters: scale, shape, and compactness. The scale parameter 

controls the size of the image objects (Liu and Xia 2010; Kim et al. 2011), and a number of 

studies have suggested that this parameter has the largest impact on subsequent classification 

accuracy (Blaschke 2003; Meinel and Neubert 2004; Kim, Madden, and Warner 2009; Liu and 

Xia 2010; Smith 2010; Myint et al. 2011). The shape parameter controls the relative importance 
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assigned to the shape of the object versus the “color,” which relates to spectral properties. 

Compactness controls the balance between the edge length and form of the object (Baatz and 

Schäpe 2000). As is common in GEOBIA (e.g. Laliberte, Fredrickson, and Rango 2007; 

Mathieu, Aryal, and Chong 2007, Dingle Robertson and King 2011; Myint et al. 2011; Pu, 

Landry, and Yu 2011; Duro, Franklin and Dubé 2012a; Duro, Franklin and Dubé 2012b) trial-

and-error and expert judgment were used to select the optimal settings of 30 for scale, 0.1 for 

shape, and 0.5 for compactness. All four image bands were equally weighted in the 

segmentation. Over 500,000 objects were generated.  

 The resulting image objects were classified using the implementation of the SVM 

algorithm available in the e1071 package (Meyer et al. 2012) within the statistical software tool 

R (R Core Development Team 2012). SVM was chosen because our prior research within this 

landscape suggested that SVM typically provides more accurate spectral classifications in 

comparison to RF and boosted classification and regression trees (CART) (Maxwell et al. 2014a; 

Maxwell et al. 2014b; Maxwell et al. 2015). A total of 9,409 objects were used to train the 

algorithm. These objects were selected based on manual interpretation of the 2011 NAIP 

orthophotography, prior 2007 NAIP orthophotography, mine permit data made available by the 

WVDEP, and the digital terrain data. For the classification, a RBF kernel was used and the user-

defined parameters C and kernel-specific gamma (γ) were optimized using 10-fold cross 

validation in which the training data were partitioned into 10 unique training sets, using a 

random assignment, and the classifier was trained 10 times using 90% of the data and 

withholding the other 10% for validation.  

 The primary aim of the first stage of the classification was to map grasslands. However, 

as an intermediate step, the objects were classified as woody vegetation, herbaceous vegetation, 
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barren areas, and water. These classes were chosen based on our prior experience of common 

land cover conditions in this landscape (Maxwell et al. 2014a; Maxwell et al. 2014b; Maxwell et 

al. 2015), which suggests these classes are separable given only spectral data. After 

classification, contiguous areas of land cover smaller than the 1 ha MMU were removed using a 

sieving operation and replaced with the dominant surrounding class. A 1 ha MMU was selected 

because reclamation practices in this area commonly result in large patches, typically over 1 ha, 

of similar land cover. Groups of adjacent objects that were classified as grassland cover were 

then combined into single objects. The resulting objects were further classified in the next 

classification stage.   

4.4. Differentiation of grasslands 

 In the second stage of the classification, image objects that were previously labeled as 

herbaceous vegetation in the initial classification were divided into mine-reclaimed grasslands 

and non-mining grasslands (Table 1) using pre- and post-mining terrain characteristics of each 

object. Although SVM was used for the first stage of the classification discussed above (i.e. the 

land cover classification using spectral data), RF was used for the second stage of the analysis, 

separating the grassland classes, as RF was assumed to be more suitable for modeling the 

complex interactions between the highly correlated terrain variables (Burkholder et al. 2011). In 

addition, RF was chosen because it offers measures of variable importance, as well as an 

estimate of error from the oob samples.  

 Predictor variables for the RF classification were derived from the pre- and post-mining 

DEM data. These variables are summarized in Table 2. Topographic slope (in degrees) was 

calculated using the Spatial Analyst Extension of ArcMap 10.2 (Burrough and McDonell 1998; 

ESRI 2012), whereas the other terrain attributes were calculated using the ArcGIS 
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Geomorphometry & Gradient Metrics Toolbox (Evans et al. 2014). The metrics calculated 

included CTMI (Moore et al. 1993; Gessler et al. 1995), slope position (Berry 2002), roughness 

(Blaszczynski 1997; Riley, DeGloria, and Elliot 1999), and dissection (Evans 1972). Slope 

position, roughness, and dissection rely on focal statistics calculated using a moving window; 

thus, the result is dependent on the window size used. For this study, we used window sizes of 11 

pixels × 11 pixels, 21 pixels × 21 pixels, and 31 pixels × 31 pixels (i.e. 99 m × 99 m, 189 m × 

189 m, and 279 m × 279 m) and averaged the results. These window sizes were assumed to 

approximate the hillslope scale, the scale of interest, and were selected by estimating the range of 

typical valley to ridge distances in this landscape. An elevation change grid was also produced 

by subtracting the pre-mining DEM from the post-mining DEM. Positive values indicate 

increases in elevation (e.g. fills) whereas negative values indicate decreased elevation (e.g. 

excavation). 

Within each image object, summary mean, minimum, maximum, and standard deviation 

were calculated for pre- and post-mining elevation and slope, and also elevation change. For all 

other variables, only the mean was calculated (Table 2). Classifications were produced using the 

DEM-derived input variable combinations described in Table 3. As a baseline for the 

comparisons, a classification was also performed using only the spectral data derived from the 

NAIP imagery as band means and standard deviations (8 predictor variables) for each grassland 

object.  

A total of 200 randomly chosen objects were used to train the model, 100 from each of 

the grassland classes. The RF algorithm from the randomForest package (Liaw and Wiener 

2002) within the statistical software tool R (R Core Development Team 2012) was used. A total 

of 500 trees were used in the ensemble, as this was found to be adequate to produce a stable 
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classification result. The number of variables randomly sampled as candidates at each node (m) 

was optimized for each input variable combination using 10-fold cross validation.  

4.5. Classification assessment 

 A variety of methods were used to assess the classifications including the following: 

traditional accuracy assessment using randomized validation data and error matrices, oob 

estimates of generalization error and variable importance provided by RF, and an assessment of 

confusion between mine reclaimed grasslands and non-mining grasslands using a randomized 

sample within areas classified as herbaceous vegetation. These methods will be discussed in 

more detail below. 

In order to estimate overall map accuracy, an accuracy assessment was performed using 

3,000 randomly selected point locations across the entire study area of the three watersheds. The 

classification of three classes was assessed: mine-reclaimed grasslands, non-mining grasslands, 

and non-grass cover. The random points were validated using visual interpretation of a variety of 

layers including 2011 NAIP orthophotography, 2007 NAIP orthophotography, pre-mining slope 

data, post-mining slope data, a pre-mining hillshade image, a post-mining hillshade image, the 

elevation change raster grid, and WVDEP surface mine permit data. Five of the 3,000 points 

were removed from the analysis as the correct class was uncertain due to change in land cover 

between the dates of the NAIP orthophotography and post-mining terrain data collection (i.e. the 

LiDAR data).  

One strength of the RF algorithm is its ability to estimate classification error using the 

withheld, or oob, data (Breiman 2001; Rodríguez-Galiano et al. 2012a; Rodríguez-Galiano et al. 

2012b). Lawrence, Wood, and Sheley (2006) and Rodríguez-Galiano et al. (2012b) suggest that 

this accuracy assessment is reliable and unbiased when randomized validation data are used, as 
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in this study. As a result, this estimate of classification accuracy was used to assess the accuracy 

of separating mine reclaimed grasslands from other grasslands, the second stage of the 

classification. The algorithm also generates a measure of variable importance during the training 

process by excluding each variable sequentially and recording the resulting oob error (Breiman 

2001; Rodríguez-Galiano et al. 2012a; Rodríguez-Galiano et al. 2012b). This ancillary output of 

RF was used to assess the contribution of specific terrain measures calculated for the grassland 

objects (e.g. pre-mining mean elevation, post-mining mean elevation, mean elevation change, 

pre-mining mean slope position, post-mining mean terrain roughness, etc.). 

In order to evaluate the statistical significance of any differences in the classifications the 

results were compared on a pairwise basis using McNemar’s test (Dietterich 1998; Foody 2004). 

McNemar’s test is a test of statistical difference that generates a z-score under the null hypothesis 

that the classifications are not different. A z-score larger than 1.645 indicates a 95% confidence 

of statistical significance for the one-directional test of whether one classification is more 

accurate than the other (Bradley 1968; Dietterich 1998; Foody 2004; Agresti 2007). This 

statistical test was used to assess the statistical difference between the classifications. It was also 

used to assess the separability or differentiation of mine reclaimed grasslands and other 

grasslands (i.e. the second stage of the classification) using a second set of 1,000 random 

validation points from within areas mapped as grasslands. Of the 1,000 original sample points, 

33 were removed from the analysis as they could not be interpreted due to landscape change 

between the dates of the 2011 NAIP orthophotography and post-mining terrain data collection or 

because they were interpreted as not being grasslands (i.e. were incorrectly mapped as 

grasslands).  

5. Results and discussion 
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5.1. Classification accuracy 

Using different terrain input variable combinations, the overall accuracy of the 

classifications ranged from 97.4% to 97.9% (Table 4). Overall, the most accurate classifications 

generally used a combination of pre- and post-mining terrain variables or variables derived from 

the pre-mining surface only. Figure 3 shows the grassland classification for the entire study area 

produced using all pre-and post-mining terrain variables plus elevation change variables in the 

second stage of the classification. Figure 4 shows an example of the same result in greater detail, 

but for a smaller area and overlaid on the NAIP imagery. Table 5 summarizes the confusion 

matrix for this classification.   

For the various combinations of terrain data, user’s accuracy for mine-reclaimed 

grasslands ranged from 77% to 89% and producer’s accuracy ranged from 77% to 83% (Table 

4). For non-mining grasslands user’s accuracy ranged from 76% to 85% and producer’s accuracy 

ranged from 57% to 72%. The lower producer’s accuracy for non-mining grasslands is due to 

confusion with both mine-reclaimed grasslands and non-grassland cover. Non-grassland cover 

was generally differentiated from grassland cover with user’s and producer’s accuracies above 

98%.  

Overall, these data suggest that grasslands can be accurately differentiated from other 

land cover types using GEOBIA, SVM, and NAIP orthophotography. In addition, the results 

indicate that terrain variables are useful for differentiating non-mining and mine-reclaimed 

grasslands, as using only spectral data in the second stage of the classification yielded the lowest 

overall accuracy (97.2%), and, most importantly, the lowest user’s and producer’s accuracies for 

both grassland classes (57% to 78%). This result is not particularly surprising, since we expected 

mine-reclaimed grasslands to be very similar spectrally to non-mining grasslands. 
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 Because grasslands are only a small part of the overall landscape, the difference in 

overall accuracy between the classifications with different topographical variables varied by only 

0.4%. However, the user’s and producer’s accuracies for the two grassland categories varied 

widely, and consequently the classifications were statistically different for many of the 

combinations, as shown by McNemar’s test (Table 6). This confirms that the choice of input 

terrain predictor variables affects the accuracy of the classification. Further, all classifications 

that used terrain variables, with the exception of the combination utilising only post-mining 

terrain summary statistics for elevation and slope, were statistically more accurate than the 

classification using spectral data.  

5.2. Importance of pre- and post-mining terrain data for differentiating mine-reclaimed and 

non-mining grasslands 

 The discussion so far has focused on statistics generated from the entire classification 

map. In order to explore the second stage of the classification more closely, we now focus 

exclusively on the differentiation of the mine-reclaimed grasslands and the non-mining 

grasslands.   

Figure 5 shows oob error rates for the separation of non-mining and mine-reclaimed 

grasslands using different input variable combinations. The differentiation error rates using 

various combinations of terrain variables, as estimated using the oob data, range from 4.5% 

(using all pre- and post-mining terrain variables but not elevation change variables) to 16.0% 

(using only post-mining descriptive statistics for elevation and slope). The error rate using only 

spectral data in the second stage of the classification was 19.0%, the highest error rate obtained.  

Using the random samples within the grassland classes, Table 7 shows the McNemar’s 

test results for assessing the differentiation of mine-reclaimed and non-mining grasslands. 
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Statistical significance was observed between the majority of the input variable combinations, 

with the spectral data and the post-mining elevation and slope classifications being significantly 

different (i.e. having a lower accuracy) than all other classifications. The McNemar’s test also 

confirms that a classification using pre- and post-mining terrain data (i.e. not including statistics 

derived from elevation change) provided a statistically more accurate differentiation of the two 

classes than a classification using only post-mining data (z-score = 2.635) but not in comparison 

to a classification using pre-mining data (z-score = 0.333). Pre-mining data only also produced a 

statistically more accurate differentiation than post-mining data only (z-score = 2.457).  

In summary, these data suggest that mine-reclaimed grasslands have a unique 

topographic signature compared to other grasslands in this terrain, and can thus be separated 

from other grasslands using terrain characteristics extracted from DEM data. This is especially 

true when both pre- and post-mining characteristics are used or when just pre-mining 

characteristics are used. We attribute the usefulness of pre-mining data to the nature of the terrain 

alteration resulting from MTR/VF mining. A pre-mining topography characterised by steep 

slopes and an upper slope position may be more predictive than post-mining terrain 

characteristics, in which the landscape has been flattened and therefore became more similar 

topographically to non-mining grasslands.  

5.3. Importance of terrain attributes for differentiating mine-reclaimed and non-mining 

grasslands 

 The McNemar’s test (Table 7) comparing the grassland differentiation using all pre- and 

post-mining predictor variables with and without including the elevation change data yielded a z-

score of 1.604. This suggests that the incorporation of descriptive statistics derived from the 

elevation change surface did not statistically improve the classification accuracy. However, a 
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classification using just the elevation change data was not statistically different from a 

classification using all of the pre- and post-mining predictor variables excluding elevation 

change variables (z-score = 0.277). A combination of summary statistics for elevation change 

and pre- and post-mining elevation and slope was statistically more accurate than a classification 

using just pre- and post-mining elevation and slope variables (z-score = 2.333). As shown in 

Figure 6, measures derived from the elevation change surface were of particular importance in 

the model as estimated by the oob mean decrease in accuracy measure. These data suggest that 

there is merit in including elevation change variables, especially when the number of terrain 

variables used to characterize the pre- and post-mining terrain are limited. 

 The incorporation of pre- and post-mining CTMI, slope position, roughness, and 

dissection in the classification was also assessed. These topographic variables statistically 

improved the differentiation of the two grassland classes in comparison to only using measures 

derived from elevation and slope when only post-mining terrain data were used (z-score = 6.359) 

and when only pre-mining data were used (z-score = 4.619); however, no statistical difference 

was observed when using a combination of pre- and post-mining data (z-score = 1.270). Figure 7 

shows variable importance for the post-mining model as estimated from the oob mean decrease 

in accuracy. These data suggest that the additional terrain variables, beyond elevation and slope, 

contribute to the model, especially dissection. Figure 8 shows variable importance for the pre-

mining model. These data suggest that the added variables, beyond elevation and slope, 

contribute to the model, especially dissection and roughness. However, the most important 

variable appears to be the pre-mining mean slope. The reason for this is likely because pre-

mining slopes of MTR/VF sites are often steep, thus, pre-mining slopes differentiate mine-

reclaimed grasslands from non-mining grasslands, which are often found on flatter surfaces (e.g. 
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valley bottoms) in this landscape. These data tend to suggest that derived topographic variables 

are of value, especially when only pre- or post-mining terrain data are available.  

5.4. Practical considerations 

 Pre- and post-mining terrain data were found to be of value for differentiating spectrally 

similar non-mining and mine-reclaimed grasslands in this study area in West Virginia. However, 

there are some practical limitations. First, the pre-mining terrain data were of greater importance 

for differentiating the cover types than post-mining data. The availability of older DEM data for 

characterizing the pre-mining terrain is generally limited, and in this study it was necessary to 

produce a DEM from the available DLG data as a historical DEM was not readily available. 

Further, USGS DLG contour data were collected over a wide range of dates and were derived 

from photogrammetric methods, making comparison to the recent LiDAR-derived data complex 

(DeWitt, Warner, and Conley 2015). In addition, the DLG data may not pre-date all mining. 

Second, post-mining terrain data may not be temporally coincident with the available imagery. 

For example, in this study, the NAIP orthophotography was collected over a period of nearly 

three months, and the LiDAR data were collected over a period of nearly a year. Planning 

temporally coincident collections of high resolution imagery and LiDAR may be difficult, 

especially over large spatial extents. For studies with limited budgets that must exploit data 

originally collected for other purposes, as in this study, the challenges of finding data of similar 

dates are even greater. 

Many of the terrain attributes calculated rely on focal statistics calculated using a moving 

window. Selecting the appropriate window size can be difficult as the optimal window size may 

be case-specific and guidance from the literature on the appropriate scale is limited. This 

presents a challenge when working with DEM-derived terrain attributes for LULC classification. 
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 Despite these limitations, our results suggest that multi-temporal terrain data summarized 

for image objects offers a means to differentiate spectrally similar LULC classes that have a 

characteristic topographic signature. This is especially true when machine learning algorithms 

are used to classify such data. Such methods may be appropriate for augmenting available data 

sets to support a specific modeling or analysis task, such as the National Land Cover Dataset 

(NLCD). 

6. Conclusions 

 This research investigated the use of multi-temporal terrain data for differentiating these 

topographically distinctive features. Surface mining produces extensive landscape alterations that 

persists as a legacy LULC alteration. Mine reclaimed land cover has been shown to have 

important impacts on hydrology, terrestrial habitats, and aquatic ecosystems. Thus, it is of 

importance to differentiate such grasslands from other grasslands on the landscape.  

The classification approach employed, which makes use of GEOBIA, machine learning 

algorithms, high resolution aerial imagery, and multi-temporal terrain characteristics derived 

from DEMs, provided an accurate means to differentiate grassland cover from other land cover.   

Mine-reclaimed grasslands were mapped with user’s and producer’s accuracies between 

77% and 89% using multi-temporal terrain data. Classifications using either a combination of 

pre- and post-mining terrain variables or pre-mining terrain variables only generally 

outperformed classifications using only post-mining terrain data. Elevation change data were of 

value, and terrain characteristics as CTMI, slope position, roughness, and dissection generally 

improved the classification.  

GEOBIA was a valuable tool for combining data collected using different sensors and 

gridded at variable cell sizes (i.e. the image and digital terrain data). In addition, GEOBIA 
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provided a mechanism to characterise the terrain data using summary variables (e.g. mean, 

maximum, minimum, standard deviation, etc.) at the object scale. Differentiating landscape 

position from attributes derived from DEMs is not straightforward because the scale of the 

landscape is complex, with multiple potential topographic scales present. Also, a single site 

might include more than one topographic class. With GEOBIA, by integrating over an object, 

these problems can potentially be overcome. 

The machine learning algorithms were particularly useful in incorporating the ancillary 

data derived from the DEMs, since these most likely would not have met the basic assumptions 

of multivariate normality required for parametric classifiers. In addition, the RF classifier was 

particularly useful due to its ability to provide estimates of accuracy and also variable 

importance. 

 This study highlights the importance of maintaining legacy elevation products (e.g. DLG) 

with descriptive metadata regarding year of acquisition or creation, since the pre-mining terrain 

data were shown to be of great value in this study. We know of no formal effort to archive 

historical elevation data sets analogous to the extensive image archives that are maintained by 

the USGS, the National Aeronautic and Space Administration (NASA) and other government 

agencies. We recommend that developing such archives should be a priority. 
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Table 1: Grassland class definitions. 

Land Cover Class Description 

Non-mining grasslands 

Grasslands not resulting from mine 

reclamation, including pastureland, 
herbaceous dominated residential 

development, and other areas on the 

landscape dominated by herbaceous 
vegetation. 

Mine-reclaimed grasslands 

Grasslands resulting from mine 

reclamation, including reclaimed 
lands within mine sites and valley 

fills dominated by herbaceous 

vegetation. 
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Table 2: Descriptions of terrain characteristics. 

Measure Description Reference 
Object summary 

statistics 

Elevation 
(Ele) 

Elevation 
 
Z 
 

NA 
Mean, minimum, 

maximum, 
standard deviation 

Slope (°) 
(Slp) 

Slope (gradient or rate of maximum 
change in Z) 
 

atan√
       

      
× 57.29578 

 

Burrough 
and 

McDonell 
1998 

Mean, minimum, 
maximum, 

standard deviation 

Compound 
topographic moisture 

index  
(CTMI) 

Measure of steady state wetness as 
estimated from terrain characteristics  
 

ln 
                           

          
) 

 

Gessler et al. 
1995 

Moore et al. 
1993 

Mean 

Slope position 

Scalable slope position 
 
Z – Zmean 
 

Berry 2002 Mean 

Roughness 

Roughness or terrain complexity index 
 

√                    

 

Riley et al. 
1999 

Blaszczynski 
1997 

Mean 

Dissection 

 Dissection of landscape index 
 

            

                   
 

 

Evans 1972 Mean 

Elevation change 

Pre-Mining Elevation – Post-Mining 
Elevation 
 

Zpost-mining – Zpre-mining 
 

NA 
Mean, minimum, 

maximum, 
standard deviation 
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Table 3: Input variable combinations compared. 

Classification Variables used in the classification Number of variables 

1 All pre- and post-mining DEM-derived variables plus elevation change summary variables 28 

2 All pre- and post-mining DEM-derived variables (but excluding elevation change ) 24 

3 Pre- and post-mining elevation and slope plus elevation change summary variables  20 

4 Pre- and post-mining elevation and slope summary variables  16 

5 All pre-mining DEM-derived summary variables  12 

6 All post-mining DEM-derived summary variables  12 

7 Pre-mining elevation and slope summary variables  8 

8 Post-mining elevation and slope summary variables  8 

9 Elevation change summary variables  4 

10 Spectral data (band means and standard deviations) 8 

 

 

 

 

 

 

 

 



 

201 
 

Table 4: Summary statistics for classification of three classes (not grassland, non-mining grasslands, mine-reclaimed grasslands). The 

best value in each column is shaded gray. 

 
 

 
Mine-reclaimed 

grasslands 

Non-mining 

grasslands 

Not  

grassland 

Variables used 
Data 
set 

OA (%) UA (%) PA (%) UA (%) PA (%) 
UA (%) PA (%) 

All Pre-/Post-mining + Ele Change 1 97.9 89 81 82 72 99 99 

All Pre-/Post-mining 2 97.9 88 80 81 72 99 99 

Pre-/Post-mining Ele and Slp + Ele 
Change 

3 97.9 86 83 85 69 99 99 

Pre-/Post-mining Ele and Slp 4 97.7 83 78 80 67 99 99 

All Pre-mining 5 97.9 88 79 80 72 99 99 

All Post-mining 6 97.6 82 77 78 65 99 99 

Pre-mining Ele and Slp 7 97.8 87 79 79 70 99 99 

Post-mining Ele and Slp 8 97.4 77 77 76 57 99 99 

Ele Change 9 97.9 86 83 84 69 99 99 

Spectral Data (no terrain data) 10 97.2 78 72 66 57 99 99 

 

Note: OA = overall accuracy, UA = user’s accuracy, PA = producer’s accuracy. 
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Table 5: Error matrix for classification using all predictor variables (All pre- and post-mining variables plus elevation change in the 

second stage of the classification). Overall accuracy is 97.9% for separating the three classes. 

 

 
 

Reference data 
  

 
 

Not 
grassland 

Non-
mining 

grasslands 

Mine-
reclaimed 

grasslands 

Total 

User’s 

accuracy 

(%) 

Classified 

data 

Not 
grasslands 

2780 18 19 2817 99 

Non-
Mining 

grasslands 

10 60 3 73 82 

Mine-
reclaimed 

grasslands 

7 5 93 105 89 

 Total 2797 83 115 
  

 

Producer’s 

accuracy 

(%) 

99 72 81 
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Table 6: McNemar’s test results for classification of three classes (not grassland, non-mining grasslands, mine-reclaimed grasslands). 

 Data 
set 

1 2 3 4 5 6 7 8 9 

All Pre-/Post-mining + Ele Change 1 
       

  

All Pre-/Post-mining 2 0.447         

Pre-/Post-mining Ele and Slp + Ele 

Change 
3 0.000 0.333      

  

Pre-/Post-mining Ele and Slp 4 2.111* 1.897* 2.111*       

All Pre-mining 5 0.817 1.000 0.632 1.508      

All Post-mining 6 2.673* 2.324* 2.673* 0.655 2.000*     

Pre-mining Ele and Slp 7 1.414 1.134 1.265 1.000 0.707 1.414    

Post-mining Ele and Slp 8 3.400* 3.138* 3.710* 2.041* 2.887* 1.698* 2.837*   

Ele Change 9 0.333 0.000 0.447 1.500 0.258 2.065* 0.832 3.138*  

Spectral Data 10 3.888* 3.667* 4.131* 2.744* 3.452* 1.982* 3.212* 0.949 4.017* 

 

Note: A z-score larger than 1.645 (*) indicates a 95% confidence interval of statistical significance for the one-directional test of 

whether one classification is more accurate than the other.  
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Table 7: McNemar’s test results for differentiation of non-mining and mine-reclaimed grasslands. 

 Data 
set 

1 2 3 4 5 6 7 8 9 

All Pre-/Post-mining + Ele Change 1          

All Pre-/Post-mining 2 1.604         

Pre-/Post-mining Ele and Slp + Ele 

Change 
3 0.200 1.238      

  

Pre-/Post-mining Ele and Slp 4 2.491* 1.270 2.333*       

All Pre-mining 5 1.692* 0.333 1.309 1.116      

All Post-mining 6 4.281* 2.635* 3.878* 1.497 2.457*     

Pre-mining Ele and Slp 7 5.128* 4.621* 4.587* 2.994* 4.619* 0.539    

Post-mining Ele and Slp 8 8.433* 7.209* 8.275* 6.683* 7.030* 6.359* 5.031*   

Ele Change 9 1.134 0.277 1.180 1.192 0.368 2.652* 3.133* 6.982*  

Spectral Data 10 7.898* 6.548* 7.929* 5.933* 6.438* 4.820* 4.353* 0.254 7.233* 

 

Note: A z-score larger than 1.645 (*) indicates a 95% confidence interval of statistical significance for the one-directional test of 

whether one classification is more accurate than the other.  
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Figure 1: Location map showing the state of West Virginia and the study area extent. Base 

imagery is 2011 NAIP orthophotography displayed in false color (Bands 4, 3, 2 as red, green and 

blue). Large cyan patches generally correspond to active mining areas. Surface mining is 

extensive throughout these watersheds. 
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Figure 2: Overview of mapping and assessment process. 
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Figure 3: Grassland classification for entire study area using all predictor variables (All pre- and 

post-mining variables plus elevation change in the second stage of the classification). 
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Figure 4 (a) NAIP simulated natural color image (bands 3, 2, 1 as red, green and blue). (b) NAIP 

image with example grassland classification using all predictor variables (All pre- and post-

mining variables plus elevation change in the second stage of the classification).  (c) Location 

map. 
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Figure 5: oob error rate estimated by RF algorithm for different input variable combinations. 
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Figure 6: Variable importance as estimated by oob mean decrease in accuracy for model using 

all pre- and post-mining elevation (Ele) and slope (Slp) and elevation change (Ele Change) 

descriptive statistics. 
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Figure 7: Variable importance as estimated by oob mean decrease in accuracy for model using 

all post-mining variables. 
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Figure 8: Variable importance as estimated by oob mean decrease in accuracy for model using 

all pre-mining variables. 
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CHAPTER 6 

Conclusion 

1. Synthesis of Results 

 The aim of this dissertation was to investigate high spatial resolution remotely sensed 

data (aerial- and satellite-based multispectral imagery, LiDAR, and terrain variables) and 

advanced classification methods (machine learning algorithms and GEOBIA classification) for 

mapping mine disturbance. The results of the research were presented in Chapters 2-5, in four 

separate articles, with overlapping themes. This concluding chapter will attempt to synthesize the 

research findings of those chapters.  

 In a comparison of NAIP orthophotography and RapidEye satellite imagery, NAIP data 

result in statistically lower classification accuracies in comparison to RapidEye data. This lower 

accuracy was attributed to inconsistent illumination and radiometric normalization, as the aerial 

data are acquired as individual scenes over an extended period of time (Chapter 3). Satellite data 

can offer radiometric consistency over large extents and repeat observations from similar 

viewing and illumination geometries. However, aerial imagery, specifically NAIP 

orthophotography, is not without benefits, including availability for multiple years, a general 

lack of cloud cover, contiguous coverage of large areas, availability, and low cost to the end user. 

Thus, although the classification of aerial imagery mosaics may be complicated by inconsistent 

illumination, the need for radiometric normalization, and low spectral resolution, NAIP data 

offer many favorable characteristics for mapping land cover. 

 The classification of NAIP imagery was generally improved by reducing the spatial 

resolution (e.g. resampling to a coarser cell size), decreasing the number of classes being 

mapped, and using the NIR band (Chapter 3). For example, NAIP imagery was found to provide 

accuracies above 90% when mapping only vegetation, barren areas, and water (Chapter 3) and 
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when separating herbaceous cover from other cover types (Chapter 5). This suggests that for 

certain classification tasks NAIP imagery may be an adequate, and even valuable, data source.  

 Combining LiDAR with multispectral imagery statistically improved the classification of 

mining and mine reclamation land cover in comparison to only using RapidEye satellite-based 

multispectral data, and this improvement was statistically significant for both pixel-based 

classification (Chapter 2) and GEOBIA classification (Chapter 4). For pixel-based classification, 

the nDSM data were found to be of particular importance (Chapter 2) while for GEOBIA 

classification both intensity and nDSM data were of importance (Chapter 4). This research 

suggests that the low spectral resolution and high heterogeneity inherent to high spatial 

resolution imagery can be mitigated by incorporating data from another sensor.  

 The incorporation of multi-temporal terrain attributes that characterized pre- and post- 

mining terrain characteristics calculated from DEMs allowed for accurate mapping of mine-

reclaimed grasslands with user’s and producer’s accuracies above 80% and differentiation from 

spectrally similar non-mining grasslands (Chapter 5). This finding further supports the 

conclusion that combining disparate data sets is a means to improve classification accuracies in 

comparison to only using spectral data. This is especially true when attempting to map land use 

classes, which may be spectrally similar but may differ in other characteristics, such as terrain 

properties. Additionally, GEOBIA was a valuable tool for combining data collected using 

different sensors (i.e. the image and digital terrain data) and gridded at different cell sizes by 

providing a framework to characterize the terrain data using summary variables (such as mean, 

maximum, minimum, and standard deviation of the values) at the object scale (Chapter 5). 

 Generally, textural measures when used for pixel-based classification (Chapter 3) 

produced only a moderate increase in classification accuracy, and for GEOBIA classification 
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both first-order and second-order texture resulted in no improvement in accuracy (Chapter 4). 

Object-based geometric measures also did not improve the GEOBIA classification accuracy 

(Chapter 4). On the other hand, integrating information from LiDAR (i.e. another sensor) did 

result in a significant accuracy improvement. This lack of improvement using image spatial 

measures may not hold true for classification tasks of different landscapes. However, for the 

mapping of mining and mine reclamation using high spatial resolution multispectral imagery, 

incorporation of LiDAR was shown to be of greater value then the use of texture or GEOBIA 

geometry. 

 Generally, the SVM algorithm provided the best classification performance in 

comparison to RF and boosted CART for both pixel-based (Chapter 2) and GEOBIA (Chapter 4) 

classification. It also outperformed k-nn for GEOBIA classification (Chapter 4). However, SVM 

does have some challenges, for example the complexity of the optimization of the user-defined 

parameters. Although the other classifiers generally did not perform as well as SVM, they have 

other benefits. For example, boosted CART only requires a single user-defined parameter (the 

number of trees grown), which does not greatly affect the classification accuracy (DeFries and 

Chan, 2000; Muchoney et al., 2000; Friedl et al., 1999; Friedl et al., 2002; McIver and Friedl, 

2002; Lawrence et al., 2004; Ghimire et al., 2012). The RF algorithm provides estimates of 

classification error (as used in Chapter 5) and an estimates of predictor variable importance (as 

used in all of the chapters) using the oob data (Breiman, 2001; Cutler et al., 2007), which was 

found to be of great value in this study for assessing the importance of predictor variables as 

image bands, LiDAR-derivatives, terrain variables, and summary statistics. Thus, it is important 

to consider other attributes of the classifier besides just classification accuracy. Generally, the 

input predictor variables used were of greater importance than the classifier chosen (Chapters 2 
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through 4), suggesting that data selection should be the prime focus in planning mining mapping 

projects. 

 The mapping methods outlined in this study may be applicable for other mapping 

projects and specifically the mapping of human- induced landscape disturbance. Although all 

mapping efforts are unique in terms of the input data being used, the spatial resolution of the 

data, the classes being mapped, and the intended use of the thematic classifications, many of the 

general findings of this dissertation may be applicable for improving land cover classification 

accuracy, such as the use of machine learning algorithms to leverage multiple datasets, 

combining high spatial resolution multispectral imagery with additional data (e.g. LiDAR), the 

value of GEOBIA for summarizing additional ancillary data for classification, and judicious pre-

processing to potential improve the classification of aerial imagery. Also, this research generally 

suggests that remote sensing can be an accurate and valuable tool for mapping human- induced 

landscape change, which is important for documenting and confirming the Anthropocene as a 

geologic time period. 

2. Practical Considerations and Limitations 

Although the use of high spatial resolution remotely sensed data were shown to be of 

value for mapping mining and mine reclamation, especially when data from disparate sensors 

were combined, there are some practical considerations. First, satellite imagery is limited by 

availability and cloud cover. Cloud cover is less of a concern when using NAIP aerial imagery; 

however, this research suggests that satellite imagery is the optimal choice. Thus, data 

availability is of concern. Combining disparate data sets such as imagery and LiDAR improved 

the classification accuracy; however, there are practical limitations associated with combining 

data. For example, available data may not be temporally aligned (i.e. not collected at the same 
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time), which is of specific concern in a landscape in which land cover conditions can change 

rapidly as a result of mining and subsequent reclamation. Obtaining multiple data sets acquired 

within a short period may be difficult. In addition, implementation of machine learning 

algorithms and pixel-based and GEOBIA classification can be complicated by software 

limitations, data volume, and parameter optimization.  

 LULC mapping requires rigorous accuracy assessment procedures so that the end user 

has a reliable sense of the uncertainty of the classification. Rigorous accuracy assessment is also 

necessary in order to compare different classification approaches. Indeed, no LULC mapping 

project is complete without an accuracy assessment (Congalton, 1991). However, the accuracy 

assessment proved to be the most challenging phase of this research. Obtaining unbiased, 

accurate, and correctly proportioned validation data was difficult, especially considering that the 

goal of such assessments was to assess the map accuracy, not the average class accuracy. This 

requires that the training data be correctly proportioned so that the number of samples in each 

class is approximately proportional to the map area of each class. The use of GEOBIA 

classification further complicated the assessment as there is still active debate within the remote 

sensing community as to the correct assessment procedure for GEOBIA. At an even broader 

level, measures for assessing classification accuracy in general are also currently being debated. 

For example, the use of the Kappa statistic has recently been questioned and quantity and 

allocation disagreement have been suggested as an alternative (Pontius and Millones, 2011).  

3. Final Remarks 

 High spatial resolution remotely sensed data are valuable for mapping and monitoring 

surface mining and mine reclamation, especially when combining data from multiple sensors, for 

example imagery and LiDAR. Although extracting information from such data can be 
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complicated by limited spectral resolution, high spatial resolution, and violation of multivariate 

normality assumptions, advanced classification techniques, including machine learning 

algorithms and GEOBIA, allow for such data to be classified. Using these classification 

techniques and data, remote sensing is a valuable tool for mapping and monitoring changing and 

complex landscapes, such as the southern coalfields of West Virginia. 
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