267 research outputs found

    Meta-tools for software language engineering : a flexible collaborative modeling language for efficient telecommunications service design

    No full text
    International audienceThe increasingly competitive environment pressures telecommunications service providers to reduce their concept-to-market time. This time is influenced by a multitude of factors. For the benefit of telecom service designers, this paper focuses on increasing the degree of automation, offering team collaboration capabilities and bridging heterogeneous technologies. To address these factors, we propose a model-based meta-tool approach, which rapidly and iteratively generates particular tools for software languages. Each language is specific to one of the viewpoints involved in the definition of a service, as identified in the Intelligent Network Conceptual Model. A flexible language prototype for service designers, that blends a higher degree of formality with creative freedom, has already been implemented. The integration of first collaboration capabilities, defined and tooled, into this language, by including the rationale behind the designers' decisions, is currently being pursued. A second language prototype, for network designers, together with syntactic and semantic (partial) automatic interoperability between these two viewpoints, are also proposed

    Evaluating Random Mutant Selection at Class-Level in Projects with Non-Adequate Test Suites

    Full text link
    Mutation testing is a standard technique to evaluate the quality of a test suite. Due to its computationally intensive nature, many approaches have been proposed to make this technique feasible in real case scenarios. Among these approaches, uniform random mutant selection has been demonstrated to be simple and promising. However, works on this area analyze mutant samples at project level mainly on projects with adequate test suites. In this paper, we fill this lack of empirical validation by analyzing random mutant selection at class level on projects with non-adequate test suites. First, we show that uniform random mutant selection underachieves the expected results. Then, we propose a new approach named weighted random mutant selection which generates more representative mutant samples. Finally, we show that representative mutant samples are larger for projects with high test adequacy.Comment: EASE 2016, Article 11 , 10 page

    SME and NPO readiness for adopting software-as-a-service in developing countries

    Get PDF
    Includes abstract.Includes bibliographical references.This research aims to study [Software-as-a-Service] SaaS readiness and adoption in South Africa. South Africa is an emerging economy, but it has the qualities of both an emerging and a developing country. The telecommunications infrastructure in particular has the qualities of a developing country. This study focuses on small to medium sized organisations, comprising both enterprises and non-profit organisations. Molla and Licker's (2005a) Perceived E-Readiness Model (PERM) is adapted and used to study SaaS readiness and adoption. Important SaaS multi-theoretical factors were added to the PERM to increase the rigorousness of the model

    Tailored Source Code Transformations to Synthesize Computationally Diverse Program Variants

    Get PDF
    The predictability of program execution provides attackers a rich source of knowledge who can exploit it to spy or remotely control the program. Moving target defense addresses this issue by constantly switching between many diverse variants of a program, which reduces the certainty that an attacker can have about the program execution. The effectiveness of this approach relies on the availability of a large number of software variants that exhibit different executions. However, current approaches rely on the natural diversity provided by off-the-shelf components, which is very limited. In this paper, we explore the automatic synthesis of large sets of program variants, called sosies. Sosies provide the same expected functionality as the original program, while exhibiting different executions. They are said to be computationally diverse. This work addresses two objectives: comparing different transformations for increasing the likelihood of sosie synthesis (densifying the search space for sosies); demonstrating computation diversity in synthesized sosies. We synthesized 30184 sosies in total, for 9 large, real-world, open source applications. For all these programs we identified one type of program analysis that systematically increases the density of sosies; we measured computation diversity for sosies of 3 programs and found diversity in method calls or data in more than 40% of sosies. This is a step towards controlled massive unpredictability of software

    Enabling Proactive Adaptation through Just-in-time Testing of Conversational Services

    No full text
    Service-based applications (SBAs) will increasingly be composed of third-party services available over the Internet. Reacting to failures of those third-party services by dynamically adapting the SBAs will become a key enabler for ensuring reliability. Determining when to adapt an SBA is especially challenging in the presence of conversational (aka. stateful) services. A conversational service might fail in the middle of an invocation sequence, in which case adapting the SBA might be costly; e.g., due to the necessary state transfer to an alternative service. In this paper we propose just-in-time testing of conversational services as a novel approach to detect potential problems and to proactively trigger adaptations, thereby preventing costly compensation activities. The approach is based on a framework for online testing and a formal test-generation method which guarantees functional correctness for conversational services. The applicability of the approach is discussed with respect to its underlying assumptions and its performance. The benefits of the approach are demonstrated using a realistic example

    Proactive Empirical Assessment of New Language Feature Adoption via Automated Refactoring: The Case of Java 8 Default Methods

    Full text link
    Programming languages and platforms improve over time, sometimes resulting in new language features that offer many benefits. However, despite these benefits, developers may not always be willing to adopt them in their projects for various reasons. In this paper, we describe an empirical study where we assess the adoption of a particular new language feature. Studying how developers use (or do not use) new language features is important in programming language research and engineering because it gives designers insight into the usability of the language to create meaning programs in that language. This knowledge, in turn, can drive future innovations in the area. Here, we explore Java 8 default methods, which allow interfaces to contain (instance) method implementations. Default methods can ease interface evolution, make certain ubiquitous design patterns redundant, and improve both modularity and maintainability. A focus of this work is to discover, through a scientific approach and a novel technique, situations where developers found these constructs useful and where they did not, and the reasons for each. Although several studies center around assessing new language features, to the best of our knowledge, this kind of construct has not been previously considered. Despite their benefits, we found that developers did not adopt default methods in all situations. Our study consisted of submitting pull requests introducing the language feature to 19 real-world, open source Java projects without altering original program semantics. This novel assessment technique is proactive in that the adoption was driven by an automatic refactoring approach rather than waiting for developers to discover and integrate the feature themselves. In this way, we set forth best practices and patterns of using the language feature effectively earlier rather than later and are able to possibly guide (near) future language evolution. We foresee this technique to be useful in assessing other new language features, design patterns, and other programming idioms

    Towards a Tool-based Development Methodology for Pervasive Computing Applications

    Get PDF
    Despite much progress, developing a pervasive computing application remains a challenge because of a lack of conceptual frameworks and supporting tools. This challenge involves coping with heterogeneous devices, overcoming the intricacies of distributed systems technologies, working out an architecture for the application, encoding it in a program, writing specific code to test the application, and finally deploying it. This paper presents a design language and a tool suite covering the development life-cycle of a pervasive computing application. The design language allows to define a taxonomy of area-specific building-blocks, abstracting over their heterogeneity. This language also includes a layer to define the architecture of an application, following an architectural pattern commonly used in the pervasive computing domain. Our underlying methodology assigns roles to the stakeholders, providing separation of concerns. Our tool suite includes a compiler that takes design artifacts written in our language as input and generates a programming framework that supports the subsequent development stages, namely implementation, testing, and deployment. Our methodology has been applied on a wide spectrum of areas. Based on these experiments, we assess our approach through three criteria: expressiveness, usability, and productivity
    • 

    corecore