970 research outputs found

    Some Results on Distinguishing Attacks on Stream Ciphers

    Get PDF
    Stream ciphers are cryptographic primitives that are used to ensure the privacy of a message that is sent over a digital communication channel. In this thesis we will present new cryptanalytic results for several stream ciphers. The thesis provides a general introduction to cryptology, explains the basic concepts, gives an overview of various cryptographic primitives and discusses a number of different attack models. The first new attack given is a linear correlation attack in the form of a distinguishing attack. In this attack a specific class of weak feedback polynomials for LFSRs is identified. If the feedback polynomial is of a particular form the attack will be efficient. Two new distinguishing attacks are given on classical stream cipher constructions, namely the filter generator and the irregularly clocked filter generator. It is also demonstrated how these attacks can be applied to modern constructions. A key recovery attack is described for LILI-128 and a distinguishing attack for LILI-II is given. The European network of excellence, called eSTREAM, is an effort to find new efficient and secure stream ciphers. We analyze a number of the eSTREAM candidates. Firstly, distinguishing attacks are described for the candidate Dragon and a family of candidates called Pomaranch. Secondly, we describe resynchronization attacks on eSTREAM candidates. A general square root resynchronization attack which can be used to recover parts of a message is given. The attack is demonstrated on the candidates LEX and Pomaranch. A chosen IV distinguishing attack is then presented which can be used to evaluate the initialization procedure of stream ciphers. The technique is demonstrated on four candidates: Grain, Trivium, Decim and LEX

    Secure Block Ciphers - Cryptanalysis and Design

    Get PDF

    MiMC:Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity

    Get PDF
    We explore cryptographic primitives with low multiplicative complexity. This is motivated by recent progress in practical applications of secure multi-party computation (MPC), fully homomorphic encryption (FHE), and zero-knowledge proofs (ZK) where primitives from symmetric cryptography are needed and where linear computations are, compared to non-linear operations, essentially ``free\u27\u27. Starting with the cipher design strategy ``LowMC\u27\u27 from Eurocrypt 2015, a number of bit-oriented proposals have been put forward, focusing on applications where the multiplicative depth of the circuit describing the cipher is the most important optimization goal. Surprisingly, albeit many MPC/FHE/ZK-protocols natively support operations in \GF{p} for large pp, very few primitives, even considering all of symmetric cryptography, natively work in such fields. To that end, our proposal for both block ciphers and cryptographic hash functions is to reconsider and simplify the round function of the Knudsen-Nyberg cipher from 1995. The mapping F(x):=x3F(x) := x^3 is used as the main component there and is also the main component of our family of proposals called ``MiMC\u27\u27. We study various attack vectors for this construction and give a new attack vector that outperforms others in relevant settings. Due to its very low number of multiplications, the design lends itself well to a large class of new applications, especially when the depth does not matter but the total number of multiplications in the circuit dominates all aspects of the implementation. With a number of rounds which we deem secure based on our security analysis, we report on significant performance improvements in a representative use-case involving SNARKs

    New Family of Stream Ciphers as Physically Clone-Resistant VLSI-Structures

    Full text link
    A new large class of 21002^{100} possible stream ciphers as keystream generators KSGs, is presented. The sample cipher-structure-concept is based on randomly selecting a set of 16 maximum-period Nonlinear Feedback Shift Registers (NLFSRs). A non-linear combining function is merging the 16 selected sequences. All resulting stream ciphers with a total state-size of 223 bits are designed to result with the same security level and have a linear complexity exceeding 2812^{81} and a period exceeding 21612^{161}. A Secret Unknown Cipher (SUC) is created randomly by selecting one cipher from that class of 21002^{100} ciphers. SUC concept was presented recently as a physical security anchor to overcome the drawbacks of the traditional analog Physically Unclonable Functions (PUFs). Such unknown ciphers may be permanently self-created within System-on-Chip SoC non-volatile FPGA devices to serve as a digital clone-resistant structure. Moreover, a lightweight identification protocol is presented in open networks for physically identifying such SUC structures in FPGA-devices. The proposed new family may serve for lightweight realization of clone-resistant identities in future self-reconfiguring SoC non-volatile FPGAs. Such self-reconfiguring FPGAs are expected to be emerging in the near future smart VLSI systems. The security analysis and hardware complexities of the resulting clone-resistant structures are evaluated and shown to exhibit scalable security levels even for post-quantum cryptography.Comment: 24 pages, 7 Figures, 3 Table

    Two philosophies for solving non-linear equations in algebraic cryptanalysis

    Get PDF
    Algebraic Cryptanalysis [45] is concerned with solving of particular systems of multivariate non-linear equations which occur in cryptanalysis. Many different methods for solving such problems have been proposed in cryptanalytic literature: XL and XSL method, Gröbner bases, SAT solvers, as well as many other. In this paper we survey these methods and point out that the main working principle in all of them is essentially the same. One quantity grows faster than another quantity which leads to a “phase transition” and the problem becomes efficiently solvable. We illustrate this with examples from both symmetric and asymmetric cryptanalysis. In this paper we point out that there exists a second (more) general way of formulating algebraic attacks through dedicated coding techniques which involve redundancy with addition of new variables. This opens numerous new possibilities for the attackers and leads to interesting optimization problems where the existence of interesting equations may be somewhat deliberately engineered by the attacker

    Can a Differential Attack Work for an Arbitrarily Large Number of Rounds?

    Get PDF
    Differential cryptanalysis is one of the oldest attacks on block ciphers. Can anything new be discovered on this topic? A related question is that of backdoors and hidden properties. There is substantial amount of research on how Boolean functions affect the security of ciphers, and comparatively, little research, on how block cipher wiring can be very special or abnormal. In this article we show a strong type of anomaly: where the complexity of a differential attack does not grow exponentially as the number of rounds increases. It will grow initially, and later will be lower bounded by a constant. At the end of the day the vulnerability is an ordinary single differential attack on the full state. It occurs due to the existence of a hidden polynomial invariant. We conjecture that this type of anomaly is not easily detectable if the attacker has limited resources

    Block Cipher Analysis

    Get PDF
    • …
    corecore