
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Some Results on Distinguishing Attacks on Stream Ciphers

Englund, Håkan

2007

Link to publication

Citation for published version (APA):
Englund, H. (2007). Some Results on Distinguishing Attacks on Stream Ciphers. Electro and information
technology.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/8a1d0aae-14af-43b9-8a21-14e2defa0919

Some Results on Distinguishing Attacks
on Stream Ciphers

Håkan Englund

Ph.D. Thesis, December 14, 2007

Håkan Englund
Department of Electrical and Information Technology
Lund University
Box 118
S-221 00 Lund, Sweden
e-mail: englund@eit.lth.se
http://www.eit.lth.se/

ISBN: 91-7167-046-7
ISRN: LUTEDX/TEIT-07/1042-SE

c© Håkan Englund, 2007

Abstract

Stream ciphers are cryptographic primitives that are used to ensure the
privacy of a message that is sent over a digital communication channel.

In this thesis we will present new cryptanalytic results for several stream
ciphers.

The thesis provides a general introduction to cryptology, explains the
basic concepts, gives an overview of various cryptographic primitives and
discusses a number of different attack models.

The first new attack given is a linear correlation attack in the form of a
distinguishing attack. In this attack a specific class of weak feedback poly-
nomials for LFSRs is identified. If the feedback polynomial is of a particular
form the attack will be efficient.

Two new distinguishing attacks are given on classical stream cipher con-
structions, namely the filter generator and the irregularly clocked filter gen-
erator. It is also demonstrated how these attacks can be applied to modern
constructions. A key recovery attack is described for LILI-128 and a distin-
guishing attack for LILI-II is given.

The European network of excellence, called eSTREAM, is an effort to
find new efficient and secure stream ciphers. We analyze a number of the
eSTREAM candidates. Firstly, distinguishing attacks are described for the
candidate Dragon and a family of candidates called Pomaranch. Secondly,
we describe resynchronization attacks on eSTREAM candidates. A general
square root resynchronization attack which can be used to recover parts of
a message is given. The attack is demonstrated on the candidates LEX and
Pomaranch. A chosen IV distinguishing attack is then presented which can
be used to evaluate the initialization procedure of stream ciphers. The tech-
nique is demonstrated on four candidates: Grain, Trivium, Decim and LEX.

iii

Contents

Abstract iii

Preface xi

1 Introduction 1
1.1 A Modern Digital Communication System 2
1.2 Cryptography . 3

1.2.1 Unkeyed Cryptography 5
1.2.2 Symmetric-Key Cryptography 6
1.2.3 Asymmetric-Key Cryptography 10

1.3 Cryptanalysis . 11
1.3.1 Attack Scenarios . 12
1.3.2 Success of the Attack . 12

1.4 Thesis Outline . 13

v

vi Contents

2 Building Stream Ciphers 15
2.1 Stream Ciphers . 16

2.1.1 Synchronous Stream Ciphers 17
2.1.2 Self-Synchronizing Stream Ciphers 19

2.2 The Building Blocks of Stream Ciphers 20
2.2.1 Linear Feedback Shift Registers 21
2.2.2 Nonlinear Feedback Shift Registers 24
2.2.3 Boolean Functions . 24
2.2.4 S-boxes . 27

2.3 Classical Stream Ciphers . 28
2.3.1 Nonlinear Combination Generator 28
2.3.2 Nonlinear Filter Generator 29
2.3.3 Clock-Controlled Generators 30

2.4 Summary . 31

3 Stream Cipher Cryptanalysis 33
3.1 Tools for Cryptanalysis . 34

3.1.1 The Birthday Problems 34
3.1.2 How to find Low Weight Multiples of Binary LFSRs . . 35
3.1.3 Hypothesis Testing . 37

3.2 Brute Force Attacks . 43
3.3 Correlation Attacks . 44
3.4 Distinguishing Attacks . 45

3.4.1 The Random and the Cipher Distribution are Known . 48
3.4.2 Only The Random Distribution is Known 48

3.5 Time Memory Data Trade-Off Attacks 49
3.6 Resynchronization Attacks . 51
3.7 Algebraic Attacks . 52
3.8 Summary . 53

4 Correlation Attacks Using a New Class of Weak Feedback Polyno-
mials 55
4.1 A Basic Distinguishing Attack 56
4.2 A More General Distinguishing Attack Using Correlated Vec-

tors . 58
4.3 The Parameters in the Attack 62

4.3.1 The Structure of gi(x) 62
4.3.2 The Vector Length . 64
4.3.3 The Number of Groups 64

4.4 Finding Multiples of the Characteristic Polynomial of a De-
sired Form . 64

4.5 Comparing the Proposed Attack with a Basic Distinguishing
Attack . 66

Contents vii

4.6 Summary . 67

5 A New Simple Technique to Attack Filter Generators and Related
Ciphers 69
5.1 Building a Distinguisher . 70
5.2 Using More than one Parity Check Equation 74
5.3 The Weight Three Attack . 76
5.4 A Key Recovery Attack on LILI-128 77

5.4.1 Description of LILI-128 78
5.4.2 The Attack Applied on LILI-128 79
5.4.3 Results with a Weight Three Multiple 80
5.4.4 Results with a Weight Four Multiple 81
5.4.5 Results with a Weight Five Multiple 81
5.4.6 The Weight Three Attack 81
5.4.7 Summary of Attack on LILI-128 82

5.5 Summary . 82

6 Cryptanalysis of Irregularly Clocked Filter Generators 85
6.1 An Efficient Distinguisher . 86

6.1.1 Finding a Low Weight Multiple 87
6.1.2 Calculating the Correlation of h for a Weight Three Re-

cursion . 87
6.1.3 The Positions of the Windows 88
6.1.4 Determining the Size of the Windows 88
6.1.5 Estimating the Number of Bits We Need to Observe . . 89
6.1.6 Complexity of Calculating the Samples 90
6.1.7 Hypothesis Testing . 91
6.1.8 Summary of the Attack 91

6.2 Possible Improvements Using Vectorial Samples 91
6.2.1 An Efficient Distinguisher Using Vectors 92
6.2.2 Considering Words In The Undecimated Sequence . . 94

6.3 Cryptanalysis of LILI-II . 96
6.3.1 Simulations on a Scaled Down Version of LILI-II 98
6.3.2 Results . 99

6.4 Summary . 100

7 Distinguishing Attacks on the Pomaranch Family of Stream Ci-
phers 101
7.1 Description of Pomaranch . 102

7.1.1 Pomaranch Version 1 . 104
7.1.2 Pomaranch Version 2 . 104
7.1.3 Pomaranch Version 3 . 104

7.2 Previous Attacks on the Pomaranch Stream Ciphers 105

viii Contents

7.3 Properties Used in the Attack 105
7.3.1 The Period of Registers 106
7.3.2 The Filter Function . 106
7.3.3 Linear Approximations of jump registers 107

7.4 Attacking Different Versions of Pomaranch 108
7.4.1 One Type of Registers with Linear Filter Function . . . 109
7.4.2 Different Registers with Linear Filter Function 110
7.4.3 Nonlinear Filter Function 111

7.5 Attack Complexities for the Existing Versions of the Pomaranch
Family . 112
7.5.1 Pomaranch Version 1 . 112
7.5.2 Pomaranch Version 2 . 113
7.5.3 Pomaranch Version 3 . 113

7.6 Summary . 115

8 Find the Dragon 117
8.1 A Description of Dragon . 118
8.2 Linear Approximation of the Function F 120
8.3 Constructing a Distinguisher 121
8.4 Calculation of the Noise Distribution 123

8.4.1 Truncate the word size 124
8.4.2 Approximate ⊞ with ⊕ 125

8.5 Attack Scenarios . 126
8.6 Summary . 126

9 A Square Root Resynchronization Attack 129
9.1 Classical Distinguishing Attack on OFB mode 130
9.2 New Attack Scenario . 130

9.2.1 Distinguished Points . 133
9.3 Analysis of Leak Extraction (LEX) 134
9.4 Analysis of Pomaranch . 135
9.5 Summary . 136

10 A Framework for Chosen IV Statistical Analysis of Stream Ciphers 137
10.1 Boolean Functions . 139
10.2 A Framework for Chosen IV Statistical Attacks 140
10.3 A Generalized Approach . 140
10.4 The Monomial Distribution Test 141
10.5 The Maximal Degree Monomial Test 142

10.5.1 Other Possible Tests . 144
10.6 Experimental Results . 144

10.6.1 Grain-128 . 145
10.6.2 Trivium . 148

Contents ix

10.6.3 Decim . 150
10.6.4 Lex . 152

10.7 Summary . 153

11 Concluding Remarks 155

A Variance of the number of combinations 157

B Notations 161

Bibliography 163

x Contents

Preface

parts of this thesis have been presented at various conferences and been
published in journals. The thesis is based on material from eight pre-
viously published papers. In all papers all authors have contributed

on equal terms. The papers are the following:

• H. ENGLUND, M. HELL AND T. JOHANSSON. “Correlation Attacks
Using a New Class of Weak Feedback Polynomial”. In B. Roy and W.
Meier, editors, Fast Software Encryption - 2004, Delhi, India, volume 3017
of Lecture Notes in Computer Science, pages 127–142. Springer-Verlag
2004.

• H. ENGLUND AND T. JOHANSSON. “A New Simple Technique to At-
tack Filter Generators and Related Ciphers”. In H. Handschuh and
M.A. Hasan, editors, Selected Areas in Cryptography - 2004, Waterloo,
Canada, volume 3357 of Lecture Notes in Computer Science, pages 39–53,
Springer-Verlag, 2005.

• H. ENGLUND AND A. MAXIMOV. “Attack the Dragon”. In S. Maitra,
V. Madhavan and R. Venkatesan, editors, Progress in Cryptology - IN-
DOCRYPT 2005, Bangalore, India, volume 3797 of Lecture Notes in Com-
puter Science, pages 130–142, Springer-Verlag, 2005.

• H. ENGLUND AND T. JOHANSSON. “A New Distinguisher for Clock
Controlled Stream Ciphers”. In H. Gilbert and H. Handschuh, editors,
Fast Software Encryption - 2005, Paris, France, volume 3557 of Lecture
Notes in Computer Science, pages 181–195, Springer-Verlag, 2005.

xi

xii Preface

• H. ENGLUND AND T. JOHANSSON. “Three Ways to Mount Distin-
guishing Attacks on Irregularly Clocked Stream Ciphers”. Interna-
tional Journal of Security and Networks, volume 1, Nos. 1/2, 2006, pages
95–102, Inderscience Enterprises Ltd, 2006.

• H. ENGLUND, M. HELL AND T. JOHANSSON. “Two General Attacks
On Pomaranch-like Keystream Generators”. In A. Biryukov, editor,
Fast Software Encryption - 2007, Luxembourg, volume 4593 of Lecture
Notes in Computer Science, pages 274–289, Springer-Verlag, 2007.

• H. ENGLUND, M. HELL AND T. JOHANSSON. “A Note on Distin-
guishing Attacks”. In Proceedings of the 2007 IEEE Information Theory
Workshop on Information Theory for Wireless Networks, Solstrand, Norway,
pages 87–90, 2007.

• H. ENGLUND, T. JOHANSSON AND M. SÖNMEZ TURAN. “A Frame-
work for Chosen IV Statistical Analysis of Stream Ciphers”. In K.
Srinathan, C.P. Rangan and M. Yung, editors, Progress in Cryptology
- INDOCRYPT 2007, Chennai, India, volume 4859 of Lecture Notes in
Computer Science, pages ??–??, Springer-Verlag, 2007.

Acknowledgments

Firstly, I would like to thank my supervisor Thomas Johansson for being a
superb supervisor. Always sparkling with new ideas, always pushing me
on when I need pushing. He has always had time for me and he has been a
great guide through this journey.

Secondly, I would like to thank my fellow Ph.D. students at the depart-
ment. Fredrik, Kora, Maja, Marcus, Suleyman and Thomas, you have all
been great friends. Especially, I would like to thank Sasha for always mak-
ing our trips so much more exciting; and Martin for being there to save me
when Sasha’s ideas got too crazy and for being a great friend.

I would also like to express my gratitude to all the colleagues at the for-
mer IT department for alway being helpful and for creating a nice working
environment.

I would like to thank my parents for being the best parents in the world,
and also my sister for always understanding and being the best possible
friend. Finally, I would like to thank my wonderful Jessica, thank you for
always encouraging me when things get tough. You make every day into a
joyful one, even the rainiest day seem sunny when I am with you.

1

Introduction

The word ”cryptology” comes from the Greek words kryptos, which means
hidden, and logos, which means word. In the early days, cryptology

mainly consisted in writing secret messages. In modern days, cryptology
has grown to include many other topics, such as integrity protection, au-
thentication and digital watermarking. Cryptology is indeed a very old
subject; ever since the beginning of writing, there has been a need for se-
cret communication. Already 4000 years ago, the Egyptians began modify-
ing hieroglyphs on the graves of kings and rulers. Throughout history, the
use and development of cryptologic algorithms have been driven primarily
by government agencies and by the military. The broad community has al-
ways regarded cryptology as a mysterious field. In the Middle Ages it was
even considered to be a black art. Today, with the exploding development
and spreading of the Internet, secret and safe communication has become
important to everybody, and cryptology is hopefully not as scary anymore.

Even though most people are unaware of it, they probably come into
contact with cryptology every day, e.g. when they access their Internet bank,
use a bank-ID to shop on the Internet, use a mobile phone to make a call,
watch a DVD or digital television or file their tax return over the Internet.

However, cryptology on its own cannot solve all problems; awareness
of how to use cryptographic methods is very important. Lately, various
media have paid much attention to phishing and pharming attacks directed
at Internet banks. These attacks circumvent all cryptographic protection by

1

2 1. Introduction

�� ��Source Coding

�� ��Encryption

�� ��Channel Coding

�� ��Modulation

Channel �� ��Demodulation�� ��Channel Decoding�� ��Decryption�� ��Source Decoding

Sender Message ReceiverMessage

Figure 1.1: The place of cryptography in a digital communication
system.

using social engineering to acquire secrets such as passwords or secret keys.
In order to prevent such attacks, it is important to teach people the proper
use of cryptographic solutions.

We will begin our introduction to the area of cryptology by describing
the components of a modern digital communication system.

1.1 A Modern Digital Communication System

Most communication systems today are digital, e.g., the Internet and mobile
phone networks. Assume that a digital message is to be sent over a channel.
The channel might be a wire in the case of Internet, or the air in the case
of mobile phones. A number of problems immediately present themselves.
How do we prevent unintended reading and manipulation of the message?
What happens if the channel introduces errors into the message? How do
we transform a digital message to an analog signal that can be transferred
over an analog channel? Figure 1.1 shows a block diagram of a digital com-
munication system that aims to solve these problems. In the figure, the
blocks that involve cryptology are marked with a dashed circle.

• Source coding/Source decoding. A message, e.g., a picture or a text, typ-
ically contains a lot of redundancy. Source coding removes such re-

1.2. Cryptography 3

dundancy, i.e., the message is compressed. Source decoding reverses
the compression.

• Encryption/Decryption. After compression, encryption is performed to
protect the secrecy of the message. Additional functions, such as in-
tegrity protection, may also be introduced here. The operation of de-
cryption is the inverse of encryption.

• Channel coding/Channel decoding. When a message is transmitted over a
channel, transmission errors may occur. In order to be able to detect or
correct these errors, one adds new redundancy to the message, which
gives the message a certain structure. In the channel decoding, this
structure is used to detect or correct imposed errors.

• Modulation/Demodulation. The symbols are transformed into an analog
signal suitable for transmission over the channel. Examples of infor-
mation carriers are amplitude, frequency and the phase of the signal.
The demodulation at the receiver end of the channel transforms the
analog signal back into a digital signal.

It is important that source coding is performed before encryption, as redun-
dancy in a message facilitates attacks. For the same reason it is important
to perform encryption before channel coding, as channel coding adds new
redundancy to the message.

Cryptology is a large field divided into two parts: cryptography, the art
of designing cryptographic primitives and cryptanalysis, the art of trying to
identify and exploit the weaknesses of cryptographic primitives.

1.2 Cryptography

As previously mentioned, during most of its history, cryptography has main-
ly provided algorithms for the encryption and decryption of messages. Mod-
ern cryptography provides services that can be classified into four cate-
gories.

• Confidentiality aims to assure that information cannot be accessed by
anyone except the intended recipient. Confidentiality can be achieved
by encrypting a message using a cipher. This category is the main
topic discussed in this thesis.

• Data integrity, the goal is to assure that data are whole or unaltered,
or that only authorized users are allowed to alter data. Popular ways
to protect the integrity of data are to use message authentication codes
(MACs) and digital signatures.

4 1. Introduction

• Authentication tries to establish whether someone or something is who
or what they claim to be. A simple and commonly used way to do
authentication is to use a password. Only the correct user is supposed
to know his password. A more complicated way is to use digital cer-
tificates constructed using public key cryptography.

• Non-repudiation, the concept of ensuring that a contract cannot later
be denied by either of the parties involved, i.e., if you have signed a
contract you should not be able to claim that it was someone else who
signed it. This too can be achieved by using digital signatures together
with digital certificates.

To be able to describe and analyze cryptographic algorithms we will need
to introduce some notations. Let

• A be an alphabet, an alphabet is a set of symbols, in most cases the
symbols will be b-bit strings, i.e., A = {0, 1}b.

• m be a message (also called a plaintext) that we wish to transmit. A
message usually consists of many symbols, say nm symbols, and all
symbols belong to the alphabet Am. The message is written as the
vector

m = (m0, . . . , mnm−1), mi ∈ A, 0 ≤ i ≤ nm − 1. (1.1)

Let M denote the set of all possible messages, i.e., the message space.

• K be the key used by a cryptographic algorithm. More specifically
we denote the key used for encryption by Ke, and the key used for
decryption by Kd. The key is seen as the vector of symbols

K = (k0, . . . , knK−1), ki ∈ A, 0 ≤ i ≤ nK − 1, (1.2)

where every symbol is from an alphabet, AK . Let K denote the entire
key space.

• IV be an initialization vector. An IV consist of nIV symbols from some
alphabet AIV

IV = (iv0, . . . , ivnIV −1), ivi ∈ AIV , 0 ≤ i ≤ nIV − 1. (1.3)

Let IV denote the space of initialization vectors.

• c be the encrypted message, called the ciphertext. The ciphertext is
written as a vector of symbols

c = (c0, . . . , cnc−1), ci ∈ Ac, 0 ≤ i ≤ nc − 1. (1.4)

Let C denote the set of all possible ciphertexts.

1.2. Cryptography 5

• EKe be the encryption function that encrypts a message m ∈ M, using
the encryption key Ke. Also, let eKe be the function that encrypts one
message symbol m ∈ A.

• DKd
be the decryption function that decrypts the ciphertext c ∈ C, using

decryption key Kd. Let dKd
be the function that decrypts one cipher-

text symbol c ∈ A.

The encryption function is a mapping EKe : M → C, the decryption func-
tion is the inverse mapping, DKd

: C → M. A requirement for the decryp-
tion function is that m = DKd

(
EKe(m)

)
, for all possible pairs of keys and

messages. Similarly, the function eKe is a mapping eKe : {0, 1}b → {0, 1}b

transforming a plaintext symbol into a ciphertext symbol, i.e.,

c = eKe(m), m ∈ Am and c ∈ Ac (1.5)

where Am and Ac are not necessarily the same alphabet. However, usually
Am = Ac, and in what follows we will assume that A = Am = Ac. The
decryption function is the inverse mapping converting ciphertext symbols
to plaintext symbols,

m = dKd
(c), m, c ∈ A. (1.6)

As for the encryption and decryption functions, a requirement is that m =
dKd

(
eKe(m)

)
, for all possible pairs of keys and messages symbols.

A cryptographic primitive is a building block, i.e., an algorithm, that pro-
vides a cryptographic service. In the 19th century, Auguste Kerckhoffs for-
mulated a number of important rules about the design of cryptographic
primitives. His most famous rule says that the secrecy of the message, given
the ciphertext, should depend entirely on the secrecy of the secret key. Many
attempts have been made to keep primitives secret. However, in most cases
the algorithms have leaked and many of the primitives have been found to
be weak, e.g., the A5 algorithm used in GSM. In a well designed crypto-
graphic algorithm, only the key needs to remain secret.

Cryptographic primitives are divided into three groups, unkeyed primi-
tives, symmetric-key primitives, and asymmetric-key primitives.

1.2.1 Unkeyed Cryptography

In the family of unkeyed primitives we mainly find tools used for assuring
message integrity and authentication, namely hash functions, as well as one-
way permutations and random sequences. Hash functions are functions
that take a message of arbitrary length and produce a fixed length digest,
common output digest lengths are 160 and 256 bits. Desirable properties of
a good hash function, denoted as h(.), are

6 1. Introduction

• Ease of computation. The hash function should be easy to compute.

• Uniformity. Hash values should be distributed uniformly over the en-
tire output space.

• Preimage resistance. Given a hash-value y, it should be computationally
infeasible to find a message m ∈ M such that h(m) = y.

• 2nd Preimage resistance. Given a a message m1 ∈ M and its corre-
sponding hash value h(m1), it should be computationally infeasible
to find m2 ∈ M such that m1 6= m2 and h(m2) = h(m1) .

• Collision resistance. It should be computationally infeasible to find any
two distinct messages m1, m2 ∈ M such that h(m1) = h(m2).

The research area of hash function cryptanalysis has been very active lately,
and many primitives have been broken.

1.2.2 Symmetric-Key Cryptography

In symmetric-key cryptography the sender and the receiver share a secret
key, K . This key is used for both encryption and decryption, i.e., Ke =
Kd = K . Hence, the decryption algorithm is the inverse of the encryption
algorithm, i.e., m = DK

(
EK(m)

)
for all K ∈ K and m ∈ M, and similarly

m = dK

(
eK(m)

)
, for all K ∈ K and m ∈ A.

The sender, in cryptology usually called Alice, wants to send a message
to a receiver, usually called Bob. Assume that Alice and Bob share a se-
cret key, K . Alice uses K to encrypt the message to produce the ciphertext
symbol as c = EK(m). The ciphertext is then sent to Bob over an insecure
channel. Bob deciphers the ciphertext using the same secret key, and obtains
the message m = DK(c). The eavesdropper, Eve, is listening to the channel.
In most scenarios, Eve tries to either recover the message or find the secret
key that Alice and Bob use. Figure 1.2 describes the scenario considered
when studying symmetric cryptology.

Symmetric cryptographic algorithms are in general much more efficient
than asymmetric algorithms in both hardware and software. One major
problem when using symmetric cryptography is how to exchange the secret
key between the sender and the receiver. This problem can be solved by
using asymmetric cryptography for the key exchange.

In the group of symmetric-key primitives we find three important types
of primitives, block ciphers, stream ciphers and message authentications codes
(MACs). We will start with block ciphers.

1.2. Cryptography 7

Alice BobEve

�� ��Encryption
�� ��Decryption

Shared Secret Key, K

�

�

�

�Insecure channel

Plaintext m

Ciphertext

c = EK(m)

Plaintextm = DK(c)

Figure 1.2: Alice sends an encrypted message to Bob using
symmetric-key cryptography. Alice and Bob shares a secret key.
Alice sends the ciphertext over an insecure channel to Bob. The
adversary, Eve, has access to the ciphertext but not to the secret key.

1.2.2.1 Block Ciphers

A block cipher takes an n-bit plaintext block as input and permutes it into
an n-bit ciphertext block, see Figure 1.3.

The integer n is called the block size of the cipher. A message m of length l
bits is divided into ⌈l/n⌉ blocks, each with a length of n bits, i.e., A = {0, 1}n.
We can then write the message as the vector m = (m0, . . . , m⌈l/n⌉), where
mi ∈ A, 0 ≤ i ≤ ⌈l/n⌉. If l is not a multiple of n, some bits, e.g., zeros,
have to be added to the message until the total length is a multiple of n.
This procedure is called padding. Block sizes of 64 and 128 bits are common.
The permutation is key dependent and one-to-one, the decryption of the
ciphertext is performed as the inverse permutation.

As a block cipher is a deterministic permutation, plaintext blocks that
occur several times in the message will produce the same ciphertext blocks.
A block cipher used in this fashion is said to be used in electronic code book
mode (ECB mode), see Figure 1.3. As ECB leaks information for repeated
message blocks, some other mode of operation should be used for encryption
with a block cipher. Common modes are

• Electronic code book mode (ECB mode). Encryption is performed as ct =
eK(mt) and the decryption as mt = dK(ct).

• Cipher block chaining mode (CBC mode). Encryption is performed as

8 1. Introduction

mt−1

K
�� ��eK(mt−1)

ct−1

mt

K
�� ��eK(mt)

ct

mt+1

K
�� ��eK(mt+1)

ct+1

Figure 1.3: A block cipher in ECB mode. Each message block is
encrypted independently.

ct = eK(mt ⊕ ct−1), with c−1 = IV , and decryption as mt = dK(ct) ⊕
ct−1.

• Counter mode (CTR mode). The block cipher is turned into a stream
cipher. Counter mode utilizes a counter, let k denote the initial value
of the counter. The encryption is performed as ct = mt ⊕ eK(IV ||k +
t), t ≥ 0, where IV ||k is the concatenation of the initialization vector
and the counter. Similarly, the decryption is performed as mt = ct ⊕
dK(IV ||k + t).

• Output feedback mode (OFB mode). Turns the block cipher into a stream
cipher. A keystream z0, z1, . . . is generated as zt = eK(zt−1), with
z−1 = IV , and the encryption is performed as ct = mt⊕zt. Decryption
is done as mt = ct ⊕ zt, where zt is generated as in the encryption.

The most famous block ciphers are the Data Encryption Standard (DES),
and the Advanced Encryption Standard (AES), which is based on the prim-
itive called Rijndael [DR02].

Block ciphers are used in many areas of cryptology besides confiden-
tiality protection. They can, for example, be used to build hash functions,
stream ciphers and message authentication codes.

1.2.2.2 Stream Ciphers

A stream cipher is a primitive that operates on individual symbols, where
the encryption transformation changes for each symbol. A stream cipher

1.2. Cryptography 9

tries to imitate the behavior of the one-time pad (OTP).
The one-time pad uses a key with the same length as the message. As-

sume we would like to encrypt a message m = (m0, . . . , mn−1) of length n.
The OTP key then also has to be of length n, i.e., K = (k0, . . . , kn−1), where
mi, ki, 0 ≤ i ≤ n − 1 are elements from the same alphabet. The message
and the key are combined using the XOR operation in order to produce the
ciphertext, i.e.,

ct = mt ⊕ kt, 0 ≤ t ≤ n − 1. (1.7)

However, for such a system to be a true OTP, the key symbols ki, 0 ≤ i ≤
n−1 must be completely independent, random and used only once. If this is
the case, it can be shown that the OTP offers perfect security. Perfect security
means, among other things, that even if an adversary has infinite computing
power, he will never be able to recover the message. As every guess on a
key symbol, ki, is equally probable, we can receive any possible plaintext
symbol, mi, with equal probability from a ciphertext symbol ci. Hence, all
messages are equally probable.

However, it is not practical to generate and distribute truly random
keystreams of the same length as the message. Hence, a stream cipher in-
stead produces a pseudo-random keystream sequence from a much shorter
key.

An advantage of stream ciphers compared to block ciphers is that er-
ror propagation is much smaller. Stream ciphers have no need for padding
as they operate on individual symbols. Stream ciphers can be made much
faster than block ciphers in both hardware and software. For constrained
environments they can also be made smaller and less energy consuming
in hardware. However, there is a wide variety of stream cipher designs,
whereas block cipher designs usually have a shared structure. Stream cipher
security is not as well studied as block cipher security, and the variability in
design ideas makes general analysis difficult.

Stream ciphers are the main topic of this thesis and they will be discussed
more thoroughly in later chapters. For a general description of stream ci-
phers, see Chapter 2.

1.2.2.3 Message Authentication Codes

Message authentication codes (MACs) are key dependent symmetric primi-
tives used for both integrity and authenticity protection. Unlike digital sig-
natures based on hash functions (see Section 1.2.3) MACs can only be veri-
fied by the intended receiver (or by anyone in possession of the secret key).
A MAC of a message, m, is denoted by MACK(m) for a secret key K .

Assume that Alice and Bob share a secret key, K , and Alice wants to
send an integrity protected message to Bob. Alice calculates the MAC and

10 1. Introduction

sends the pair
(
m,MACK(m)

)
over an insecure channel. When receiving

the pair, Bob also calculates MACK(m) and compares the result with the
MAC included in the message. If they are the same Bob accepts the mes-
sage and can be certain that the message has been unaltered and is indeed
from Alice. If the MAC algorithm is designed properly, there is a very small
probability that, the impostor, Eve, will be able to create other valid pairs
(
m′,MACK(m′)

)
without first finding the secret key.

An attack on a MAC algorithm where valid pairs
(
m′,MACK(m′)

)
can

be created without knowledge of K is called existential forgery. Existential
forgery should be computationally infeasible for a good MAC algorithm.

There are several methods for message authentication code designs. So-
me primitives are based on block ciphers and hash functions.

1.2.3 Asymmetric-Key Cryptography

Asymmetric cryptography, also called public key cryptography, was inven-
ted by Diffie and Hellman [DH76] in 1976. In asymmetric cryptography
each user has two different keys, a public key used for encryption denoted as
Ke, and a private key used for decryption denoted as Kd, with Ke 6= Kd. The
private keys are kept secret, but the public keys are widely distributed.

If Alice wants to send a message, m ∈ M, to Bob confidentially, she uses
Bob’s public key to encrypt the message, i.e., c = EKe(m). She then sends
the ciphertext to Bob. Eve, the eavesdropper cannot decipher the ciphertext,
as she does not have access to Bob’s private key. Only Bob can recover the
message from the ciphertext by calculating m = DKd

(c), see Figure 1.4.

Asymmetric cryptography can also be used for digital signatures, which
are used to prove the integrity and authenticity of a message. If Bob wants
to send a signed message to Alice, Bob uses his private key to sign the mes-
sage, i.e., s = EKd

(
h(m)

)
, where h(.) is a nonlinear function and s is a

signature. He then sends the pair (m, s) to Alice. Alice verifies the signa-
ture of a received pair (m′, s) by first calculating the intermediate value b
as b = DKd

(s) using Bob’s public key. She then also produces h(m′) from
m′ using the same nonlinear function, h(.), as Bob, and finally checks if
h(m′) = b. If the nonlinear function h(.) is chosen properly, the eavesdrop-
per Eve is unlikely to be able to produce a valid pair (m′′, s′′) . Usually a
hash function is used for h(.).

Asymmetric primitives are based on mathematical trapdoor one-way
problems, i.e., problems that are easy to calculate in one direction, and com-
putationally infeasible to reverse without knowing the secret trapdoor. The
discrete logarithm is an example of a mathematical one-way function that is
frequently used in asymmetric cryptography. Let G be a finite multiplica-
tive cyclic group with n elements, and let b be a generator of G. Then every

1.3. Cryptanalysis 11

Alice Bob

Bob’s private key, Kd

Bob’s public key, Ke

Eve

�� ��Encryption
�� ��Decryption

�

�

�

�Insecure channel

�

�

�

�Insecure channel

Plaintext m

Ciphertext

c = EKe(m)

Plaintextm = DKd
(c)

Figure 1.4: Alice uses public key cryptography to send an en-
crypted message to Bob over an insecure channel. The adversary,
Eve, has access to both Bob’s public key and the ciphertext.

element g ∈ G can be written as g = bk for some integer k. The discrete
logarithm problem in G, i.e., to compute

k = logb(g), (1.8)

is believed to be a computationally hard problem for large groups, i.e., for
large n. The first proposed asymmetric primitive, the Diffie Hellman key ex-
change protocol is based on this problem.

Another one-way problem believed to be difficult, is the task of integer
factorization. For a large integer N = p · q, where p and q are large prime
numbers, it is computationally difficult to find p and q. The very popular
primitive RSA is based on this problem.

Asymmetric cryptography is computationally inefficient compared to
symmetric cryptography. However, asymmetric-key primitives can be used
to solve the problem of secret key-exchange for symmetric cryptography,
which was discussed in Section 1.2. Systems that uses both asymmetric-
key and symmetric-key primitives are sometimes called hybrid cryptographic
systems or digital envelopes.

1.3 Cryptanalysis

When attacking a cryptographic primitive, there are several kinds of attacks
and attack scenarios to choose from and some of them will be classified in

12 1. Introduction

what follows. We distinguish between the attack scenario, which states how
much power the adversary has, and the success of the attack, which classifies
attacks according to the amount of information that is revealed in the attack.

1.3.1 Attack Scenarios

In this thesis we will consider a number of different attack scenarios, i.e.,
different assumptions about the power/knowledge of an adversary.

• Ciphertext-only. This is the first scenario that comes to mind. In this
scenario, the cryptanalyst has access to parts of the ciphertext.

• Known-plaintext. In a known-plaintext attack the adversary knows
both the plaintext and the corresponding ciphertext.

• Known-IV-known-plaintext. In this type of attack, the adversary knows
one or several initialization vectors that are used in the encryption.
The adversary also knows the ciphertext and plaintext produced for
each IV.

• Chosen-IV-known-plaintext. In this scenario the adversary can choose
one or several IVs that will be used in the encryption. The adversary
is assumed to know the plaintext and the corresponding ciphertext for
each IV.

For the sake of completeness we will list some other common attack scenar-
ios:

• Chosen-plaintext. In this scenario, the adversary can choose any plain-
text he wants and obtain the corresponding ciphertext.

• Adaptive chosen-plaintext. A chosen plaintext attack in which the choice
of plaintexts depend on the previously received ciphertexts.

• Chosen-ciphertext. Similar to a chosen-plaintext attack, however in this
scenario the adversary can choose any ciphertext and obtain the cor-
responding plaintext.

• Adaptive chosen-ciphertext. A chosen-ciphertext attack in which the
choice of ciphertexts depend on the previously received plaintexts.

1.3.2 Success of the Attack

The ultimate goal for a cryptanalyst is of course to recover the secret key
used in an encryption. Knowing the secret key gives an adversary the power
to recover all old and future messages encrypted with that key. There are

1.4. Thesis Outline 13

also several other kinds of attacks that might give the adversary important
information without revealing the entire secret key. In this context, we will
identify five ways in which an attack can succeed:

• Total break. The secret key is recovered.

• Global deduction. An adversary finds an algorithm, A, which is func-
tionally equivalent to EKe (or DKd

). A can be used for encryption and
decryption without knowledge of Ke and Kd.

• Instance deduction. An adversary is able to produce not previously
known plaintext symbols of an intercepted ciphertext, or vice versa.

• Information deduction. An adversary gains (Shannon) information about
the secret key, the plaintext or the ciphertext which he did not have be-
fore the attack.

• Distinguishing algorithm. By applying this algorithm, an adversary is
able to detect statistical anomalies that should not be present in an
ideal cipher.

These forms of attacks form a hierarchy, i.e., a total break can be used for
global deduction, global deduction can be used for instance deduction and
so on.

From here on, we will mainly focus on distinguishing attacks.

1.4 Thesis Outline

The main topic of this thesis is cryptanalysis of stream ciphers, mainly dis-
tinguishing attacks. The thesis is organized as follows.

Chapter 2 gives definitions related to stream ciphers, and a general intro-
duction to the problem of designing stream cipher primitives. The chapter
describes the common building blocks used in stream ciphers, and gives
some examples of classical stream ciphers.

Chapter 3 focuses on the cryptanalysis of stream ciphers. It presents a
number of tools that are useful for analyzing stream ciphers and describes
some common attacks.

Chapter 4 describes a linear correlation attack. In this attack a specific
class of weak feedback polynomials of LFSRs is identified. If the feedback
polynomial is of a particular form, there is an efficient attack in the form of
a distinguishing attack.

Chapter 5 focuses on cryptanalysis of a classical stream cipher design,
called a filter generator. A very simple distinguishing attack on filter gener-
ators is described. It is also demonstrated how this attack can be converted
into a key recovery attack on a stream cipher called LILI-128.

14 1. Introduction

Chapter 6 describes an efficient method for cryptanalysis of irregularly
clocked filter generators. The idea of the attack is to position windows
around the estimated position of linear recurrence relationship members.
Some possible improvements of the attack are also discussed. A distin-
guishing attack based on the proposed technique is then demonstrated on a
stream cipher called LILI-II (successor of LILI-128).

Chapter 7 focuses on finding distinguishing attacks directed at ciphers
that belong to a family of stream ciphers called the Pomaranch family. After
analyzing the existing ciphers in this family, we give some design guidelines
for future Pomaranch ciphers.

Chapter 8 deals with linear distinguishing attacks on another eSTREAM
candidate, called Dragon. By using linear approximations of nonlinear com-
ponents, a biased expression can be found among the keystream output
from the cipher. This expression is used to create a distinguisher.

Chapter 9 introduces a resynchronization attack applicable to all stream
ciphers in which there is at least one part of the state that is unaffected by
the IV. This attack is different from an ordinary distinguishing attack in the
sense that it can be used to recover information about plaintexts.

Chapter 10 discusses certain problems concerning the initialization pro-
cedure of stream ciphers. We will describe a chosen IV distinguishing at-
tack. In this attack the stream cipher is modeled as a black box, and by
using many initializations we can write the keystream bits as a function of
some bits of the initialization vector. The properties of this function are then
compared to the expected properties of a random Boolean function.

Chapter 11 summarizes the contributions of the thesis and draws some
conclusions.

2

Building Stream Ciphers

A stream cipher is a cryptographic primitive that operates on individual
symbols, instead of on entire blocks as block ciphers do. In stream ci-

phers, the symbols are often chosen to be of size 1, 8 or 32 bits, depending
on the application. In software oriented constructions it is often desirable
choose a symbol size that coincides with the word size of the CPU of the
system. This enables efficient usage of available operations on the CPU. In
restricted hardware environments, bit oriented stream ciphers offer a supe-
rior throughput compared to block ciphers and can be constructed with a
much smaller gate cost. In protocols that use odd sized packages, block ci-
phers require padding as the encrypted block must be of the cipher’s block
size. Stream ciphers can be designed in such a way that no padding is re-
quired.

In 2004, the European Network of Excellence for Cryptology, ECRYPT,
launched a project called eSTREAM, the project is to be completed by May
2008. The aim of the project is to collect a number of promising stream
cipher proposals and eventually present a portfolio of stream ciphers that
offer some advantages over the block cipher AES. Two profiles have been
identified in which stream ciphers were believed to offer superior properties
compared to block ciphers (especially AES), namely

• Profile 1: Very good performance in software, i.e., much faster than
AES.

15

16 2. Building Stream Ciphers

• Profile 2: Efficient hardware primitives, in terms of a small number of
gates and low power consumption, compared to AES.

A major part of this thesis will investigate the security of some of the eS-
TREAM proposals.

The outline of this chapter is the following. Section 2.1 gives an introduc-
tion to stream ciphers, and describes synchronous and self-synchronizing
stream ciphers. Section 2.2 presents four building blocks commonly used
in stream cipher primitives; linear feedback shift registers, nonlinear feed-
back shift registers, Boolean functions and substitution boxes. Section 2.3
describes some classical stream ciphers that are often discussed in the liter-
ature. Section 2.4 is a summary of the chapter.

2.1 Stream Ciphers

A classical stream cipher can be seen as a function that takes a message,
m ∈ M, and a key, K ∈ K, as input. The output of the function is a cipher-
text message, c. Modern stream ciphers also include an initialization vector
(IV) also called a nonce. An IV should only be used once, and is incorporated
to enable the use of the same key for several keystreams. Key exchange pro-
cedures are often computationally costly, and we would like to minimize
the number of such exchanges. Without the IV, a given key would always
produce the same keystream after initialization. If used to produce two ci-
phertexts, this would leak information about the underlying plaintexts. IVs
are public vectors, which can be sent unencrypted and are easily exchanged
between sender and receiver. Two identical ciphers initialized with the same
key but different IVs will produce different keystreams.

The interface of a modern stream cipher can be described as

c = cipher(K, IV, m). (2.1)

A stream cipher operates in two phases:

(i) Setup phase. Usually, the state of the cipher is initialized with the key,
K and possibly an initialization vector, IV . An initialization proce-
dure is then performed to make sure that all IV bits and key bits are
properly mixed and spread across the entire state. The internal state
after the

(ii) Encryption/decryption phase. In this phase, the stream cipher generates
keystream symbols as a function of an internal state and the secret
key. This keystream symbol is combined with the message symbol to
create a ciphertext symbol. A new internal state is determined as a

2.1. Stream Ciphers 17

function of the current state, the key and possibly the ciphertext sym-
bol created. Decryption is performed in a similar manner.

Stream ciphers are divided into two families, synchronous stream ciphers
and self-synchronizing stream ciphers. Let us begin with synchronous stream
ciphers, which is the most common type.

2.1.1 Synchronous Stream Ciphers

In a synchronous stream cipher, a keystream is produced independently of
the plaintext, i.e., a synchronous stream cipher tries to imitate the one-time
pad. Ideally, a stream cipher would produce a sequence that is truly ran-
dom, but in real life true random keystream generators are hard to find.
Stream ciphers are often included in the class of algorithms called pseudo-
random number generators. The output from pseudo-random number gener-
ators is not truly random, as knowledge of the state (or the secret key) makes
prediction of future sequence symbols trivial. However, without knowledge
of the state (or the secret key) the stream of symbols should be indistinguish-
able from a true random sequence. Desirable properties of pseudo-random
sequences are a long period and a uniform distribution.

A synchronous stream cipher can be described as a finite state machine,
with a state and an update function. See Figure 2.1 for a general model of the
setup and encryption phases of synchronous stream ciphers. In the setup

K IV

�� ��Initialization Procedure

�� ��Internal State, σ0

(a) Setup Phase

K f�� ��Internal State, σt

g

hmt ct

zt

(b) Encryption Phase

Figure 2.1: General structure of a synchronous stream cipher in
setup phase and in encryption phase.

phase the state is initialized by an initialization procedure. This procedure
can be designed as a dedicated algorithm entirely separated from the rest of

18 2. Building Stream Ciphers

the cipher. However, in most cases the key and the IV are loaded into the
state of the cipher, the cipher is then iterated a number of times, possibly
the output of the cipher is feed back into the state. After the initialization
procedure is performed, all state symbols should depend on all IV and key
bits in a nonlinear way.

A synchronous stream cipher in encryption phase can be described by
the following parts

• Internal state. Let σt = (σ0
t , . . . , σn−1

t) denote the internal state at time,
t, where σi

t, 0 ≤ i ≤ n − 1 are the individual symbols stored in the
state.

• Next-state function. From the current state, σt, and the key, K , the next
state function, denoted as f , produces the next state as

σt+1 = f(σt, K). (2.2)

• Keystream function. Let g denote the keystream function, the keystream
function creates a new keystream symbol from the key, K , and the
internal state, σt, as

zt = g(σt, K). (2.3)

• Output function. Let h denote the output function, the output function
combines the message symbol, mt, and the keystream symbol, zt. The
output is the ciphertext symbol, ct,

ct = h(mt, zt). (2.4)

The decryption of synchronous stream ciphers is very easy. The receiver
generates the same keystream as the sender, and applies the inverse of the
output function to the keystream and the cipher text.

mt = h−1(ct, zt). (2.5)

The output function, h, is usually chosen to be the simple XOR opera-
tion, i.e., ct = mt ⊕ zt. A synchronous stream cipher that uses the XOR
operation as output function is usually called an additive synchronous stream
cipher. Figure 2.2 illustrates an additive stream cipher viewed as a keystream
generator. The inverse of the XOR operations is again the XOR operation,
hence the decryption of an additive synchronous stream cipher is exactly
the same process as its encryption.

The keystream generation in a synchronous stream cipher is indepen-
dent of both the message and the ciphertext. A transmission error in one
symbol will only lead to one symbol error in the plaintext, hence the error

2.1. Stream Ciphers 19

K

IV
�

�
	Keystream

generator

mt ⊕ ct

zt

Figure 2.2: Additive stream cipher created from a keystream gener-
ator.

propagation of synchronous stream ciphers is very low. On the other hand,
synchronous stream ciphers are very sensitive to synchronization errors. If
the synchronization between sender and receiver is lost, all future symbols
will be decrypted incorrectly. A common way to minimize synchronization
errors is to have frequent reinitializations. One divides the data sequence
into frames, where each frame has a unique, publicly known, initialization
vector (or a frame number). If synchronization is lost, only data from the
affected frame will be erroneously decrypted.

A designer of stream ciphers has many possibilities. One can choose
a complex next-state function and use a very simple keystream function;
an example is a block cipher in OFB mode. In this example, the next-state
function is one application of the block cipher, and the keystream function is
just the output of the entire state. In contrast, one can use a very simple next-
state function and a complex keystream function, such as Salsa [Ber06], or a
block cipher in counter mode. It is also possible to use a complex next-state
function and a complex keystream function such as Dragon [CHM+05].

2.1.2 Self-Synchronizing Stream Ciphers

A self-synchronizing stream cipher generates keystream symbols as a func-
tion of the key and a fixed number of previous ciphertext symbols. Let n
be the number of ciphertext symbols stored in the internal state. A self-
synchronizing stream cipher can be described by the following equations:

σt = (ct−n, . . . , ct−1),
zt = g(σt, K),
ct = h(zt, mt),

(2.6)

where g is the keystream function and h the output function as for syn-
chronous stream ciphers.

Like synchronous stream ciphers, self-synchronizing stream ciphers op-
erate in a setup phase and an encryption/decryption phase. During the

20 2. Building Stream Ciphers

setup phase, the initialization vector, IV , is used to initialize the state σ,
and hence z0 = g(iv0, . . . , ivn−1, K). During the encryption phase, the out-
put function, h, combines a keystream symbol, zt, with a message symbol,
mt. The output is the next ciphertext symbol, ct. Once again, the output
function, h, is usually the XOR operation. The encryption/decryption pro-
cess is shown in Figure 2.3.

Encryption�� ��Internal State, σt

K g

hmt ct

zt

Decryption�� ��Internal State, σt

Kg

h−1ct mt

zt

Figure 2.3: General structure of a self-synchronizing stream cipher.

The keystream symbol produced depends on the previously produced n
ciphertext symbols. If symbols are inserted or deleted, a self-synchronizing
stream cipher will resynchronize after n symbols. Hence, self-synchronizing
stream ciphers solve the previously discussed synchronization problems
of synchronous stream ciphers. However, there are few proposals of self-
synchronizing stream ciphers, and the security has not yet been thoroughly
studied. Two examples of self-synchronizing stream ciphers submitted to
the eSTREAM project are Mosquito [DK05] and SSS [RHPdV05], both of
which have been broken [JM06], [DLP05]. However, Mosquito has since
been replaced by Moustique [DK07].

From here on, “stream cipher” will refer to additive synchronous stream
ciphers.

2.2 The Building Blocks of Stream Ciphers

In this section we describe some commonly used building blocks for the
construction of stream ciphers. We start with a description of a linear feed-
back shift register, which is a very popular building block in stream cipher
primitives.

2.2. The Building Blocks of Stream Ciphers 21

2.2.1 Linear Feedback Shift Registers

The linear feedback shift register (LFSR) is a common building block in stream
ciphers . An LFSR with a primitive feedback polynomial generates sequences
with very long periods and good statistical properties. Binary LFSRs are
also very suitable for implementations that are very efficient in hardware.
An LFSR is constructed out of r memory cells and each cell can hold one
symbol, let s denote the symbol stored in a memory cell. A symbol is an
element from the field Fq, where q = pk for some prime number p and some
integer k. For efficient stream cipher constructions, the binary field or some
extension of it is commonly used, i.e., q = 2k for some integer k ≥ 1. The
content of the LFSR at a specific time is called the state of the LFSR. Let the
state of the LFSR at time t be denoted as st = (st, . . . , st+r−1), si ∈ Fq,
where s0 = (s0, . . . , sr−1) is the initial state of the LFSR. Figure 2.4 gives a
general overview of an LFSR, in which fi ∈ Fq, and 0 ≤ i ≤ r are constants.
Let ⊕ denote bitwise XOR and assume that fr 6= 0. The LFSR then produces

⊕ . . . ⊕ ⊕

f0

⊙
f1

⊙
fr−2

⊙
fr−1

⊙
fr

⊙

st st+1 . . . st+r−2 st+r−1

Figure 2.4: General form of an LFSR of length r.

a periodic sequence s0, s1, . . . where each symbol, st, t ≥ r, can be described
by a linear function of the previous r output symbols. The linear recurrence
relation of an LFSR sequence is written as

st+r = fr

r−1⊕

i=0

fist+i, ∀t ≥ r. (2.7)

For LFSRs defined over the binary field, i.e., fi ∈ F2, 0 ≤ i ≤ r and st ∈
F2, ∀t ≥ 0, the linear recurrence relation can be written as

r⊕

i=0

fist+i = 0, t ≥ 0 with fr = 1, (2.8)

22 2. Building Stream Ciphers

where ⊕ is equivalent to the XOR operation. Additional to the linear recur-
rence relation, commonly the feedback of the LFSR is described as a poly-
nomial. Two representations of this polynomial will be used in the thesis,
namely:

• Feedback polynomial. Describes the feedback connection of the LFSR as
a polynomial.

f(x) = fr − fr−1x − . . . − f1x
r−1 − f0x

r. (2.9)

• Characteristic polynomial. The characteristic polynomial is the recipro-
cal of the feedback polynomial.

f̃(x) = −f0 − f1x − . . . − fr−1x
r−1 + frx

r. (2.10)

From here on, we will assume that the feedback polynomial of the LFSR is
non-singular, i.e., f0 6= 0. Then r is called the degree of the feedback polyno-
mial. The number of nonzero taps in the feedback polynomial is called the
weight of the polynomial and is denoted as w. An LFSR of length r has qr

distinct states. The all-zero state will always lead to a next state which is also
the all-zero state, hence the longest achievable sequence before the symbols
begin to repeat themselves is qr − 1 symbols. The number of symbols pro-
duced before a sequence repeats itself is called the period of the sequence and
is denoted as T . The period of an LFSR sequence depends on the properties
of the feedback polynomial f(x).

Definition 2.1: Let f(x) ∈ Fq[x] denote an irreducible polynomial of degree
rf , and let p(x) ∈ Fq[x] be another polynomial of degree rp, then p(x) ∤
f(x), ∀p(x) ∈ Fq[x] s.t. 1 < rp < rf .

The smallest T for which f(x) divides 1 + xT , i.e., f(x)|1 + xT , is called the
period of the polynomial f(x).

Definition 2.2: An irreducible polynomial f(x) ∈ Fq[x] of degree r, with a
period of qr − 1, is called a primitive polynomial.

For every non-zero initial state, an LFSR with a primitive feedback polyno-
mial will visit every other non-zero state before it returns to the initial state.
Such a sequence is called a maximal-length shift register sequence, or just an
m-sequence.

Not only do m-sequences offer long and easily calculated periods, the
sequences have many nice statistical properties, e.g., good run distribution
properties and a good autocorrelation function.

2.2. The Building Blocks of Stream Ciphers 23

run -length 0-runs 1-runs

1 2r−3 2r−3

2 2r−4 2r−4

...
...

...
r − 2 1 1
r − 1 1 0

r 0 1

Table 2.1: The run distribution for any m-sequence of length 2r −1.

• Run-distribution properties. A run of length l is a subsequence (of max-
imal length) of exactly l consecutive zeros or ones. For an m-sequence
of length 2r − 1, the distribution of runs is tabulated in Table 2.1.

• Autocorrelation function. Let, x = (x0, . . . , xd−1), be a vector1 of length
d, where xi ∈ {−1, +1}, 0 ≤ i ≤ d − 1. The autocorrelation function,
denoted C(τ), is the correlation between x and the τ th cyclic shift of
x, (xτ , . . . , xi+τ mod d). We define C(τ) as

C(τ) =

d−1∑

i=0

xixi+τ mod d. (2.11)

For a random sequence, we would like C(τ) to have very small values.

For an m-sequence of length r, the autocorrelation function can be
calculated as

c(τ) =

{
−1, if τ 6= 0
r, if τ = 0

. (2.12)

For more on the properties of LFSRs and m-sequences, see [McE87].
LFSRs are linear and can easily be reconstructed from the output sym-

bols. Let us introduce the linear complexity of a sequence. Let L(s) denote
the linear complexity of a sequence s = (s0, s1, . . . , sn−1) ∈ Fn

q , it is defined
as the length of the shortest LFSR that generates s as its first n symbols.
The linear complexity of a sequence can be determined by the Berlekamp-
Massey algorithm [Mas69]. The Berlekamp-Massey algorithm efficiently
determines the feedback polynomial of the shortest LFSR that generates the
sequence, s, from 2L(s) symbols of s. For an LFSR sequence, the linear
complexity is at most the length of the register, i.e., r. If we observe more
than 2r consecutive output symbols from an LFSR, we can recover the entire
state and feedback polynomial of the LFSR. Hence, it is unwise to build a

1In this vector we use +1,−1 instead of 0, 1, e.g., (0, 0, 1) → (+1, +1,−1).

24 2. Building Stream Ciphers

stream cipher entirely based on an LFSR. Two classical ways to destroy the
linearity of an LFSR are to use non-linear Boolean functions and to clock the
LSFR irregularly.

2.2.2 Nonlinear Feedback Shift Registers

In recent years, several stream ciphers that use nonlinear feedback shift regis-
ters (NLFSRs) have been proposed. NLFSRs are similar to ordinary LFSRs
in their construction. The difference is that a nonlinear next-state function
is used instead of a linear next-state function. Figure 2.5 shows a general
model of a NLFSR where f denotes the nonlinear next state function. To

f

st st+1 . . . st+r−2 st+r−1

Figure 2.5: General form of a NLFSR of length r.

use NLFSRs is an old idea that has once again become popular in stream ci-
pher constructions. However, even though much research has been done in
the area, NLFSRs remains a difficult topic. Many of the attractive properties
of LFSRs are lost when nonlinear next-state functions are used, e.g., knowl-
edge of the period and the nice statistical properties of the output stream.
However, if the state is large enough, one can argue that a NLFSR is unlikely
to end up in a short period cycle. The advantage of NLFSRs over LFSRs is
that there is no short linear recurrence relation that is satisfied with proba-
bility one, a property that is often exploited in attacks against LFSR based
stream ciphers.

2.2.3 Boolean Functions

A Boolean function, denoted as h, is a mapping from a binary vector, x =
(x0, . . . , xd−1) of length d where xi ∈ F2, to a single bit, i.e., h : Fd

2 → F2.

2.2. The Building Blocks of Stream Ciphers 25

The set of all Boolean functions of d variables is denoted Bd. In total there
are 22d

Boolean functions of d variables.
There are many ways to represent a Boolean function, and in cryptology

the truth table representation and the algebraic normal form (ANF) are the
most common.

• Truth table. If the number of input variables of a Boolean function, h,
is reasonably small, a truth table can be constructed. The truth table
is a table in which all input vectors are listed together with the corre-
sponding output value. If h is a function that takes d input variables,
the number of input vectors are 2d.

• ANF. For every Boolean function, h, of d variables there is a unique
binary vector a = (a0, . . . , a2d−1) such that

h(x) = a0x0⊕. . .⊕ad−1xd−1⊕adx0x1⊕. . .⊕a2d−1x0x1 . . . xd−1. (2.13)

This representation is called the ANF of a Boolean function.

In cryptology, we are interested in various properties of Boolean func-
tions. Let us first introduce the Walsh transform that will be of help in the
analysis of the properties of Boolean functions.

Definition 2.3 (Walsh transform): The Walsh transform of a Boolean func-
tion, h : Fd

2 → F2, is an integer valued function Wh : Fd
2 → [−2d, 2d] defined

as
Wh(ω) =

∑

x∈{0,1}n

(−1)h(x)⊕x·ω, (2.14)

where x, ω ∈ Fd
2 and x · ω = x0ω0 ⊕ . . . ⊕ xd−1ωd−1.

The values of the coefficients Wh(ω), ω ∈ Fd
2 form the Walsh-spectrum of h.

We will also introduce the Hamming weight of a vector.

Definition 2.4 (Hamming weight): The number of ones of a vector is called
the Hamming weight of the vector, let wH(ω) denote the Hamming weight
of vector ω.

The Hamming distance between two functions is defined as follows

Definition 2.5 (Hamming distance): Let h1(x), h2(x) ∈ Bd be two Boolean
functions, the Hamming distance, dH(h1, h2), between h1(x) and h2(x) is

dH(h1, h2) = |{x ∈ Fn
2 |h1(x) 6= h2(x)}|. (2.15)

The first properties to be discussed are the balancedness and the alge-
braic degree of a Boolean function h(x).

26 2. Building Stream Ciphers

Definition 2.6 (Balancedness): A function is said to be balanced if Pr
(
h(x) =

0
)

= Pr
(
h(x) = 1

)
= 1

2 , when x is uniformly chosen from Fd
2.

For a balanced function we have Wh(0) = 0, where 0 = (0, . . . , 0).

Definition 2.7 (Algebraic degree): Let the algebraic degree of a Boolean func-
tion, h, be denoted deg(h). The algebraic degree is the number of variables
in the highest order term with a non-zero coefficient in the ANF form.

A function with an algebraic degree of at most one is called an affine function,
the set of all possible affine functions of d input variables is denoted as Ad.
An affine function with the constant term equal to zero is called a linear
function.

Definition 2.8 (Nonlinearity): Let the nonlinearity of a Boolean function,
h(x), be denoted nl(h). The nonlinearity is the Hamming distance to the
nearest affine function, i.e.,

nl(h) = min
g∈Ad

dH(h, g). (2.16)

Nonlinearity is a very important property of Boolean functions used in stream
ciphers. A common approach in cryptanalysis is to approximate the Boolean
function with a simpler linear function. The nonlinearity of the function de-
termines how good a linear approximation can be. It can be shown that the
nonlinearity can be calculated via the Walsh transform as

nl(h) = 2d−1 − 1

2
max
ω∈F

d
2

|Wh(ω)|. (2.17)

Next, we introduce the correlation immunity of a Boolean function.

Definition 2.9 (Correlation immunity): Let Xi, 0 ≤ i ≤ d − 1 be iden-
tically distributed random variables with Pr(Xi = 0) = Pr(Xi = 1) =
1
2 , 0 ≤ i ≤ d − 1. A Boolean function, h(x), of d variables, is said to
be kth order correlation immune if h(X0, . . . , Xd−1) is statistically indepen-
dent of any subset Xi0 , . . . , Xik−1

, of k or fewer random variables, where
0 ≤ i0 ≤ . . . ≤ ik−1 ≤ d − 1.

A Boolean function that is balanced and kth order correlation immune is
said to be k-resilient. Alternatively, the Walsh transform can be used to de-
termine the correlation immunity of a Boolean function. A Boolean function
is kth order correlation immune if and only if its Walsh transform satisfies

Wh(ω) = 0, ∀ω ∈ Fd
2 s.t. 1 ≤ wH(ω) ≤ k. (2.18)

2.2. The Building Blocks of Stream Ciphers 27

Siegenthaler [Sie84] showed that there is a trade off between correlation
immunity, k, and the algebraic degree, deg(h), of a Boolean function, h, of d
variables, namely

k + deg(h) ≤ d. (2.19)

EXAMPLE 2.1: Let us study the described properties for the Boolean func-
tion

h(x0, x1, x2) = x0 ⊕ x0x1 ⊕ x1x2,

which is written in ANF form. The corresponding truth table is shown in
Table 2.2. The Walsh transform is calculated in the same table. From the

x0 x1 x2 h(x0, x1, x2)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

ω0 ω1 ω2 Wh(ω0, ω1, ω2)
0 0 0 0
0 0 1 4
0 1 0 0
0 1 1 -4
1 0 0 4
1 0 1 0
1 1 0 4
1 1 1 0

Table 2.2: The left table shows the truth table for the Boolean func-
tion h(x0, x1, x2) = x0 ⊕ x0x1 ⊕ x1x2. The right table shows the
Walsh spectrum for h(.).

table we can tell that the function is balanced, the nonlinearity is 23−1 −
1
2 maxω∈F

3
2
|Wh(ω)| = 2. We also see that the function is not first order cor-

relation immune as Wh(0, 0, 1) = Wh(1, 0, 0) 6= 0.

2.2.4 S-boxes

A substitution box (S-box) is a mapping h : Fd
2 → Fm

2 . It is basically a repre-
sentation of m Boolean functions that take the same d input variables and
produce m output symbols. Let x = (x0, . . . , xd−1) be a vector of the input
variables to the S-box, and let y = (y0, . . . , ym−1) be the output vector. An
S-box can be described by the following system of equations

y1 = h0(x0, . . . , xd−1),
...

ym−1 = hm−1(x0, . . . , xd−1).

(2.20)

The properties of Boolean functions that are of interest to cryptographic S-
box applications are the same as the ones discussed in Section 2.2.3. The dif-

28 2. Building Stream Ciphers

ference is that the properties are extended into the vector domain. Proper-
ties of S-boxes are taken as the minimum value over all linear combinations
of the output functions h0, . . . , hm−1. For example, the algebraic degree of
an S-box is calculated as

min
ω∈F

m∗

2

deg
(
m−1∑

i=0

ωihi

)
, (2.21)

where Fm∗
2 means all nonzero vectors of length m.

S-boxes are very popular in both block cipher and stream ciphers de-
signs. An S-box with moderate values of m and n can be implemented as a
table and is well suited for fast software implementations. See [Pas03] for a
more thorough treatment of S-box properties.

2.3 Classical Stream Ciphers

In this section we present some general design principles and three classical
LFSR-based stream ciphers. Although these constructions are not used in
practice, they are often used as a starting point for the construction of stream
ciphers.

2.3.1 Nonlinear Combination Generator

The nonlinear combination generator is constructed from n LFSRs. The output
of the LFSRs are combined via a Boolean function, h, called the combining
function. See Figure 2.6 for a description of a nonlinear combination gen-
erator. To destroy the linearity of the LFSRs, the combining function needs
to have a high nonlinearity, see Section 2.2.3. Siegenthaler [Sie84] exploited
correlations between single LFSRs and the keystream. To prevent this kind
of attack the combining function must also have high correlation immunity.
See Section 3.3 for a more thorough description of Siegenthaler’s attack.

To withstand the Berlekamp-Massey algorithm, the combining function
should also have a high algebraic degree. Let ri, 1 ≤ i ≤ n be the degrees
of LFSRi, assume that all LFSRs in the combination generator have distinct
degrees greater than two, i.e., ri 6= rj , ∀i, j s.t. i 6= j. Then the linear com-
plexity of the produced keystream is L(z) = f(r1, . . . , rn) evaluated over
the integers [MvOV97].

Braeken and Lano [BL05] gives an overview of what properties the com-
bination function must have to withstand e.g. distinguishing, algebraic and
fast correlation attacks. They conclude that it is highly unlikely that it is pos-
sible to construct a practical secure combination generator of modest state
size (say ≤ 256 bits).

2.3. Classical Stream Ciphers 29

LFSR1

LFSR2

...

LFSRn

h

s
(1)
t

s
(2)
t

s
(n)
t

zt

Figure 2.6: A combination generator of n LFSRs with combining
function h.

2.3.2 Nonlinear Filter Generator

A nonlinear filter generator consists of two parts, one is linear, i.e., an LFSR,
and one is a nonlinear function, h, as shown in Figure 2.7. As it is very easy
to recreate the initial state of an LFSR from the output stream, we need to
destroy the linearity in the keystream. This is the purpose of the nonlinear
function also called the filter function. The filter function takes d symbols
from fixed positions in the LFSR and produces one keystream symbol, z.
Figure 2.7 describes the structure of a nonlinear filter generator, in which
the filter function is denoted by h. Note that every filter generator can be

LFSR

h

z

Figure 2.7: Filter Generator.

rewritten as an equivalent nonlinear combination generator that uses sev-
eral shifted versions of the same LFSR. The filter function then takes one
bit from each version as input, i.e., the combination generator would in this
case consist of d LFSRs.

In cryptography, much work has been done on nonlinear functions, see

30 2. Building Stream Ciphers

for example [Pas03,MvOV97] for more information. As for the combination
generator, Braeken and Lano also discuss what properties a filter function
needs to have in order to withstand common attacks [BL05]. They conclude
that a secure filter generator of modest state size is a more realistic construc-
tion than a combination generator.

2.3.3 Clock-Controlled Generators

In nonlinear combining generators and nonlinear filter functions, Boolean
functions are used to provide high nonlinearity. In a clock-controlled gen-
erator the main idea is to introduce nonlinearity by decimating the output
sequence in some unpredictable way.

An example of a clock-controlled generator is the shrinking generator,
[CKM93], in which one LFSR is used to decimate the output of another. The
structure of the shrinking generator is given in Figure 2.8. In the figure,

LFSR1

LFSR2

s
(2)
t

s
(1)
t

zk

Figure 2.8: The shrinking generator.

the output from LFSR2 is denoted as s
(2)
t and is used to decimate the out-

put from LFSR1, denoted s
(1)
t . If s

(2)
t = 1, then zk = s

(1)
t is taken as the

next keystream symbol for some index k, if s
(2)
t = 0, then s

(1)
t is discarded.

See Figure 2.9 for a summary of the decimation process. The self-shrinking'

&

$

%

t = 0 and k = 0
while (1)

if s
(2)
t = 1

zk = s
(1)
t

k + +
t + +

Figure 2.9: Decimation in the shrinking generator.

2.4. Summary 31

generator [MS94] uses only a single LFSR which decimates its own output.
The stream cipher A5 used in GSM phones is another famous example of a
clock-controlled generator.

2.4 Summary

In this chapter we give a general overview of stream ciphers. We defined
synchronous and self-synchronizing stream ciphers, in particular we intro-
duced additive stream ciphers, the class of ciphers studied in the present
thesis. We have also discussed some common building blocks used in the
construction of stream ciphers, such as LFSRs, NLFSRs, Boolean functions
and S-boxes. Many cryptographically important properties of these build-
ing blocks have been discussed. There are many more possible building
blocks. However, the building blocks presented here are the ones that are
most relevant to the purposes of this thesis. We also give some examples of
classical stream ciphers, i.e., the nonlinear combination generator, the non-
linear filter generator and clock-controlled generators. These designs are
well known and well studied, and many modern stream ciphers are based
on these designs.

32 2. Building Stream Ciphers

3

Stream Cipher Cryptanalysis

For as long as people have tried to keep things secret, there have also been
people on the other side, who try to find out the secrets. The ultimate

goal of cryptanalysis is to recover either the secret key or the message. Al-
though much research has been done in the area of stream cipher design, it
is still not an easy task to design a secure stream cipher. Before a crypto-
graphic primitive is released to wide deployment, it has to be extensively
studied and analyzed. Theoretical attacks of high complexity are of great
interest, as these attacks illuminate weaknesses in the design. These weak-
nesses might be explored further, which may lead to devastating attacks on
the primitive.

In this chapter we first present three cryptanalytic techniques used in
cryptanalysis of stream ciphers, and then present a number of possible at-
tacks.

The first section presents the birthday problem, an algorithm for find-
ing low weight multiples of LFSRs and theory for hypothesis testing. All
of these are extensively used in stream cipher cryptanalysis. Section 3.2
describes the brute force attack, a general attack applicable to all ciphers.
Section 3.3 explains the correlation attack as described by Siegenthaler, and
also discuss improvements such as fast correlation attacks. The main topic
of this thesis, distinguishing attacks, are introduced in Section 3.4. Section
3.5 describes time memory data trade-off attacks and Section 3.6 introduces
resynchronization attacks. Algebraic attacks are shortly described in Section
3.7 and finally, Section 3.8 summarizes the chapter.

33

34 3. Stream Cipher Cryptanalysis

3.1 Tools for Cryptanalysis

Recall the attack scenarios and how we classified the success of an attack
in Section 1.3. In attacks against additive synchronous stream ciphers we
commonly assume that the plaintext is known, and hence also that the key-
stream is known. This is a reasonable assumption, as there are many sit-
uations in which the structure of messages makes parts of them easy to
guess. An important known-plaintext attack was used by the British army
to decipher encrypted German messages during World War II. At exactly
the same time every day, the Germans sent military weather reports from
U-Boats to shore stations. These reports always contained the word “Wet-
ter” in the same position. With knowledge of the weather in the area from
where the message was sent, even more of the plaintext could be guessed at.
This known plaintext helped the British cryptanalysts recover the daily key,
which in turn enabled them to recover other, more interesting messages.

In addition to knowledge of the plaintext, the adversary might in some
situations acquire knowledge of the keystream from multiple known initial-
ization vectors. Sometimes the assailant may even be able to interfere and
choose initialization vectors himself and observe the resulting keystream.
Such attacks are called resynchronization attacks and will be discussed in
Section 3.6.

Let us begin by discussing three general problems that are often utilized
in cryptanalysis: the birthday problem, how to find low weight multiples
of LSFRs and how to test hypotheses. The solutions to these problems lie
behind the design of many kinds of attack.

3.1.1 The Birthday Problems

The classical birthday problem proceeds from the fact that if there are more
than 23 people in the same room, the probability that two people in that
group have the same birthday is more than 50%. Intuitively, it seems impos-
sible that the probability can be that high. Simple statitistical calculations,
however, shows that it is true.

Assume we have N independent and identically distributed random
variables, X0, . . . , XN−1, each uniformly drawn from the integers 0, 1, . . . , n−
1, i.e., from the alphabet X = {0, 1, . . . , n − 1}. The probability that at least
two of the random variables have the same value can be written as

1 −
N−1∏

i=0

(1 − i

n
) ≈ 1 − e−N2/2n. (3.1)

According to this approximation, we see that we need N ≈ 1.2
√

n for a colli-
sion probability higher than 50%. The statistical property that is exemplified

3.1. Tools for Cryptanalysis 35

by the birthday problem is utilized in many areas of cryptology, e.g., in the
area of hash functions, the collision resistance is compared to the results of
the birthday problem and in attacks against stream ciphers, the birthday
problem is employed in time memory trade-off attacks. It is also used to
find low weight multiples of LFSRs, a topic that will be further discussed in
the next section.

There is another kind of birthday problem that often occurs in cryptog-
raphy. Assume we have random variables, X0, X1, . . ., uniformly drawn
from the same alphabet as before, X = {0, 1, . . . , n − 1}. Let us store k
uniformly chosen values from X in a table, i.e., the table covers a frac-
tion of k

n of all values. Assume we have a realization, x0, . . . , xN−1, where
xi ∈ X , 0 ≤ i ≤ N − 1, of the sequence of random variables, X0, . . . , XN−1.
What is the length of this sequence, before we expect one of the variables in
the sequence to take on a value stored in the table? The probability that at
least one of these random variables is stored in the table can be calculated
as

1 −
(
1 − k

n

)N
. (3.2)

Assume we store k = O(
√

n) integers in the table, and observe a sequence
of random variables of length N = O(

√
n). It can be shown, see [MvOV97],

that the probability in Equation (3.2) will be

lim
n→∞

1 −
(
1 − k

n

)N ≈ 1 − e−
kN
n . (3.3)

We see that the probability of finding a collision is approximately the same
as the probability derived in Equation (3.1).

3.1.2 How to find Low Weight Multiples of Binary LFSRs

Many attacks e.g. as fast correlation attacks and distinguishing attacks, re-
quire low weight recursions for LFSR sequences. As in Section 2.2.1, we
denote the feedback polynomial of a binary linear feedback polynomial
as f(x) ∈ F2[x]. The degree of the polynomial is denoted by rf and the
weight is denoted by wf . We wish to find a multiple, denoted by g(x), i.e.,
g(x) = f(x) · k(x) for some polynomial k(x), where the weight of the mul-
tiple is wg . In practice, we wish to find polynomials with weights as low as
possible, e.g., wg ∈ {3, 4, 5}.

Several methods to find multiples of low weight have been proposed
and they optimize different aspects, e.g., finding multiples with the lowest
possible degree or accepting a higher degree and reduce the complexity in
order to find the multiple.

According to Golić [Gol96], if f(x) ∈ F2[x] is a randomly chosen feed-
back polynomial, the critical degree when multiples, g(x) ∈ F2[x], of weight

36 3. Stream Cipher Cryptanalysis

wg start to appear is

rg ≈ (wg − 1)!1/(wg−1)2rf/(wg−1). (3.4)

The expected number of multiples for a given degree rg and weight wg is
estimated by

r
wg−1
g

(wg − 1)!2rf
. (3.5)

The first method to find multiples of polynomials was described by Meier
and Staffelbach in [MS89]. The algorithm is based on calculation of polyno-
mial residues and on the birthday problem. Meier and Staffelbach’s algo-
rithm was used to find multiples of weight three or four.

Golić [Gol96] describes how to generalize the ideas in Meier and Staffel-
bach to find low weight multiples of arbitrary weights. The algorithm fo-
cuses on finding multiples with the lowest possible degree. The maximal
weight is wg = 2k + 1 for odd weighted multiples, and wg = 2k for even
weighted multiples, for some positive integer k.

The first step in the algorithm is to compute the residues

xi mod f(x), 0 ≤ i ≤ rg. (3.6)

The next step is to compute and store the sum of all combinations of k
residues from step one, i.e., compute

xi1 + . . . + xik mod f(x), 0 ≤ i1 ≤ . . . ≤ ik ≤ rg (3.7)

for all
(
rg

k

)
possible combinations. The table now contains the following

pairs
(
(i1, . . . , ik), xi1 + . . . + xik mod f(x)

)
, (3.8)

where 0 ≤ i1 ≤ . . . ≤ ik ≤ rg . The table is then sorted with respect to
the residues, i.e., the second column. If we search for all residues that are
equal, i.e., have same value in the second column, we will find all multiples
of even weight wg = 2k. That is, we search for all pairs such that

xi1 + . . . + xik ≡ xj1 + . . . + xjk (mod f(x)), (3.9)

where 0 ≤ i1 ≤ . . . ≤ ik ≤ rg , and 0 ≤ j1 ≤ . . . ≤ jk ≤ rg with ir 6= jd, ∀r, d.
Then

g(x) = xi1 + . . . + xik + xj1 + . . . + xjk (3.10)

is a multiple of f(x). If we instead search for all residues in the table that
sums to one, we will find all multiples of odd weight wg = 2k + 1. Then

g(x) = 1 + xi1 + . . . + xik + xj1 + . . . + xjk (3.11)

3.1. Tools for Cryptanalysis 37

'

&

$

%

1. Compute and store all residues xi mod f(x), 1 ≤ i ≤ rg .

2. Compute all
(
rg

k

)
residues xi1 + . . . + xik mod f(x),

0 ≤ i1 ≤ . . . ≤ ik ≤ rg , and store the following pairs in a table
(
(i1, . . . , ik), , xi1 + . . . + xik mod f(x)

)
.

3. Sort the table from step (2) according to the residues (second

column).

4. Find all zero and one matches in the table, i.e., find all

residues such that

xi1 + . . . + xik ≡ xj1 + . . . + xjk (mod f(x)) for multiples

of weight wg = 2k, and

1 + xi1 + . . . + xik ≡ xj1 + . . . + xjk (mod f(x)) for multiples

of weight wg = 2k + 1.

Figure 3.1: Polynomial residue algorithm for finding multiples of
polynomials.

is a multiple of f(x). The algorithm is described in Figure 3.1. The com-
plexity of this algorithm is approximately O(S log S) and it requires O(S)
memory, where

S =

(2k)!1/2

k! 2rf /2, odd weights, w = 2k + 1

(2k−1)!k/(2k−1)

k! 2rfk/(2k−1) even weights, w = 2k

. (3.12)

Wagner [Wag02] presented a generalization of the birthday problem, i.e.,
given k lists of n-bit values, find a way to choose one element from each
list, so that these k values XOR to zero. This algorithm finds multiples of
higher degree than the previously discussed algorithm but requires lower
computational complexity and memory. However, the improvements are
marginal for moderate values of the weight, wg . As we in practice only will
work only with multiples of weight wg ∈ {3, 4, 5}, we will from now on
use the algorithm described in Figure 3.1 to find low weight multiples of
polynomials.

3.1.3 Hypothesis Testing

In a hypothesis test we have two hypotheses that we would like to test
against each other, the null hypothesis, denoted H0 and the alternative hy-
pothesis, denoted H1. Let us first introduce some notations. Let X be a
random variable over a finite alphabet, X , from some distribution, and let

38 3. Stream Cipher Cryptanalysis

x ∈ X be a realization of X . The distribution function, PX , for X is defined as

PX(x) = Pr(X ≤ x), −∞ ≤ x ≤ ∞. (3.13)

The probability mass function, DX , for a discrete random variable, X , is de-
fined as

DX(x) = Pr(X = x), x ∈ X . (3.14)

In this thesis we mainly use discrete random variables, however on rare
occasions we will also use the probability density function (PDF), denoted by
fX , for a continuous random variable, X . PDF is a function, which can be
integrated to obtain the probability that the random variable takes a value
in a given interval, hence

PX(x) =

x∫

−∞

fX(x), ∞ ≤ x ≤ ∞. (3.15)

When talking about distributions for a random variable X , we will loosely
use DX for notational purposes. Let x0, . . . , xN−1 be a realization of the
sequence X0, . . . , XN−1 of random variables. A decision rule, denoted by δ,
is a rule that decides which of the two hypothesis is most likely to be correct,

δ(x0, . . . , xN−1) =

{
H0, if x0, . . . , xN−1 ∈ AR
H1, otherwise

,

where the set AR denotes the acceptance region. The rejection region is de-
noted by ARc. With a decision rule, two types of errors, denoted type I and
type II, are of interest, see Table 3.1. Type I errors occur when the null hy-
pothesis is incorrectly rejected, and type II errors when the null hypothesis
is retained even though it is wrong. Let α denote the probability of type I

Decision

Truth

Accept H0 Reject H0

H0 Correct Retention Type I Error

H1 Type II Error Correct Rejection

Table 3.1: Decision errors for hypothesis testing.

errors, α is often called the significance level of the hypothesis test. The op-
posite is usually called the confidence level of the test and is denoted 1 − α.
Let 1− β denote the probability of not making a type II error, 1− β is called
the power level. The overall error probability, denoted as Pe, is expressed as

Pe = π1α + π2β, (3.16)

3.1. Tools for Cryptanalysis 39

where π1, π2 are the a priori probabilities of the two hypotheses. We would
like to minimize both α and β, but this is often difficult. In general α is con-
sidered more important and is fixed to a small value while β is unknown.

We will now describe two different hypothesis tests. The first is the χ2-
test, which is used when only one distribution is known and we would like
to decide whether our samples follow that distribution. The second test,
called the Neyman-Pearson test, is used when two distributions are known
and we want to decide from which distribution our samples are drawn.

3.1.3.1 The χ2-test: The Case of One Known Distribution

In some situations the distribution of a sample sequence is unknown and
we would like to find out if it follows some known distribution, usually the
normal distribution or the uniform distribution. The χ2 goodness-of-fit test
is often used in such cases.

In a χ2 goodness-of-fit test one tries to decide whether or not the ob-
served relative frequency distribution follows a specified distribution, D0.
Assume we have N independently and identically distributed (i.i.d.) random
variables Xi, 0 ≤ i ≤ N − 1 from the alphabet X with unknown distribu-
tion DX . Let x0, . . . , xN−1 be a realization of Xi, 0 ≤ i ≤ N − 1. Then our
two hypotheses are:

• H0 : x0, . . . , xN−1 are samples from D0, i.e., DX = D0.

• H1 : x0, . . . , xN−1 are not samples from D0, i.e., DX 6= D0.

It is important to note that even if we do not reject the null hypothesis, it
might still be false as the sample size may be insufficient to establish the
falsity of the null hypothesis.

Let OX(x) denote the number of observations of a specific outcome x ∈
X . E(x) is the expected number of observations of x under the assumption
that DX = D0. Then the chi-square statistic is defined as

χ2 =
∑

x∈X

(
OX(x) − E(x)

)2

E(x)

d→ χ2(ν), (3.17)

where
d→ means convergence in distribution, and ν is called the degrees of

freedom (i.e., number of independent pieces of information). The density
function for the Chi-square distribution is defined as

fχ2(x) =
1

Γ(ν/2)2ν/2
e−x/2xν/2−1, (3.18)

40 3. Stream Cipher Cryptanalysis

where the gamma function Γ(x) is determined as

Γ(x) =

∞∫

0

tx−1e−tdt. (3.19)

Let χ2
α(ν) be the value such that Pχ2(χ2

α(ν)) = 1 − α. For a one-sided
χ2 goodness-of-fit test, the null hypothesis, H0, is rejected in favor of H1

if the test statistic χ2 is greater than the χ2
α(ν) value, for some significance

level α with ν degrees of freedom. If χ2 is smaller than the tabulated value
we accept hypothesis H0, and hence we say that the samples are from D0.
Hence, the decision rule is

δ(DX) =

{
H0, if χ2 ≤ χ2

α(ν)
H1, otherwise

.

3.1.3.2 The Neyman-Pearson test: The Case of Two Known Distribu-
tions

In this section we assume that we know that a sequence of random vari-
ables Xi ∈ X , 0 ≤ i ≤ N − 1 with distribution DX , either is from distribu-
tion D0 or is from distribution D1, where D0 and D1 are both known. Let
x0, x1, . . . , xN−1 be an observed sequence from distribution DX . We would
like to determine if this sequence is from D0 or D1. Our hypotheses are

• H0 : x0, . . . , xN−1 is a sequence from D0, i.e., DX = D0.

• H1 : x0, . . . , xN−1 is a sequence from D1, i.e., DX = D1.

To perform the actual hypothesis test we use the Neyman-Pearson lemma.

Lemma 3.1 (Neyman-Pearson lemma): Let X0, X1, . . . , XN−1 be drawn
i.i.d. according to mass function DX . Consider the decision problem cor-
responding to the hypotheses DX = D1 vs. DX = D0. For λ ≥ 0 define a
region

AR(λ) =

{

(x0, x1, . . . , xN−1) :
D0(x0, x1, . . . , xN−1)

D1(x0, x1, . . . , xN−1)
> λ

}

. (3.20)

Let α = D0(ARc(λ)) and β = D1(AR(λ)) be the error probabilities corre-
sponding to the decision region, AR, (AR denotes the acceptance region
and ARc the rejection region). Let B be any other decision region with as-
sociated error probabilities α∗ and β∗. If α∗ ≤ α, then β∗ ≥ β.

3.1. Tools for Cryptanalysis 41

The region AR(λ) minimizes α and β. In our case we set α and β to be
equal and hence λ = 1. As all random variables Xi, 0 ≤ i ≤ N − 1 are
assumed to be independent we can rewrite the Neyman-Pearson lemma as
a log-likelihood ratio, denoted by LLR,

LLR =

N−1∑

i=0

(

log2

D0(xi)

D1(xi)

)

. (3.21)

The optimal decision function is then defined as

δ(DX) =

{
H0, if LLR ≥ 0
H1, if LLR < 0

. (3.22)

We also need to know how many keystream bits we need to observe in
order to make a correct decision.

Sample Size Estimation

An important question in hypothesis tests is the sample size, i.e., how many
samples are required for the hypothesis test to reliably distinguish between
two distributions. The number of samples required depends greatly on how
similar the distributions are. If two distributions, D0 and D1, are close to
each other we can write them as

D0(x) = px + εx,
D1(x) = px,

where |εx| ≪ px, ∀x ∈ X . (3.23)

We will now present two measures of the distance between two distri-
butions, called the statistical distance and the Squared Euclidean Imbalance.

• Statistical distance. The statistical distance, denoted |D0−D1|, between
two known distributions, D0 and D1, over the finite alphabet X , is
defined as

|D0 −D1| =
1

2

∑

x∈X
|D0(x) −D1(x)|, (3.24)

where x is an element of X . Assume that x0, x1, . . . , xN−1 is a sequence
of samples from the distribution D1. If the statistical distance between
distribution D0 and D1 is |D0−D1| = ε, the number of samples, N , we
need to observe to be able to distinguish between the two distributions
is N ≈ 1/ε2, see [CHJ02] for a more details on the statistical distance.

• Squared Euclidean Imbalance. Let µi, i ∈ {0, 1} denote the expected
value, and σ2

i , i ∈ {0, 1} the corresponding variance of the log-likelihood

42 3. Stream Cipher Cryptanalysis

ratio when the underlying distribution is Di, i ∈ {0, 1}. Baignères,
Junod and Vaudenay [BJV04], showed that

µ0 = −µ1 =
1

2

∑

x∈X

ε2
x

px
and σ2

0 = σ2
1 =

∑

x∈X

ε2
x

px
. (3.25)

Let us denote the distribution function for the normal distribution by
Φ(x), where

Φ(x) =
1√
2π

x∫

−∞

e−
1
2u2

du. (3.26)

Using the central limit theorem Baignères et al. also showed that

Pr
(LLR − Nµi

σi

√
N

< t | DX = Di

)
N→∞−→ Φ(t). (3.27)

If we assume that the a priori probabilities in Equation (3.16) are equal,
i.e., π0 = π1 = 0.5, then we obtain the following expression for the the
total error probability

Pe = 1
2

(
Pr(LLR < 0 | DX = D0) + Pr(LLR ≥ 0 | DX = D1)

)
=

= 1
2

(
Pr(LLR < 0 |DX = D0) + 1 − Pr(LLR < 0 | DX = D1)

)
.

(3.28)
If N is large, (3.27) gives us

Pr(LLR < 0|DX = Di) = Pr
(

LLR−Nµi

σi

√
N

< −
√

Nµi

σi
| DX = Di

)
=

= Φ(−
√

Nµi

σi
).

(3.29)
We know that Φ(−x) = 1 − Φ(x) and finally we can derive an expres-
sion for the error probability,

Pe = 1
2

(

Φ
(
−

√
Nµ0

σ0
) + 1 − Φ(−

√
Nµ1

σ1
)
)

=

=
1

2

(

Φ
(
−1

2

√

N
∑

x∈X

ε2
x

px

)
+ 1 − Φ

(1

2

√

N
∑

x∈X

ε2
x

px

))

=

= Φ
(
−1

2

√

N
∑

x∈X

ε2
x

px

)
.

(3.30)

3.2. Brute Force Attacks 43

This expression can be used to estimate the number N of samples we
need to achieve a certain error probability. We see that if we use

N =
k

∑

x∈X

ε2
x

px

(3.31)

samples the error probability becomes Pe = Φ(−
√

k/2), for some con-
stant k.

Definition 3.1 (Squared Euclidean Imbalance): Assume that one of
the distributions is the uniform distribution, i.e., D1(x) = 1

|X | , ∀x ∈
X . Let εx = D0(x) − D1(x), where x ∈ X . The Squared Euclidean
Imbalance (SEI) is defined as

∆(D0) = |X |
∑

x∈X
ε2

x. (3.32)

According to Equation (3.31) and Equation (3.30) we need approxi-
mately

N ≈ k

∆(D0)
(3.33)

samples to reliably distinguish distribution D0 from the uniform dis-
tribution. Varying the value of the constant, k, we can achieve any
error probability. In this thesis we will in general use k ≈ 11 which
results in an error probability of Pe ≈ 0.05.

For a more thorough description of hypothesis testing, we refer to Cover
and Thomas [CT91].

3.2 Brute Force Attacks

A brute force attack is a generic attack applicable to all symmetric ciphers.
In this attack, keys are guessed and the output of the cipher is verified in
some manner. Usually it is assumed that some amount of ciphertext and
plaintext is known and can be compared to the output of the cipher for each
guess. If the key used is of length |K| bits, there are in total 2|K| keys to try
and on average the correct guess is expected after 2|K|−1 trials.

Brute force attacks are usually used as a threshold for other attacks. A
cipher is said to be broken or insecure if an attack with lower computational
complexity than the brute force attack is found. Lately, there has been some
discussions on how to compare other kinds of attacks with brute force at-
tacks, as the brute force attack is highly parallelizable with low memory

44 3. Stream Cipher Cryptanalysis

cost. Some suggest that instead of only comparing computational complex-
ity, one should consider the computational complexity multiplied with the
amount of memory required in the attack.

The key length of a cipher is usually chosen so as to make brute force
attacks infeasible, stream ciphers often use key lengths of 128 − 256 bits.

3.3 Correlation Attacks

The idea behind correlation attacks was first described by Siegenthaler in
1984 [Sie84]. He studied correlations between LFSRs and the keystream of
nonlinear combination generators. Traditionally, correlation attacks are de-
scribed for combination generators, see for example Handbook of Applied
Cryptography [MvOV97].

As mentioned in Section 2.3.1, a nonlinear combination generator con-
sists of n LFSRs, and we will let r(j) denote the length of LFSRj , 1 ≤ j ≤ n.

The output symbol from LFSRj at time t is denoted as s
(j)
t . Assume there is

a correlation between the output symbol of LFSRj , s
(j)
t , and the keystream

symbol zt, i.e., Pr(s
(j)
t = zt) 6= 0.5. If we guess the initial state of LFSRj and

count the number of coinciding bits in the keystream and the LFSR output,
then the correlation can be found for the correct guess of the initial state.
The principle of the attack is illustrated in Figure 3.2. It will take at most

LFSR1

LFSR2

. . .

LFSRn

LFSRj

h
⊕ �� ��Analysis

s
(1)
t

s
(2)
t

s
(n)
t

zt

s
(j)
t

Figure 3.2: Principle of a correlation attack against a combination
generator.

2r(j) − 1 trials to find the correct initial state for LFSRj . When there are
correlations between several of the LFSRs and the keystream, all the initial
states of these LFSRs can be found independently of each other. When all of

3.4. Distinguishing Attacks 45

the LFSRs are correlated with the keystream, the entire state of the generator
can be determined if we make

n∑

i=1

(2r(i) − 1) (3.34)

guesses.
To prevent the attack described by Siegenthaler, the nonlinear function,

h(.), must have a high correlation immunity. A kth order correlation im-
mune combiner function means that k + 1 LFSRs have to be guessed simul-
taneously in order for an assailant to be able to observe a correlation with
the output of the function.

Meier and Staffelbach [MS88] introduced a new way to model a stream
cipher based on LFSRs. The output is modeled as an LFSR sequence that
is passed through a binary symmetric channel (BSC), with crossover proba-
bility p, i.e., the channel introduces an error such that the bit changes value
with probability p. The problem is then transformed into a decoding prob-
lem, i.e., we look at the noisy output from the BSC and try to decode the
transmitted linear sequence. The correlation attack proposed by Meier and

f(x) -

-

-

������*HHHHHHj

-
0

1

0

1

p
p

1 − p

1 − p

st zt

LFSR BSC

Figure 3.3: Model for a correlation attack.

Staffelbach, as well as many of the following attacks, rely on the existence of
many low weight parity check equations for the LFSR sequence. Such low
weight parity checks are equivalent to low weight multiples of the feedback
polynomial. See Section 3.1.2 for a description of how to find such equa-
tions.

There are many improvements of the correlation attack that have been
published, see [CT00, CS91, CJS00, JJ02, JJ00, JJ99].

3.4 Distinguishing Attacks

A distinguishing attack is an attack in which the adversary tries to determine
whether a given sequence is produced by a known cipher or if it appears to

46 3. Stream Cipher Cryptanalysis

be a random sequence. In some cases a distinguishing attack can be used to
create a key recovery attack.

A distinguisher can be seen as a black box that takes a sequence of sym-
bols as input, and gives either cipher or random as output. A distinguishing
attack is considered to be successful if the distinguisher gives a correct an-
swer for most sequences. Figure 3.4 gives a general overview of a distin-
guisher.

z0, z1, . . .
�� ��Distinguisher cipher or random

Figure 3.4: A distinguisher seen as a black box. The distinguisher
takes keystream symbols zt, t = 0, 1, . . . as input, and gives either
cipher or random as output.

Distinguishing attacks are common and can be directed at both block ci-
phers and stream ciphers. Distinguishing attacks on block ciphers are used
to detect statistical anomalies in the primitives, and these distinguishers are
commonly used to analyze the resistance to linear and differential crypt-
analysis, see e.g. Junod [Jun03]. Similarly, distinguishers for stream ciphers
can also be seen as tools that detect anomalies in stream cipher primitives.
A distinguishing attack of high complexity on a primitive might not pose a
threat to the primitive per se. However, it does show that there is a weak-
ness in the primitive. Such weaknesses may later be exploited in much more
devastating attacks.

We will now give an example that highlights one situation in which dis-
tinguishing attacks are useful.

EXAMPLE 3.1: Assume that the people in a small country are going to vote
in a referendum. Alice is going to send her vote as a ciphertext, c = m + z,
where m is the vote and z is the keystream. Now assume that there are two
possible ways to vote, either m = m(1) or m = m(2), and that both of them
include some large amount of data (e.g. they are both pictures).

The adversary Eve, who eavesdrops on the channel, receives the cipher-
text, c. She guesses that Alice voted m(1). Eve then adds m(1) to the re-
ceived ciphertext and depending on whether she made the right or wrong
guess she obtains

ẑ = c ⊕ m(1) =

{
z correct guess
m(1) ⊕ m(2) ⊕ z wrong guess

. (3.35)

Also assume that m(1) + m(2) is random, an incorrect guess results in a
random sequence. Assume that the cipher that produces z can be attacked

3.4. Distinguishing Attacks 47

by a distinguishing attack. If Eve applies the distinguisher to the vector ẑ,
she will be able to determine how Alice voted.

Linear statistical distinguishers on stream ciphers were introduced by
Golić in 1994 [Gol94]. This work is based on an algorithm for finding non-
balanced linear functions of the keystream, which is called the linear se-
quential circuit approximation (LSCA) and was first introduced in [Gol93].
Since then, many distinguishing attacks have been presented, see for ex-
ample [EJ02, CHJ02].

In most scenarios we assume plaintext to be known and our problem
is the following. Given the observed keystream sequence z = z0, z1 . . . we
want to distinguish the keystream from a truly random process.

Distinguishing attacks can be divided into two groups.

• General distinguishing attacks. Tests that do not consider the structure
of the stream cipher at all are called general distinguishing attacks.
The keystream generator is modeled as black box, and the statistical
properties of the keystream are studied. Such attacks are useful for
stream cipher designers who would like to evaluate different random-
ness properties of a primitive.

• Cipher-specific distinguishing attacks. Attacks that utilize the inner struc-
ture of a specific stream cipher are called cipher-specific distinguish-
ing attacks. In this group, the distinguishing block in Figure 3.4 is
divided into two parts, a processing part and a distinguishing part.
In the processing part, keystream symbols are combined to create bi-
ased samples. These sample are then sent to the distinguisher, which
makes a decision.

In cipher specific distinguishers, one usually tries to use the inner
structure of the cipher to find a relation that results in biased sam-
ples. A common approach to find such relations is to approximate all
nonlinear parts of the cipher with linear relations. The approximations
introduce noise such that the linear relation does not always hold. The
aim is to find a relation that holds with as high probability as possible.

Let DC be the distribution of a sample sequence constructed from the
cipher, and DU the uniform distribution. Let X0, . . . , XN−1 be a sequence
of random variables from distribution DX , and let x0, . . . , xN−1 be a real-
ization of it. We try to determine if the underlying distribution, DX , of the
observed samples is more likely to be DC or DU . In order to make that deci-
sion, distinguishing attacks almost always involve some sort of hypothesis
testing, see Section 3.1.3.

A distinguisher is an implementation of a decision rule. Hence, our dis-
tinguisher performs a hypothesis test where our hypotheses are

48 3. Stream Cipher Cryptanalysis

• H0 : x0, . . . , xN−1 are samples from DC ,

• H1 : x0, . . . , xN−1 are samples from DU .

The ability of a distinguisher to distinguish between two distributions is
measured by the advantage. Let AdvAR denote the advantage for an accep-
tance region, AR, it is defined as

AdvAR = |DC(AR) −DU (AR)|. (3.36)

Assume that the a priori probabilities of DC and DU are equal. We see that
DC(AR) = 1−α and DU (AR) = β, hence we can easily relate the advantage
to the error probability of the hypothesis test as

AdvAR = 1 − (α + β) = 1 − 2Pe, (3.37)

assuming that Pe < 1/2.
We will now discuss two distinguishers in which varying amounts of

knowledge about the cipher distribution is available to the assailant.

3.4.1 The Random and the Cipher Distribution are Known

In this section we assume that both the uniform distribution, DU , and the
distribution of the cipher, DC , are known. In this case we use the log-
likelihood test based on the optimal Neyman-Pearson test (this test was
described in Section 3.1.3.2). Assume that the sequence of samples is x =
x0, x1, . . . , xN−1 where xi ∈ X , 0 ≤ i ≤ N − 1 and |X | denotes the cardinal-
ity of the sample domain. The log-likelihood ratio is calculated as

LLR =

N−1∑

i=0

(

log2

DC(xi)

1/|X |

)

. (3.38)

The decision rule based on the LLR is

δ(DX) =

{
cipher, if LLR ≥ 0
random, if LLR < 0

. (3.39)

3.4.2 Only The Random Distribution is Known

In some situations, the noise distribution, DC , from the cipher is not known.
Such situations appear in tests where the internal structure of the stream
cipher is discarded, i.e., in general distinguishing attacks. In these tests
one usually models the keystream generator as a black box, and studies
the statistical behavior of the keystream. Examples of such tests are the Die
Hard [Mar] test, the Crypt-X [aQUoTiA] test and the NIST test suite [NIS].

3.5. Time Memory Data Trade-Off Attacks 49

In general distinguishing attacks test we would usually use the χ2 tests de-
scribed in Section 3.1.3.1.

Assume that we observe the sequence x = x0, x1, . . . , xN−1, where xi ∈
X , 0 ≤ i ≤ N − 1. We calculate the test statistic χ2 according to Equation
(3.17), and our decision rule is

δ(DX) =

{
cipher, if χ2 > χ2

α(ν)
random, if χ2 ≤ χ2

α(ν)
. (3.40)

3.5 Time Memory Data Trade-Off Attacks

In 1980, time memory trade-off attacks (TMTO) on block ciphers where intro-
duced by Hellman [Hel80]. The idea is to divide the computational com-
plexity of the attack into a precomputation phase, and an online attack phase.
The precomputation is only performed once and the result is stored in mem-
ory. If we spend more time and memory on the precomputation phase, we
can reduce the time spent in the online phase.

In the following, we describe time memory data trade-off attacks directed at
stream ciphers. In this section we will use the following notations:

• N represents the size of the full search space to find a key or a state;

• P represents the computational complexity of the precomputation pha-
se;

• M denotes the amount of required memory;

• T represents the computational complexity of the online attack phase;

• D represents the amount of available keystream.

The complexity of the attack is usually taken as max(T, M), hence, for a suc-
cessful attack we require T, M < N . Usually the precomputation time, P , is
not taken into account, however, recently there have been some discussion
whether attacks with P > N are meaningful.

Babbage [Bab95] and Golić [Gol97] independently introduced trade-off
attacks for stream ciphers. Let the search space, N , be the number of possi-
ble states and let the size of the state be denoted |σ|, i.e., N = 2|σ|. Also, let f

be a function, f : Flog N
2 → Flog N

2 , which takes log N bits from the state and
transforms it to a log N bit keystream, which is used as a prefix. In other
words, run the keystream generator until log N keystream bits have been
produced from the initial state σ. Create the table

(
σ0, f(σ0)

)

...
(
σM−1, f(σM−1)

)
, (3.41)

50 3. Stream Cipher Cryptanalysis

from M randomly chosen initial states σi, 0 ≤ i ≤ M − 1, in the stream ci-
pher. The table is sorted, which can be done with computational complexity
O(M log M), according to the output keystream, i.e., according to f(σ). The
probability that a randomly chosen initial state will be stored in the table is
M/N . Given a keystream sequence of D = N/M +log N −1 bits, we can ex-
tract N/M overlapping log N -bit subsequences. With high probability one
of these subsequences will be included in our stored table. If we find a colli-
sion in the table, the corresponding starting point is our internal state. This
attack is an application of the second birthday problem discussed in Section
3.1.1.

Biryukov and Shamir [BS00] combined the ideas used by Babbage and
Golić with the ideas introduced by Hellman. Let f be a function that maps

an internal state on to a keystream word f : Flog N
2 → Flog N

2 . Let hi :

Flog N
2 → Flog N

2 be a simple output modification function. Variants of the
original f can then be used, i.e., fi(x) = hi

(
f(x)

)
. In the attack by Golić

and Babbage only chains of length one were used. If we take the output
from f to be the new state of the keystream generator, we can also produce
longer chains for stream ciphers. The chains can be recreated from the start-
ing state of the chain, hence we only need to store the start and the end of

each chain. Let σ
(i)
k denote the kth state in chain i, similarly let z

(i)
k denote

the kth output from f for chain i. Then, a keystream word at time t can be

calculated as z
(i)
t = f(σ

(i)
t). The next state used in chain i can be calculated

as σ
(i)
t+1 = hi

(
f(σ

(i)
t)

)
. Figure 3.5 shows how to construct a matrix that

covers t × L states.

σ
(0)
0

f hi

fi

. . . f z
(0)
L−1

z
(0)
0 σ

(0)
1

σ
(0)
L−1

σ
(1)
0

f hi
. . . f z

(1)
L−1

z
(1)
0 σ

(1)
1

σ
(1)
L−1

...
...

...
...

σ
(t−1)
0

f hi . . . f z
(t−1)
L−1

z
(t−1)
0 σ

(t−1)
1

σ
(t−1)
L−1

Figure 3.5: Hellman’s matrix for a function fi(σ) = hi

�
f(σ)

�
. The

samples that are stored in the table are marked by dashed boxes.

3.6. Resynchronization Attacks 51

Using birthday problem arguments, Hellman introduced the so called
matrix stopping rule

t2L = N (3.42)

as a guideline for how to choose t and L. Larger values of t and L lead to
repeated entries in the matrix and hence to an inefficient coverage of points.
Instead, we will use r different functions, hi, and for each function we con-
struct a matrix with a size that fulfills the matrix stopping rule. In Hellman’s
attack on block ciphers, the available keystream was restricted to one output
word. When we attack stream ciphers we can use many keystream words,
which yields a more powerful trade-off. Biryukov and Shamir showed that
it is possible to attack stream ciphers with parameters that fulfill the rela-
tionships P = N/D and TM2D2 = N2.

To avoid the attacks described above, stream ciphers ought to have an
internal state size of at least twice the key length.

3.6 Resynchronization Attacks

Most modern stream ciphers incorporate the usage of an initialization vec-
tor. The use of IVs gives an assailant even more freedom in attacks against
a cipher. Not only can the assailant observe a sequence of keystream bits
from a single keystream, he can observe keystream symbols from multiple
keystreams, where distinct IVs and the same key are used. Figure 3.6 illus-
trates this scenario.

IV0

IV1

...

IVn−1

�

�
	Keystream

generator

z0
0 · · · z0

N−1

z1
0 · · · z1

N−1

...

z
n−1
0 · · · z

n−1
N−1

K

Figure 3.6: A keystream generator, which produces multiple
keystreams from n different IVs. The same key is used for all
keystreams.

As stated in Section 1.3.1, we distinguish between known IV attacks and
chosen IV attacks. We will now discuss two common resynchronization
scenarios.

52 3. Stream Cipher Cryptanalysis

In the first scenario a fixed resync is used. The message is divided into
frames and each frame is encrypted with a unique IV. Usually, this IV is a
frame counter which is just increased by one for every new frame. In this
scenario an assailant can launch a known IV attack.

In the second resynchronization scenario, one of the parties of a trans-
mission requests a resynchronization, called a requested resync. Under this
scenario we assume that the IV may be chosen by one of the participants.
This scenario enables a so called chosen IV attack, in which the assailant
may also choose the IVs. This scenario might also enable a so called repeated
IV attack, in which the same IV is used for encryption with several keys (it
has been debated whether a repeated IV attack is relevant, as by definition
an IV should only be used once).

The ultimate goal for a resynchronization attack is to recover either the
secret key or the internal state. However, other attacks such as distinguish-
ing attacks can also be considered as we will see in Chapter 9. Distinguish-
ing attacks on multiple streams from different IVs can be useful to inves-
tigate the security of an initialization procedure. This will be further dis-
cussed in Section 10.

An example that demonstrates the importance of resynchronization at-
tacks is the attack on the WEP protocol, e.g. [TWP07] based on the paper by
Fluhrer, Mantin and Shamir [FMS01b].

3.7 Algebraic Attacks

Algebraic attacks have received much interest lately. These attacks try to
reduce the key recovery problem to the problem of how to solve a large sys-
tem of algebraic equations. Algebraic cryptanalysis goes back to Shannon
who stated that to break a good cipher should require ”as much work as
solving a system of simultaneous equations in a large number of unknowns
of a complex type” [Sha49].

In an algebraic attack, the first step is to try to describe the cipher with
equations that only involves key bits, keystream bits and intermediate val-
ues.

The most famous algorithms can be categorized into two groups, namely
linearization techniques and algorithms to compute Gröbner bases.

The basic linearization attack is very simple in its form: every nonlin-
ear monomial is just replaced by a new linear variable and the resulting
linear system of equations is solved with Gauss elimination. Usually this
technique generates a very large number of unknowns. If a solution is to
be found, the original system of equations has to be greatly over-defined.
However, in attacks against stream ciphers, it is easy to extract many equa-
tions from a large amount of keystream. Every new keystream bit gives one

3.8. Summary 53

new equation. Hence, linearization techniques are well suited for attacks
against stream ciphers.

Courtois and Meier showed [CM03] that algebraic attacks can be very
efficient on some stream ciphers. They also showed that a Boolean func-
tion, h(x), x ∈ Fd

2, of high algebraic degree might not necessarily provide a
good protection against algebraic attacks. If we multiply the Boolean func-
tion by an appropriately chosen function k(x), we can reduce the degree
of the function, i.e., g(x) = k(x)h(x) is of low degree. It has also been
shown that the existence of such functions, k(x), is equivalent to the exis-
tence of annihilating functions, i.e., functions, k(x), such that k(x)h(x) = 0 or
k(x)

(
1+h(x)

)
= 0 [MPC04]. In the latter work a new property of a Boolean

function, h(.), called the algebraic immunity, denoted AI(h), was also intro-
duced. The algebraic immunity is the minimum degree of an annihilating
function for the considered Boolean function.

3.8 Summary

In this chapter we have described the birthday attack, how to find low
weight multiples of LFSRs and hypothesis testing, these are all very useful
in the cryptanalysis of stream ciphers and will be frequently used in later
chapters.

We discussed some common attacks on stream ciphers, both generic and
cipher specific attacks. We described the generic brute force attack applica-
ble to all ciphers. The correlation attack and its later improvements were
briefly described, which was followed by an overview of distinguishing at-
tacks. Time memory data trade-off attacks was described in the context of
stream cipher cryptanalysis. We also introduced resynchronization attacks,
in which multiple keystreams from different initialization vectors can be
analyzed. Finally, we briefly mentioned algebraic attacks, which has been a
hot topic in stream cipher cryptanalysis lately. The list is far from complete,
but it covers the topics of most interest to us.

54 3. Stream Cipher Cryptanalysis

4

Correlation Attacks Using a New
Class of Weak Feedback

Polynomials

Due to the fast correlation attack introduced by Meier and Staffelbach
[MS88] it is a well known fact that one avoids low weight feedback

polynomials in the design of LFSR based stream ciphers.
In this chapter we will identify a new class of such weak feedback poly-

nomials, namely, polynomials that can be written in the form

g(x) = g0(x) + g1(x)xr1 + . . . + gn−1(x)xrn−1 ,

where g0, g1, . . . , gn−1 are all polynomials of low degree. For such feedback
polynomials, we identify an efficient correlation attack in the form of a dis-
tinguishing attack.

The results of the chapter are as follows. For the new class of such weak
feedback polynomials, given above, we present an algorithm for launching
an efficient fast correlation attack. The applicability of the algorithm can be
divided in two groups.

Firstly, if the feedback polynomial is of the above form with a moderate
number of gi polynomials, the new algorithm will be much more power-
ful than applying any previously known (like Meier-Staffelbach) algorithm.

55

56
4. Correlation Attacks Using a New Class of Weak Feedback

Polynomials

This could be interpreted as feedback polynomials of the above kind should
be avoided when designing new LFSR based stream ciphers.

Secondly, for an arbitrary feedback polynomial, a standard approach in
fast correlation attacks is to first search for low weight multiples of the feed-
back polynomial. Then, using the low weight multiples one applies the
correlation attack. We can do the same and search for multiples of the feed-
back polynomial that have the above form. It turns out that this approach is
in general less efficient than searching for low weight polynomials, but we
can always find specific instances of feedback polynomials where we do get
an improvement.

We model the keystream generator as a binary symmetric channel which
was discussed briefly in Section 3.3. The BSC is once again illustrated in Fig-
ure 4.1. The target stream cipher uses two different components, one linear

g(x) -

-

-

������*HHHHHHj

-
0

1

0

1

p
p

1 − p

1 − p

st zt

LFSR BSC

Figure 4.1: The model for a correlation attack.

and one nonlinear. The linear part is an LFSR and the nonlinear function
can, through a linear approximation, be seen as a binary symmetric chan-
nel (BSC) with crossover probability p (correlation probability 1 − p) with
p 6= 0.5.

The chapter is based on [EHJ04], and the outline is the following. We will
describe how to perform a basic distinguisher using low weight recurrence
relations in Section 4.1. We generalize the attack using vectors in Section
4.2, and in Section 4.3 we discuss how different parameters effect the attack.
Methods of how to find multiples of the specified kind are described in Sec-
tion 4.4, and the results of the attack are compared to the basic distinguisher
in Section 4.5. Finally, the chapter is summarized in Section 4.6.

4.1 A Basic Distinguishing Attack

We will start by describing the basic binary distinguishing attack. Note that
the theory in this section is well known and stems from the correlation at-
tack by Meier and Staffelbach.

We will use the model in Figure 4.1 where the output sequence from the

4.1. A Basic Distinguishing Attack 57

LFSR is denoted s0, s1 The observed keystream output can be written as
a noisy version of the sequence from the LFSR,

zt = st ⊕ et, (4.1)

where et ∈ F2, t ≥ 0, are binary variables representing the noise introduced
by the approximation. The noise is assumed to have a biased distribution

Pr(et = 0) = 1 − p =
1

2
+ ε, (4.2)

where ε is usually rather small. Assume the characteristic polynomial of the
LFSR can be written as

f(x) = f0 + f1x + f2x
2 + f3x

3 + . . . frx
r , (4.3)

where fi ∈ F2, 0 ≤ i ≤ r and where fr = 1. Recalling Section 2.2.1, we can
write the linear recurrence relation as

r⊕

j=0

fjst+j = 0, t ≥ 0, (4.4)

where r is the length of the LFSR length and fj ∈ F2, 0 ≤ j ≤ r, are known
constants.

By adding the corresponding positions in the keystream z instead, we
cancel out all the symbols from the LFSR. What remains is a sum of inde-
pendent noise variables. Let us denote a sample xt at time t, samples are
calcualted as

xt =
r⊕

j=0

fjzt+j. (4.5)

Then by using the linear recurrence relation we can reduce the sum to

xt =

r⊕

j=0

fjst+j ⊕
r⊕

j=0

fjet+j =

r⊕

j=0

fjet+j . (4.6)

As the distribution of et is nonuniform it is possible to distinguish the sam-
ple sequence xt, t = 1, 2, . . ., from a truly random sequence.

If we assume the binary case, the sum of the noise will have a bias which
can be calculated as

Pr
(

r⊕

j=0

fjet+j = 0
)

=
1

2
+ 2w−1εw, (4.7)

58
4. Correlation Attacks Using a New Class of Weak Feedback

Polynomials

where w is the weight of the feedback polynomial of the LFSR. This equation
is very common in cryptology and is called the piling-up lemma, introduced
by Matsui in [Mat94].

In this chapter we choose to use the Squared Euclidean Imbalance as
a measure of the distance between two distributions, as described in Sec-
tion 3.1.3.2. Let us consider the binary case above. The expression for the
SEI becomes

∆(D0) = |X |
∑

x∈X
ε2

x

= 2
(
(2w−1εw)2 + (2w−1εw)2

)
= 22wε2w.

(4.8)

Using Equation (3.33) we approximately need

N ≈ 11

∆(DC)
=

11

22wε2w
(4.9)

samples to distinguish the cipher distribution DC from the uniform distri-
bution. The total error probability of the distinguisher is approximately
Pe = 0.05, i.e., the distinguisher has the advantage

AdvAR = |DC(AR) −DU (AR)| = 1 − 2Pe ≈ 0.9. (4.10)

We see that the weight of the characteristic polynomial is directly connected
to the success of the attack. In the rest of the section we will compare our
results to this basic binary distinguisher.

4.2 A More General Distinguishing Attack Using

Correlated Vectors

As seen in the previous section, low weight polynomials are easily attacked,
and hence they are usually avoided in stream cipher constructions. When
the weight of the LFSR grows, the required keystream length and the com-
putational complexity grows exponentially. At some point we argue that
the attack is no longer realistic, or it might require more than an exhaustive
key search. However, as seen in Section 3.1.2 it is also possible to find low
weight multiples of a polynomial. Hence it is also important that the de-
gree of the original polynomial is sufficiently high. In this section we now
describe a similar but more general approach that can be applied to another
set of characteristic polynomials.

4.2. A More General Distinguishing Attack Using Correlated Vectors 59

Consider a length r LFSR with characteristic polynomial as described in
Equation (4.3). We try to find a multiple, g(x), of the characteristic polyno-
mial so that this polynomial can be written as

g(x) = f(x)k(x) = g0(x) + xrg1(x), (4.11)

where

g0(x) = g(0,0) + g(0,1)x + . . . + g(0,k)x
k

g1(x) = g(1,0) + g(1,1)x + . . . + g(1,k)x
k

(4.12)

are polynomials of some small degree ≤ k. It is possible that f(x) is already
on the form (4.11) and then k(x) = 1. In the remaining part of this section
we assume that such a polynomial g(x) of the above form is given. We will
later also discuss how such polynomial multiples can be found.

Polynomials that can be written on the form (4.11) corresponds to shift
registers for which the taps are concentrated to two regions far away from
each other. The linear recurrence relation can then be written as the two
sums

k⊕

i=0

g(0,i)st+i ⊕
k⊕

i=0

g(1,i)st+r+i = 0, (4.13)

where st is the tth output bit from the LFSR. We now use the standard model
for a correlation attack where the output of the cipher is considered as a
noisy version of the LFSR sequence zt = st⊕et. The noise variables et, t ≥ 0
are introduced by the approximation of the nonlinear part of the cipher.
Furthermore, the biased noise has distribution P (et = 0) = 1

2 + ε, and the
variables are identically and independently distributed.

Let us introduce the notation Qt to be the sum

Qt =

k⊕

i=0

zt+ig(0,i) ⊕
k⊕

i=0

zt+r+ig(1,i)

=

k⊕

i=0

et+ig(0,i) ⊕
k⊕

i=0

et+r+ig(1,i).

(4.14)

The noise variables (et, t ≥ 0) are independent but Qi values that are
close to each other will not be independent in general. This is because of the
fact that several Qi variables will contain common noise variables. We can
take advantage of this fact by moving to a vector representing the noise as
follows.

Introduce the vectorial noise vector Et of length L as

Et = (QL·t, . . . , QL(t+1)−1). (4.15)

60
4. Correlation Attacks Using a New Class of Weak Feedback

Polynomials

Rewriting the expression for Qt as a vector multiplication, Et can also be
expressed as

Et = (eL·t, . . . , eL(t+1)+k−1) · G0 + (eL·t+r, . . . , eL(t+1)+r+k−1) · G1, (4.16)

where G0 and G1 are the (L + k) × L matrices

G0 =

0BBBBBBBBB� g(0,0)

g(0,1) g(0,0)

.

.

.
.
.
. g(0,0)

g(0,k) g(0,k−1) . . . g(0,1)

g(0,k)

.

.

.
g(0,k)

1CCCCCCCCCA and G1 =

0BBBBBBBBB� g(1,0)

g(1,1) g(1,0)

.

.

.
.
.
. g(1,0)

g(1,k) g(1,k−1) . . . g(1,1)

g(1,k)

.

.

.
g(1,k)

1CCCCCCCCCA.

In the preprocessing stage of of the attack, we derive the distribution of the
Et noise vector given in (4.16). We denoted this distribution by DC . This can
be done easily for small polynomial degrees, as we know the distribution of
the noise. Our aim is to distinguish this distribution from the truly random
case, so by DU we denote the uniform distribution.

When performing the attack, we collect a sample sequence of length N ′,

Q0, Q1, Q2, . . . , QN ′−1, (4.17)

by Qt =
⊕k

i=0 zt+ig(0,i) ⊕
⊕k

i=0 zt+r+ig(1,i). This sample sequence is then
transformed into a vectorial sample sequence E0, E1, . . . , EN−1 by Et =
(QL·t, . . . , QL(t+1)−1), 0 ≤ t ≤ N − 1 where N ′ = L(N + 1)− 1. The sample
size N needed to distinguish DC and DU , where DU (x) = 1/2L, ∀x ∈ FL

2 , is
determined using the Squared Euclidean Imbalance and Equation (3.33) as

N ≈ 11

2L
∑

x∈F
L
2

(

DC(x) − 1

2L

)2 (4.18)

In the actual attack we will use the hypothesis test as described in Sec-
tion 3.4.1, i.e., we will use the log-likelihood ratio in Equation (3.21). The
proposed algorithm is summarized in Figure 4.2.

The performance of the algorithm depends on the polynomials, g0(x)
and g1(x) that are used. Figure 4.2 shows an example of how the number
of vectors required for a successful attack depends on the vector length for
a certain combination of two polynomials. L = 1 corresponds to the basic
approach described in Section 4.1. We see that increasing the vector length
will decrease the number of vectors needed. Note that g0(x) and g1(x) are

4.2. A More General Distinguishing Attack Using Correlated Vectors 61

'

&

$

%

1. Find multiple g(x) s.t. g(x) = f(x)k(x) = g0(x) + xrg1(x) .
2. Calculate cipher distribution DC .
3. for t = 0 . . .N ′

Qt =
k⊕

i=0

zt+ig(0,i) ⊕
k⊕

i=0

zt+r+ig(1,i)

end for.
4. for t = 0 . . .N

Et = (QL·t, . . . , QL(t+1)−1)
end for.

5. Calculate LLR =

N∑

t=0

(

log2

DC(Et)

1/2L

)

.

6. if (LLR ≥ 0)
output cipher.

else
output random.

Figure 4.2: Summary of proposed algorithm.

just two examples of what the polynomials might look like, they do not
represent a multiple of any specific primitive polynomial.

Finally, we note that it is possible to generalize the results to polynomi-
als of arbitrarily many groups. Expression (4.11) for the polynomial then
becomes

g(x) = k(x)f(x) = g0(x) + xr1g1(x) + . . . + xrn−1gn−1(x), (4.19)

where gi(x) is a polynomial of some small degree ≤ k, and r1 < r2 < . . . <
rn−1. It is clear that when n grows it is easier to find multiples of the charac-
teristic polynomial with the desired properties. But it is also clear that when
n grows, the attack becomes weaker.

This distinguishing attack that we propose may be mounted on ciphers
using a shift register where “good” multiples easily can be found. Ciphers
using a polynomial where many taps are close together might be attacked
directly without finding any multiple. This attack may be viewed as a new
design criteria, one should avoid LFSRs where multiples of the form (4.11) are
easily found.

62
4. Correlation Attacks Using a New Class of Weak Feedback

Polynomials

2 4 6 8 10
30

35

40

45

50

55

L

lo
g

2
N

Figure 4.3: The number of vectors needed as a function of the vector
length L. In this example g0(x) = 1 + x + x5 + x6 and g1(x) =
1 + x + x7 + x8.

4.3 The Parameters in the Attack

We have described the new attack in the previous section. We now discuss
how various algorithmic parameters effect the results.

4.3.1 The Structure of gi(x)

As the vectors Et are correlated it is intuitive that the forms of gi(x) will
effect the strength of the attack. Some combinations of polynomials will
turn out to be much better than others.

We have tested a number of different polynomials gi(x) in order to find
a set of rules describing how the form of the polynomials effects the result.
A definite rule to decide which polynomials are best suited for the attack
is hard to find. Some basic properties that characterizes a good polynomial
can be found. The parameters that determine how a polynomial will effect
the distribution of the noise vectors are the following.

• The weight of the polynomial. A feedback polynomial of small weight
leads to samples where few noise variables are involved and hence, a
large bias. And a large weight means many noise variables and there-
fore a more uniform noise distribution.

• Arrangement of the terms in a polynomial. This is the same as the arrange-
ment of the taps in the LFSR. If there are many taps close together, the

4.3. The Parameters in the Attack 63

corresponding noise variables will occur more frequently in the noise
vector. This will significantly effect the distribution of the noise vec-
tors.

As ri, 1 ≤ i ≤ n − 1 are typically large, all polynomials gi(x), 0 ≤
i ≤ n − 1 can be considered independent. Their properties will have the
same influence on the total result. However, the polynomials are combined
to form the distribution. This combination is just a variant of the piling-
up lemma so it is obvious that the total distribution is more uniform than
the distribution of the individual polynomials. Depending on the form of
the individual polynomials, the resulting distribution becomes more or less
uniform. Some combinations are “better” than others. Some examples of
this can be found in Figure 4.4.

2 4 6 8 10
45

50

55

60

65

70

75

80

L

lo
g

2
N

(a) g0 = (1111101) and g1 = (1110111)

2 4 6 8 10
45

50

55

60

65

70

75

80

L

lo
g

2
N

(b) g0 = (1001011) and g1 = (1100011)

2 4 6 8 10
45

50

55

60

65

70

75

80

L

lo
g

2
N

(c) g0 = (1011011) and g1 = (1100111)

2 4 6 8 10
45

50

55

60

65

70

75

80

L

lo
g

2
N

(d) g0 = (1111101) and g1 = (1011011)

Figure 4.4: The sequence length needed as a function of the vec-
tor length L (logarithmic). In the figures the following vectors
gi = (g(i,0), g(i,1), . . . , g(i,6)) corresponds to the polynomial gi(x) =
g(i,0) + g(i,1)x + . . . + g(i,6)x

6 for i ∈ {0, 1}.

64
4. Correlation Attacks Using a New Class of Weak Feedback

Polynomials

4.3.2 The Vector Length

The length of the vectors, denoted L, impacts the effectiveness of the algo-
rithm. The idea of using L larger than one is that we can get correlation
between the vectors. Every time we increase L by 1 we will also increase
the Squared Euclidean Imbalance. Recalling (3.33), we see that increasing
the SEI means that we will decrease the number of vectors needed for our
hypothesis test. The Squared Euclidean Imbalance is however not a linear
function of L. Depending on the form of the polynomials the increase can
be much higher for some L than for others. The computational complexity
is also higher when L grows as each vector has 2L different values. The
downside is that the complexity of the calculations increase with increasing
L. So there is trade off between the number of samples needed and the com-
plexity of the calculations. The largest gain in Squared Euclidean Imbalance
is usually achieved when going from L = i to L = i + 1 for small i. This
phenomenon can be seen in Figure 4.4.

4.3.3 The Number of Groups

As we will show in Section 4.4, it is much easier to find a multiple if we
allow the multiple to have more groups than just two. The drawback is that
the distribution will become more uniform if more groups are used. This is
similar to the binary case in which more taps in the multiple will cause a less
biased distribution. The difference is that there is no equivalence to Equa-
tion (4.7) for how much more uniform the distribution will be when having
many groups, as this depends a lot on the polynomials used. However, if a
multiple with many groups can be found where the degree of each group is
quite small, using longer vectors still gives a significant improvement in the
bias. This can be seen in Figure 4.5 where a polynomial with three groups is
used.

4.4 Finding Multiples of the Characteristic Poly-

nomial of a Desired Form

According to the piling-up lemma (4.7), the distribution becomes more uni-
form if the polynomial is of a high weight. Therefore, the first step in a
correlation attack is to find a multiple that has a low weight. The multi-
ple will produce the same sequence so the linear relation that describes the
multiple will also satisfy the original LFSR sequence. There are easy and
efficient ways of finding a multiple of a given weight. The number of bits
needed to actually start the attack depends on the degree of the multiple,
which in turn depends the weight of the same. As described in Section 3.1.2

4.4. Finding Multiples of the Characteristic Polynomial of a Desired Form65

2 4 6 8 10
45

50

55

60

65

70

75

80

L

lo
g

2
N

Figure 4.5: The sequence length needed as a function of the vector
length L (logarithmic), three groups. In the figure three groups of
polynomials are used, namely g0 = (1011), g1 = (1111) and g2 =
(1110), using the notation introduced in Figure 4.4.

a multiple of weight wg of a polynomial that has degree rf has an expected
degree of approximately

rg ≥ 2
rf

wg−1 . (4.20)

In Table 4.1 the result of this equation is listed for an LFSR of length 100. We

rg wg

2 3 4 5 6 7 8 9 10

rf = 100 2100 250 233 225 220 217 214 2123 211

Table 4.1: The degree rg of the multiple as a function of rf and wg .

have many times assumed that a multiple of the feedback polynomial has
a certain form. We will now look at the problem of finding multiples of a
such a form.

Say that we want to find a multiple of the form

g(x) = k(x)f(x) = g0(x) + xrgg1(x), (4.21)

where f(x) is the characteristic polynomial of the cipher. The degree of f(x)
is rf . This can be found by polynomial division. Assume that we have
a g1(x) of degree smaller than k. We then multiply this polynomial with
xi, 0 ≤ i ≤ rg . The result is divided by the original LFSR-polynomial. This
gives us a quotient q(x) and a remainder g0(x).

xig1(x) = f(x) · q(x) + g0(x). (4.22)

66
4. Correlation Attacks Using a New Class of Weak Feedback

Polynomials

We have 2k different g1(x)-polynomials and i can be chosen in rg differ-
ent ways. The remainder g0(x) from the division is a polynomial with
0 ≤ deg(g0(x)) < rf . If g0(x) has degree ≤ k we have found an accept-
able g0(x). The probability of finding a polynomial of maximum degree k
is

Pr
(

deg
(
g0(x)

)
≤ k

)

=
2k

2rf
. (4.23)

We can estimate the number of polynomials g0(x) with degree smaller than
k as

2k · rg · Pr
(

deg
(
g0(x)

)
≤ k

)

= 2k · rg · 2k

2rf
. (4.24)

We would like this number to be greater or equal to one. Hence we need

rg ≥ 2rf−2k. (4.25)

Examining the result in (4.24) we see that for modest values of k the length
of the multiple will become quite large. Therefore we extend our reasoning
to the case with arbitrarily many groups, then we have a multiple of the
form

g(x) = k(x)f(x) = g0(x) + xr1g1(x) + . . . + xrn−1gn−1(x). (4.26)

If we use the same reasoning as above we receive a new expression

2k · r1 · 2k · r2 · . . . · 2k · rn−1 ·
2k

2rf
≥ 1 ⇒ rg ≥ 2

rf−nk

n−1 , (4.27)

where it is assumed that r1, r2, . . . , rt−1 ≤ rg . This gives us an upper bound
on all ri.

In (4.27) we see that by using larger values of n, i.e., more groups, we
can lower the length of the multiple. One has to bear in mind though that a
larger n, as stated in Section 4.3.3, will usually effect the Squared Euclidean
Imbalance in a negative way (from a cryptanalyst point of view). In Table 4.2
we list some values on rg needed to find a multiple, for some values of k and
n.

4.5 Comparing the Proposed Attack with a Basic

Distinguishing Attack

Our algorithm can be used in two scenarios. Firstly, if the characteristic
polynomial is of the form g(x) = g0(x) + g1(x)xr1 + . . . + gn−1(x)xrn−1 .
The basic distinguisher applied on LFSRs of this family without finding

4.6. Summary 67

rg n

2 3 4 5 6

3 294 247 231 224 219

4 292 246 231 223 218

5 290 245 230 223 218

k 6 288 244 229 222 218

7 286 243 229 222 217

8 284 242 228 221 217

Table 4.2: The degree rg of the multiple as a function of the number
of groups n and the degree of each group k for rf = 100.

any multiple first, is equivalent to applying our algorithm with L = 1. As
our algorithm has the ability to have correlated vectors with noise variables
(L > 1), it will be a significant improvement over the basic algorithm. Us-
ing the basic algorithm without first finding a multiple is naive, but if the
length rf of the LFSR is large, the degree of the low weight multiple will
also be large, see (4.20). So if f(x) is of high degree then our algorithm can
be more effective.

Our algorithm can also be applied to arbitrary characteristic polynomi-
als. The first step is then to find a multiple of the polynomial that is of the
form g(x) = g0(x) + g1(x)xr1 + . . . + gn−1(x)xrn−1 . We then apply our al-
gorithm. By comparing the two equations (4.20) and (4.27) we see that it is
not much harder to find a polynomial of some weight w than it is to find a
polynomial with the same number of groups. Although our algorithm takes
advantage of the fact that the taps are close together, it is still not enough to
compensate for the larger amount of noise variables. In this case the pro-
posed attack will give improvements only for certain specific instances of
characteristic polynomials, e.g., those having a surprisingly weak multiple
of the form g(x) = g0(x) + xrgg1(x) but no low weight multiples where the
weight is surprisingly low.

4.6 Summary

Through a new correlation attack, we have identified a new class of weak
feedback polynomials, namely, polynomials of the form f(x) = g0(x) +

68
4. Correlation Attacks Using a New Class of Weak Feedback

Polynomials

g1(x)xr1 + . . . + gn−1(x)xrn−1 , where g0, g1, . . . , gn−1 are all polynomials of
low degree. The correlation attack has been described in the form of a dis-
tinguishing attack. This was done mainly for simplicity, as the theoretical
performance is easily calculated and we can compare with the basic attack
based on low weight polynomials.

5

A New Simple Technique to
Attack Filter Generators and

Related Ciphers

In this chapter we consider binary stream ciphers where the output from
an LFSR is filtered by a nonlinear function as described in Section 2.3.2.

The structure of a nonlinear filter generator is pictured in Figure 5.1. Let

LFSR

h

zt

Figure 5.1: Filter Generator.

st, st+1, . . . denote the output sequence from a length r LFSR with feedback
polynomial f(x). Let h denote the nonlinear filter function. At each time t
this function takes d input values from the LFSR and produces one output
bit zt. The variables used as inputs to h at time t are the entries in the vector

69

70
5. A New Simple Technique to Attack Filter Generators and Related

Ciphers

st = (st+t1 , st+t2 , . . . , st+td
), st ∈ Fd

2. We thus have zt = h(st). This is
modeled in Figure 5.1.

In this chapter we present a very simple distinguishing attack that can
be applied on stream ciphers using a filter generator or a similar structure
as a part of the cipher.

Leveiller et al. [LZGB03] proposed methods involving iterative decoding
and the use of vectors instead of the binary symmetric channel. We use a
similar idea, but much simpler in its form and more powerful in its perfor-
mance, to mount a distinguishing attack. In the basic algorithm we first find
a low weight multiple of the LFSR. We then consider the entries of the parity
check equation as a vector. Such vectors, regarded as random variables, are
non-uniformly distributed due to the parity check, and this is the key ob-
servation that we use to perform a distinguishing attack. This allows us to
detect statistical deviations in the output sequence, creating the distinguish-
ing attack. We can also present ideas on how to improve the performance
by using slightly more complex algorithms.

In order to demonstrate the effectiveness of the proposed ideas, we ap-
ply them on a stream cipher called LILI-128. The attack is a key recovery
attack. LILI-128 has one LFSR controlling the clock of another LFSR. Our
approach is to guess the first 39 bits of the key, those bits that are used in
the LFSR that controls the clocking. In doing so, the irregular clocking is re-
moved and our analysis on filter generators can be applied to the rest of the
cipher. If our guess is correct we will be able to detect some bias in the out-
put sequence through the proposed distinguishing attacks. The complexity
for one of the proposed attacks is roughly 253 binary operations and it needs
about 247 keystream bits.

The chapter is based on [EJ04], and the outline is the following. We will
describe the idea of the distinguisher in Section 5.1, and the attack is ex-
panded in Section 5.2 to use more than one parity check equation. In Sec-
tion 5.3 we describe a very simple state recovery attack where many weight
three relations are used. To demonstrate the practicality of the proposed
attack, we show how the stream cipher LILI-128 can be broken using this
attack in Section 5.4. Finally, the chapter is summarized in Section 5.5.

5.1 Building a Distinguisher

A usual description of a stream cipher is to model it as a binary symmetric
channel (BSC) (see Section 3.3), using linear approximations. But we pro-
ceed differently. Instead we write the terms in the weight w parity check
equation as a length w vector. This way we use our knowledge of the non-
linear function better than in the BSC model.

5.1. Building a Distinguisher 71

If the feedback polynomial of the LFSR is of low weight from the begin-
ning, we can apply our attack directly. Usually this is not the case, and our
first step is then to try to find a low weight multiple of the feedback poly-
nomial, see Section 3.1.2. The degree of the multiple gives a lower bound
of the number of samples we need to observe, so in this attack we wish to
minimize this degree. As the number of samples is of high concern to us
we have chosen to work with the method described in Section 3.1.2. Con-
tinuing, we now assume that the LFSR sequence is described by a weight w
recursion which can be written as

st ⊕ st+τ1 ⊕ . . . ⊕ st+τw−1 = 0, ∀t ≥ 0, (5.1)

where τi, 1 ≤ i ≤ w − 1 denotes the tap positions of the LFSR relative to
time t. We write the terms in this relation as a vector, and by noticing that
st+τw−1 is fully determined by the sum of the other components we get,

(st, st+τ1 , . . . , st+τw−1) = (st, st+τ1 , . . . ,

w−2⊕

i=0

st+τi), (5.2)

where τ0 = 0.
From the LFSR, d different positions are taken as input to the nonlinear

function h. For each of these positions, where t1, t2, . . . , td denotes its posi-
tion relative to time t, we can write a vector similar to (5.2). If we consider
the following matrix,

At =

st+t1 st+t1+τ1 . . .
⊕w−2

i=0 st+t1+τi

st+t2 st+t2+τ1 . . .
⊕w−2

i=0 st+t2+τi

...
...

...

st+td
st+td+τ1 . . .

⊕w−2
i=0 st+td+τi

, (5.3)

then by writing st+τi
= (st+t1+τi , st+t2+τi , . . . , st+td+τi)

T we get

At = (st, st+τ1 , . . . ,

w−2⊕

i=0

st+τi
). (5.4)

In the attack we will not have access to the LFSR output, instead we have
access to the output bits from the nonlinear function h. The output values
(zt, zt+τ1, . . . , zt+τw−1), denoted as zt, can be described as

zt = (zt, zt+τ1 , . . . , zt+τw−1) =
(
h(st), h(st+τ1), . . . , h(

w−2⊕

i=0

st+τi
)
)
. (5.5)

72
5. A New Simple Technique to Attack Filter Generators and Related

Ciphers

As we run through st, st+τ1 , . . . , st+τw−1
in a nonuniform manner (not all

values of st, st+τ1 , . . . , st+τw−1
are possible), we will (in general) gener-

ate a nonuniform distribution of (zt, zt+τ1 , . . . , zt+τw−1). Leveiller [LZGB03]
shows that the distribution of these vectors only depends on the parity.
Hence, then it suffices to calculate the following probability

p = Pr
(
h(st) + h(st+τ1) + . . . + h(st+τw−1

) = 0
∣
∣

w−1⊕

i=0

st+τi
= 0

)
. (5.6)

Molland and Helleseth [MH04] showed that this probability can be calcu-
lated as

p =
1

2
+

∑

ω∈F
d
2
Wh(ω)w

2wd+1
, (5.7)

where Wh(ω) is the Walsh coefficient introduced in Section 2.2.3. However,
as we will soon use vectors containing several recursions, we will consider
the entire distribution of the vectors z. This distribution will be denoted
DC(z), ∀z ∈ Fw

2 . Let S be the set of vectors z of even Hamming weight (see
Section 2.2.3), i.e., S = {z ∈ Fw

2 | wH(z) = even}. We see that

p =
∑

z∈S
DC(z). (5.8)

If the number of output bits is large enough, we can perform a hypoth-
esis test according to Section 3.1.3. In this hypothesis test we need the
probability distribution DC . This distribution can be calculated by running
through all different values of st, st+τ1 , . . . , st+τw−1

. If d and w are large,
the complexity for such a direct approach is too high. Then we can use
slightly more advanced techniques based on building a trellis, that have
much lower complexity.

When we have determined DC , we can also estimate the sample size, N ,
needed to distinguish DC from the uniform distribution, DU . The Squared
Euclidean Imbalance and Equation (3.33), where k = 11 gives

N ≈ 11

2w
∑

x∈F
w
2

(

DC(x) − 1

2w

)2 (5.9)

since DU(x) = 1/2w, ∀x ∈ Fw
2 .

The new basic distinguishing attack is summarized in Figure 5.2, where
the final hypothesis test is performed using the log-likelihood ratio, see
Equation (3.21). To really show the simplicity of the attack we will demon-
strate with an example.

5.1. Building a Distinguisher 73

'

&

$

%

1. Find a weight wg multiple g(x) of f(x).
2. Calculate the distribution DC .
3. Calculate the length N we need to observe.
4. for t = 0 . . .N

zt = (zt, zt+τ1, . . . , zt+τw−1)
end for

5. Calculate LLR =

N∑

t=0

log2

(DC(zt)

1/2w

)

.

6. if (LLR ≥ 0)
output cipher.

else
output random.

Figure 5.2: Summary of the new basic distinguishing attack.

EXAMPLE 5.1: We use an example from [LZGB03] in which we consider
a weight three multiple, from which the output is filtered by an 8-input,
2-resilient plateaued function.

h(x1, . . . , x8) = x1 + x4 + x5 + x6 + x7 + x1(x2 + x7) + x2x6+

+x3(x6 + x8) + x1x2(x4 + x6 + x7 + x8)+

x1x3(x2 + x6) + x1x2x3(x4 + x5 + x8).

(5.10)

For a parity of weight three and using the notation from Section 5.1 we can
write the vectors as

(zt, zt+τ1 , zt+τ2) =
(
h(st), h(st+τ1), h(st + st+τ1)

)
. (5.11)

If we try all possible inputs to this function and determine the distribution
DC(zt, zt+τ1 , zt+τ2) we get Table 5.1. We see that the probability only de-
pends on the parity of these vectors. We can now calculate the Squared
Euclidean Imbalance ∆(DC), defined in Section 3.1.3.2, as

∆(DC) = |X |
∑

x∈X
ε2

x

= 8
(
4 · (8320−8192

216)2 + 4 · (8064−8192
216)2

)

= 2−12.

(5.12)

74
5. A New Simple Technique to Attack Filter Generators and Related

Ciphers

zt, zt+τ1 , zt+τ2 DC(zt, zt+τ1 , zt+τ2)
000 8320/216

001 8064/216

010 8064/216

011 8320/216

100 8064/216

101 8320/216

110 8320/216

111 8064/216

Table 5.1: The probability distribution DC(zt, zt+τ1 , zt+τ2).

Using Equation (3.33) we can calculate the number of keystream bits we
need to observe in order to make a correct decision in the hypothesis test.
The number of keystream bits we need is

N ≈ 11

2−12
≈ 45056. (5.13)

This means that we need approximately 45056 bits to distinguish the cipher
from a truly random source. Of course, we can use several weight three
recursions (using squaring technique) and decrease the number of required
bits. However, there are more powerful possibilities, as we will show in the
next section.

5.2 Using More than one Parity Check Equation

The distinguishing attack described in the previous section is in a very sim-
ple form. We can improve the performance by using a slightly more ad-
vanced technique. If we can find more than one low weight parity check
equation, we can use them simultaneously to improve performance. As-
sume that we have the two parity check equations,

st ⊕ s
t+τ

(1)
1

⊕ . . . ⊕ s
t+τ

(1)
w−1

= 0

st ⊕ s
t+τ

(2)
1

⊕ . . . ⊕ s
t+τ

(2)
w−1

= 0
, (5.14)

where τ
(i)
j means tap position j in parity check equation i. Similarly as in

Equation (5.4) we can use these parity equations in the vector

At = (st, st+τ
(1)
1

, . . . ,

w−2⊕

i=0

s
t+τ

(1)
i

, s
t+τ

(2)
1

, . . . ,

w−2⊕

i=0

s
t+τ

(2)
i

). (5.15)

5.2. Using More than one Parity Check Equation 75

We introduce in this case

zt = (zt, zt+τ
(1)
1

, . . . , z
t+τ

(1)
w−1

, z
t+τ

(2)
1

, . . . , z
t+τ

(2)
w−1

). (5.16)

In this case two of the variables are totally determined by the other vari-
ables,

zt =
(
h(st), . . . , h(

w−2⊕

i=0

s
t+τ

(1)
i

), h(s
t+τ

(2)
1

), . . . , h(

w−2⊕

i=0

s
t+τ

(2)
i

)
)
. (5.17)

In a similar manner we can use more than two parity checks in the vectors.
Assume that we have P parity check equations. Then we have P positions
in the vector that are fully determined by other positions. This means a
more skew distribution of the output vector in (5.17). For the particular case
of two parity check equations, the algorithm is described in Figure 5.3.'

&

$

%

1. Find two weight w multiples of g(x).
2. Calculate the distribution DC .
3. Calculate the length, N , we need to observe.
4. for t = 0 . . .N

zt = (zt, zt+τ
(1)
1

, . . . , z
t+τ

(2)
w−1

)

end for

5. Calculate LLR =

N∑

t=0

log2

(DC(zt)

1/2w

)

.

6. if (LLR ≥ 0)
output cipher.

else
output random.

Figure 5.3: Summary of the new distinguishing attack using two
parity check equations.

EXAMPLE 5.2: In this section we consider the same example as in Section
5.1, but we use two recursions as described in Section 5.2. Assume the fol-
lowing two recurrence equations are available for the LFSR used

st ⊕ s
t+τ

(1)
1

⊕ s
t+τ

(1)
2

= 0

st ⊕ s
t+τ

(2)
1

⊕ s
t+τ

(2)
2

= 0
.

76
5. A New Simple Technique to Attack Filter Generators and Related

Ciphers

Hence we observe the keystream vectors

(zt, zt+τ
(1)
1

, . . . , z
t+τ

(2)
2

) =

=
(
h(st), h(s

t+τ
(1)
1

), h(st ⊕ s
t+τ

(1)
1

), h(s
t+τ

(2)
1

), h(st ⊕ s
t+τ

(2)
1

)
)
,

when (st, st+τ
(1)
1

, s
t+τ

(2)
1

) runs through all values. Similarly as before we

use the Squared Euclidean Imbalance in order to determine the number of
vectors N we need to make a correct decision. The SEI is approximately
∆(DC) ≈ 2−10.42 and hence we need N ≈ 11/2−10.42 = 15019 vectors to
distinguish DC from DU . We see that the result is a significant improvement.
If we extend the reasoning and use three weight three recursions we get
ε = 2−9.35 and hence we need N ≈ 11/2−9.35 = 7172 vectors. The gain of
using three recursions instead of two is smaller.

5.3 The Weight Three Attack

If we can find many multiples of weight three of a feedback polynomial we
can simplify the description of our attack. With a d-input nonlinear function
we write one parity check as

st ⊕ st+τ1 ⊕ st+τ2 = 0. (5.18)

If st = 0 we notice that st+τ1 = st+τ2 . If this is the case, then obviously
zt+τ1 = zt+τ2 (we assume that h(0) = 0). Now, assume that we have P
weight three parity checks, where P > d, then

st ⊕ s
t+τ

(1)
1

⊕ s
t+τ

(1)
2

= 0,

st ⊕ s
t+τ

(2)
1

⊕ s
t+τ

(2)
2

= 0,

...
st ⊕ s

t+τ
(P)
2

⊕ s
t+τ

(P)
2

= 0.

(5.19)

Again assuming st = 0 we see that we must have

z
t+τ

(1)
1

= z
t+τ

(1)
2

,

z
t+τ

(2)
1

= z
t+τ

(2)
2

,

...
z

t+τ
(P)
1

= z
t+τ

(P)
2

.

(5.20)

So, as Pr(st = 0) = 2−d we will have

Pr(z
t+τ

(1)
1

= z
t+τ

(1)
2

, . . . , z
t+τ

(P)
1

= z
t+τ

(P)
2

) > 2−d. (5.21)

5.4. A Key Recovery Attack on LILI-128 77

For a purely random sequence, however, this probability is 2−P . It is im-
portant to note that when (5.21) holds for some t, it is very probable that
st = 0, i.e., we have recovered a part of the state. As all output bits from the
length r LFSR can be written as a linear combination of the initial state,

st+tj =
⊕r−1

i=0 aisi, j = 1 . . . d where ai ∈ {0, 1} are constants, we get d

equations of the kind st+tj =
⊕r−1

i=0 aisi = 0 for each st = 0. Finding
another value of t for which (5.21) holds gives more expressions describ-
ing the state. As a full rank of the system of equations would only lead to
the all zero solution, we need to guess at least one bit of the state. Then
simple Gauss elimination can be applied to the system to deduce the other
state bits. So we have described a state recovery attack. This attack has ma-
jor consequences for any filter generator, as well as for nonlinear combining
generators, and possibly also others. Basically, any filter generator of length
r where the number of inputs d is smaller than r/2 can be broken very easily
if we have access to a bit more than 2r/2 output symbols.

This leads to an attack as described in Figure 5.4.'

&

$

%

1. Find P weight three multiples of f(x).
2. Calculate the number of samples N we need to observe.
3. for t = 0 . . .N − 1

if zt = 0 and
z

t+τ
(1)
1

= z
t+τ

(1)
2

z
t+τ

(2)
1

= z
t+τ

(2)
2

...
z

t+τ
(P)
1

= z
t+τ

(P)
2

then assign st = 0.
4. Guess at least one st and then recover s1, s2, . . . by linear algebra.

Figure 5.4: Summary of the weight three state recovery attack.

5.4 A Key Recovery Attack on LILI-128

In 2000 a project called NESSIE was initialized. The aim of this project was
to collect a strong portfolio of cryptographic primitives. After a open call
for proposals the submissions were thoroughly evaluated. One proposed
candidate in the stream cipher category was called LILI-128 [CDF+00]. The
cipher is constructed of two filter generators, where the output from one fil-
ter generator is used to irregularly clock the other filter generator, see Figure

78
5. A New Simple Technique to Attack Filter Generators and Related

Ciphers

5.5. In the analysis of the cipher, the internal state of the LFSR of the filter
generator producing the clock controll sequence, will be guessed. Know-
ing the clocking of the second filter generator methods describe previously
in this section can be applied to the cipher. For the correct guess a bias in
the output can be found, for all incorrect guesses the output will appear as
random data.

5.4.1 Description of LILI-128

LILI-128 has the structure of a filter generator. The only difference is that
LILI-128 use an irregular clocking. LILI-128 consists of a first LFSR, called
LFSRc, that via a nonlinear function clocks a second LFSR, called LFSRd,
irregularly. The structure can be viewed in Figure 5.5. LILI-128 use a key

LFSRc

hc

ct

LFSRd

hd

zt

Figure 5.5: LILI-128.

length of 128 bits, the key is used directly to initialize the two binary LF-
SRs from left to right. As the feedback polynomial of the first shift register,
LFSRc is a primitive polynomial of length 39, the leftmost 39 bits of the key
is used to initialize LFSRc. The remaining 89 bits are used in the same man-
ner to initialize LFSRd. The feedback polynomial for LFSRc is given by

fc(x) = x39 + x35 + x33 + x31 + x17 + x15 + x14 + x2 + 1 . (5.22)

The Boolean function hc takes two input bits from LFSRc, namely the bit
in stage 12 and the bit in stage 20 of the LFSR. The Boolean function hc is
chosen to be

hc(x12, x20) = 2 · x12 + x20 + 1 . (5.23)

The output of this function is used to clock LFSRd irregularly. The reason
for using irregular clocking [CDF+00], was that regularly clocked LFSRs
are vulnerable to correlation and fast correlation attacks. The output se-
quence from hc is denoted c(t) and c(t) ∈ {1, 2, 3, 4}, i.e., LFSRd is clocked at

5.4. A Key Recovery Attack on LILI-128 79

least once and at most four times between consecutive outputs. On average,
LFSRd is clocked c̄ = 2.5 times.

LFSRd is chosen to have a primitive feedback polynomial of length 89
which produces a maximal-length sequence with a period of T = 289 − 1.
The feedback polynomial for LFSRd is

fd(x) = x89 + x83 + x80 + x55 + x53 + x42 + x39 + x + 1 . (5.24)

Ten bits are taken from LFSRd as input to the function hd, these bits are taken
from the positions (0, 1, 2, 7, 12, 20, 30, 44, 65, 80) of the LFSR. The function
hd is given in truth table form, see [CDF+00].

5.4.2 The Attack Applied on LILI-128

In this chapter we will give a description of how we turn our ideas described
in this chapter into a key recovery attack on LILI-128. The different steps of
our attack can be summarized as follows:

• First we find a multiple of low weight of the LFSRd, i.e., find a multiple
g(x) of weight wg such that g(x) = fd(x)k(x) for some polynomial
k(x). See Section 3.1.2 for a description on how to find such multiples.

• Secondly, we guess the content of LFSRc. For each guess we perform
a distinguishing attack on the output keystream. If the guessed key is
the correct key, we will detect a certain bias in the output.

• When we have found the correct starting state of LFSRc, we recover
the initial state of LFSRd by just applying some well known attack, e.g.
a time-memory trade off attack, or the weight three attack described
in Section 5.3.

After calculation of one (or several) multiple(s) of the feedback polyno-
mial of LFSRd, our first step is to guess the initial state of LFSRc. If we guess
the correct key the clocking of LFSRd is correct and we should be able to
detect some bias in the keystream. To detect this bias we apply our distin-
guishing attack on the keystream. If we instead made an incorrect guess, the
output sequence will have properties like a random source. For each guess
of LFSRc we need to make a decision whether this is the correct key or not.
LILI-128 uses 10 bits as input to the Boolean function hd. For a weight w
multiple we get

(zt, zt+τ1, . . . , zt+τw−1) =
(
hd(st), hd(st+τ1), . . . , hd(

w−2⊕

i=0

st+τi
)
)
, (5.25)

80
5. A New Simple Technique to Attack Filter Generators and Related

Ciphers

where st+τl
is a column vector including the ten inputs to hd. If we consider

the fact that we have an irregularly clocked LFSR, not all of the terms in
(5.2) will be used to produce an output bit. If so, we cannot use this relation.
Thus we will need more keystream to be able to get the required number of
valid vectors we want. As LFSRd is clocked on average 2.5 times between
consecutive outputs we can expect that we need to increase the keystream
by roughly a factor (2/5)w−1. (This is valid for the case of one weight w
parity check. If we would consider all weight w parity checks up to a certain
length, we do not need to increase the keystream length at all in the case of
irregular clocking.)

We will now describe the details of the attack applied to LILI-128 using
multiples, g(x), of the feedback polynomial, fd(x), of weight, wg ∈ {3, 4, 5}.
In the attacks we will compare the results to the traditional attack where the
non-linear filter function is approximated with a linear function. In the case
of LILI-128, the best such linear approximation is

h′
d(x1, . . . , x10) = x1 + x2 + x4 + x5. (5.26)

This equation holds with the probability

Pr
(
x1 + x2 + x4 + x5 = hd(x1, . . . , x10)

)
=

1

2
+ 2−5. (5.27)

The bias of this approximation is denoted as

ε = Pr
(
x1 + x2 + x4 + x5 = hd(x1, . . . , x10)

)
− 1

2
= 2−5. (5.28)

Using the piling-up lemma introduced in Section 4.1, for a weight wg mul-
tiple, gives the following expression for the Squared Euclidean Imbalance

∆(DC) = 22wgε2wg = 2−8wg . (5.29)

5.4.3 Results with a Weight Three Multiple

We first use the method described in Section 3.1.2 on LILI-128 to find a mul-
tiple of weight three. In this case we have the degree of the original feed-
back rf = 89 and wg = 3. Hence the degree of the multiple is approximately
rg = 244.5. According to Section 3.1.2, the complexity to find one multiple
of weight three is approximately 250. If we use the distinguishing attack
described above on a regularly clocked LFSRd, the bias is ∆(DC) = 2−16

which is greater than we would usually expect. Using the piling-up lemma
we would expect ∆(DC) = 2−24.

This means that in our attack, we will need approximately 11/∆(DC) =
219.46 keystream bits to distinguish it from a stream of random data. We thus

5.4. A Key Recovery Attack on LILI-128 81

need slightly more than 244.5/2.5 bits of received sequence. The complexity
for the attack is 238 ·219 ·2.52 as we search through the initial states of LFSRc,
each of these states takes 219 bits to distinguish. To get 219 sample values,
we need to use 219 ·2.52 ≈ 222 parity checks in the case of irregular clocking.
The total complexity is about 260.1.

5.4.4 Results with a Weight Four Multiple

To find a multiple of weight four we use the same method as before. In this
case we have the degree of the original feedback rf = 89 and wg = 4, hence
the degree of the multiple is approximately rg = 229.67. The complexity to
find this multiple is 265. The bias is calculated to ∆(DC) = 2−16.14. The
expected bias using the piling-up lemma is in this case ∆(DC) = 2−32.

We will need approximately 11/∆(DC) = 219.60 keystream bits in the
case when all parities are available. For the uncertainty of positions actually
appearing in the output stream, we use the same argument as above. In
total we need 222 bits of keystream. As the degree of the polynomial is 230

we will need about 230/2.5 bits to detect the bias. The complexity for the
attack is about 260.2.

5.4.5 Results with a Weight Five Multiple

To find a multiple of weight five we need a degree of the multiple of approx-
imately 217.8, the computational complexity to find it is approximately 250.
With a multiple of weight five the bias decreases significantly to ∆(DC) =
2−32 and hence we will need approximately 11/∆(DC) = 235.46 available
checks. We need in total 238.10 bits to perform the distinguishing attack.
The complexity for the attack is around 276.10.

5.4.6 The Weight Three Attack

We can improve the results above by using several low weight parity checks
as described in Section 4.4. We do not present the results here, but consider
only the modified attack described in Section 5.3. In earlier sections we
have stated that the multiples of weight three start to appear at degree 244.5.
If we use about 15 valid parity equations in the weight three attack, the
probability that we make an incorrect decision is low. The total complexity
for this attack is roughly 253 as we still guess the contents of LFSRc 238 times
on average, and for each guess we need to test whether the set of equalities
zt+τ1 = zt+τ2 , . . . is true. As the probability of such an event occurring for
the correct key is > 2−10 we run through a bit more, say 212 such t values.
As all but one test correspond to the random case, the equalities will hold
with probability 1/2. Hence we need very few comparisons on average (say

82
5. A New Simple Technique to Attack Filter Generators and Related

Ciphers

2). We also need to include the fact that not all positions are present, a factor
2.52. The required keystream length to find 15 valid weight three parity
checks is roughly 247.

5.4.7 Summary of Attack on LILI-128

In Table 5.2 we summarize our result. Note that the work to synchronize po-

Sequence length Complexity

Weight three attack 247 253

3 243 260

Basic attack with weight 4 229 260

5 235 276

Table 5.2: The sequence length and the complexity for different
weights, the basic attack is described in Section 5.4.2, and the
weight three attack is described in Section 5.4.6.

sitions for each guessed LFSRc state was not considered in previous work,
but can be done without increasing the overall complexity by choosing states
in the order they appear in the LFSRc cycle, see [Mol04].

We compare with the best attacks so far, summarized in Table 5.3. Here
we have recalculated the complexity of Saarinen’s attack [Saa02] to bit op-
erations, we have also recalculated the complexity of the fast algebraic at-
tack by Courtois [Cou03] according to the suggestions by Hawkes and Rose
[HR04].

5.5 Summary

We have presented a new simple attack philosophy on filter generators and
related ciphers. The attack uses low weight multiples of the original feed-
back polynomial. The components of the low weight parity checks are con-
sidered as vectors that will be non-uniformly distributed due to the parity
checks. We demonstrated the efficiency by attacking LILI-128. We can re-
cover the key using 247 keystream bits with complexity around 253, an im-
provement compared to previous attacks. The weight three attack is a very

5.5. Summary 83

Attack by Our [Saa02] [CM03] [Cou03] [TSS+05] [JJ02]

Keystream 247 246 218 260 27 230

Complexity 253 260 296 240 2102 271

Memory 244 251 243 224 − 246

Table 5.3: Comparison of the weight three attack with the best
known attacks.

powerful key recovery attack on any filter generator, if enough output sym-
bols are available. It also applies to any filter generator with a weight three
feedback polynomial, by the squaring method.

84
5. A New Simple Technique to Attack Filter Generators and Related

Ciphers

6

Cryptanalysis of Irregularly
Clocked Filter Generators

An irregularly clocked filter generator is a generator built on a filter gen-
erator as described in the previous chapter. But to prevent correlation

attacks, the output from the filter function is decimated in some unpre-
dictable way. A binary LFSR produces a sequence denoted s0, s1, From
the LFSR, d input bits are fed into a filter function h. A clock control se-
quence denoted c0, c1, . . . is generated in some arbitrary way. This clock
control sequence is used to decimate the output from the filter function, h,
i.e., to remove some symbols from the stream. The decimated sequence is
denoted z = z0, z1, . . . and is used as the keystream. The clock control se-
quence uniquely determines a sequence of integers k0, k1, . . . such that

zt = h(skt , skt+τ1 , skt+τ2 , . . . , skt+τd−1
), (6.1)

where t ≥ 0 and k0 < k1 < k2 < . . ., and τi is the distance from the first
filter tap to the ith input tap of the LFSR. In other words, after observing

z0, z1, . . . , zN the LFSR has been clocked kN =
∑N

t=0 ct times. See Figure
6.1 for and illustration of irregularly clocked filter generators. As usual, the
produced keystream is XORed to the plaintext to produce the ciphertext.
Note that many well known designs can be described by this model, e.g.,
the shrinking generator, self-shrinking generator, alternating step generator,
LILI-128 and LILI-II.

85

86 6. Cryptanalysis of Irregularly Clocked Filter Generators

Clock Control
ct

LFSR

h

z′t
Figure 6.1: Irregularly clocked Filter Generator.

In this chapter we will describe a distinguishing attack that uses a low
weight multiple of the linear feedback shift registers (LFSR), i.e., it belongs
to the class of linear distinguishers, see [GO94, Gol95]. It collects statistics
from sliding windows around the positions of the keystream, where the
members of this recursion are likely to appear. The strength of the attack
is the updating procedure used when moving the windows, this procedure
allows us to receive many new samples with very few operations.

We will discuss some variants of the attack and finally demonstrate the
effectiveness on the stream cipher LILI-II. LILI-II [CDF+02] was designed
by Clark, Dawson, Fuller, Golić, Lee, Millan, Moon and Simpson and first
published in ACISP 2002. It is the improved successor of LILI-128, described
in Section 5.4. LILI-II uses a 128 bit key which is expanded and used with
a much larger internal state, namely 255 bits instead of the 128 bits used in
LILI-128. To distinguish the cipher from a random source we need 2104 bits
of keystream and the complexity is around 2104 operations. This is the first
attack on LILI-II faster than exhaustive key search.

The chapter is based in [EJ05] and partly on [EJ06]. The chapter is orga-
nized as follows, in Section 6.1 we describe how to build our distinguisher.
In Section 6.2 we discuss further improvements. We then show how the
proposed attack can be applied to LILI-II in Section 6.3. The chapter is sum-
marized in Section 6.4.

6.1 An Efficient Distinguisher

As we are attacking irregularly clocked ciphers we will not know exactly
where the symbols from the LFSR sequence will be located in the output
keystream, not even if they appear at all.

Our approach is the following. We will fix one position in the recur-
rence relation, and around the estimated location of the other symbols we

6.1. An Efficient Distinguisher 87

will use sliding windows. When using windows of adequate size we have
a high probability that all the symbols in the relation (if not removed by
the irregular decimation) are included. We will then calculate how many
symbols from the different windows sum to zero. Only one of these com-
binations contribute with a bias, the others will appear as random samples.
In the following subsections we will describe the different steps we use in
our attack.

The way we build the distinguisher is influenced by previous work on
distinguishers, see for example [GM03b, GO94, Gol95, CHJ02, EJ02].

6.1.1 Finding a Low Weight Multiple

The success of our attack depends on the use of low weight recurrence re-
lations. Hence the first step is to find a low weight multiple of the LFSR. In
the attack we use a multiple of weight three of the original feedback polyno-
mial. It is also possible to mount the attack with multiples of higher weight.
Using a multiple of higher weight lowers the degree of the multiple, but it
also lowers the probability that all symbols in a recurrence are included af-
ter the decimation. In general it also lowers the correlation of the Boolean
function. So from now on we assume that we use a weight three recurrence
relation. We will use the methods described in Section 3.1.2 to find the mul-
tiple.

6.1.2 Calculating the Correlation of h for a Weight Three Recursion

Assume that we have a weight three relation for the LFSR sequence accord-
ing to

st ⊕ st+τ1 ⊕ st+τ2 = 0. (6.2)

Let st = (st, st+t1 , . . . , st+td−1
) denote the input bits to h at time t taken from

positions t, t + t1, . . . , t + td−1, i.e., zt = h(st). The correlation (see Equation
(5.7)) for a weight three recurrence relation of the nonlinear Boolean func-
tion, h, is

Pr
(

h(st) ⊕ h(st+τ1) ⊕ h(st+τ2) = 0 | st ⊕ st+τ1 ⊕ st+τ2 = 0, ∀t ≥ 0
)

=

= 1
2 + εh.

(6.3)
If the LFSR would be regularly clocked (ct = 1, ∀t), the probability above

is equivalent to

Pr
(
zt ⊕ zt+τ1 ⊕ zt+τ2 = 0 | st ⊕ st+τ1 ⊕ st+τ2 =0, ∀t ≥ 0

)
. (6.4)

The correlation can be calculated by simply trying all possible input
combinations into the function. As we use a weight three recursion some

88 6. Cryptanalysis of Irregularly Clocked Filter Generators

combinations will not be possible and the distribution will be biased. The
correlation of Boolean functions was also discussed in the previous chapter.

6.1.3 The Positions of the Windows

Consider again the weight three relation, but now with irregular clocking.
Let E(C) denote the expected value of the clocking sequence, ct, t ≥ 0. The
size of the windows depends on the distance from the fixed position, hence
we will fix the center position in the recurrence and use windows around
the two other positions. We rewrite the recurrence as

st−τ1 ⊕ st ⊕ st+τ2−τ1 = 0. (6.5)

The expected distance between the output from h, corresponding to input
st−τ1 and st, is τ1/E(C) as the sequence is decimated, similarly the distance
between st and st+τ2−τ1 is τ2−τ1

E(C) . Figure 6.2 illustrates how we position the

windows of size L1 and L2 in the case of a weight three recursion.

h(st−τ1)

@
@R

h(st)

?

h(st+τ2−τ1)

�
�	

z
t− τ1

E(C)
−L1

2
. . . z

t− τ1
E(C)

+
L1
2

. . . zt . . . z
t+

τ2−τ1
E(C)

−L2
2

. . . z
t+

τ2−τ1
E(C)

+
L2
2

Figure 6.2: Illustration of the window positions in the case with a
weight three recurrence relation.

6.1.4 Determining the Size of the Windows

The output sequence from the clock-control part, ct, is assumed to have a
fixed distribution independent of t. By using the central limit theorem we
know that the sum of a large number of random variables approaches the
normal distribution. So Yn = C1 + C2 + . . . + Cn is distributed approxi-
mately as N(n ·E(C), σc

√
n), where n denotes the number of observed sym-

bols, E(C) the expected value of the clocking sequence and σc the standard
deviation of the clocking sequence.

If the windows are sufficiently large, the correct position of the symbol
will be located inside the window with a high probability, for example

Pr(nE(C) − σc
√

n < Yn < nE(C) + σc
√

n) = 0.682,
Pr(nE(C) − 2σc

√
n < Yn < nE(C) + 2σc

√
n) = 0.954.

(6.6)

Continuing, we choose a window size of four standard deviations. The size
of window i is denoted by Li, i.e., Li ≈ 4σc

√
n.

6.1. An Efficient Distinguisher 89

6.1.5 Estimating the Number of Bits We Need to Observe

The main idea of the distinguishing attack is to create samples of the form

zp1 ⊕ zt ⊕ zp2 , (6.7)

where p1 is any position in the first window and p2 is any position in the sec-
ond window. We will run through all such possible combinations. As will
be demonstrated, each sample is drawn according to a biased distribution.

To determine how many bits we need to observe to reliably distinguish
the cipher from a random source, we need to make an estimate of the bias.
First we consider the case of a regularly clocked cipher. We denote the win-
dow sizes by L1 and L2. In the following estimations we have to remember
that we are calculating samples, and that for every time instant we get L1 ·L2

new samples. Among all of the L1 ·L2 constructed samples, one sample will
correspond to the actual recurrence equation and thus sum to zero accord-
ing to the correlation of the filter function (see (6.3)). Hence, only this one
sample contributes with the bias εh. All the other L1 ·L2 − 1 samples are as-
sumed to be random samples. The distribution for our samples can roughly
be given as

Pr(zp1 ⊕ zt ⊕ zp2 = 0) = 1
2 + εh

L1L2
,

Pr(zp1 ⊕ zt ⊕ zp2 = 1) = 1
2 − εh

L1L2
,

(6.8)

assuming that st−τ1 and st+τ2−τ1 always appear inside the windows.
When we have irregular clocking, the output from the LFSR is deci-

mated, i.e., some terms might not contribute to the output sequence. The
probability that the end two terms of a weight three recurrence relation is
included in the keystream and in the windows is denoted by pdec. In the
approximation we neglect the probability that the result in some cases de-
viates more than two standard deviations from the expected position, i.e.,
the component lies outside the window. Hence, the distribution DC of our
samples can be estimated as

DC(0) = 1
2 + εhpdec

L1L2
,

DC(1) = 1
2 − εhpdec

L1L2
.

, (6.9)

where we will refer to
εtot =

εhpdec

L1L2
(6.10)

as the bias. This approximation has been compared with simulation results
and works well, see Section 6.3.1. The Squared Euclidean Imbalance of our

90 6. Cryptanalysis of Irregularly Clocked Filter Generators

samples can be expressed as

∆(DC) =
4ε2

hp2
dec

L2
1L

2
2

. (6.11)

In the approximation we have estimated that the probability for the po-
sition of the taps inside the windows is uniform. The purpose is to make
the updating procedure when moving the windows as efficient as possible,
which in fact is the strength of the attack. A better approximation would be
to weigh the positions inside the window according to the normal distribu-
tion, e.g., see Daemen and Assche [DA06]. This might decrease the number
of symbols needed, but would make an efficient updating procedure much
more difficult.

As stated in Section 3.1.3.2 the number of samples we need to observe is
N ≈ 11/∆(DC). Thus, the number of samples our distinguisher require can
be estimated as

11

4
· L2

1L
2
2

ε2
hp2

dec

. (6.12)

At each time instant we receive L1 · L2 new samples, and hence the total
number of bits we need for the distinguisher can be estimated by (6.13).

N ≈ 11

4
· L1L2

ε2
hp2

dec

. (6.13)

The above Equations (6.12-6.13) assume independent samples. This is
not true in our case, but the equation is still a good approximation of the
number of samples needed in the attack.

6.1.6 Complexity of Calculating the Samples

The strength of the distinguisher is that the calculation of the number of
ones and zeros in the windows can be performed very efficiently; when we
move the first position from zt to zt+1 we also move the windows one step
to the right.

We denote the number of zeros in window one at time instant t by Dzwin1
t ,

and similarly we denote the number of zeros in windows two by Dzwin2
t .

The number of samples that fulfill zp1 ⊕zt⊕zp2 = 0 at time t is denoted DX
t ,

where p1, p2 are some positions in window one respectively window two.
Hence, when moving the windows we get the new number of zeros Dzwin1

t+1

and Dzwin2

t+1 by subtracting the first bit in the old window and adding the
new bit included in the window, e.g., for window one,

Dzwin1
t+1 = Dzwin1 − z

t− τ1
E(C)

−L1
2

+ z
t− τ1

E(C)
+

L1
2 +1

, (6.14)

6.2. Possible Improvements Using Vectorial Samples 91

and similarly for window two. From the Dzwin1
t+1 and Dzwin2

t+1 we can, with
very few basic computations calculate DX

t+1.
We define one operation as the computations required to calculate DX

t+1

from Dzwin1
t+1 and Dzwin2

t+1 .

Theorem 6.1: The proposed distinguisher requires N = 11
4 · L1L2

ε2
hp2

dec
bits of

keystream and uses a computational complexity of approximately N oper-
ations.

Although the number of zeros in the windows Dzwin1
t+1 ,Dzwin2

t+1 are de-

pendent on the previous number of zeros in the window Dzwin1
t ,Dzwin1

t , the
covariance between the number of samples received at time instant t and
t + 1 is zero, Cov(DX

t+1,DX
t) = 0, see Appendix A.

6.1.7 Hypothesis Testing

The last step in the attack is to determine whether the collected data really
is biased. A rough method for the hypothesis test is to check whether the
result deviates more than two standard deviations from the expected result
in the case when the bits are truly random. The standard deviation for a

sum of these samples, can be estimated by σ =
√

N L1L2

4 , see Appendix A,

where L1 and L2 are the sizes of the windows and N is the number of bits
of keystream we observe.

6.1.8 Summary of the Attack

In Figure 6.3 we summarize the attack, where Dzwin1
t denotes the number of

zeros in window one, Dzwin2
t the number of zeros in window two. The total

sum of the samples is denoted by DX , i.e., DX =
∑N−1

t=0 DX
t . L1, L2 denotes

the sizes of window one respectively window two.

6.2 Possible Improvements Using Vectorial Sam-

ples

In the previous section an efficient distinguisher was created by adding bi-
nary symbols from different windows in the keystream. The natural step
to improve this strategy is to consider a word based attack. Instead of con-
sidering the number of zeros and ones inside the windows, we increase the
alphabet size and count words (vectors of consecutive bits) inside the win-
dows and around the center member of the weight three recurrence equa-
tion.

92 6. Cryptanalysis of Irregularly Clocked Filter Generators

'

&

$

%

1. Find a weight three multiple of the LFSR.
2. Calculate the bias εh.
3. Determine the positions of the windows.
4. Calculate the sizes L1, L2 of the windows.
5. Estimate the number of bits N we need to observe.
6. for t from 0 to N

if zt = 0

DX + = Dzwin1
t · Dzwin2

t + (L1 −Dzwin1
t)(L2 −Dzwin2

t)
else if zt = 1

DX + = Dzwin1
t (L2 −Dzwin2

t) + (L1 −Dzwin1
t)Dzwin2

t

end if

Move window and calculate Dzwin1
t+1 , Dzwin2

t+1

end for

7. if |DX − N · L1·L2

2 | >
√

N · L1 · L2

output cipher
else

output random.

Figure 6.3: Summary of the proposed distinguishing attack.

6.2.1 An Efficient Distinguisher Using Vectors

In this section the idea of using words is applied directly on the keystream,
i.e., a length two word would be of the form (zt, zt+1).

We start by considering the calculation and storage of the number of
different words inside the two windows. Let Dzwin1

t now denote the empir-
ical distribution of words in window one and Dzwin2

t the same in window
two. The word at the center position of the recurrence relation is denoted
zt. Note that we can maintain an effective updating procedure for these
distributions, i.e., Dzwin1

t+1 and Dzwin2

t+1 are easily updated from Dzwin1
t and

Dzwin2
t .

The disadvantage of the proposed procedure, compared to the previous
method is that the complexity of calculating the overall number of samples
of a certain value increases with larger word size. Using a larger alphabet
means a higher computational complexity to calculate the number of ways
to add the words in the different windows. On the other hand, we expect a
higher bias in a word based approach, giving a shorter required keystream.

The main idea of the distinguishing attack using word size b is to create
samples of the form

(zp1 , zp1+1, . . . , zp1+b−1) ⊕ (zt, zt+1, . . . , zt+b−1)⊕
⊕(zp2 , zp2+1, . . . , zp2+b−1), t ≥ 0,

(6.15)

6.2. Possible Improvements Using Vectorial Samples 93

where the word (zp1 , zp1+1, . . . , zp1+b−1) is any word inside the first window
and (zp2 , zp2+1, . . . , zp2+b−1) is any word inside the second window. The
total number of samples created at time t is L1 · L2, where now L1 is the
number of words inside the first window, etc.

Consider the two stored tables Dzwin1
t and Dzwin2

t containing the num-
ber of different words inside each window as empirical distributions. Then
at each time instant in the attack we need to perform a convolution of two
such distributions. This is a time consuming operation if the distributions
are large. A trivial calculation of the convolution of two distributions of
size n has complexity O(22n). However, it has been demonstrated, see for
example [MJ05a] that convolutions over bitwise addition of two large dis-
tribution can be performed via Fast Hadamard Transform (FHT) with com-
plexity O(n · 2n).

The proposed attack using words is summarized in Figure 6.4. The dis-
tribution DC(i), ∀i ∈ F2b is determined through simulation before the at-
tack, and needs only be done once. A convolution of Dzwin1

t (i) andDzwin2
t (j)

is performed at each time instant, to decrease the complexity this step can
be performed via the Fast Hadamard Transform.'

&

$

%

1. Find a weight three multiple of the LFSR.
2. Determine the positions of the windows.
3. Calculate the sizes L1, L2 of the windows.
4. Estimate the number of bits N we need to observe.
5. for t from 0 to N

for i from 0 to 2b

for j from 0 to 2b

DX(i ⊕ j ⊕ zt)+ = Dzwin1
t (i) · Dzwin2

t (j)
end for

end for

Move window and calculate zt+1, Dzwin1

t+1 and Dzwin2

t+1 .
end for

6. Calculate LLR =
∑

i∈F
b
2

DX(i) · log2

(DC(i)

2−b

)

if LLR ≥ 0
output cipher

else
output random.

Figure 6.4: Summary of the proposed distinguishing attack using
words.

Simulation results show that using vectors indeed results in a more bi-

94 6. Cryptanalysis of Irregularly Clocked Filter Generators

ased distribution. However, the biggest contribution seem to come from an
increased dependence between the vectors, i.e., even for a random stream
some small bias might be found. The proposed method seems to offer lit-
tle advantage compared to the binary method, considering the increase in
computational complexity required. However, there might be specific cases
where the word based attack offers a significant improvement.

6.2.2 Considering Words In The Undecimated Sequence

Instead of considering words in the keystream sequence we can estimate
the distribution of words in the undecimated sequence of LFSRs. These
words can have a different word size than in the decimated sequence. A
word in the keystream is as before denoted zt = (zt, zt+1, . . . , zt+b−1), and
a corresponding word of size d in the undecimated LFSR stream is denoted
by st = (st, st+1, . . . , st+d−1).

Consider the output from a Step 1/Step 2 generator depicted in Figure
6.5. In this figure we consider keystream words of size two and the decima-

s0 s1 s2

? ?
�

��
z0 z1

Pr(s = z0z1z1|z = z0z1) = 0.5
Pr(s = z0z1z

′
1|z = z0z1) = 0.25

Pr(s = z0z
′
1z1|z = z0z1) = 0.25

Pr(s = z0z
′
1z

′
1|z = z0z1) = 0

Pr(s = z′
0z1z1|z = z0z1) = 0

Pr(s = z′
0z1z

′
1|z = z0z1) = 0

Pr(s = z′
0z

′
1z1|z = z0z1) = 0

Pr(s = z′
0z

′
1z

′
1|z = z0z1) = 0

Figure 6.5: Keystream generated using ct ∈ {1, 2}.

tion is done according to ct ∈ {1, 2} with equal probability. The distribution
of the undecimated words will be skew, e.g., Pr(s = 111|z = 00) = 0. The
probabilities Pr(st|zt), ∀st, zt, can be precomputed. For simplicity, our con-
siderations are purely combinatorial. Each observed z vector in a window
will give rise to a number of samples for the s vector. In the previous exam-
ple, an observed z = (00) would give 4 possible samples for s, namely two
samples with value s = (000) one with value s = (001) and one with value
s = (010).

When performing the attack, as in the previous section, windows are
placed around the expected positions of members in the recurrence relation.
Let us denote the empirical distributions of the corresponding undecimated
words of size d as Dswin1

t , Dswin2
t and Dscenter

t .
The empirical distribution of undecimated words in the windows, Dswin1

t

6.2. Possible Improvements Using Vectorial Samples 95

and Dswin2
t are calculated and, as before, the update of these tables can be

done very efficiently when moving the windows. The update is performed
for the two windows at each time instant t. For the center word the table
Dscenter

t is obtained by a simple table lookup.
In the cipher case, we are looking at an equation of the form

st−τ1 ⊕ st ⊕ st+τ2−τ1 = 0, t ≥ 0. (6.16)

The final procedure is almost exactly as in the previous section. We have
an empirical distribution of st−τ1 in the array Dswin1

t , etc., and we estimate
the distribution of st−τ1 ⊕ st ⊕ st+τ2−τ1 through the convolution of Dswin1

t ,
Dswin2

t and Dscenter
t . This distribution is denoted DX

t . By computing the con-
volution via Fast Hadamard Transform the complexity of these calculations
can, as mentioned in Section 6.2.1, be significantly lowered.

Finally, by summing over all t, we obtain the empirical distribution DW .
As before, this needs to be checked against the uniform distribution and
possibly some experimentally verified DC . An outline of the proposed at-
tack is depicted in Figure 6.6.'

&

$

%

1. Find a weight three multiple of the LFSR.
2. Determine the positions of the windows.
3. Calculate the sizes L1, L2 of the windows.
4. Estimate the number of bits M we need to observe.
5. for t from 0 to M

for i from 0 to 2d

for j from 0 to 2d

for k from 0 to 2d

DX(i ⊕ j ⊕ k)+ = D swin1
t (i) · Dswin2

t (j) · Dscenter
t (k)

end for
end for

end for

Move window and calculate Dswin1

t+1 ,Dswin2

t+1 , and Dscenter
t+1

end for

6. Calculate LLR =
∑

i∈F
2b

DX(i) · log2

(DC(i)

2−b

)

if LLR ≥ 0
output cipher

else
output random.

Figure 6.6: The attack considering undecimated sequences.

Similarly as for using the vectors in the keystream, simulations on a Step

96 6. Cryptanalysis of Irregularly Clocked Filter Generators

1/Step 2 generator have shown that the gain of using vectors in the un-
decimated sequence is small. However, on other ciphers the gain might be
larger.

6.3 Cryptanalysis of LILI-II

LILI-II [CDF+02] is the successor of the NESSIE candidate stream cipher
LILI-128 [CDF+00]. Many attacks where found on LILI-128 such as the at-
tack described in Section 5.4, but also [MH04,JJ02,CM03,Cou03]. The many
attacks on LILI-128 motivated a larger internal state, which is the biggest
difference between the two ciphers, LILI-II also use a nonlinear Boolean
function, hd, with 12 input bits instead of 10 as in LILI-128.

Both the members of the LILI family are binary stream cipher that use
irregular clocking. They consists of an LFSRc, that via a nonlinear func-
tion clocks a second LFSR, called LFSRd, irregularly. The structured can
be viewed in Figure 6.7. LILI-II use a key length of 128 bits, the key is ex-

LFSRc

hc

ct

LFSRd

hd

z′t
Figure 6.7: LILI-128.

panded and used to initialize the two LFSRs. The first shift register, LFSRc

is a primitive polynomial of length 128, and hence has a period of 2128 − 1.
The feedback polynomial for LFSRc is given by

fc(x) = x128 + x126 + x125 + x124 + x123 + x122 + x119 + x117 + x115 + x111+
x108 + x106 + x105 + x104 + x103 + x102 + x96 + x94 + x90 + x87 + x82+
x81 + x80 + x79 + x77 + x74 + x73 + x72 + x71 + x70 + x67 + x66 + x65+
x61 + x60 + x58 + x57 + x56 + x55 + x53 + x52 + x51 + x50 + x49 + x47+
x44 + x43 + x40 + x39 + x36 + x35 + x30 + x29 + x25 + x23 + x18 + x17+
x16 + x15 + x14 + x11 + x9 + x8 + x7 + x6 + x1 + 1.

(6.17)

The Boolean function, hc : F2
2 → {1, 2, 3, 4}, takes two input bits from

LFSRc. It is specified as

hc(x0, x126) = 2 · x0 + x126 + 1 . (6.18)

6.3. Cryptanalysis of LILI-II 97

The output of this function is used to clock LFSRd irregularly. The output
sequence from hc is denoted ct and ct ∈ {1, 2, 3, 4}, i.e., LFSRd is clocked
at least once and at most four times between consecutive outputs. The ex-
pected value of the clock sequence, denoted E(C), is E(C) = 2.5.

LFSRd is chosen to have a primitive polynomial of length 127 which pro-
duces a maximal-length sequence with a period of T = 2127 − 1. The origi-
nal polynomial was found not to be primitive, see [CDF+04], and has been
changed to

fd(x) = x127 + x121 + x120 + x114 + x107 + x106 + x103 + x101 + x97 + x96+
x94 + x92 + x89 + x87 + x84 + x83 + x81 + x76 + x75 + x74 + x72 + x69+
x68 + x65 + x64 + x62 + x59 + x57 + x56 + x54 + x52 + x50 + x48 + x46+
x45 + x43 + x40 + x39 + x37 + x36 + x35 + x30 + x29 + x28 + x27 + x25+
x23 + x22 + x21 + x20 + x19 + x18 + x14 + x10 + x8 + x7 + x6 + x4+
x3 + x2 + 1.

(6.19)

Twelve bits are taken from LFSRd as input to the function hd, these bits
are taken from the positions (0,1,2,7,12,20,30,44,65,80,96,122) of the LFSR.
The function hd is given as a truth table. Note that also the Boolean func-
tion described in the original proposal was weak and has been replaced,
see [CDF+04].

We will now apply the technique described in Section 6.1 step-by-step
on LILI-II to show the effectiveness of the procedure.

(i) Finding a Low Weight Multiple: The first step in the attack is to find
a low weight multiple g(x) of fd(x) such that g(x) = fd(x)k(x) for
some polynomial k(x). We will focus on using a weight three multi-
ple in this section. According to Section 3.1.2 weight three multiples,
i.e., wg = 3, of an LFSR of degree rf = 127, will start to appear at
the degree rg = 264. The complexity to find the multiple is approx-
imately 270, using the polynomial residue technique described in the
same section.

If we instead would mount the attack with a weight four multiple the
expected degree of the polynomial would be rf = 243.19, the complex-
ity to find a weight four multiple is about 291.81.

(ii) Correlation of hd: In Table 6.1 some examples are presented from two
clock controlled ciphers, these results are based on a weight three and
a weight four recursion. In the case of LILI-128 and LILI-II the cor-
relation of hd are approximately the same for a weight three relation
as for a weight four relation. The probability in (6.3) decreases signif-
icantly, i.e., εhd

decreases, if we use multiples of higher weight than
four;

98 6. Cryptanalysis of Irregularly Clocked Filter Generators

Generator Number of input bits εhd

wg = 3 wg = 4

LILI-128 10 2−9.00 2−9.07

LILI-II 12 2−13.22 2−12.36

Table 6.1: The correlation εhd
of Boolean functions of some clock

controlled generators, using weight three and weight four recur-
sions.

(iii) Position of the Windows: The multiple g(x) is expected to have a
degree of approximately 264, i.e., τ1 ≈ 263 and τ2 ≈ 264, and hence τ2−
τ1 ≈ 263. The output sequence from the clock-control part denoted by
ct in Figure 6.7 takes the values ct ∈ {1, 2, 3, 4} with equal probability,
i.e., a geometric distribution. Thus in the case of LILI-II we know that
E(C) = 2.5 and σc =

√
7.5. The center positions of the windows will

be positioned approximately at t−261.68 and t+261.68, where t denotes
the position of the center symbol in the recurrence.

(iv) Determine the Size of the Windows: As stated in previously we know
that E(C) = 2.5 and σc =

√
7.5 for LILI-II. We will use a window size

of four standard deviations, i.e., L = 4
√

7.5 · n.

Using the expected positions of the windows for LILI-II from previous
section the expected window sizes for a weight three relation are L =

4
√

7.5 · 261.68 = 234.29.

(v) Estimate the Number of Bits We Need to Observe: If we use the esti-
mated numbers from the previous section and Equation (6.13) we get
the following estimate on the number of bits we need to observe to
distinguish LILI-II from a random source. For w = 3,

N ≈ 11

4
· 234.29·2

2(−13.22)·2 · 2(−4)·2 ≈ 2104.48. (6.20)

6.3.1 Simulations on a Scaled Down Version of LILI-II

To verify the correctness of the attack we performed the attack on a scaled
down versions of LILI-II. In the scaled down version we kept the original
clock control part unchanged, but used a weaker data generation part. In-
stead of the original LFSRd we used the primitive trinomial,

x3660 + x1637 + 1, (6.21)

as feedback polynomial.

6.3. Cryptanalysis of LILI-II 99

We fix the center member of the feedback polynomial, and the center
position for window one will be positioned at

t − τ1/E(C) = t − 3660−1637
2.5 = t − 809, and at

t + τ2−τ1

E(C) = t − 1637
2.5 = t + 655

(6.22)

for window two. We use window sizes of four standard deviations, i.e.,
L1 = 4

√
7.5 · 809 = 312 and L2 = 4

√
7.5 · 655 = 280.

The Boolean function, hd, was replaced with the 3-resilient 7-input plateaued
function also used in [LZGB03],

hd(x) = 1+x1+x2+x3+x4+x5+x6+x1x7+x2(x3+x7)+x1x2(x3+x6+x7).
(6.23)

The correlation of this Boolean function for a weight three relation is εhd
=

−2−4, i.e.,

Pr
(

h(st)⊕h(st+τ1)⊕h(st+τ2) = 0 | st⊕st+τ1 ⊕st+τ2 = 0, ∀t
)

=
1

2
−2−4.

For a weight three relation the probability that all bits are included in the
keystream is pdec = 2−4. The number of bits we need to observe can now be
estimated as

N ≈ 11

4
· 312 · 280

(2−4)2(2−4)2
= 234.46. (6.24)

We used N = 236.8054 in a simulated attack where we tried to verify the the-
oretical bias. The number of combinations fulfilling the recurrence equation
in the simulation was

DX = 252.2201 − 229.2829, (6.25)

where 252.2201 is half of the total number of collected samples. This gives
a deviation of 229.2829 from the expected value of a random sequence, and
hence a simulated bias of εtot = 2−23.9372. This can be compared with the
theoretically derived bias which is εtot = 2−24.4147. The standard deviation

can be calculated as σ =
√

N L1L2

4 = 225.6101.

We also implemented the attack and performed 100 attacks on both key-
stream and random data, the results of the attacks are summarized in Table
6.2. The results matched the theory well.

6.3.2 Results

In this section we summarize the results of the attack applied on LILI-II, we
also show the results for the attack if performed on LILI-128. Observe that

100 6. Cryptanalysis of Irregularly Clocked Filter Generators

N 1 − α 1 − β

233 0.88 0.97

234 0.99 0.98

Table 6.2: Simulated confidence levels 1−α and power levels 1−β

of the scaled down version of LILI-II.

there exist many better attacks on LILI-128. These attacks all use the fact
that one of the LFSRs only has degree 39, if this degree would be increased
the attacks would become significantly less effective, the complexity of our
attack would not be affected at all.

In Table 6.3 we list the sizes on the windows used to attack the gener-
ator and the total number of keystream bits we need to observe to reliably
distinguish the ciphers from a random source. The results in the table is
calculated for a weight three recurrence relation.

Function L1 L2 ♯ bits needed

LILI-128 225.45 225.45 276.95

LILI-II 234.29 234.29 2103.02

(6.26)

Table 6.3: The number of bits needed for the distinguisher for two
members of the LILI family.

6.4 Summary

In this chapter we have described a distinguisher applicable to irregularly
clocked filter generators. The attack has been applied on a member of the
LILI family, namely LILI-II. The attack on LILI-II needed 2104 bits of key-
stream and a computational complexity of approximately 2104 operations to
reliably distinguish the cipher from random data. This is the best known at-
tack of this kind so far. We have also proposed two possibles improvements
which might offer some advantages over the basic attack in some specific
cases.

7

Distinguishing Attacks on the
Pomaranch Family of Stream

Ciphers

Pomaranch is a family of stream ciphers in the eSTREAM stream cipher
project, it was designed by Jansen, Helleseth and Kholosha. The Po-

maranch family consists of several versions and variants that were submit-
ted to Profile 2 of the eSTREAM process, i.e., it is mainly designed to be fast
and compact in hardware. The first two versions have been cryptanalyzed
in [CGJ06,Kha05,HJ06]. For each new version, the cipher has been changed
such that the attacks on the previous versions would not be successful. The
third versions of the Pomaranch ciphers were included as phase 3 candi-
dates in eSTREAM.

In this chapter we present a framework of general distinguishing attacks.
The statistical distinguisher, which can be applied to all Pomaranch-like
ciphers having one or several types of jump registers and either linear or
nonlinear filter function. We improve the computational complexity of all
known distinguishers on Version 1 and Version 2. Our attack is also applied
to Pomaranch Version 3 and it is shown that the attack will succeed on the
80-bit variant with computational complexity 271.10, significantly less than

101

102 7. Distinguishing Attacks on the Pomaranch Family of Stream Ciphers

exhaustive key search. For the 128-bit variant, the attack will have compu-
tational complexity 2126, almost that of exhaustive key search. The expres-
sions for the complexity of the attack given in this chapter can be interpreted
as design criteria for subsequent versions of Pomaranch.

The chapter is based on parts of [EHJ07b] and the outline of the chapter
is as follows. Section 7.1 will describe the Pomaranch stream ciphers and
Section 7.2 will briefly describe the previous attack on Pomaranch. In Sec-
tion 7.3 we will describe some properties of Pomaranch ciphers that we will
later use in our attack. In Section 7.4 we describe our distinguisher for differ-
ent design principles used in Pomaranch ciphers. We then demonstrate our
distinguisher on all existing version and variants of proposed Pomaranch
ciphers in Section 7.5. Section 7.6 summarizes the chapter.

7.1 Description of Pomaranch

In this section, we will give a brief overview of the design of Pomaranch.
There are three versions of Pomaranch. First the overall design idea is
presented and then we give the specific parameters for the different ver-
sions. The attacks described in this chapter are independent of the ini-
tialization procedure and thus, only the keystream generation will be de-
scribed here. For more details we refer to the respective design documents,
see [JHK05, JHK06a, JHK06b].

Pomaranch is a synchronous stream cipher designed primarily for being
efficient in hardware. The general structure resembles that of the nonlinear
combination generator. The design of Pomaranch is illustrated in Figure 7.1.
Pomaranch is based on a cascade of n jump registers (JR). A jump register
can be seen as an irregularly clocked linear finite state machine (LFSM). The
clocking of a register can be done in one of two ways, either it jumps c0

steps or it jumps c1 steps. The clocking is decided by a binary jump control

sequence, denoted j
(i)
t for register i at time t,

j
(i)
t =

{
0, JRi is clocked c0 times
1, JRi is clocked c1 times

. (7.1)

The jump registers are implemented using two different kinds of delay
shift cells, S-cells and F-cells. The S-cell is a normal D-element and the F-cell
is a D-element where the output is fed back and XORed with the input. Half
of the cells are implemented as S-cells and half are implemented as F-cells.
When the register is clocked it will jump c0 steps. When the jump control

j
(i)
t is one, all cells in JRi are switched to the opposite mode, i.e., all S-cells

become F-cells and vice versa, see Figure 7.2 for an explanation of how to
construct such a cell. This switch of cells results in a jump through the state

7.1. Description of Pomaranch 103

JRn JRn−1

KeyMapkn−1

⊕
j
(n)
t j

(n−1)
t

· · · JR2

KeyMapk2

⊕
j
(3)
t

JR1

KeyMapk1

00 . . .

j
(2)
t

h

zt

x
(n)
t

x
(n−1)
t x

(2)
t

x
(1)
t

Figure 7.1: The general structure of the Pomaranch family of stream
ciphers.

space corresponding to c1. The jump index of a register is the number of c0

clockings that is equivalent to one c1 clocking.

b

0 b

b

j
(i)
t

⊕

Figure 7.2: Jump register cell.

Notations. As seen in Figure 7.1 we denote jump register i by JRi and
its period by T (i). The key is denoted by K and the subkey used for JRi is
denoted ki. The length of one registers is denoted by L, it is assumed that
all registers are of the same length. The filter function is denoted by h (more

specifically we will use the notation h[1], h
[2]
80 , h

[2]
128, h

[3]
80 , h

[3]
128 for the different

filter functions, where the superscript denotes the version of Pomaranch of
interest, and the subscript denotes the key length used in the version). Simi-

larly, we will denote the number of registers used by n[1], n
[2]
80 , n

[2]
128, n

[3]
80 , n

[3]
128.

The bit taken from the register i as input to the filter function at time t is de-

104 7. Distinguishing Attacks on the Pomaranch Family of Stream Ciphers

noted by x
(i)
t .

7.1.1 Pomaranch Version 1

The first version of Pomaranch was introduced in [JHK05]. In this version,
128 bit keys were used together with an IV in the range of 64 to 112 bits. The
cipher is built upon n[1] = 9 identical jump registers. Each register uses 14
memory cells together with a characteristic polynomial with the jump index
5945, i.e., (c0, c1) = (1, 5945). From register i, nine bits are taken as input to a
key dependent function, denoted KeyMap in Figure 7.1. The output of this

function is XORed to the jump sequence, j
(i)
t , from register i− 1, to produce

the jump sequence, j
(i+1)
t , for the next register. The keystream bit z is given

as the XOR of the bit in cell 13 from all the registers, i.e.,

z = h[1]
(
x(1), . . . , x(9)

)
= x(1) + x(2) + . . . + x(9). (7.2)

7.1.2 Pomaranch Version 2

The second version of Pomaranch [JHK06a], comes in two variants, one 80-

bit with n
[2]
80 = 6, and one 128-bit key variant using n

[2]
128 = 9 registers. The

registers are still 14 memory cells long but to prevent the attacks on the first
version, different tap positions are used as input to the KeyMap function in
Figure 7.1. The characteristic polynomial is also changed and the new jump
index is 13994. A new initialization procedure was introduced to prevent
the attacks in [CGJ06, HKK05]. The keystream is still taken as the XOR of
the bits in cell 13 of all registers and is given by

z =

{

h
[2]
80

(
x(1), . . . , x(6)

)
= x(1) + x(2) + . . . + x(6)

h
[2]
128

(
x(1), . . . , x(9)

)
= x(1) + x(2) + . . . + x(9)

. (7.3)

7.1.3 Pomaranch Version 3

As for the second version, there are two variants of Pomaranch Version 3
[JHK06b], one 80-bit and one 128-bit key variant. The number of registers

used is still the same as in Pomaranch Version 2, i.e., n
[3]
80 = 6 respectively

n
[3]
128 = 9. In the case of Pomaranch Version 3, two different jump registers

are used, the first using jump index 84074 which is referred to as type I and
the second using jump index 27044, referred to as type II. The type I registers
are used for odd numbered sections in Figure 7.1, and type II for the even
numbered sections. Both registers are built on 18 memory cells, and have
primitive characteristic polynomials, i.e., when clocked only with zeros or

7.2. Previous Attacks on the Pomaranch Stream Ciphers 105

only with ones they have a period of 218 − 1. From each register one bit is
taken from cell 17 and is fed into h. The filter functions used are

z =

{

h
[3]
80

(
x(1), . . . , x(6)

)
= G

(
x(1), . . . , x(5)

)
+ x(6)

h
[3]
128

(
x(1), . . . , x(9)

)
= x(1) + x(2) + . . . + x(9)

, (7.4)

where

G(x(1), . . . , x(5)) = x(1) + x(2) + x(5) + x(1)x(3) + x(2)x(4) + x(1)x(3)x(4)+
+x(2)x(3)x(4) + x(3)x(4)x(5),

(7.5)
is a 1-resilient Boolean function. The keystream length per IV/key pair is
limited to 264 bits in Version 3.

7.2 Previous Attacks on the Pomaranch Stream Ci-

phers

The first attack on Pomaranch by Cid, Gilbert and Johansson [CGJ06] was
an attack on the initialization procedure. Soon after, an attack on the key-
stream generation was presented by Khazaei [Kha05]. This attack consid-
ered the best linear approximation of bits distance L + 1 apart. Register JR1

was exhaustively searched as this register is always fed with the all zero
jump control sequence and the linear approximation is not valid for this
register. When the state of JR1 was known, JR2 and 16 bits of the key was
guessed. This was iterated until the full key was recovered. A distinguisher
was not explicitly mentioned by Khazaei [Kha05] but it is very easy to see
that if the attack is stopped after JR1 is recovered, it would be equivalent to
a distinguishing attack. This distinguisher needs 272.8 keystream bits and
computational complexity 286.8.

Pomaranch Version 2 was designed to resist the attacks in [CGJ06,Kha05].
However, it was still possible to find biased linear approximations by look-
ing at keystream bits further apart. This was done by Hell and Johans-
son [HJ06] and the new approximation made it possible to mount distin-
guishing and key recovery attacks on both the 80-bit and the 128-bit vari-
ants. The distinguisher for the 80-bit variant needs 248.39 keystream bits
and a computational complexity of about 262.39. For the 128-bit variant the
complexities are about 277.33, and 291.33 respectively.

7.3 Properties Used in the Attack

In this section we will present general distinguishers for Pomaranch-like ci-
phers, in particular we will study the constructions that have been proposed

106 7. Distinguishing Attacks on the Pomaranch Family of Stream Ciphers

in Pomaranch Version 1-3. We will give general results for these cipher fam-
ilies that can be used as design criteria for future Pomaranch ciphers.

7.3.1 The Period of Registers

The first jump register, denoted JR1 in Figure 7.1, is during keystream gen-
eration mode fed by the jump sequence only containing zeros. Hence JR1 is

a LFSM. The period of the register is denoted by T1, hence x
(1)
t = x

(1)
t+T1

with

T1 = 2L − 1.
From JR1 a jump control sequence is calculated which controls the jump-

ing of JR1. Assume that after T1 clocks of JR1, register JR1 has jumped C
steps. Then after T 2

1 clocks JR2 has jumped CT1 steps, a multiple of T1 and
is thus back to its initial state. If primitive characteristic polynomials are
used for the registers, it can be shown that the period for register JRi is

Ti = T i
1, (7.6)

and hence
x

(i)
t = x

(i)

t+T i
1
. (7.7)

Consequently, at time t and t + T p
1 , the filter function h has p inputs with

exactly the same value, namely the contribution from registers JR1, . . . , JRp.
This observation will be used in our attack.

7.3.2 The Filter Function

The filter function used in Pomaranch can be a nonlinear Boolean function
or just the linear XOR of the output bits of each jump register. Our attack
can be applied to both variants. The keystream bit at time t, denoted by zt,
can be described as

zt = h
(
x

(1)
t , . . . , x

(n)
t

)
. (7.8)

Using the results from Section 7.3.1 and taking our samples as zt⊕ zt+T p
1

we
can write the expression for the samples as

zt ⊕ zt+T p
1

= h
(
x

(1)
t , . . . , x

(n)
t

)
⊕ h

(
x

(1)

t+T p
1
, . . . , x

(n)

t+T p
1

)
. (7.9)

• Linear Filter Function. When the filter function h is linear, i.e.,

h(x(1), . . . , x(n)) =

n⊕

i=1

x(i), (7.10)

and our samples are taken as zt ⊕ zt+T p
1

we know from Section 7.3.1
that p inputs to the filter function are the same at time t and at time

7.3. Properties Used in the Attack 107

t + T p
1 , hence we can rewrite (7.9) as

zt ⊕ zt+T p
1

=

n⊕

i=p+1

x
(i)
t ⊕ x

(i)

t+T p
1
. (7.11)

• Nonlinear Filter Function. When the filter function h is nonlinear, x
(i)
t

and x
(i)

t+T p
1

will not cancel out in the keystream with probability one,

as in the case of a linear filter function. But, the input to h at time t
and t+T p

1 has p inputs x(1), . . . , x(p) with exactly the same value. This
might lead to a biased distribution,

Pr
(

h
(
x

(1)
t , . . . , x

(n)
t

)
⊕h

(
x

(1)

t+T p
1
, . . . , x

(n)

t+T p
1

)
= 0|x(i)

t =x
(i)

t+T p
1
, 1 ≤ i ≤ p

)

= Pr
(

zt ⊕ zt+T p
1

= 0 | x(i)
t = x

(i)

t+T p
1
, 1 ≤ i ≤ p

)

= 1
2 + ǫ,

(7.12)
where ǫ denotes the bias and |ǫ| ≤ 1.

7.3.3 Linear Approximations of jump registers

In our attack, we need to find a linear approximation for the output bits of
the jump registers that is biased, i.e., that holds with probability different
from one half. We assume that all states of the register are equally probable,
except for the all zero state which has probability 0. Further, it is assumed
that all jump control sequences have the same probability. Finding the best
linear approximation can then be done by exhaustive search. Under certain
circumstances much faster approaches can be used, see [HJ06]. We search
for a set T of size w such that

Pr
(⊕

i∈T
xt+i = 0

)
=

1

2
+ ε, |ε| ≤ 0.5, (7.13)

i.e., the weight of the approximation is w and the terms are given by the set
T . For our attack to work it is important that the bias of this approximation
is sufficiently high.

It is assumed that jump register JR1 will always have the all zero jump
control sequence. Hence, the linear approximation will never apply for this
register.

In the case when not all registers use the same kind of jump registers, we
are not interested in the most biased linear approximation of single registers.
Instead we have to search for a linear approximation that has a good bias
for all types of registers at the same time. This is much harder to find than a
single approximation for one register. This is the case in Pomaranch Version
3.

108 7. Distinguishing Attacks on the Pomaranch Family of Stream Ciphers

7.4 Attacking Different Versions of Pomaranch

A Pomaranch stream cipher can be designed using one or several types of
jump registers. It can also use a linear or a nonlinear Boolean filter function.
The attack used on all versions is in essence the same. We start by finding a
linear approximation for one or several jump registers. We then calculate the
cipher distribution DC . We make an estimate on the amount of keystream,
N , needed in the attack using the Squared Euclidean Imbalance. Samples
are then collected from the keystream as

Qt =
⊕

i∈T
zt+i ⊕

⊕

i∈T
zt+i+T p

1
. (7.14)

Finally, we perform a hypothesis test according to Section 3.1.3.2 using the
log-likelihood ratio. The attack is summarized in Figure 7.3.'

&

$

%

1. Find a linear approximation for the jump registers, i.e.,
find T such that

Pr(
⊕

i∈T
xt+i = 0) =

1

2
+ ε, |ε| ≤ 0.5

2. Calculate the distribution DC .
3. Calculate the number of samples, N , we need to observe.
4. for t = 0 . . .N

Qt =
⊕

i∈T
zt+i ⊕

⊕

i∈T
zt+i+T p

1

end for

5. Calculate LLR =

N∑

t=0

log2

(DC(Qt)

1/2

)

.

6. if (LLR ≥ 0)
output cipher.

else
output random.

Figure 7.3: Summary of the new distinguishing attack on the Po-
maranch family of stream ciphers.

We will now take a closer look at the different design possibilities that
has been used and give an expression for the number of samples needed in
a distinguisher for each possibility. The general expressions for the amount
of keystream needed in an attack can be seen as a new design criteria for
Pomaranch-like stream ciphers.

7.4. Attacking Different Versions of Pomaranch 109

7.4.1 One Type of Registers with Linear Filter Function

In this family of Pomaranch stream ciphers we assume that all jump register
sections use the same type of register and that the filter function h is linear,
i.e., h(x(1), . . . , x(n)) =

∑n
i=1 x(i). Pomaranch Version 1 and Pomaranch Ver-

sion 2 are both included in this family.
Assume that we have found a linear approximation, as described in Sec-

tion 7.3.3, of weight w of the register used. We consider samples at t and
t + T p

1 such that p positions into h are the same according to Section 7.3.1.
Our samples will be taken as

⊕

i∈T
zt+i ⊕

⊕

i∈T
zt+i+T p

1
=

n⊕

j=1

⊕

i∈T

(
x

(j)
t+i ⊕ x

(j)

t+i+T p
1

)

=

n⊕

j=p+1

⊕

i∈T

(
x

(j)
t+i ⊕ x

(j)

t+i+T p
1

)
.

(7.15)

The distribution of these samples are denoted by DC , i.e.,

DC(x) = Pr
(⊕

i∈T
zt+i ⊕

⊕

i∈T
zt+i+T p

1
= x

)

, x ∈ {0, 1}. (7.16)

If we assume that this distribution is skew we can write the distribution as

DC(0) = 1
2 + εtot

DC(1) = 1
2 − εtot

. (7.17)

The bias of
⊕

i∈T x
(i)
t+i is ε and we have 2(n−p) such relations. Using the

piling-up lemma introduced in Equation 4.7, the total bias of the samples is
given by

εtot = 22(n−p)−1ε2(n−p). (7.18)

We once again use the Squared Euclidean Imbalance in (3.33) from Sec-
tion 3.1.3.2. This equation states that we need 11/∆(DC) samples to distin-
guish the distribution from the random distribution. We can express the SEI
as

∆(DC) = 22(n−p)ε2(n−p). (7.19)

We can now state the following theorem.

Theorem 7.1: The computational complexity and the number N of key-
stream bits needed to reliably distinguish the Pomaranch family of stream

110 7. Distinguishing Attacks on the Pomaranch Family of Stream Ciphers

ciphers using a linear filter function and n jump registers of the same type
are both bounded by

T p
1 +

11

(2ε)4(n−p)
, p > 0, (7.20)

where ε is the bias of the best linear approximation of the jump register.

7.4.2 Different Registers with Linear Filter Function

In this family of generators different types of jump registers are used and
the filter function is assumed to be h(x(1), . . . , x(n)) =

⊕n
i=1 x(i).

This case is very similar to the case when all registers are of the same
type. The difference is that, in this case, we are not looking for the best linear
approximation of the registers separately. Instead, we have to find a linear
approximation that have a bias for all the registers JRp+1, . . . , JRn. This
can be difficult if there are several types of registers. Approximations with a
large bias for one type might have a very small bias for other types. Anyway,
assume that we have found such a linear approximation. Our samples will
still be taken as in (7.15). If we denote the bias for the approximation of
register i by εi, then the total bias will be given as

εtot = 2n−p−1
n∏

i=p+1

ε2
i . (7.21)

This gives us the Squared Euclidean Imbalance

∆(DC) = 22(n−p)
n∏

i=p+1

ε4
i . (7.22)

We can now give the following theorem

Theorem 7.2: Assume that there is a linear relation that is biased in all reg-
isters. The computational complexity and the number N of keystream bits
needed to reliably distinguish the Pomaranch family of stream ciphers us-
ing a linear filter function and n jump registers of different types are both
bounded by

T p
1 +

11

24(n−p)
n∏

i=p+1

ε4
i

, p > 0, (7.23)

where εi is the bias of jump register JRi.

7.4. Attacking Different Versions of Pomaranch 111

The 128-bit variant of Pomaranch Version 3 belongs to a special subclass
of this family, namely all registers in odd positions are of type I and registers
in even positions are of type II. In this case we only have to search for a linear
approximation that is biased for type I and type II registers at the same time.

The bias of
⊕

i∈T x
(i)
t+i is denoted εtype I and εtype II , respectively, for the

different registers. In total we have 2⌈n−p
2 ⌉ type I relations and 2⌊n−p

2 ⌋ type
II relations when n is odd. Hence, the total bias of the samples is given by

εtot = 2n−p−1ε
2⌈n−p

2 ⌉
type I ε

2⌊n−p
2 ⌋

type II . (7.24)

If we apply Theorem 7.2 to the 128-bit variant of Pomaranch Version 3, the
number of samples in the distinguisher is given by

N = T p
1 +

11

24(n−p)ε
4⌈n−p

2 ⌉
type I ε

4⌊n−p
2 ⌋

type II

. (7.25)

7.4.3 Nonlinear Filter Function

Now we consider the case when the Boolean filter function is a nonlinear
function. We only consider the case when the filter function h can be written
in the form

h(x(1), . . . , x(n)) = G(x(1), . . . , x(n−1)) ⊕ x(n). (7.26)

The attack can easily be extended to filter functions with more (or less) linear
terms but to simplify the presentation, and the fact that the 80-bit variant of
Pomaranch Version 3 is in this form, we only consider this special case here.

Attacks on this family use a biased linear approximation of JRn, see Sec-
tion 7.3.3, together with the fact that the input to G at time t and t + T p

1

have p inputs in common and hence in some cases a biased distribution, see
Section 7.3.2.

Let ǫ denote the bias of G
(
x

(1)
t , . . . , x

(n−1)
t

)
⊕ G

(
x

(1)

t+T p
1
, . . . , x

(n−1)

t+T p
1

)
, and

ε the bias of our linear approximation for JRn,
⊕

i∈T x
(i)
t+i. The samples are

taken as

⊕

i∈T
zt+i ⊕

⊕

i∈T
zt+i+T p

1
=

⊕

i∈T
x

(n)
t+i ⊕

⊕

i∈T
x

(n)

t+i+T p
1

⊕
⊕

i∈T
G

(
x

(1)
t+i, . . . , x

(n−1)
t+i

)
⊕ G(x

(1)

t+i+T p
1
, . . . , x

(n−1)

t+i+T p
1

)
(7.27)

and the bias of the samples is given by

εtot = 2w+1ε2ǫw. (7.28)

112 7. Distinguishing Attacks on the Pomaranch Family of Stream Ciphers

This relation tells us that we need to keep the weight of the linear approxi-
mation of JRn as low as possible, i.e., there is a trade off between the bias ε
of the approximation and the number of terms w in the relation.

Theorem 7.3: The computational complexity and the number N of key-
stream bits needed to reliably distinguish the Pomaranch family of stream
ciphers using a filter function of the form (7.26) are both bounded by

T p
1 +

1

(2w+1ε2ǫw)2
, (7.29)

where ε is the bias of the approximation of weight w of register JRn and ǫ is

the bias of G
(
x

(1)
t , . . . , x

(n−1)
t

)
⊕ G

(
x

(1)

t+T p
1
, . . . , x

(n−1)

t+T p
1

)
.

Note that in this presentation it does not matter if all registers are of the
same type or if they are of different types. As only register JRn is completely
linear in the output function H , we only need to have an approximation of
this register.

7.5 Attack Complexities for the Existing Versions

of the Pomaranch Family

In this section, we look at the existing versions and variants of Pomaranch
that have been proposed so far. These are Pomaranch Version 1, the 80-bit
and 128-bit variants of Pomaranch Version 2 and the 80-and 128-bit variants
of Pomaranch Version 3. Applying the attack proposed in this chapter, we
show that we can find distinguishers with better complexity than previously
known for all five ciphers.

7.5.1 Pomaranch Version 1

In Pomaranch Version 1 all registers are the same, so the attack will be ac-
cording to Section 7.4.1. The best known linear approximation for this reg-
ister, as given in [Kha05], is

ε =
∣
∣Pr(xt ⊕ xt+8 ⊕ xt+14 = 0) − 1

∣
∣ = 2−5.286. (7.30)

Using Theorem 7.1 for different values of p we get Table 7.1. We see that the
best attack is achieved when p = 5. The computational complexity and the
amount of keystream needed is then 272.35.

7.5. Attack Complexities for the Existing Versions of the Pomaranch
Family 113

p 1 2 3 4 5 6 7

N [1] 2140.61 2123.47 2106.32 289.18 272.35 283.99 297.99

Table 7.1: Number of samples needed to distinguish Pomaranch
Version 2 from a random source according to Theorem 7.1.

7.5.2 Pomaranch Version 2

Similarly as in Pomaranch Version 1, in Pomaranch Version 2 all registers
are the same and the attack will be performed according to Section 7.4.1.
The best bias of a linear approximation for the registers used was found
in [HJ06] and is given by

ε =
∣
∣Pr(xt ⊕ xt+2 ⊕ xt+6 ⊕ xt+18 = 0) − 1

∣
∣ = 2−4.788. (7.31)

Using Theorem 7.1 for different values of p gives Table 7.2. For the 80-bit
variant the computational complexity and the number of samples is 256.00

and for the 128-bit variant it is 280.07.

p 1 2 3 4 5 6

N
[2]
80 299.22 280.07 260.91 256.00 270.00 284.00

N
[2]
128 2156.68 2137.52 2118.37 299.22 280.07 284.00

Table 7.2: Number of samples needed to distinguish Pomaranch
Version 2 from a random source according to Theorem 7.1.

7.5.3 Pomaranch Version 3

There is a significant difference between the 80-bit and the 128-bit variants
of Pomaranch Version 3, so this section will be divided into two parts.

• 80-bit Variant. The 80-bit variant of Pomaranch Version 3 uses a non-
linear filter function, the attack will hence follow the procedure de-
scribed in Section 7.4.3.

We started by estimating the bias of

G
(
x

(1)
t , . . . , x

(5)
t

)
⊕ G

(
x

(1)

t+T p
1
, . . . , x

(5)

t+T p
1

)
. (7.32)

114 7. Distinguishing Attacks on the Pomaranch Family of Stream Ciphers

The results for different p are summarized in Table 7.3. The keystream
per IV/key pair of Pomaranch Version 3 is limited to 264. Because
of this we limited p to p ∈ {1, 2, 3}, otherwise T p

1 > 264. We looked
for a linear relation of JR6 that, together with a value of p ∈ {1, 2, 3},
minimizes the amount of keystream needed as given by Theorem 7.3.
The best approximation found was

Pr
(
x

(6)
t ⊕x

(6)
t+5⊕x

(6)
t+7⊕x

(6)
t+9⊕x

(6)
t+12⊕x

(6)
t+18 = 0

)
=

1

2
(1−2−8.774), (7.33)

using p = 3. The total bias of our samples using this approximation is

εtot = (26+12−9.774)2 · (2−4)6 = 2−35.548, (7.34)

according to (7.28). The samples used in the attack are taken according
to

⊕

i∈T
zt+i ⊕

⊕

i∈T
zt+i+T 3

1
, (7.35)

where T = {0, 5, 7, 9, 12, 18}. According to Theorem 7.3, the amount
of keystream needed is 254 + 274.56 = 274.56. This is also the compu-
tational complexity of the attack. In the specification of Pomaranch
Version 3 the frame length (keystream per IV/key pair) is limited to
264. This does not prevent our attack as all samples will have this bias
regardless of the key and IV used. We only need to consider 264 key-
stream bits from ⌈210.56⌉ = 1510 different key/IV pairs.

p 1 2 3 4 5

ǫ 0 2−4 2−3 2−2 1

Table 7.3: The bias of G
�
x

(1)
t , . . . , x

(5)
t

�
⊕ G

�
x

(1)

t+T
p
1
, . . . , x

(5)

t+T
p
1

�
in

the 80 bit variant of Pomaranch Version 3 for different values of p.

• 128-bit Variant. In Pomaranch Version 3 two different registers are
used, so we start by searching for a linear approximation that is good
for both types of registers. The best approximation we found was

xt ⊕ xt+1 ⊕ xt+2 ⊕ xt+5 ⊕ xt+7 ⊕ xt+11 ⊕ xt+12 ⊕ xt+15 ⊕ xt+21, (7.36)

which has the same bias for both types of registers, namely

εeven = εodd = 2−10.934. (7.37)

7.6. Summary 115

Using (7.25) for different values of p we get Table 7.4. Our best distin-
guishing attack needs 2126.00 keystream bits. This figure is determined
by T 7

1 = 2126.00 so it is not possible to look at different key/IV pairs
in this case as the distance between the bits in each sample has to be
2126.00. As the frame length is limited to 264 it will not be possible to
get any biased samples at all with p = 7.

p 1 2 3 4 5 6 7 8

N
(3)
128 2353.35 2309.61 2265.88 2222.14 2178.40 2134.67 2126.00 2144.00

Table 7.4: Number of samples needed to distinguish the 128-bit
variant of Pomaranch Version 3 according to (7.25).

7.6 Summary

In this chapter we have presented a framework for statistical distinguishers
on the Pomaranch family of stream ciphers. We have demonstrated how
to use the framework on all proposed Pomaranch ciphers. The results can
also be seen as a design criteria for future design proposals of Pomaranch-
like ciphers. The amount of keystream and the computational complexity
needed in our attack on the existing versions and variants of Pomaranch
ciphers are summarized in Table 7.5.

Attack Complexities Keystream Comp. Complexity

Pomaranch v1 128 bit 272 272

Pomaranch v2
80 bit 256 256

128 bit 280 280

Pomaranch v3
80 bit 275 275

128 bit ∗ 2126 2126

* Without frame length restriction

Table 7.5: Computational complexity and keystream needed for the
proposed distinguishers for all versions and variants of Pomaranch.

116 7. Distinguishing Attacks on the Pomaranch Family of Stream Ciphers

8

Find the Dragon

Dragon is a word oriented stream cipher submitted as a Profile 1 can-
didate to the eSTREAM project, i.e., it is designed to be very fast in

software. Dragon is one of eight primitives in Profile 1 that have been se-
lected for phase 3 of the project. The design is based on a linear block (a
counter) and a nonlinear feedback shift register (NLFSR) with a very large in-
ternal state of 1088 bits. The state is updated by a nonlinear function. This
function is also used as a filter function to produce the keystream.

In this chapter we show how statistical weaknesses in the F function
can be used to create a distinguisher for Dragon. However, it is important
to note that our attack is only successful if we remove the constraint that
the cipher has to be resynchronized after 264 keystream words. Our distin-
guishing attack requires around 2155 words of keystream from Dragon, it
has time complexity 2187 and needs 232 of memory. An alternative method
is also presented that only requires time complexity 2155 but needs 296 of
memory. The attack shows that Dragon does not provide full security when
a key of size 256 bits is used.

The chapter is based on [EM05] and the outline of the chapter is the
following. In Section 8.1 a short description of the stream cipher Dragon
is given. Afterward, in Section 8.2, we derive linear relations, and build
our distinguisher in Section 8.3. Then in Section 8.4 we describe how to
calculate the noise distribution. In Section 8.5 we summarize different attack
scenarios on Dragon, and finally, in Section 8.6 we present our results, make
conclusions and discuss possible ways to overcome the attack.

117

118 8. Find the Dragon

8.1 A Description of Dragon

Dragon is a stream cipher constructed from a large nonlinear feedback shift
register, an update function, F , and a memory denoted as M . It is a word
oriented cipher that operates on 32 bit words, the NLFSR is 1024 bits long,
i.e., 32 words long. The words in the internal state are denoted as Bi, 0 ≤
i ≤ 31 . The memory M (counter) contains 64 bits, which is used as a linear
part with the period of 264. The cipher handles two key sizes, namely 128 bit
keys and 256 bit keys. In our attack we disregard the initialization procedure
and just assume that the initial state of the NLFSR is randomly selected.

In each round the F function takes six words as input and produces
six words of output, as shown in Figure 8.1. In the figure ⊕ denotes 32
bit parallel XOR, and and ⊞ arithmetical addition modulo 232. These six

a b c d e f

⊕ ⊕ ⊕
⊞ ⊞

⊞

⊕G1 ⊕G2

⊕ G3

⊕ H1 ⊕ H2 ⊕ H3

⊞
⊞

⊞
⊕ ⊕

⊕
a′ b′ c′ d′ e′ f ′

Figure 8.1: F -function.

words, denoted as a, b, c, d, e, f , are formed from words of the NLFSR and
the memory register M , as explained in (8.1), where M = (M (L), M (R)),

a = B0, b = B9, c = B16,
d = B19, e = B30 ⊕ ML, f = B31 ⊕ M (R).

(8.1)

The F function uses six Z232 → Z232 S-boxes G1, G2, G3, H1, H2 and
H3. The purpose of them is to provide high algebraic immunity and non-
linearity. These S-boxes are constructed from two other fixed Z28 → Z232

8.1. A Description of Dragon 119

S-boxes, S1 and S2, as shown below,

G1(x) = S1(x0) ⊕ S1(x1) ⊕ S1(x2) ⊕ S2(x3),

G2(x) = S1(x0) ⊕ S1(x1) ⊕ S2(x2) ⊕ S1(x3),

G3(x) = S1(x0) ⊕ S2(x1) ⊕ S1(x2) ⊕ S1(x3),

H1(x) = S2(x0) ⊕ S2(x1) ⊕ S2(x2) ⊕ S1(x3),

H2(x) = S2(x0) ⊕ S2(x1) ⊕ S1(x2) ⊕ S2(x3),

H3(x) = S2(x0) ⊕ S1(x1) ⊕ S2(x2) ⊕ S2(x3),

where 32 bits of input, x, is represented by its four bytes as x = (x0, x1, x2, x3).

B0 B1 B9 B16 B19 B30 B31

F

M

⊕

M(L)

⊕
M(R)

a b c d e f

a′ e′

b′

c′

Figure 8.2: A overview of the Dragon keystream generator.

The exact specification of the S-boxes can be found in [CHM+05]. The
output of the function F is denoted as (a′, b′, c′, d′, e′, f ′), from which the
two words a′ and e′ forms 64 bits of keystream as z = (a′, e′). Two other
output words from the filter function are used to update the NLFSR as

B0 = b′,
B1 = c′,
Bi = Bi−2, 2 ≤ i ≤ 31.

(8.2)

A short description of the keystream generation function is summarized in
Figure 8.3.

120 8. Find the Dragon

'

&

$

%

Input= {B0, . . . , B31, M}
1. (M (L), M (R)) = M.

2. a = B0, b = B9, c = B16, d = B19, e = B30 ⊕ M (L), f = B31 ⊕ M (R).
3. (a′, b′, c′, d′, e′, f ′) = F (a, b, c, d, e, f).
4. B0 = b′, B1 = c′

5. Bi = Bi−2, 2 ≤ i ≤ 31.
6. M + +
7. z = (a′, e′)

Output= {k, B0, . . . , B31, M}

Figure 8.3: Dragon’s Keystream Generation Function.

8.2 Linear Approximation of the Function F

We will start the description of our attack by giving a description of how to
linearly approximate the non-linear function F .

Recall that at time t the input to the function F is a vector of six words

(a, b, c, d, e, f) = (B0, B9, B16, B19, B30 ⊕ M (L), B31 ⊕ M (R)). (8.3)

The output of F are the words (a′, b′, c′, d′, e′, f ′). To simplify further expres-
sions, let us introduce the new variables

b′′ = b ⊕ a = B9 ⊕ B0,

c′′ = c ⊞ (a ⊕ b) = B16 ⊞ (B9 ⊕ B0),

d′′ = d ⊕ c = B19 ⊕ B16,

f ′′ = f ⊕ e = B30 ⊕ B31 ⊕ M (L) ⊕ M (R).

(8.4)

If the words denoted as B are independent, then these new variables
will also be independent (as B19 is independent of B16 and random, then d′′

is independent and random as well; similarly, independence of B16 lead to
the independence of c′′, etc.).

The output from F can be expressed via (a, b′′, c′′, d′′, e, f ′′) as follows,

a′ = (a ⊞ f ′′) ⊕ H1(b
′′ ⊕ G3(e ⊞ d′′))⊕

⊕
(

(f ′′ ⊕ G2(c
′′)) ⊞

(

c′′ ⊕ H2(d
′′ ⊕ G1(a ⊞ f ′′))

))

,

e′ = (e ⊞ d′′) ⊕ H3(f
′′ ⊕ G2(c

′′))⊕

⊕
(

(d′′ ⊕ G1(a ⊞ f ′′)) ⊞

(

(a ⊞ f ′′) ⊕ H1(b
′′ ⊕ G3(e ⊞ d′′))

))

.

(8.5)

8.3. Constructing a Distinguisher 121

Let us now analyze the expression for a′. The variable b′′ appears only
once (in the input of H1), which means that this input is independent from
other terms of the expression, i.e., the term H1(.) can be substituted by
H1(r1), where r1 is some independent and uniformly distributed random
variable. Then, the same will happen with the input for H2.

We would like to approximate the expression for a′ as

a′ = a ⊕ N (a), (8.6)

where N (a) is some nonuniformly distributed noise variable. If we XOR
both sides with a and then substitute a′ with the expression from (8.5), we
derive

N (a) = a ⊕ (a ⊞ f ′′) ⊕ H1(r1) ⊕
(

(f ′′ ⊕ G2(c
′′)) ⊞ (c′′ ⊕ H2(r2))

)

. (8.7)

Despite the fact that G and H are Z232 → Z232 functions, they are not
likely to be one-to-one mappings, considering the way the S-boxes are used
as Z28 → Z232 functions 1 . This means that even if the input to a G or a H
function is completely random, then the output will still be biased. More-
over, the output from the expressions (x⊕Gi(x) and similarly x⊕Hi(x)) are
also biased, as x in these expressions plays a role of an approximation of the
Gi and the Hi functions. These observations mean that the noise variable
N (a), is also biased if the input variables are independent and uniformly
distributed.

By a similar observation, the expression for e′ can also be approximated
as follows.

e′ = e ⊕ N (e), (8.8)

where N (e) is the noise variable. The expression for N (e) can similarly be
derived as

N (e) = e ⊕ (e ⊞ d′′) ⊕ H3(r3) ⊕
(

(d′′ ⊕ G1(a
′′)) ⊞ (a′′ ⊕ H1(r4)

)

, (8.9)

where a′′ = a ⊞ f ′′ is a new random variable, which is also independent
as it has f ′′ as its component, and f ′′ does not appear anywhere else in the
expression (8.9). The two new variables r3 and r4 are also independent and
uniformly distributed random variables by similar reasons.

8.3 Constructing a Distinguisher

The key observation for our distinguisher, is that one of the input words
to the filter function F , at time t is partially repeated as input to F at time

1The cipher Turing uses similar Z232 → Z232 functions based on Z28 → Z232 S-boxes,
which can be regarded as a source of weakness. However, no attack has been found on Turing
so far.

122 8. Find the Dragon

t + 14, i.e.,
et+14 = at ⊕ M

(L)
t+14. (8.10)

Let xt ∈ X be a sample at time t where X = {0, . . . , 232 − 1} , then we will
construct our samples as the sum of two keystream words

xt = a′
t ⊕ e′t+14 =

= (at ⊕ N
(a)
t) ⊕ (at ⊕ M

(L)
t+14 ⊕ N

(e)
t+14) =

= N
(a)
t ⊕ N

(e)
t+14

︸ ︷︷ ︸

N
(tot)
t

⊕M
(L)
t+14

. (8.11)

Let DC denote the distribution of the noise variable N (tot), and let DU
denote the uniform distribution. The collected samples xt ∈ X form the
empirical distribution DX . To perform the hypothesis test we use the log-
likelihood ratio introduced in Equation (3.21).

In Section 3.1.3.2 we introduced the statistical distance as a means to
estimate the sample size need to distinguish two distributions DC and DU .
It was defined as

ε = |DC −DU | =
1

2

232−1∑

x=0

|DC(x) −DU (x)|, (8.12)

where DU(x) = 1/232, ∀x ∈ X . As mentioned in the same section, we need

N ≈ 1/ε2, (8.13)

samples to distinguish DC from DU .
We will now discuss a set of possible solutions for how to deal with the

the unknown counter value M (L).

(i) One possible solution would be to guess the initial state of the counter

M0 = (M
(L)
0 , M

(R)
0) (in total 264 combinations), and then construct

264 empirical distribution from the given keystream. However, it will
increase the time complexity of the distinguisher by 264 times;

(ii) Another possibility is to guess the first 32 bits M
(R)
0 of the initial value

of the counter M0, i.e., 232 values. If we do so, then we always know
when the upper 32 bits M (L) are increased, i.e., at any time t we can

express M
(L)
t as follows.

M
(L)
t = M

(L)
0 ⊞ ∆t, (8.14)

8.4. Calculation of the Noise Distribution 123

where ∆t is known at each time, as M
(R)
t is known. Recall from (8.11),

that the noise variable N
(tot)
t is expressed as xt⊕M

(L)
t+14. However, this

expression can also be approximated as

xt ⊕ (M
(L)
0 ⊞ ∆t+14) → xt ⊕ (M

(L)
0 ⊕ ∆t+14 ⊕ N2), (8.15)

where N2 is a new noise variable due to the approximation of the kind

“⊞ ⇒ ⊕”. As M
(L)
0 can be regarded as a constant for every sample xt,

it only “shifts” the distribution, but will not change the bias. A shift
of the uniform distribution is again the uniform distribution, so, the
distance between the noise and the uniform distribution will remain
the same. This solution requires 232 guesses, and also introduce a new
noise variable N2;

(iii) A third solution could be to consider the sum of two consecutive sam-
ples xt⊕xt+1. As M (L) changes slowly, then with probability (1−2−32)

we have M
(L)
t = M

(L)
t+1, and this term will be eliminated from the ex-

pression for the new sample. Unfortunately, this method will decrease
the bias significantly, and then the number of required samples N will
be much larger than in the previous cases.

In our attack we tried different solutions, and based on simulations we de-
cided to choose solution (2) for our attack, as it has the lowest attack com-
plexity.

The remaining questions is how to calculate the noise distribution DC .

8.4 Calculation of the Noise Distribution

Consider the expression for the noise variable xt ⊕ M
(L)
t+14 = N

(a)
t ⊕ N

(e)
t+14.

For simplicity in the formula, we omit time instances for variables,

N
(tot)
t = N

(a)
t ⊕ N

(e)
t+14 =

= (a ⊞ f ′′) ⊕
((

f ′′ ⊕ G2(c
′′)

)
⊞

(
c′′ ⊕ H2(r2)

))

⊕

⊕(a ⊞ d′′) ⊕
((

d′′ ⊕ G1(a
′′)

)
⊞

(
a′′ ⊕ H1(r4)

))

⊕

⊕H1(r1) ⊕ H3(r3).

(8.16)

We propose two ways to calculate the distribution of the total noise ran-

dom variable N
(tot)
t . Let us truncate the word size by n bits (when we con-

sider the expression modulo 2n). Then in the first case the computational

124 8. Find the Dragon

complexity is O(24n) . This complexity is too high and, therefore, requires
the noise variable to be truncated by some number of bits n ≪ 32, much less
than 32 bits. The second solution has a better complexity O(n2n), but intro-
duces two additional approximations into the expression, which makes the
calculated bias smaller than the real value, i.e., by this solution we can verify
the lower bound for the bias of the noise variable. Below we describe two
methods and give our simulation results on the bias of the noise variable

N
(tot)
t .

8.4.1 Truncate the word size

Consider the expression (8.16) taken by modulo 2n, for some n = 1 . . . 32.
Then the distribution of the noise variable can be calculated by the following
steps.

(i) Construct four distributions, two of them are conditioned

D(G2(c′′) mod 2n|c′′),

D(G1(a′′) mod 2n|a′′),

D(H1(r4) mod 2n),

D(H2(r2) mod 2n).

(8.17)

If the inputs to the Hi functions are random, their distributions are the
same, i.e., D(H1(r4) mod 2n) = D(H2(r2) mod 2n). Hence, it is sufficient
to determine one of them. The algorithm requires one loop for c′′ (a′′

and x) of size 232. The time required is 3 · 232;

(ii) Afterward, construct two more conditioned distributions

D((f ′′⊕G2(c′′))⊞(c′′⊕H2(r2)) mod 2n|f ′′),

D((d′′⊕G1(a′′))⊞(a′′⊕H1(r4)) mod 2n|d′′).
(8.18)

This requires four loops for f ′′, c′′, G2(c
′′) mod 2n, and H2(r2) mod 2n,

which takes time O(24n) (and similar for the second distribution);

(iii) Then, calculate another two conditioned distributions

D(Expr1|a) = D((a⊞f ′′)⊕(f ′′⊕G2(c′′))⊞(c′′⊕H2(r2)) mod 2n|a),

D(Expr2|a) = D((a⊞d′′)⊕(d′′⊕G1(a′′))⊞(a′′⊕H1(r4)) mod 2n|a).
(8.19)

Each takes time O(23n);

8.4. Calculation of the Noise Distribution 125

(iv) Finally, combine the results, partially using FHT, and then calculate
the bias of the noise:

DC = DN(tot) = D(Expr1|a) ⊕D(Expr2|a) ⊕DH1 ⊕DH3 . (8.20)

This will take time O(23n + 3n · 2n).

This algorithm calculates the exact distribution of the noise variable taken
modulo 2n, and has the complexity O(24n). Due to such a high computa-
tional complexity we could only manage to calculate the bias of the noise
when n = 8 and n = 10:

εI |n=8 = 2−80.59,

εI |n=10 = 2−80.57. (8.21)

8.4.2 Approximate ⊞ with ⊕

Consider two additional approximations of the second ⊞ to ⊕ in (8.16).
Then, the total noise can be expressed as

N
(tot)
t = H1(r1) ⊕ H2(r2) ⊕ H3(r3) ⊕ H1(r4)⊕

⊕
(
G2(c

′′) ⊕ c′′
)
⊕

(
G1(a

′′) ⊕ a′′)⊕

⊕N3 ⊕ N2,a ⊕ N2,e,

(8.22)

where
N3 = (a ⊞ f ′′) ⊕ (a ⊞ d′′) ⊕ f ′′ ⊕ d′′,

and N2,a and N2,e are two new noise variables due to the approximation
⊞ ⇒ ⊕, i.e., N2,a = (x ⊞ y) ⊕ (x ⊕ y), for some random inputs x and y, and
similar for N2,e. Introduction of two new noise variables will statistically
make the bias of the total noise variable smaller, but it can give us a lower
bound of the bias, and also allow us to operate with distributions of size 232.

First, calculate the distributions D(Hi), D(G1(a′′)⊕a′′) and D(G1(c′′)⊕c′′),
each takes time 232. The expressions for N2,a, N2,e and N3 belong to the
class of pseudo-linear functions modulo 2n (PLFM), which was introduced in
[MJ05b]. In the same paper, algorithms for construction of their distribu-
tions were also provided, which take time around O(δ · 2n), for some small
δ. The last step is to perform the convolution of precomputed distribution
tables via FHT in time O(n2n). Algorithms (PLFM distribution construction
and computation of convolutions) and data structures that operates on large
distributions are given in [MJ05b]. If we consider n = 32, then the total time

126 8. Find the Dragon

complexity to calculate the distribution table for N (tot) will be around 238

operations, which is feasible for a common PC. It took us a few days to ac-
complish such calculations on a usual PC with memory 2Gb and 2×200Gb
of HDD, and the received bias of N (tot) was

εII |n=32 = 2−74.515. (8.23)

If we also approximate (M
(L)
0 ⊞∆t) → (M

(L)
0 ⊕∆t)⊕N2, and add the noise

N2 to N (tot), we receive the bias

ε∆
II |n=32 = 2−77.5, (8.24)

which is the lower bound. This means that our distinguisher requires ap-
proximately 2155 words of the keystream, according to 8.12.

8.5 Attack Scenarios

In the previous section we have shown how to sample from the given key-
stream, where 32 bit samples are drawn from the noise distribution with
the bias ε∆

II |n=32 = 2−77.5. Our distinguisher needs around 2155 words of
the keystream to successfully distinguish the cipher from random. Unfor-

tunately, we have to guess the lower 32 bits M
(R)
0 to construct the empirical

distribution correctly. This guess increases the time complexity of our at-
tack to 2187, and requires memory 232. The algorithm of our distinguisher
for Dragon is given in Figure 8.4.

The time complexity can easily be reduced down to 2155, if memory of
size 296 is available. Assume that we first construct a special table T [∆][x] =
#{t ≡ ∆ mod 264, xt = x}, where the samples are taken as xt = a′

t ⊕
e′t+14. Afterward, for each guess of M

(L)
0 , the empirical distribution DX is

constructed from the table T in time 296. Hence, the total time complexity
will be 2155 + 232 · 296 ≈ 2155. This scenario is given in Figure 8.5. In the

figure (∆ ⊞ M
(R)
0) ≫ 32 denotes a binary shift of ∆ ⊞ M

(R)
0 32 steps to the

right.

8.6 Summary

Two versions of a distinguishing attack on Dragon were presented. The first
scenario required a computational complexity of 2187 and needed memory
only 232. The second scenario had a lower time complexity around 2155, but
required a larger amount of memory 296. These attacks show that Dragon
does not provide full security and can successfully be broken much faster
than the exhaustive search, when a key of 256 bits is used.

8.6. Summary 127

'

&

$

%

for 0 ≤ M
(R)
0 < 232

DX(x) = 0, ∀x ∈ Z232

∆ = 0 (or = −1, if M
(R)
0 = 0)

for t = 0, 1, . . . , 2155

if (M
(R)
0 ⊞ t) = 0 then ∆ = ∆ ⊞ 1

xt = a′
t ⊕ e′t+14 ⊕ ∆

DX(xt) = DX(xt) + 1

end for

LLR =
∑

x∈Z232

DX(x) · log2

(DC(x)

2−32

)

If LLR ≥ 0 break and output: Dragon

end for

output: Random source

Figure 8.4: The distinguisher for Dragon (Scenario I).

From the specification of Dragon we also note that the amount of key-
stream for an unique pair initialization vector (IV) and key is limited to 264.
This makes our attacks infeasible, but our results show that there are some
structural weaknesses in Dragon.

Several new stream cipher proposals are based on NLFSRs. It is impor-
tant to study such primitives, as it could be an interesting replacement for
the widely used LFSR based stream ciphers.

128 8. Find the Dragon

'

&

$

%

for 0 ≤ t < 2155

T [t mod 264][a′
t ⊕ e′t+14] + +

end for

for M
(R)
0 = 0, . . . , 232 − 1

for ∆ = 0, . . . , 264 − 1

for x = 0, . . . , 232 − 1

DX

(

x ⊕
(
(∆ ⊞ M

(R)
0) ≫ 32

))

+ = T [∆][x]

end for

end for

LLR =
∑

x∈Z232

DX(x) · log2

(DC(x)

2−32

)

If LLR ≥ 0 break and output: Dragon

end for

output: Random source

Figure 8.5: Distinguisher for Dragon with lower time complexity
(Scenario II).

9

A Square Root Resynchronization
Attack

It is well known that a block cipher in either counter mode or OFB mode
can be easily distinguished from a random sequence using 2n/2 keystream

blocks, where n is the block size. In this chapter we give an extension to
the attack scenario for the generic distinguishing attacks on block ciphers
in OFB mode, we also show that the attack is applicable to the eSTREAM
candidates Lex and the Pomaranch family of stream ciphers.

Assume that resynchronization of the primitive is performed using a
fixed resync, see Section 3.6 i.e., we can perform an attack under the known
IV/known plaintext scenario, see Section 1.3.1. Under this assumption we
show that we can not only distinguish the keystream from a random se-
quence, we can also recover some plaintext if only ciphertext is given. Hence,
the attack can be used for instance deduction.

The chapter is based on the papers [EHJ07a, EHJ07b] and the outline
is as follows. We first describe the classical distinguishing attack on block
ciphers in OFB mode in Section 9.1. We describe the new attack scenario in
Section 9.2. In Section 9.3 we describe the attack on an eSTREAM candidate
called LEX. In Section 9.4 we describe the attack on a family of eSTREAM
candidates called the Pomaranch family. Finally we summarize the chapter
in Section 9.5.

129

130 9. A Square Root Resynchronization Attack

9.1 Classical Distinguishing Attack on OFB mode

In this section we describe the generic distinguishing attack that applies to
block ciphers used in OFB. We use n to denote the block size in bits of the
underlying cipher.

Output feedback mode (OFB) is a block cipher mode that turns the block
cipher into a synchronous stream cipher as described in Section 1.2.2.1. The
n-bit keystream words (z0, z1, z2 . . .) are generated by repeatedly encrypting
an n-bit IV. Let z−1 = IV , then

zi = EK(zi−1), i ≥ 0. (9.1)

As a block cipher defines a permutation over all n-bit blocks, we expect the
average period of the keystream to be in the order of 2n−1 blocks. Thus, we
expect that there is no collision in the first 2n−1 keystream blocks. On the
other hand, if we have a collision, then we know that all subsequent blocks
will be the same. I.e., if zi = zj (i 6= j), then zi+k = zj+k (k ≥ 0). According
to the birthday paradox, in a truly random sequence we expect to find a
collision after observing 2n/2 n-bit blocks. This suggests that the keystream
sequence can be distinguished from random by observing approximately
2n/2 keystream blocks. The distinguisher is given in Figure 9.1.�

�

�

�

Input(z0, z1, . . . , z2n/2)
if (zi = zj and zi+1 6= zj+1 for some i 6= j)

return Random
else

return OFB Mode

Figure 9.1: Distinguisher for OFB mode

9.2 New Attack Scenario

In this section we extend the basic distinguishing scenario given in the pre-
vious section. We show that in our scenario the adversary will get much
more information than from a distinguishing attack. Some part of the plain-
text will actually be recovered. The attack is generic for any stream cipher.
Let us divide the internal state of the cipher into two parts,

State = (StateK , StateK+IV), (9.2)

where StateK is a part of the state that is only affected by the key and
StateK+IV is a part of the state that is affected by both the key and the

9.2. New Attack Scenario 131

IV . If the key size |K| > |StateK+IV |/2, then the attack will always succeed
with complexity below exhaustive key search. For simplicity we denote
L = |StateK+IV |.

Consider a resynchronization scenario. We assume that the key is fixed
and that the cipher is initialized with many different IVs. Further, we as-
sume that we have access to one long keystream sequence produced from
one of the IVs, denoted IV0. We intercept the ciphertext corresponding to
many other IVs and we know the first N plaintext bits corresponding to ev-
ery ciphertext. Our goal is to recover the rest of the plaintext for one of the
messages.

A sequence of l consecutive keystream bits is called a sample and is de-
noted by x, i.e., xt = (zt, zt+1, . . . , zt+l−1). Let us first store k samples from
IV0 in a table. Assume that the cipher is initialized using several IVs and
we know at least the l first bits of the corresponding keystream. After
how many initializations do we expect to produce a sample which is al-
ready stored in our table? This problem corresponds to the second birthday
problem described in Section 3.1.1. In Section 3.1.1 it was showed that if

k = O(
√

L) and N = O(
√

L), then probability of a collision is approxi-
mately

1 − e−
kN
L . (9.3)

Denote the IV producing the collision by IVc. If a collision is found, then
with high probability the following keystream of IV0 and IVc will also be
identical. That means that if we just know the first l keystream bits gener-
ated by IVc, we can predict future keystream bits from IVc. In other words,
by knowing the first l corresponding plaintext bits of a ciphertext, we can
decrypt the rest of the ciphertext without knowing the keys. The attack is
visualized in Figure 9.2.

Collision found, xIVc

xIV0

Samples saved in table

Figure 9.2: State graph for a fixed key, samples are visualized by
circles.

This resynchronization scenario will not apply to a block cipher in counter
mode. In counter mode there is no state that is updated pseudo randomly.

132 9. A Square Root Resynchronization Attack

The value that is encrypted is a counter and thus, it will never repeat. This
is the reason why counter mode can be distinguished from a random se-
quence but also the reason why the resynchronization state collision attack
described above will fail.

However, the above scenario applies to block ciphers used in OFB mode
as zi can be seen as the part of the state depending on both the key and the
IV, StateK+IV and the key used in the block cipher can be seen as the state
only depending on the key, StateK . By initializing OFB mode with a new
IV, the cipher will enter a new random state after every encryption.

Assume that 2βL (0 ≤ β ≤ 1) samples of length l from a keystream
sequence of 2βL + l bits, originating from IV0 and key K , is saved in a table.
The table is then sorted with complexity O(βL · 2βL). This table covers a
fraction of 2−(1−β)L of the entire cycle. The number of samples (IVs with l
known keystream bits) is according to Equation (9.3) approximately 2(1−β)L.
For each sample, a logarithmic search with complexity O(βL) in the table is
performed to see if there is a collision. To be sure that a collision in the table
actually means that we have found a collision in the state cycle, l must be
l ≈ L. The attack complexities are then given by

2βL + L bits from one IV andKeystream :
L bits from 2(1−β)L IVs

T ime : βL2βL + βL2(1−β)L

Memory : L2βL

where 0 ≤ β ≤ 1. By decreasing β it is possible to achieve smaller memory
complexity at the expense of more IVs and higher time complexity. We can
also see that the best time complexity is achieved when β = 0.5 for large L.

The proposed attack is summarized in Figure 9.3. In the figure, xIVi
t'

&

$

%

for i = 1, . . . , 2βL

T [i] = xIV0

t+i

end for
sort T
for i = 1, . . . , 2(1−β)L

if xIVi
t ∈ T

return cipher
end for
return random

Figure 9.3: Summary of square root attack.

9.2. New Attack Scenario 133

represents a sample from the keystream from IVi at time t, and T represents
the table where samples are stored.

9.2.1 Distinguished Points

In practice the limiting factor of the algorithm is to store the table of size 2
L
2

in memory. To reduce the size of the table one can use distinguished points,
i.e., not every word is saved in the table. For example, only words that end
with t zeros are saved in the table. This would reduce the size of the table
to in average 2

L
2 −t. On the other hand the price we have to pay is higher

computational complexity in the attack phase as we have to clock the cipher
on average 2t times for every IV before an occurrence with t zeros at the
end occur in a word. Also, we loose the power to predict future keystream
symbols and the attack becomes a pure distinguishing attack. The attack
using distinguished points is summarized in Figure 9.4.

'

&

$

%

j=0

for i = 1, . . . , 2
L
2

if xIV0

t+i fulfills requirement

T [j] = xIV0

t+i

j + +
end for
sort T

for i = 1, . . . , 2
L
2

k = 0

while xIVi

t+k do not fulfill requirement
k + +

end while

if xIVi

t+k ∈ T
return cipher

end for
return random

Figure 9.4: Summary of square root attack using distinguished
points.

134 9. A Square Root Resynchronization Attack

9.3 Analysis of Leak Extraction (LEX)

LEX [Bir06] is a stream cipher submitted as a Profile 1 candidate to the eS-
TREAM project. It is very similar to a block cipher used in output feedback
mode. Instead of taking the result of a block cipher encryption as keystream,
the keystream is taken as a part of the state after each round. The idea be-
hind LEX can be applied to many different block ciphers and can thus in
some sense be seen as a mode of operation. However, leaking the wrong
part of the state can be devastating for the security of the cipher and how
to leak the state must be carefully considered depending on which block
cipher to use. LEX in the eSTREAM project uses AES as block cipher. The

state of consists of 16 bytes, denoted by b
(i,j)
t , 0 ≤ i, j ≤ 3 at time t. One

round of AES is performed, using round key Kt, to produce the next state.
This is illustrated in Figure 9.5. In the figure Ki, 0 ≤ i ≤ 9 denotes the

Even round Odd round

b
(0,0)
t b

(0,1)
t b

(0,2)
t b

(0,3)
t

b
(1,0)
t b

(1,1)
t b

(1,2)
t b

(1,3)
t

b
(2,0)
t b

(2,1)
t b

(2,2)
t b

(2,3)
t

b
(3,0)
t b

(3,1)
t b

(3,2)
t b

(3,3)
t

-

Ki

?�

�
	1-round

of AES
-

b
(0,0)
t+1 b

(0,1)
t+1 b

(0,2)
t+1 b

(0,3)
t+1

b
(1,0)
t+1 b

(1,1)
t+1 b

(1,2)
t+1 b

(1,3)
t+1

b
(2,0)
t+1 b

(2,1)
t+1 b

(2,2)
t+1 b

(2,3)
t+1

b
(3,0)
t+1 b

(3,1)
t+1 b

(3,2)
t+1 b

(3,3)
t+1

⇓ ⇓
32 bits of keystream 32 bits of keystream

Figure 9.5: One round of the stream cipher LEX, at each time instant
32 bits of keystream is leaked from the internal state. The bytes
leaked at each round is marked with gray, it is assumed in the figure
that t is even. One round of AES is applied to the state to determine
the next state.

round key where i = t (mod 10), there are in total ten 128-bit round keys in
AES. Lex leaks 32 bits, i.e., 4 bytes, of the state in each round. These bytes
are leaked according to

zt =

{(
b
(0,0)
t , b

(2,0)
t , b

(0,2)
t , b

(2,2)
t

)
, t odd

(
b
(0,1)
t , b

(2,1)
t , b

(0,3)
t , b

(2,3)
t

)
, t even

(9.4)

128-bit AES uses 10 rounds to output 128 bits and thus, LEX leaks 320
bits in 10 rounds. Hence, LEX is 2.5 times faster than AES in e.g., OFB mode.

9.4. Analysis of Pomaranch 135

Consider the generic distinguishing attack on OFB mode where 264 blocks
of keystream can be used to distinguish the sequence from random. In LEX
this generic distinguishing attack is not possible as the mapping from inter-
nal state to output is not one-to-one and thus collisions can occur.

On the other hand, consider the resynchronization scenario given in Sec-
tion 9.2. The internal state consists of the 128-bit block in AES together with
the secret key K . As keystream bits are output in every AES round it make
sense to include the 10 rounds of AES in the internal state. The part of the
state that is not fixed is thus 128 + log2 10 = 131.32 bits. By knowing 265.66

keystream bits from one IV and the first ≈ 132 bits from 265.66 other IVs, we
can decrypt the rest of the ciphertext corresponding to one IV, IVc.

This attack does not stem from a structural weakness of LEX or AES.
Instead it stems from the fact that the part of the state that holds the key bits
is not updated unless the key is changed. Thus it would be applicable to
any block cipher used as a stream cipher by leak extraction.

9.4 Analysis of Pomaranch

In this section we will look at the existing versions of Pomaranch, see Sec-
tion 7.1 for a description of the Pomaranch family of ciphers. We show that
the square root IV attack can be mounted with complexity significantly less
than exhaustive key search. We assume β = 0.5 so the time complexity
and the memory complexity in bits are equal. The 128-bit variants of Po-
maranch Version 1 and Version 2 can be attacked using a table of size 267.0

bytes together with keystream from 263.0 different IVs. The 80-bit variant
of Pomaranch Version 2 can be attacked using only a table of 245.4 bytes
and 242.0 different IVs. Pomaranch Version 3 uses larger registers, and the
complexity of the attack on the 80-bit variant is a table of size 257.8 bytes
and 254.0 IVs. The 128-bit variant needs a table of 285.3 bytes and 281 IVs.
However, if we respect the maximum frame length of 264 bits, we need to
choose β = 0.395. Then we need a table of 271.3 bytes and 298 IVs. The time
complexity is in this case 2104.

The success probability of the attack has been simulated on a reduced
version of the 128 bit variant of Pomaranch Version 3, using two registers
each of length 18 bits, i.e., L = 36. Assume we choose β = 0.5 and a sample
length of l = 36 bits. In order to collect 218 samples, we need approximately
218 + 36 keystream bits from IV0. These samples are stored in a table. We
then samples from 218 different IVs in order to find a collision. The simula-
tion results are summarized in Table 9.2. We also verified the attack using
three registers. The attack given in this section suggests a new design crite-
ria for the Pomaranch family of stream ciphers, namely that the total register
length must be twice the keysize.

136 9. A Square Root Resynchronization Attack

Cipher Table size Number of IVs needed

Version 1 263 263

Version 2
80 bit 242 242

128 bit 263 263

Version 3
80 bit 254 254

128 bit 264 298

Table 9.1: Summary of attack complexities on some Pomaranch ci-
phers.

Number of IVs

Success rate (%) 217 218 219 220 221

Table size

217 28 45 64 87 98

218 38 67 91 98 100

219 71 86 98 100 100

Table 9.2: Simulation results using 2 register Pomaranch version 3
with linear filter function, the table summarizes how many times
the attack succeeds out of 100 attacks for a specific table size and
number of IVs.

9.5 Summary

We have presented a general IV attack that works for all ciphers where the
keysize is larger than half of the state size, when the part of the state only
affected by the key is not considered.

We show that the attack is applicable to block ciphers in OFB mode and
also to the eSTREAM candidate LEX. The attack was demonstrated on all
versions and variants of Pomaranch with complexity far below exhaustive
search. The attack will not recover the key but is still much stronger than a
distinguishing attack. By using keystream from multiple IVs is is possible to
recover the plaintext corresponding to one IV if only the ciphertext together
with the first few keystream bits are known. The attack scenario here is
somewhat similar to the attack scenarios in disk encryption, see e.g., [Gjø05],
where the adversary has write access to the disk encryptor and read access
to the storage medium.

10

A Framework for Chosen IV
Statistical Analysis of Stream

Ciphers

Depending on the protocol, different resynchronization mechanisms can
be used as described in Section 3.6. In this chapter we will consider

resynchronization using requested resync, i.e., one of the participants of a
transmission requests a resynchronization. In such a system, an assailant is
assumed to be able to actively choose the IV. Hence, the cipher should be
designed to resist chosen-IV-known-plaintext attacks.

Daemen, Govaerts and Vandewalle [DGV94] presented an resynchro-
nization attack on nonlinear filter generators with linear resynchronization
and filter function with few inputs. This attack is extended to the case where
the filter function is unknown by Golić and Morgari [GM03a]. More exten-
sions of resynchronization attacks was done by Armknecht, Lano and Pre-
neel [ALP04].

To avoid such attacks, the initialization of stream ciphers in which the
internal state variables are determined using the secret key and the pub-
lic IV should be designed carefully. In most ciphers, first the key and IV is
loaded into the state variables, then a next state function is applied to the in-
ternal state iteratively for a number of times without producing any output.
The number of iterations play an important role on both security and the

137

138 10. A Framework for Chosen IV Statistical Analysis of Stream Ciphers

efficiency of the cipher. It should be chosen so that each key and IV bit af-
fect each initial state bit in a complex way. On the other hand, using a large
number of iterations is inefficient and may hinder the speed for applications
requiring frequent resynchronizations.

Filiol introduced tests to evaluate the statistical properties of symmet-
ric ciphers using the number of the monomials in the Boolean functions
that simulate the action of a given cipher [Fil01]. Saarinen recently pro-
posed to extend these ideas to a chosen IV statistical attack, called the d-
monomial test, and used it to find weaknesses in several proposed stream
ciphers [Saa06] .

In this chapter we generalize this idea and propose a framework for cho-
sen IV statistical attacks using a polynomial description. The statistical tests
are general distinguishing attacks performed under the chosen IV/known
plaintext scenario. The basic idea is to select a subset of IV bits as variables.
Assuming all other IV values as well as the key being fixed, we can write
a keystream symbol as a Boolean function of the selected IV variables. By
running through all possible values of these bits and creating a keystream
output for each of them, we create the truth table of this Boolean function.
We now hope that this Boolean function has some statistical weaknesses
that can be detected. We describe the d-monomial test in this framework,
and then we propose two new tests, called the monomial distribution test
and the Maximal Degree Monomial Test.

We then apply them on some eSTREAM stream cipher proposals, and
give some conclusions regarding the strength of their IV initialization. In
particular, we experimentally detected statistical weaknesses in the key-
stream of Grain-128 with IV initialization reduced to 192 rounds as well as
in the keystream of Trivium using an initialization reduced to 736 rounds.
Furthermore, we repeat our experiments to study the statistical properties
of internal state bits. Here we could detected statistical weaknesses in some
state bits of Grain-128 with full IV initialization. In the context, we also pro-
pose alternative initial loadings for some of the ciphers so that the diffusion
is satisfied in fewer rounds.

The chapter is based on the paper [EJT07] and the outline of the chapter
is the following. Section 10.1 gives some background information about
Boolean functions. In Section 10.2, the suggested framework for chosen
IV statistical attacks is presented. A generalized approach to statical cho-
sen IV analysis is proposed in Section 10.3. We present a test called the
Monomial distribution test in Section 10.4 and a test called the Maximal
Degree Monomial Test in Section 10.5. Some results are presented for re-
duced round initializations of the ciphers Grain [HJMM06], Trivium [CP05],
Decim [BBC+06] and LEX [Bir06] in Section 10.6. Finally we summarize the
chapter in Section 10.7.

10.1. Boolean Functions 139

'

&

$

%

COMPUTE ANF(v)

for i = 1, . . . , n
for j = 1, . . . , 2n−1

tj = v2j−1

uj = v2j−1 ⊕ v2j

end for
v = (t, u)

end for

Figure 10.1: Algorithm to compute the ANF in vector v from the
truth table in v.

10.1 Boolean Functions

Assume that the truth table of an n-variable Boolean function is represented
in a vector v of size 2n and the ANF of the Boolean function can be calcu-
lated with complexity O(n2n) using the algorithm presented in Figure 10.1,
which uses two auxiliary vectors t and u, both of size 2n−1.

Let f : Fn
2 → F2 be a Boolean function, and let M denote the number

of monomials in the ANF of f . If f is randomly chosen, each monomial is
included with probability one half, i.e., a Bernoulli distribution. The sum
of Bernoulli distributed random variables is binomially distributed, hence
M ∼Bin(2n, 1

2), with expected value E(M) = 2n−1. Let us denote the num-
ber of monomials of degree k by Mk, i.e., M =

∑n
k=0 Mk. The distribution

of Mk is Bin(
(
n
k

)
, 1

2) with E(Mk) = 1
2

(
n
k

)
.

Let mk be an observation from Mk, let α be the significance level of the
test, and let n + 1 be the number of degrees of freedom of the test. Then

χ2 =

n∑

k=0

(
mk − 1

2

(
n
k

))2

1
2

(
n
k

)
d→ χ2

α(n + 1), when

(
n

k

)

→ ∞. (10.1)

If
(
n
k

)
is large enough, methods described in Section 3.1.3.1 can be used to

perform a hypothesis test to decide if the function in question has a deviant
number of monomials of degree k.

140 10. A Framework for Chosen IV Statistical Analysis of Stream Ciphers

10.2 A Framework for Chosen IV Statistical At-

tacks

Different tests have been introduced to evaluate statistical properties of se-
quences from symmetric ciphers and hash functions. The tests are usually
based on taking one long keystream sequence and then applying different
statistical tests, like the NIST statistical test suit used in the AES evalua-
tion [NIS].

However, several researchers have recently noted the possibility to in-
stead generate many short keystream sequences, from different chosen IV
values and look at the statistical properties of, say, only the first output sym-
bol of each keystream. One such example is the observation by Shamir and
Mantin that the second byte in RC4 is strongly biased [FMS01a].

Based on work by Filiol [Fil01], Saarinen [Saa06] recently proposed the d-
monomial chosen IV distinguisher, introducing a test called the d-monomial
test. The behavior of the keystream is analyzed using a function of n IV
bits, i.e., z = f(iv0, . . . , ivn−1). All other IV and key bits are considered
to be constants. For a chosen parameter d (set to be a small value), the
d-monomial test counts the number of monomials of Hamming weight d,
denoted md, 0 ≤ d ≤ n, in the ANF of f and compares it to its expected
value 1

2

(
n
d

)
, using the χ2 goodness-of-fit test with one degree of freedom. In

this chapter, we will use a slightly altered d-Monomial test where we sum
the test statistics for each d and evaluate the result using n + 1 degrees of
freedom. The algorithm for the d-Monomial test is summarized in Figure
10.2.

The complexity of this attack is O(n2n) operations and it needs memory
O(n2n). The downside of this method is that statistical deviations for lower
and higher degree monomials are hard to detect as their numbers are few.
So even if the maximal degree monomial never occurs, the test does not
detect this anomaly. In the next section we will present alternative attacks
that solves this problem.

10.3 A Generalized Approach

We suggest to use a generalized approach. Instead of analyzing just one
function in ANF form, we can study the behavior of more polynomials so
that monomials that are more (or less) probable than others can be detected.

Let us select n IV bit variables, denoted iv0, . . . , ivn−1, as our variables.
The remaining IV values as well as key bits are kept constant. Using the first
output symbol, z0 = f1(iv0, . . . , ivn−1), for each choice of iv0, . . . , ivn−1, the
ANF of f1 can be constructed.

10.4. The Monomial Distribution Test 141

'

&

$

%

d-MONOMIAL TEST

for iv = 1, . . . , 2n − 1
Initialize cipher with iv

v[iv]=first keystream bit after initialization
end for
Compute ANF of vector v and store result in v.
for i = 1, . . . , 2n − 1

if v[i] = 1
d= hamming weight of monomial i
md + +

end for
for d = 0, . . . , n

χ2+ =

(
md− 1

2 (
n
d)

)2

1
2 (

n
d)

.

if χ2 > χ2
α(n + 1)

return cipher
else

return random

Figure 10.2: Summary of the d-monomial test, complexity O(n2n).

The new approach is now to do the same again, but using some other
choice on IV values outside the IV variables. Running through each choice
of iv0, . . . , ivn−1 in this case gives us a new function f2. Continuing in this
way, we derive P different Boolean functions f1, f2, . . . , fP in ANF form.
In some situations, it might also be possible to obtain polynomials from
different keys, where the same IVs have been used.

Having P different polynomials in our possession we can now design
any test that looks promising, taken over all polynomials. The d-monomial
test would appear for the special case P = 1, and the test being counting
the number of weight d monomials. We now propose in detail two different
tests.

10.4 The Monomial Distribution Test

The attack scenario is similar to the d-monomial test, but instead of counting
the number of monomials of a certain degree, we generate P polynomials
and calculate in how many of the polynomials each monomial is present.
That is, we generate P polynomials of the form (10.2) and count the number

142 10. A Framework for Chosen IV Statistical Analysis of Stream Ciphers

of occurrences of ai = 1, 0 ≤ i ≤ 2n − 1, where

f = a0 + a1x1 + . . . + an+1x1x2 + . . . + a2n−1x1x2 . . . xn−1xn (10.2)

Denote the number of occurrences of coefficient ai by mai . As each mono-
mial should be included in a function with probability 1/2, i.e., P (ai = 1) =
0.5, 0 ≤ i ≤ 2n−1, the number of occurrences is binomially distributed with
expected value E(Mai) = P/2 for each monomial. We will as previously
perform a χ2 goodness-of-fit test with 2n degrees of freedom, as described
by Equation (10.3),

χ2 =

2n−1∑

i=0

(mai − P
2)2

P
2

. (10.3)

If the observed amount is larger than some tabulated limit χ2
α(2n), for some

significance level α and 2n degrees of freedom, we can distinguish the ci-
pher from a random one. The pseudo-code of the monomial distribution
test is given in Figure 10.3.

This algorithm has a higher computational complexity than the d-Monomial
attack, O(Pn2n), and needs the same amount of memory, O(n2n). On the
other hand, if for a cipher some monomials are highly non-randomly dis-
tributed, the attack may be successful with less number of IV bits, i.e., smaller
n, compared to the d-monomial test. Additionally, although this attack is
originally proposed for the chosen IV scenario of a fixed unknown key, it is
also possible to apply the test for different key values, if the same IV bits are
considered.

10.5 The Maximal Degree Monomial Test

A completely different and very simple test is to see if the maximal degree
monomial can be produced by the keystream generator. The coefficient of
the maximal degree monomial is the product of all IV bits and can hence
only occur if all the IV bits have been properly mixed. In hardware oriented
stream ciphers the IV loading is usually as simple as possible to save gates,
e.g., the IV bits are loaded into different memory cells. The update function
is then performed a number of steps to produce proper diffusion of the bits.
Intuitively it will take many clockings before all IV bits meet in the same
memory cell and even more clockings before they spread to all the memory
cells and become nonlinearly mixed. The aim of the Maximal Degree Mono-
mial Test is to check in a simple way whether the number of initial clockings
is sufficient. As the maximal degree monomial is unlikely to exist if lower
degree monomials do not exist, this is our best candidate to study. Hence,
the existence of the maximal degree term in ANFs is a good indication to
the satisfaction of diffusion criteria, especially completeness.

10.5. The Maximal Degree Monomial Test 143

'

&

$

%

MONOMIAL DISTRIBUTION TEST

for j = 1, . . . , P
for iv = 1, . . . , 2n − 1

Initialize cipher with iv
v[iv]=first keystream bit after initialization

end for
Compute ANF of vector v and store result in v.
for i = 1, . . . , 2n − 1

if v[i] = 1
mai + +

end for
end for
for d = 0, . . . , 2n − 1

χ2+ =
(mad

−P
2)2

P
2

.

end for
if χ2

α(2n)
return cipher

else
return random

Figure 10.3: Summary of Monomial distribution test, complexity
O(Pn2n).

According to the Reed-Muller transform [FL03], the maximal degree
monomial can be calculated as the XOR of all entries in the truth table. So
the test is similar to the previous tests performed by initializing the cipher
with all possible combinations for n IV bits, ziv0,...,ivn−1 = f(iv0, . . . , ivn−1),
all other bits are considered to be constants. The existence of the maximal
degree monomial can be checked by XORing the first keystream bit from
each initialization, this is equivalent to determining a2n−1 in Equation (10.2),

a2n−1 =
⊕

iv0,...,ivn−1

ziv0,...,ivn−1 . (10.4)

By for example changing some other IV bit we receive a new polynomial
and perform the same procedure again, this is repeated for P polynomials.
If the maximal degree polynomial never occurs in any of the polynomials or
if it occurs in all of the polynomials we successfully distinguish the cipher.
Hence we can, with low complexity and almost no memory, check whether
the maximal degree monomial can exist in the output from the cipher. It

144 10. A Framework for Chosen IV Statistical Analysis of Stream Ciphers

'

&

$

%

MAXIMAL DEGREE MONOMIAL TEST

for j = 1, . . . , P
a2n−1 = 0
for iv = 1, . . . , 2n − 1

Initialize cipher with iv
z = first keystream bit after initialization
a2n−1 = a2n−1 ⊕ z

end for
if a2n−1 = 1

ones++
end for
if ones=0 or ones=P

return cipher
else

return random

Figure 10.4: Summary of Maximal Degree Test, complexity
O(P2n).

is possible, with the same complexity, to consider other weak monomials,
the coefficient can be calculated according to the Reed-Muller transform.
The complexity of the Maximal Degree Monomial test is O(P2n) and it only
requires O(1) memory. The description of the test is given in Figure 10.4.

10.5.1 Other Possible Tests

We have proposed two specific tests that we will use in the sequel to analyze
different stream ciphers. Our framework gives us the possibility to design
many other interesting tests. As an example, a monomial distribution test
restricted to only monomials with very high weight could be an interesting
test. We have also performed some basic tests where we study the Walsh
spectra of each polynomial.

10.6 Experimental Results

We applied the proposed tests described above on some of the Phase III eS-
TREAM candidates to evaluate their efficiency of initializations. We evalu-
ated their security margin by testing reduced round versions of the ciphers.
We also presented some results on the statistical properties of the internal

10.6. Experimental Results 145

state variables.

The significance level of the hypothesis tests is chosen to be approxi-
mately 1−α = 1− 2−10. The tabulated results have a success rate of at least
90%. The required number of IVs, polynomials and the amount of mem-
ory needed to attack the ciphers are given in tables. Also, the results for
initial state variables are presented with the percentage of weak initial state
variables.

Hardware oriented stream ciphers use simple initial key and IV loading
compared to software oriented ciphers. Generally, key and IV bits affect one
initial state variable. Therefore, they require a large number of clockings to
satisfy the diffusion of each input bit on each state bit. We repeated some
of our simulations using alternative key/IV loadings in which each IV bit
is assigned to more than one internal state bit and compared the results to
the original settings. In the alternative loadings the hardware complexity is
slightly higher, however on the other hand the cipher has more resistance
to chosen IV attacks.

10.6.1 Grain-128

Grain-128 [HJMM06] is a hardware oriented stream cipher submitted as a
Profile 2 candidate to the eSTREAM network of excellence. It uses an LFSR
and a NLFSR together with a nonlinear filter function. In the initialization
of Grain, a 128 bit key is loaded into the NLFSR and a 96 bit IV is loaded
into the first 96 positions of the LFSR, the rest of the LFSR is filled with ones.
The cipher is then clocked 256 times and for each clock the output bit is fed
back into both the LFSR and the NLFSR.

Rounds P IV bits Memory

d-Monomial test
160 1 14 214

192 1 25 225

Monomial distr. test
160 26 7 27

192 26 22 222

Max. degree test
160 25 11 1

192 25 22 1

Table 10.1: Number of IV bits needed to attack the first keystream
bit of Grain-128 for different number of rounds in the initialization
(out of 256 rounds).

146 10. A Framework for Chosen IV Statistical Analysis of Stream Ciphers

In Table 10.1, the results obtained for a reduced version of Grain are
given. The highest number of rounds we succeeded to break is 192 out of
the original 256, which corresponds to the 75% of the initialization phase.

Figure 10.5 illustrates the growth in the number of IV bits needed to suc-
cessfully distinguish the output for an increasing number of initialization
clocking. Assume that we model the relationship between the number of

150 155 160 165 170 175 180 185 190 195
10

15

20

25

Figure 10.5: Number of IV bits needed to attack the first keystream
bit of Grain-128 using the d-Monomial test for different number of
rounds in the initialization (out of 256 rounds).

IVs and number of rounds using linear regression. Then the trend equation
is obtained as y = 0.3981x − 52.2195 where y represents the number of IVs
and x represents the number of rounds in initialization. The correlation co-
efficient of the model is 0.9685. Using this model, the prediction of required
number of IVs to attack Grain with the d-monomial test is y ≈ 50. However,
the accuracy of a linear model is highly uncertain, more points need to be
calculated before a conclusion about the security can be drawn.

In Table 10.2, the results of the experiments for initial state variables are
presented. The number of weak initial state variables are three times better
in the maximum degree test compared to the d-monomial test. The statisti-
cal deviations in state bits remain even after full initialization. These weak
state bits are located in the left most positions of the feedback shift regis-

10.6. Experimental Results 147

ters. To remove the statistical deviations in state variables, at least 320 initial
clockings are needed. It is possible that if we use a larger number of IV bits,
the weaknesses in state variables may also be observed from the keystream
bits.

Rounds P IV bits Memory Fraction

d-Monomial test

256 1 14 214 33/256

256 1 20 220 56/256

288 1 20 220 0/256

Monomial distr. test

256 26 8 28 20/256

256 26 15 215 44/256

288 26 20 220 0/256

Max. degree test

256 25 14 1 108/256

256 25 16 1 120/256

288 25 20 1 73/256

Table 10.2: Number of IV bits needed to attack the initial state vari-
ables Grain-128 for different number of rounds in the initialization
(out of 256 rounds).

10.6.1.1 Alternative Key/IV Loading for Grain-128

Here we propose an alternative key/IV loading in which only the loading
of the first 96 bits of the NLFSR is different from the original. Instead of
directly assigning the key, we assign the modulo 2 summation of IV and the
first 96 bits of the key. The proposed loading is very similar to the original
and the increase in number of gates required is approximately 10-15%. In an
environment where many resynchronizations are expected, one can reduce
the number of initial clockings by using some more gates in the hardware
implementation. In the new loading, each IV bit affects two internal state
variables. We repeated our experiments using the new loading and the re-
sults are given in Table 10.3 and Table 10.4. Using alternative loading, Grain
shows more resistance to the presented attacks, but still the statistical devi-
ations in the state bits remain after full initialization.

148 10. A Framework for Chosen IV Statistical Analysis of Stream Ciphers

Rounds P IV bits Memory

d-Monomial test 160 1 19 219

Monomial distr. test 160 26 20 220

Max. degree test 160 25 21 1

Table 10.3: Number of IV bits needed to attack the first keystream
bit of Grain-128 with alternative key/IV loading for different num-
ber of rounds in the initialization (out of 256 rounds).

Rounds P IV bits Memory Fraction

d-Monomial test

256 1 14 214 1/256

256 1 16 216 5/256

288 1 20 220 0/256

Monomial distr. test

256 26 8 28 4/256

256 26 10 210 10/256

288 26 20 220 0/256

Max. degree test

256 25 14 1 100/256

256 25 16 1 108/256

288 25 20 1 47/256

Table 10.4: Number of IV bits needed to attack the initial state
variables of Grain-128 with alternative key/IV loading for differ-
ent number of rounds in the initialization (out of 256 rounds).

10.6.2 Trivium

Trivium [CP05] is another hardware oriented stream cipher submitted to
eSTREAM in Profile 2. It is based on NLFSRs an the state is divided into
three registers which in total stores 288 bits. During the initialization the
80-bit key is inserted into the first register while an 80-bit IV is inserted into
the second register. The cipher is clocked four full cycles before producing
any keystream, i.e., 1152 clockings.

The results for Trivium are given in Table 10.5 and Table 10.6. For attacks

10.6. Experimental Results 149

Rounds P IV bits Memory

d-Monomial test

608 1 12 212

640 1 15 215

672 1 20 220

704 1 27 227

Monomial distr. test

608 25 9 29

640 26 13 213

672 26 18 218

704 26 23 223

Max. degree test

608 25 9 1

640 25 13 1

672 25 18 1

704 25 24 1

Table 10.5: Number of IV bits needed to attack the first keystream
bit of Trivium for different number of rounds in the initialization
(out of 1152 rounds).

on 736 and more rounds, the d-Monomial and the Monomial distribution
attacks suffer from too large memory requirements. The Maximal Degree
Monomial Test can be used to attack even 736 rounds (approximately 64%
of initialization) using 33 IV bits. The attack on 736 rounds has only been
performed a handful of times so the success rate is still an open issue in this
case.

The percentage of weak initial state variables for Trivium are approxi-
mately the same using d-monomial and Maximal Degree Monomial Tests.

10.6.2.1 Alternative Key/IV Loading for Trivium

In the original key/IV loading, 128 bits of the initial state are assigned to
constants and the key and IV bits affect only one state bit. Here, we propose
an alternative initial key/IV loading in which the first register is filled with
the modulo 2 summation of key and IV, the second register is filled with
IV and the last register is filled with the complement of key plus IV. In this

150 10. A Framework for Chosen IV Statistical Analysis of Stream Ciphers

Rounds P IV bits Memory Fraction

d-Monomial test

608 1 12 212 144/256

640 1 12 212 57/256

672 1 15 215 87/256

704 1 20 220 74/256

Monomial distr. test

608 25 12 212 105/256

640 25 12 212 29/256

672 25 15 215 0/256

704 25 20 220 12/256

Max. degree test

608 25 12 1 169/256

640 25 12 1 86/256

672 25 15 1 108/256

704 25 20 1 76/256

Table 10.6: Number of IV bits needed to attack the initial state vari-
ables of Trivium for different number of rounds in the initialization
(out of 1152 rounds).

setting, each IV bit affects three internal state bits, therefore the diffusion of
IV bits to the state bits is satisfied in less number of clockings. We repeated
the tests using the alternative loading and obtained the results given in Table
10.7 and Table 10.8. In the alternative loading, the required number of IV
bits and memory needed to attack Trivium are approximately 50 percent
more compared to the original loading.

10.6.3 Decim

Decim-v2 [BBC+06] is also a hardware oriented stream cipher based on a
nonlinearly filtered LFSR and the irregularly decimation mechanism, ABSG.
The internal state size of Decim-v2 is 192 bit and it is loaded with 80 bit key
and 64 bit IV. The first 80 bits of the LFSR are filled with the key, the bits
between 81 and 160 are filled with linear functions of key and IV and the
last 32 bits are filled with a linear function of IV bits.

The results we obtained for Decim-v2 are given in Table 10.9 and Table

10.6. Experimental Results 151

Rounds P IV bits Memory

d-Monomial test 608 1 18 218

Monomial distr. test 608 25 22 222

Max. degree test 608 25 17 1

Table 10.7: Number of IV bits needed to attack the first keystream
bit of Trivium with alternative key/IV loading for different number
of rounds in the initialization (out of 1152 rounds).

Rounds P IV bits Memory Fraction

d-Monomial test

608 1 12 212 4/256

640 1 18 212 17/256

672 1 20 215 0/256

Monomial distr. test

608 25 12 212 2/256

640 25 18 212 19/256

672 25 20 215 0/256

Max. degree test

608 25 12 1 21/256

640 25 18 1 24/256

672 25 20 1 0/256

Table 10.8: Number of IV bits needed to attack the initial state vari-
ables of Trivium with alternative key/IV loading for different num-
ber of rounds in the initialization (out of 1152 rounds).

10.10. The security margin for Decim against chosen IV attacks is very large,
the cipher can only be broken when not more than about 3% of the initial-
ization is used. This is mainly because of the initial loading of key and IV in
which each IV bits affect 3 state variables and the high number of quadratic
terms in the filter function. The weakness in initial state variables can be
observed for higher number of clockings. The number of weak initial state
variables are approximately the same for all attacks.

152 10. A Framework for Chosen IV Statistical Analysis of Stream Ciphers

Rounds P IV bits Memory

d-Monomial test 20 1 16 216

Monomial distr. test 20 25 13 213

Max. degree test 20 25 19 1

Table 10.9: Number of IV bits needed to attack the first keystream
bit of Decim-v2 for different number of rounds in the initialization
(out of 768 rounds).

Rounds P IV bits Memory Fraction

d-Monomial test
160 1 12 212 47/192

192 1 20 220 18/192

Monomial distr. test
160 25 17 217 47/192

192 25 20 220 13/192

Max. degree test
160 25 12 1 44/192

192 25 20 1 17/192

Table 10.10: Number of IV bits needed to attack the initial state
variables of Decim-v2 for different number of rounds in the initial-
ization (out of 768 rounds).

10.6.4 Lex

Lex [Bir06] is a software oriented stream cipher that is based on the block
cipher AES. It uses 128 bit keys and IVs, the IV is taken as the initial state
and to initialize the cipher one full AES round, i.e., 10 round operations, is
applied to the IV before producing any keystream, then one more round is
performed before the first leakage of keystream bits.

The Maximal Degree Test on Lex relates to the saturation attack on AES.
This attack uses the property that the sum of one output byte for all possible
inputs to one byte of the cipher is zero after three rounds of AES. According
to the Reed-Muller transform, the maximal degree monomial is calculated
as the sum of all entries in the truth table, this means that a degree 8 poly-
nomial can never occur from the same byte after 3 round operations. This

10.7. Summary 153

also means that we can easily create a chosen IV distinguisher by consid-
ering eight IV bits that go into the same byte, the maximal degree of the
output polynomial for three rounds is seven. After four rounds this prop-
erty in general disappears, but the attack can be extended to attack 6 rounds
of AES by using guess and determine techniques on other rounds.

Rounds P IV bits Memory

d-Monomial test
2 1 8 28

3 1 18 218

Monomial distr. test
2 26 2 22

3 26 8 28

Max. degree test
2 25 2 1

3 25 8 1

Table 10.11: Number of IV bits needed to attack the first keystream
of Lex for different number of rounds in the initialization (out of 11
rounds).

As we see, the Monomial Distribution Test and the Maximal Degree
Monomial Test performs best on Lex, a slight advantage for the Maximum
Degree Monomial attack because of the low memory requirement. The d-
Monomial test fails to find the anomaly that the degree 8 monomial can not
exist as there is only one monomial of this degree.

10.7 Summary

In this study, we generalize the idea of d-monomial attacks and propose a
framework for chosen IV statistical analysis. The proposed framework can
be used as an instrument for designing good initialization procedures. It
can be used to verify the effectiveness of the initialization, but also to help
designing a well-balanced initialization, e.g., prevent an unnecessary large
number of initial clockings or even reduce the number of gates used in an
hardware implementation by being able to use a simpler loading procedure.

Also, we propose two new statistical attacks. The attacks work better
than the d-Monomial attack as described by Saarinen. In particular, the
Maximal Degree Monomial test improves on the analysis of state variables
in Grain. The attacks are applied on some eSTREAM proposals, and we give
some conclusions regarding the strength of their initialization procedure.

154 10. A Framework for Chosen IV Statistical Analysis of Stream Ciphers

We experimentally detected statistical weaknesses in the keystream for
reduced versions Grain and Trivium where 75% respectively 64% of the ini-
tial clocking were used. In Decim we could only find statistical weaknesses
when the number of initial clockings was reduced to 3%. Similiar meas-
surements were performed on the internal state variables. We showed that
is possible to dectect weakness in 54% of the state variable of Grain-128 with
full IV initialization. It is an open question how to utilize these weaknesses
of state bits to attack the cipher. Decim also seemed more vulnerable to this
kind of analysis, statistical deviations could be found in state bits when 25%
of the number of initial clockings were used. Trivium however has a linear
output function and the state variables offer a comparable restistance to this
type of analysis as the keystream bits.

The tests suggest that the initialization procedure of Grain should be
extended with some more initial clockings. The initialization procedure of
Trivium seems to offer a good trade off between security and speed. For the
ciphers Grain and Trivium, we propose alternative initialization schemes
with slightly higher hardware complexity. In the proposed loadings, each
IV and key bit affects more than one state bit and the resistance of the ciphers
to the proposed attacks increases about 50%.

Decim seems to have a high security margin and it is probable that the
number of round in the initialization procedure could be greatly reduced. It
is also an interesting question whether a simpler loading procedure could be
used in Decim. A simpler loading procedure could mean a smaller footprint
in hardware.

11

Concluding Remarks

In this thesis we have studied distinguishing attacks on stream ciphers.
The distinguishing attack is relatively young type of attack and should

be further studied. It is clear that they are important since they highlight
weaknesses of a cipher. We have also showed that distinguishing attacks in
some cases can be turned into key recovery attacks and instance deduction.

In this thesis distinguishing attacks have been presented in different at-
tack scenarios. We have studied the statistics of one single long keystream,
but also considered distinguishing attack under resynchronization using
many keystreams.

Distinguishing attacks have been described on the classical stream ci-
pher constructions such as filter generator and the irregularly clocked filter
generators. Though these constructions are not often used in practice, many
primitives are closely related to these constructions. We also demonstrated
how our attacks could be applied to two modern constructions.

A large part of the thesis has been spent on investigating the security of
some eSTREAM candidates. Confidence in a new stream cipher design can
only be gained by thorough analysis of the primitive. Hence, it is very im-
portant to study the security of these candidates before they can be widely
deployed.

155

156 11. Concluding Remarks

A

Variance of the number of
combinations

Let Dzwin1
t and Dzwin2

t denote the number of zeros in window one respec-
tively window two. Also, let Li, i ∈ {1, 2} denote the size of window i,

then

E(Dzwin1
t) = r1

2 E
(
(Dzwin1

t)2
)

=
r2
1+r1

4 V (Dzwin1
t) = r1

4

E(Dzwin2
t) = L2

2 E
(
(Dzwin2

t)2
)

=
r2
2+L2

4 V (Dzwin2
t) = L2

4

Let zt denote the bit in the center position, and W ′
t the number of sam-

ples fulfilling the recurrence relation. To make the computations a bit sim-
pler we denote Wt = W ′

t − L1L2

2 , i.e., we subtract the expected value of W ′
t ,

hence E(Wt) = 0. We also introduce the symbol At = Dzwin1
t Dzwin2

t + (L1 −
Dzwin1

t)(L2 −Dzwin2
t) − L1L2/2.

Wt =

Dzwin1
t Dzwin2

t + (L1 −Dzwin1
t)(L2 −Dzwin2

t) − L1L2/2
︸ ︷︷ ︸

At

if zt = 0,

−
(
Dzwin1

t Dzwin2
t + (L1 −Dzwin1

t)(L2 −Dzwin2
t) − L1L2/2

)

︸ ︷︷ ︸

At

if zt = 1.

157

158 A. Variance of the number of combinations

We define W as the sum of Wt for N bits, W =
∑N−1

t=0 Wt. Hence

E(W) = E(

N−1∑

t=0

Wt) =

N−1∑

t=0

E(Wt) = 0.

We are trying to calculate

V (
N−1∑

i=0

W ′
t) = V (

N−1∑

i=0

Wt + N
L1L2

2
) = V (

N−1∑

i=0

Wt) = V (W).

We will use that V (W) = E(W 2) − E(W)2.

E(W 2) = E
(
(

N−1∑

t1=0

Wt1)(

N−1∑

t2=0

Wt2)
)

=

N−1∑

t1=0

N−1∑

t2=0

E(Wt1 · Wt2)

• For t1 6= t2

E(Wt1Wt2) = 1
4

(

E(Wt1Wt2 |zt1 = 0, zt2 = 0)+

+ E(Wt1Wt2 |zt1 = 0, zt2 = 1)+

+ E(Wt1Wt2 |zt1 = 1, zt2 = 0)+

+ E(Wt1Wt2 |zt1 = 1, zt2 = 1)

)

=

= 1
4E

(
At1At2 − At1At2 − At1At2 + (−At1)(−At2)

)
= 0 .

• For t1 = t2

E(W 2
t) = 1

2

(
E(W 2

t |zt = 0) + E(W 2
t |zt = 1)

)
= E(A2) =

= 4E(X2)E(Y 2) + 4L1L2E(X)E(Y) − 4L1E(X)E(Y 2)−

−4L2E(X2)E(Y) +
L2

1L2
2

4 − L2
1L2E(Y)−

−L1L
2
2E(X) + L2

1E(Y 2) + L2
2E(X) =

= L1L2

4

So

E(W 2) =

N−1∑

t1=0

N−1∑

t2=0

E(Wt1Wt2) =

N−1∑

t=0

E(W 2
t) =

N−1∑

t=0

L1L2

4
= N · L1L2

4
.

159

Finally we can give and expression or the variance.

V (W) = E(W 2) − E(W)2 = N · L1L2

4
.

160 A. Variance of the number of combinations

B

Notations

α Significance level.
1 − α Confidence level.
A Symbol alphabet.
Ad Space of affine functions of d variables.
|A| Cardinality of a space.
AR Acceptance region.
1 − β Power level.
Bd Space of Boolean functions of d variables.
ct Cipher text at time t.
C Ciphertext space.
dH(h1, h2) Hamming distance between function h1 and h2.
deg(h) Algebraic degree of Boolean function h(x).
dK(m) Decryption of one ciphertext symbol, i.e., dK : A → A.
DK(m) Decryption function i.e., DK : C → M.
DX(x) Probability mass function of random variable X .
|D0 −D1| Statistical distance between D0 and D1.
∆(DC) Squared Euclidean Imbalance (SEI) between DC and the uniform distribution.
et Noise variable.
ε, ǫ Statistical bias.
eK(m) Encryption of one plaintext symbol, i.e., eK : A → A.
EK(m) Encryption function, i.e., EK : M → C.
f(x) Polynomial (mostly used for feedback polynomials of LFSRs).

161

162 B. Notations

fX(x) Probability density function of random variable X .
FX(x) Distribution function of random variable X .
Fq Field of size q, q is a prime number.
Fq[x] Polynomial with coefficients in Fq.
Fqn Extension field of Fq.
Fn

q Vector of n elements, where each element is from Fq

h(x0, . . . , xd) Boolean function of d variables.
h(x), x ∈ Fd

2 Boolean function of d variables.
IV Initialization vector (IV).
ivi IV bit i .
IV IV space.
K Key (asymmetric cryptography: Ke-encryption key and Kd-decryption key).
|K| Key size, i.e., number of bits used.
K Key space.
ki Keybit i.
LLR Log-likelihood ratio.
mt Message symbol at time t.
m Message.
M Message space.
N Number of samples needed in attack.
nl(h) Nonlinearity of Boolean function h(x)
P Number of feedback polynomials needed in attack.
Pe Overall error probability.
PX(x) Distribution function of random variable X .
rf Degree of polynomial f(x).
st LFSR symbol at time t.
σ Internal state of cipher.
T Period.
wH(x) Hamming weight of vector x.
Wf Weight of f(x).
Wh Walsh transform of Boolean function h.
x ∈ Fd

2 Vector of d elements, i.e., x = (x0, . . . , xd−1), xi ∈ F2

zt Keystream symbol at time t.

Bibliography

[ALP04] F. Armknecht, J. Lano, and B. Preneel. On the resynchroniza-
tion attack. In H. Handschuh and M.A. Hasan, editors, Selected
Areas in Cryptography—SAC 2004, volume 3357 of Lecture Notes
in Computer Science, pages 19–38. Springer-Verlag, 2004.

[aQUoTiA] Information Security Research Centre at Queens-
land University of Technology in Australia. Crypt-X.
http://www.isi.qut.edu.au/resources/cryptx/.

[Bab95] S. Babbage. A space/time tradeoff in exhaustive search attacks
on stream ciphers. In European Convention on Security and De-
tection, number 408 in IEE Conference Publication, 1995.

[BBC+06] C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize,
H. Gilbert, L. Goubin, A. Gouget, L. Granboulan, C. Lau-
radoux, M. Minier, T. Pornin, and H. Sibert. Decim v2. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2006/004,
2006. http://www.ecrypt.eu.org/stream.

[Ber06] D.J. Bernstein. Salsa20. eSTREAM, ECRYPT Stream
Cipher Project, Report 2005/025, 2006. available at
http://www.ecrypt.eu.org/stream.

163

164 BIBLIOGRAPHY

[Bir06] A. Biryukov. A new 128 bit key stream cipher : Lex. eSTREAM,
ECRYPT Stream Cipher Project, Report 2005/013, 2006. avail-
able at http://www.ecrypt.eu.org/stream.

[BJV04] T. Baignères, P. Junod, and S. Vaudenay. How Far Can We
Go Beyond Linear Cryptanalysis? In Advances in Cryptology—
ASIACRYPT 2004, volume 3329 of Lecture Notes in Computer Sci-
ence, pages 432–450, 2004.

[BL05] A. Braeken and J. Lano. On the (im)possibility of practical
and secure nonlinear filters and combiners. In Selected Areas in
Cryptography—SAC 2004, volume 3897 of Lecture Notes in Com-
puter Science, pages 159–174. Springer-Verlag, 2005.

[BS00] A. Biryukov and A. Shamir. Cryptanalytic time/memory/data
tradeoffs for stream ciphers. In T. Okamoto, editor, Advances in
Cryptology—ASIACRYPT 2000, volume 1976 of Lecture Notes in
Computer Science, pages 1–13. Springer-Verlag, 2000.

[CDF+00] A. Clark, E. Dawson, J. Fuller, J. Golic, H-J. Lee, William Millan,
S-J. Moon, and L. Simpson. The LILI-128 keystream generator.
In Selected Areas in Cryptography—SAC 2000, volume 2012 of
Lecture Notes in Computer Science. Springer-Verlag, 2000.

[CDF+02] A. Clark, E. Dawson, J. Fuller, J. Golic, H-J. Lee, W. Millan, S-J.
Moon, and L. Simpson. The LILI-II keystream generator. In
L. Batten and J. Seberry, editors, Information Security and Pri-
vacy: 7th Australasian Conference, ACISP 2002, volume 2384 of
Lecture Notes in Computer Science, pages 25–39. Springer-Verlag,
2002.

[CDF+04] A. Clark, E. Dawson, J. Fuller, J. Golic, H-J. Lee, W. Mil-
lan, S-J. Moon, and L. Simpson. LILI-II design. Avail-
able at http://www.isrc.qut.edu.au/resource/lili/lili2design.php, Ac-
cessed November 10, 2004, 2004.

[CGJ06] C. Cid, H. Gilbert, and T. Johansson. Cryptanalysis of Po-
maranch. IEE Proceedings - Information Security, 153(2):51–53,
June 2006.

[CHJ02] D. Coppersmith, S. Halevi, and C.S. Jutla. Cryptanalysis
of stream ciphers with linear masking. In M. Yung, editor,
Advances in Cryptology—CRYPTO 2002, volume 2442 of Lec-
ture Notes in Computer Science, pages 515–532. Springer-Verlag,
2002.

BIBLIOGRAPHY 165

[CHM+05] K. Chen, M. Henricksen, W. Millan, J. Fuller, L. Simpson,
E. Dawson, H. Lee, and S. Moon. Dragon: A fast word based
stream cipher. ECRYPT Stream Cipher Project Report 2005/006,
2005.

[CJS00] V. Chepyzhov, T. Johansson, and B. Smeets. A simple algorithm
for fast correlation attacks on stream ciphers. In B. Schneier,
editor, Fast Software Encryption—FSE 2000, volume 1978 of Lec-
ture Notes in Computer Science, pages 181–195. Springer-Verlag,
2000.

[CKM93] D. Coppersmith, H. Krawczyk, and Y. Mansour. The shrink-
ing generator. In D.R. Stinson, editor, Advances in Cryptology—
CRYPTO’93, volume 773 of Lecture Notes in Computer Science,
pages 22–39. Springer-Verlag, 1993.

[CM03] N. Courtois and WS. Meier. Algebraic attacks on stream ci-
phers with linear feedback. In E. Biham, editor, Advances in
Cryptology—EUROCRYPT 2003, volume 2656 of Lecture Notes
in Computer Science, pages 345–359. Springer-Verlag, 2003.

[Cou03] N. Courtois. Fast algebraic attacks on stream ciphers with lin-
ear feedback. In D. Boneh, editor, Advances in Cryptology—
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Sci-
ence, pages 176–194. Springer-Verlag, 2003.

[CP05] C. De Cannière and B. Preneel. Trivium - specifications. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/030,
2005. available at http://www.ecrypt.eu.org/stream.

[CS91] V. Chepyzhov and B. Smeets. On a fast correlation attack on
certain stream ciphers. In D.W. Davies, editor, Advances in
Cryptology—EUROCRYPT’91, volume 547 of Lecture Notes in
Computer Science, pages 176–185. Springer-Verlag, 1991.

[CT91] T. Cover and J.A. Thomas. Elements of Information Theory. Wiley
series in Telecommunication. Wiley, 1991.

[CT00] A. Canteaut and M. Trabbia. Improved fast correlation attacks
using parity-check equations of weight 4 and 5. In B. Pre-
neel, editor, Advances in Cryptology—EUROCRYPT 2000, vol-
ume 1807 of Lecture Notes in Computer Science, pages 573–588.
Springer-Verlag, 2000.

[DA06] J. Daemen and G.V. Assche. Distinguishing stream ciphers with
convolutional filters, 2006.

166 BIBLIOGRAPHY

[DGV94] J. Daemen, R. Govaerts, and J. Vandewalle. Resynchronization
weaknesses in synchronous stream ciphers. In T. Helleseth,
editor, Advances in Cryptology—EUROCRYPT’93, volume 765
of Lecture Notes in Computer Science, pages 159–167. Springer-
Verlag, 1994.

[DH76] W. Diffie and M.E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22:644–654, 1976.

[DK05] J. Daemen and P. Kitsos. Submission to ecrypt call for stream
ciphers: the self-synchronizing stream cipher MOSQUITO. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/018,
2005. http://www.ecrypt.eu.org/stream.

[DK07] J. Daemen and P. Kitsos. The self-synchronizing stream cipher
MOUSTIQUE. eSTREAM, ECRYPT Stream Cipher Project,
2007. http://www.ecrypt.eu.org/stream.

[DLP05] J. Daemen, J. Lano, and B. Preneel. Chosen ciphertext attack
on SSS. eSTREAM, ECRYPT Stream Cipher Project, Report
2005/044, 2005. http://www.ecrypt.eu.org/stream.

[DR02] J. Daemen and V. Rijmen. The Design of Rijndael. Springer-
Verlag, 2002.

[EHJ04] H. Englund, M. Hell, and T. Johansson. Correlation attacks
using a new class of weak feedback polynomials. In B. Roy
and W. Meier, editors, Fast Software Encryption—FSE 2004, vol-
ume 3017 of Lecture Notes in Computer Science, pages 127–142.
Springer-Verlag, 2004.

[EHJ07a] H. Englund, M. Hell, and T. Johansson. A note on distinguish-
ing attacks. In T. Helleseth, P. Vijay Kumar, and Ø. Ytrehus, ed-
itors, Proceedings of the 2007 IEEE Information Theory Workshop
on Information Theory for Wireless Networks, pages 87–90, 2007.

[EHJ07b] H. Englund, M. Hell, and T. Johansson. Two general attacks
on Pomaranch-like keystream generators. In A. Biryukov, ed-
itor, Fast Software Encryption—FSE 2007, volume 4593 of Lec-
ture Notes in Computer Science, pages 274–289. Springer-Verlag,
2007.

[EJ02] P. Ekdahl and T. Johansson. Distinguishing attacks on SOBER-
t16 and SOBER-t32. In J. Daemen and V. Rijmen, editors, Fast
Software Encryption—FSE 2002, volume 2365 of Lecture Notes in
Computer Science, pages 210–224. Springer-Verlag, 2002.

BIBLIOGRAPHY 167

[EJ04] H. Englund and T. Johansson. A new simple technique to at-
tack filter generators and related ciphers. In H. Handschuh and
A. Hasan, editors, Selected Areas in Cryptography—SAC 2004,
volume 3357 of Lecture Notes in Computer Science, pages 39–53.
Springer-Verlag, 2004.

[EJ05] H. Englund and T. Johansson. A new distinguisher for clock
controlled stream ciphers. In Fast Software Encryption—FSE
2005, Lecture Notes in Computer Science. Springer-Verlag,
2005.

[EJ06] H. Englund and T. Johansson. Three ways to mount distin-
guishing attacks on irregularly clocked stream ciphers. In Inter-
national Journal of Security and Networks, volume 1. Inderscience
Enterprise Ltd, 2006.

[EJT07] H. Englund, T. Johansson, and M. Sönmez Turan. A framework
for chosen IV statistical analysis of stream ciphers. In C.P. Ran-
gan, editor, Progress in Cryptology—INDOCRYPT 2007, volume
4859 of Lecture Notes in Computer Science, pages ??–?? Springer-
Verlag, 2007.

[EM05] H. Englund and A. Maximov. Attack the Dragon. In
S. Maitra, V. Madhavan, and R. Venkatesan, editors, Progress in
Cryptology—INDOCRYPT 2005, volume 3797 of Lecture Notes in
Computer Science, pages 130–142. Springer-Verlag, 2005.

[Fil01] E. Filiol. A new statistical testing for symmetric ciphers and
hash functions. In V. Varadharajan and Y. Mu, editors, Interna-
tional Conference on Information, Communications and Signal Pro-
cessing, volume 2119 of Lecture Notes in Computer Science, pages
21–35. Springer-Verlag, 2001.

[FL03] B.J. Falkowski and C.C. Lozano. Generation and properties of
fastest transform matrices over gf(2). In Proceedings of the 2003
International Symposium on—ISCAS’03., volume 4 of Circuits and
Systems, pages 740–743, 2003.

[FMS01a] S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key
scheduling algorithm of RC4. Lecture Notes in Computer Science,
2259:1–24, 2001.

[FMS01b] S.R. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key
scheduling algorithm of rc4. In Selected Areas in Cryptography—
SAC 2001, pages 1–24, 2001.

168 BIBLIOGRAPHY

[Gjø05] K. Gjøsteen. Security notions for disk encryption. In Computer
Security – ESORICS 2005, volume 3679 of Lecture Notes in Com-
puter Science, pages 455–474. Springer-Verlag, 2005.

[GM03a] J. D. Golic and G. Morgari. On the resynchronization attack. In
T. Johansson, editor, Fast Software Encryption—FSE 2003, vol-
ume 2887 of Lecture Notes in Computer Science, pages 100–110.
Springer-Verlag, 2003.

[GM03b] J.D. Golić and R. Menicocci. A new statistical dis-
tinguisher for the shrinking generator. Available at
http://eprint.iacr.org/2003/041, Accessed September 29, 2003,
2003.

[GO94] J.D. Golić and L. O’Connor. A unified Markov approach to dif-
ferential and linear cryptanalysis. In Advances in Cryptology—
ASIACRYPT’94, Lecture Notes in Computer Science, pages
387–397. Springer-Verlag, 1994.

[Gol93] J.D. Golić. Correlation via linear sequential circuit approxi-
mation of combiners with memory. In R.A. Rueppel, editor,
Advances in Cryptology—EUROCRYPT’92, volume 658 of Lec-
ture Notes in Computer Science, pages 113–123. Springer-Verlag,
1993.

[Gol94] J.D. Golić. Intrinsic statistical weakness of keystream genera-
tors. In Advances in Cryptology—ASIACRYPT’94, volume 917
of Lecture Notes in Computer Science, pages 91–103. Springer-
Verlag, 1994.

[Gol95] J.D. Golić. Towards fast correlation attacks on irregularly
clocked shift registers. In L.C. Guillou and J-J. Quisquater,
editors, Advances in Cryptology—EUROCRYPT’95, volume 921
of Lecture Notes in Computer Science, pages 248–262. Springer-
Verlag, 1995.

[Gol96] J.D. Golić. Computation of low-weight parity-check polynomi-
als. Electronic Letters, 32(21):1981–1982, October 1996.

[Gol97] J.D. Golić. Cryptanalysis of alleged A5 stream cipher. In
W. Fumy, editor, Advances in Cryptology—EUROCRYPT’97, vol-
ume 1233 of Lecture Notes in Computer Science, pages 239–255.
Springer-Verlag, 1997.

[Hel80] M. Hellman. A cryptanalytic time-memory trade-off. In IEEE
Transactions on Information Theory, volume 26, pages 401–406,
1980.

BIBLIOGRAPHY 169

[HJ06] M. Hell and T. Johansson. On the problem of finding linear
approximations and cryptanalysis of Pomaranch version 2. Se-
lected Areas in Cryptography—SAC 2004, 2006. Preproceed-
ings.

[HJMM06] M. Hell, T. Johansson, A. Maximov, and W. Meier. A
stream cipher proposal: Grain-128. Information Sympo-
sium in Information Theory—ISIT 2006, 2006. available at
http://www.ecrypt.eu.org/stream.

[HKK05] M. Hasanzadeh, S. Khazaei, and A. Kholosha. On IV setup of
Pomaranch. eSTREAM, ECRYPT Stream Cipher Project, Re-
port 2005/082, 2005. http://www.ecrypt.eu.org/stream.

[HR04] P. Hawkes and G. Rose. Rewriting variables: The complexity
of fast algebraic attacks on stream ciphers. In M. Franklin, edi-
tor, Advances in Cryptology—CRYPTO 2004, volume 3152 of Lec-
ture Notes in Computer Science, pages 390–406. Springer-Verlag,
2004.

[JHK05] C.J.A. Jansen, T. Helleseth, and A. Kholosha. Cascade
jump controlled sequence generator (CJCSG). eSTREAM,
ECRYPT Stream Cipher Project, Report 2005/022, 2005.
http://www.ecrypt.eu.org/stream.

[JHK06a] C.J.A. Jansen, T. Helleseth, and A. Kholosha. Cascade jump
controlled sequence generator and Pomaranch stream cipher
(version 2). eSTREAM, ECRYPT Stream Cipher Project, Report
2006/006, 2006. http://www.ecrypt.eu.org/stream.

[JHK06b] C.J.A. Jansen, T. Helleseth, and A. Kholosha. Cascade jump
controlled sequence generator and Pomaranch stream cipher
(version 3). eSTREAM, ECRYPT Stream Cipher Project, Report
2005/001, 2006. http://www.ecrypt.eu.org/stream.

[JJ99] T. Johansson and F. Jönsson. Fast correlation attacks based
on turbo code techniques. In M.J. Wiener, editor, Advances in
Cryptology—CRYPTO’99, volume 1666 of Lecture Notes in Com-
puter Science, pages 181–197. Springer-Verlag, 1999.

[JJ00] T. Johansson and F. Jönsson. Fast correlation attacks through
reconstruction of linear polynomials. In M. Bellare, editor,
Advances in Cryptology—CRYPTO 2000, volume 1880 of Lec-
ture Notes in Computer Science, pages 300–315. Springer-Verlag,
2000.

170 BIBLIOGRAPHY

[JJ02] T. Johansson and F. Jönsson. A fast correlation attack on LILI-
128. In Information Processing Letters, volume 81, pages 127–132,
2002.

[JM06] A. Joux and F. Müller. Chosen-ciphertext attacks against
MOSQUITO. In M. Robshaw, editor, Fast Software Encryption—
FSE 2006, volume 4047 of Lecture Notes in Computer Science,
pages 390–404. Springer-Verlag, 2006.

[Jun03] P. Junod. On the optimality of linear, differential and sequential
distinguishers. In Advances in Cryptology—EUROCRYPT 2003,
volume 2656 of Lecture Notes in Computer Science, pages 17–32.
Springer-Verlag, 2003.

[Kha05] S. Khazaei. Cryptanalysis of Pomaranch (CJCSG). eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/065,
2005. http://www.ecrypt.eu.org/stream.

[LZGB03] S. Leveiller, G. Zémor, P. Guillot, and J. Boutros. A new crypt-
analytic attack for pn-generators filtered by a boolean func-
tion. In K. Nyberg and H. Heys, editors, Selected Areas in
Cryptography—SAC 2002, volume 2595 of Lecture Notes in Com-
puter Science, pages 232–249. Springer-Verlag, 2003.

[Mar] G. Marsaglia. DIEHARD statistical tests.

[Mas69] J.L. Massey. Shift-register synthesis and BCH decoding. IEEE
Transactions on Information Theory, 15:122–127, 1969.

[Mat94] M. Matsui. Linear cryptanalysis method for DES cipher. In
T. Helleseth, editor, Advances in Cryptology—EUROCRYPT’93,
volume 765 of Lecture Notes in Computer Science, pages 386–397.
Springer-Verlag, 1994.

[McE87] R.J. McEliece. Finite Fields for Computer Scientists and Engineers.
Kluwer Academic Publishers, 1987.

[MH04] H. Molland and T. Helleseth. An improved correlation attack
against irregular clocked and filtered keystream generators. In
Advances in Cryptology—CRYPTO 2004, volume 3152 of Lec-
ture Notes in Computer Science, pages 373–389. Springer-Verlag,
2004.

[MJ05a] A. Maximov and T. Johansson. Fast computation of large dis-
tributions and its cryptographic applications. In Advances in
Cryptology—ASIACRYPT 2005, volume 3788 of Lecture Notes in
Computer Science, pages 313–332. Springer-Verlag, 2005.

BIBLIOGRAPHY 171

[MJ05b] A. Maximov and T. Johansson. Fast computation of large dis-
tributions and its cryptographic applications. In B. Roy, editor,
Advances in Cryptology—ASIACRYPT 2005, volume 3788 of Lec-
ture Notes in Computer Science, pages 313–332. Springer-Verlag,
2005.

[Mol04] H. Molland. Improved linear consistency attack on irregular
clocked keystream generators. In Fast Software Encryption—FSE
2004, 2004.

[MPC04] W. Meier, E. Pasalic, and C. Carlet. Algebraic attacks and de-
composition of boolean functions. In Advances in Cryptology—
EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer
Science, pages 474–491. Springer-Verlag, 2004.

[MS88] W. Meier and O. Staffelbach. Fast correlation attacks on stream
ciphers. In C.G. Günter, editor, Advances in Cryptology—
EUROCRYPT’88, volume 330 of Lecture Notes in Computer Sci-
ence, pages 301–316. Springer-Verlag, 1988.

[MS89] W. Meier and O. Staffelbach. Fast correlation attacks on certain
stream ciphers. Journal of Cryptology, 1(3):159–176, 1989.

[MS94] W. Meier and O. Staffelbach. The self-shrinking generator. In
A. De Santis, editor, Advances in Cryptology—EUROCRYPT’94,
volume 905 of Lecture Notes in Computer Science, pages 205–214.
Springer-Verlag, 1994.

[MvOV97] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Ap-
plied Cryptography. CRC Press, 1997.

[NIS] NIST. NIST statistical test suite. http://csrc.nist.gov/rng.

[Pas03] E. Pasalic. On Boolean Functions in Symmetric-Key Ciphers. PhD
thesis, Lund University, Department of Information Technol-
ogy, P.O. Box 118, SE–221 00, Lund, Sweden, 2003.

[RHPdV05] G. Rose, P. Hawkes, M. Paddon, and M. Wiggers
de Vries. Primitive specification for SSS. eSTREAM,
ECRYPT Stream Cipher Project, Report 2005/028, 2005.
http://www.ecrypt.eu.org/stream.

[Saa02] M.-J.O. Saarinen. A time-memory tradeoff attack against
LILI-128. In J. Daemen and V. Rijmen, editors, Fast Software
Encryption—FSE 2002, volume 2365 of Lecture Notes in Computer
Science, pages 231–236. Springer-Verlag, 2002.

172 BIBLIOGRAPHY

[Saa06] M.-J.O. Saarinen. Chosen-IV statistical attacks on eSTREAM
stream ciphers. eSTREAM, ECRYPT Stream Cipher Project, Re-
port 2006/013, 2006. http://www.ecrypt.eu.org/stream.

[Sha49] C.E. Shannon. Communication theory of secrecy systems. Bell
System Technical Journal, 27:656–715, 1949.

[Sie84] T. Siegenthaler. Correlation-immunity of non-linear combining
functions for cryptographic applications. IEEE Transactions on
Information Theory, 30:776–780, 1984.

[TSS+05] Y. Tsunoo, T. Saito, M. Shigeri, H. Kubo, and K. Minematsu.
Shorter bit sequence is enough to break stream cipher LILI-128.
IEEE Transactions on Information Theory, 51:4312–4319, 2005.

[TWP07] E. Tews, R.P. Weinmann, and A. Pyshkin. Breaking 104 bit WEP
in less than 60 seconds. Cryptology ePrint Archive, Report
2007/120, 2007. http://eprint.iacr.org/.

[Wag02] D. Wagner. A generalized birthday problem. In M. Yung, edi-
tor, Advances in Cryptology—CRYPTO 2002, volume 2442 of Lec-
ture Notes in Computer Science, pages 288–303. Springer-Verlag,
2002.

