

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Block Cipher Analysis

Miolane, Charlotte Vikkelsø; Knudsen, Lars Ramkilde

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Miolane, C. V., & Knudsen, L. R. (2009). Block Cipher Analysis. Kgs. Lyngby, Denmark: Technical University of
Denmark (DTU).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13734268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/block-cipher-analysis(a5c9350d-676c-47fb-8e8c-f42c27de0cb9).html

BLOCK CIPHER ANALYSIS

Charlotte Vikkelsø Miolane

Ph.D Thesis

Technical University of Denmark

Department of Mathematics

December 18, 2008

Date Charlotte Vikkelsø Miolane

Technical University of Denmark

Department of Mathematics

Matematiktorvet 303S

DK-2800 Kgs. Lyngby

Denmark

Contents

Resumé v

Summary vii

Preface ix

Acknowledgement xiii

1 Introduction to Cryptography 1
1.1 Cryptosystems . 1
1.2 Security evaluation . 3
1.3 NP-completeness . 7

2 Block Ciphers 11
2.1 Data Encryption Standard . 12

2.1.1 The algorithm . 12
2.2 Between standards . 14
2.3 The Advanced Encryption Standard 15

2.3.1 Encryption . 15
2.3.2 The round function . 16
2.3.3 The substitution layer . 17
2.3.4 Diffusion layer . 17
2.3.5 Key application . 19
2.3.6 Key schedule . 19

2.4 Modes of operation . 20

3 Block Cipher Cryptanalysis 23
3.1 Exhaustive key search . 23
3.2 Table lookup attack . 24
3.3 Cryptanalytic time-memory trade-off 24

i

ii CONTENTS

3.4 Differential cryptanalysis . 28
3.5 Linear cryptanalysis . 36
3.6 Algebraic attacks . 41
3.7 Obtaining an algebraic description . 41

3.7.1 Equations over one S-box . 42
3.7.2 The linear layer . 43

3.8 Algebraic descriptions of AES . 44
3.8.1 Eliminating the key variables 45
3.8.2 A description over GF (28) . 45
3.8.3 BES equations . 48

4 Gröbner Bases Techniques 51
4.1 Polynomial ideals . 51
4.2 Buchberger’s algorithm . 56
4.3 Faugère’s improvements . 59

5 The Linearization Techniques 63
5.1 Hidden field equations (HFE) . 63
5.2 Linearization . 65
5.3 Relinearization . 67

5.3.1 Complexity . 70
5.4 The extended linearization attack (XL) 71

5.4.1 Complexity . 73
5.4.2 Other variants . 74

6 Analysis of the Algebraic Attacks 77
6.1 The equations . 78
6.2 Iterated XL . 79

6.2.1 The basic attack for degree d 79
6.3 Counting linearly independent equations 80

6.3.1 Equations generated from pLayer (L(·)) 85
6.3.2 Systematic procedure for pLayer (L(·)) 87
6.3.3 Equations over the S-box layer 89
6.3.4 Systematic procedure for S-box layer 91

6.4 Number of equations for some block ciphers 92
6.4.1 AES . 93
6.4.2 A variant of AES-128 . 93
6.4.3 Comparison of the ciphers . 93

6.5 Simulations . 95

CONTENTS iii

6.5.1 Probabilistic equations . 96
6.6 Discussion . 97

7 Small Scale Variants of AES 99
7.1 SmallAES(nr , r, c) . 100

7.1.1 The substitution layer . 100
7.1.2 The diffusion layer . 101
7.1.3 Key application . 103
7.1.4 Key schedule . 103

7.2 SmallAES-2(nr, r, c) . 105
7.3 Simulations . 107

8 Probabilistic Equations 113
8.1 Applying probabilistic equations . 114
8.2 The matrix method . 115
8.3 The product method . 116
8.4 Application to the DES S-boxes . 117
8.5 The product method on 8-bit S-boxes. 121
8.6 Simulations . 123

8.6.1 Applying high-probability equations 123
8.6.2 Guessing bits . 124

9 Present 133
9.1 Goals and environment of use . 134
9.2 The block cipher Present . 135

9.2.1 The permutation layer . 136
9.2.2 The S-box . 137
9.2.3 Key schedule . 138

9.3 Hardware performance . 140
9.4 Differential attacks . 141

9.4.1 Analysis of 16-Round Present 147
9.4.2 Algebraic attacks . 148

9.5 Further information . 149

10 Conclusion 151
10.1 Future Research . 152

A AES 153
A.1 The AES ecryption . 153
A.2 The key-schedule of AES with 128 bit keys 155

iv CONTENTS

A.3 Linear equations for the AES . 157

B Present 163
B.1 Test vectors . 163

B.1.1 Differential characteristics -Present 163

C Randomly chosen 8-bit S-box 169

Resumé

Blockchifre er kryptografiske primitiver som opererer p̊a tekster af en, af chifferet,
specificeret længde. De fleste blockchifre er designet med sikkerhed og effektivitet
for øje. Blokchifre anvendes i vid udstrækning til kryptering men indg̊ar eksempelvis
ogs̊a som byggesten i visse hashfuktioner og i s̊akaldte message authentication codes
(MAC). Form̊alet med kryptoanalyse er at opn̊a viden om sikkerheden af chifrene.
Ideelt set bør der ikke findes bedre angreb end de generiske angreb, udtømmende
nøglesøgning og tabel opslag.

Denne afhandling indeholder en general introduktion til kryptografi især med fokus
p̊a blokchifre, heriblandt the Advanced Encryption Standard (AES). De mest generelle
metoder til krytoanalyse af blokchifre beskrives mens der især fokuseres p̊a de
s̊akaldte algebraiske angreb. Disse har haft en del succes i anvendelse p̊a visse strøm
chifre, men har i modsætning hertil ikke bibragt nogle banebrydende resultater p̊a
blokchifre. Denne afhandling bidrager med en ny vinkel p̊a de algebraiske angrebs
anvendelse p̊a blokchifre. Desuden præsenteres en ny teknik hvor probabilistiske
ligninger anvendes til at forbedre de algebraiske angreb. I afhandlingen præsenteres
resultaterne af en række praktiske eksperimenter med de algebraiske angreb p̊a sm̊a
blokchifre. Endelig præsenteres et nyt blokchiffer ved navn Present, og vi undersøger
sikkerheden af dette, især mod algebraisk og differentiel kryptoanalyse.

v

vi RESUMÉ

Summary

Block ciphers are cryptographic primitives that operate on fixed size texts (blocks).
Most designs aim towards secure and fast encryption of large amounts of data. Block
ciphers also serve as the building block of a number of hash functions and message
authentication codes (MAC). The task of cryptanalysis is to ensure that no attack
violates the security bounds specified by generic attack namely exhaustive key search
and table lookup attacks.

This thesis contains a general introduction to cryptography with focus on block
ciphers and important block cipher designs, in particular the Advanced Encryption
Standard (AES). We describe the most general types of block cipher cryptanalysis
but concentrate on the algebraic attacks. While the algebraic techniques have been
successful on certain stream ciphers their application to block ciphers has not shown
any significant results so far. This thesis contributes to the field of algebraic attacks
on block ciphers by an analytic and systematic approach that allows insight to the
techniques. Moreover a new procedure of generating and applying probabilistic
equations in algebraic attacks on block cipher is proposed and examined. Also, we
present practical results, which to our knowledge are the best algebraic results on
small scale variants of AES. In the final part of the thesis we present a new block
cipher proposal Present and examine its security against algebraic and differential
cryptanalysis in particular.

vii

viii SUMMARY

Preface

As technological development progresses doors are opened to new options which in-
crease the flexibility and freedom of both individuals, companies and governments.
In the slipstream issues of security and privacy appear which require affordable so-
lutions convenient for all parts. For example we are no longer bounded by (limited)
opening hours of our bank, but have access to our accounts any time of the day
through the Internet. In Denmark the government offers digital signatures that al-
low the citizens to access, change, and verify sensitive data. Meanwhile utilizing the
services we rely on the security of cryptographic protocols and underlying crypto-
graphic primitives and the key handling. Several Danish banks have been criticized
for their solution of the latter where a key file stored on the users hard disk is com-
bined with a user password to access the account. Given a hacker gains access to
your hard disk he can obtain the key file and apply a key logging program to obtain
your password. To prevent this, your key file should be stored in a place physically
separated from your computer e.g. on a key card.
In the real world people make mistakes which may cause that the security is often
violated. As cryptographers we usually consider an ideal world where the parties
act according to flawless security protocols. In this world the security falls back on
the underlying cryptographic primitives. We often divide the cryptographic primi-
tives into the categories of public key cryptography, including e.g., cryptosystems as
for instance RSA and digital signature schemes, and symmetric key cryptography
including block ciphers, stream ciphers, hash functions, and message authentication
codes (MAC). The cryptographic primitives are designed to address various issues
of security for example eavesdropping, tampering, message forgery, impersonation.
This thesis concerns security of the so-called block ciphers. The thesis is organized
as follows.

Chapter 1 provides motivation and a general introduction to the field of cryptogra-
phy. We define basic concepts and terminology, such as security definitions, bounds,
and attack scenarios.

ix

x PREFACE

Chapter 2 introduces the category of cryptographic primitives called block ciphers.
We provide a short description of Data Encryption Standard (DES) which is and
has been the most applied block cipher throughout the past three decades. Also, we
describe the Advanced Encryption Standard (AES) which was developed to replace
DES as encryption standard.

Chapter 3 introduces the field of cryptanalysis applied to block cipher. We give
a short description of exhaustive key search and the time-memory trade-off attack
applied to block ciphers. The attack is very important because it sets a bound on
the security provided by any block cipher. Also, we provide a description of the
most general types of cryptanalysis on block ciphers namely linear and differential
cryptanalysis. These have had a great impact on today’s block cipher design. A
large part of this thesis concerns algebraic attack on block cipher which we intro-
duce as the last part of Chapter 3. We describe how to obtain algebraic descriptions
of block ciphers and study this on AES.

Chapter 4 describes Gröbner basis theory and the related algebraic tools which
provide an important approach in algebraic attacks. Our interest in Gröbner basis
theory is due to its application for solving the algebraic equations over block ciphers.
We describe Buchberger’s algorithm and give a top level description of the so-called
F4 algorithm.

Chapter 5 concerns the linearization techniques for solving algebraic equations. We
describe respectively basic linearization, relinearization, and extended linearization
(XL). We point out the differences and the problems regarding the time and memory
complexity of the algorithms.

Chapter 6 presents our approach to analyze XL similar attacks. We present a new
variant of the XL algorithm which we name iterated XL. The advantage is that re-
garding first part of the algorithm we are able to provide exact numbers for the work
effort and memory consumption. Moreover we contribute systematic procedures for
generating equations and hereby avoid a part of the redundancy of the original XL
algorithm. Finally, we outline a number of simulations of the attack on small block
ciphers.

Chapter 7 concerns small scale variants of AES proposed in [15]. We outline a
number of timing results obtained using Magma’s package for Gröbner bases compu-
tation over GF (2). The results are, to the best of our knowledge, the best algebraic
results on small scale variant of AES and seem to indicate that the approach is more

xi

efficient for solving the algebraic equations of AES over GF (2) than the algebraic
equations over GF (28) presented in [50].

Chapter 8 presents a new approach in algebraic attacks on block ciphers. The idea
is to apply probabilistic equations. We describe two methods for obtaining proba-
bilistic equations over the non-linear S-boxes, which is the building stone of most
block ciphers. The techniques are demonstrated on the DES S-boxes.

Chapter 9 describes a new block cipher design Present which we propose in [10].
Present is an ultra light weight block cipher that suits very constrained devices such
as RFID chips. The cipher has been analyzed with respect to linear, differential,
and algebraic techniques. In this chapter we focus in particular on the differential
and algebraic properties of the cipher.

Chapter 10 summarizes the results of this thesis.

This thesis was carried through at the Department of Mathematics, Technical Uni-
versity of Denmark. The project was co-funded one third by Technical University
of Denmark (DTU), and two thirds by Department of Mathematics at DTU. The
author was supervised by Professor Lars Ramkilde Knudsen.
The thesis describes the work carried out by the author during her PhD studies. Our
contributions are presented in Chapters 3, 6, 7, 8, and 9. One technical report under
the title “On Algebraic Attack on Block Cipher” [43] and one paper “Present-an
ultra lightweight cipher” [10] were published. Moreover a paper “Solving nonlinear
equations with applications to block ciphers“ has been submitted to an international
journal, December 2008. Another paper on probabilistic equations is currently in
the process of being written.

xii PREFACE

Acknowledgement

First of all, I would like to thank my supervisor Lars Ramkilde Knudsen for his
help throughout both my master and Ph.D project. Thank you for helping me raise
funds for my Ph.D project, enabling me to do this project which I wanted more than
anything. Thank you for your devotion to my project, for always taking the time
to answer questions and discussing ideas, results and possibilities. Finally, thank
you for putting effort in commenting and correcting my thesis. Also I would like to
express my appreciation to your wife Heather and your three children Sasha, Kasper,
and Mia, for welcoming me in your home when I arrived to Australia in January,
2006. It meant a lot to me.
Sincerely thanks to Tom Høholdt for help and support throughout my studies at
DTU. Thank you for introducing me to discrete mathematics and for directing me
towards the field to cryptography. Knowing you truly has been priceless to me.
When I first started as a Ph.D in the Crypto group it was a party of only few people.
Meanwhile the Crypto group has expanded a lot and is in my opinion an exquisite
place to work. I really appreciate the open door policy, the discrete math and crypto
seminars, and the Friday lunches. Thank you to the entire discrete math group for
creating a great environment for research.
It has been a pleasure to spend the past 4 years at Department of Mathematics and
I would like to than everyone there for making it a nice place to work. Wholehearted
thanks to the Department of Mathematics for funding two thirds of my Ph.D.
Special thanks to Christian Henriksen and Peter Beelen. I am grateful for your
help and comments on my work. A very special thanks to Thomas Hjorth and
Julia Borghoff for your thorough work on correcting my thesis. Thank you Erik for
bringing the tea ;)
In spring 2006 I visited the Information Security Institute (ISI) at the Technical
University of Queensland (QUT) in Australia. Thank you to the entire group at ISI
and in particular Ed Dawson for inviting me there.
Thanks to my parents for supporting me throughout my education all the way
from primary school to university. Thank you to my husband, the love of my life,
Christophe. Thank you for standing by me through good and bad times, in spite of

xiii

xiv ACKNOWLEDGEMENT

my at times bad temper. Without your support this project would not have been
possible. Thank you to my little daughter Camille for being the sunshine of my life
that puts it all into perspective.

Chapter 1

Introduction to Cryptography

1.1 Cryptosystems

Cryptography is the mathematical approach of handling security issues in the world
of communication. The original problem consists of two parties wanting to communi-
cate through an insecure channel in a way that makes it impossible for eavesdroppers
to intercept the information communicated.
The situation is usually modeled by a transmitter Alice, a receiver Bob and an
eavesdropper called Eve. Alice wants to encode the message such that Eve cannot
read what is being transmitted to Bob. Bob however must be able to decode the
message, such that he can read it. The cryptographic model for solving this problem
is a cryptosystem.

Definition 1.1 (Cryptosystem). A cryptosystem is defined by an injective function
called an encryption rule eKe

(P) and its corresponding inverse, the decryption rule
dKd

(C).
P denotes a plaintext from a finite set of plaintexts P.
C denotes a ciphertext from a finite set of ciphertexts C.
Ke, Kd denotes respectively the encryption and the decryption key from a finite set
of keys K.
Encryption and decryption are realized by

C = eKe
(P) : P → C.

P = dKd
(C) : C → P.

As decryption is supposed to be unique it is necessary that the encryption-decryption
rule is injective.

1

2 CHAPTER 1. INTRODUCTION TO CRYPTOGRAPHY

P

Alice
C = encK(P)

Insecure Channel

Eve

P

Bob
P = decK(C)

Secure channel

K

Figure 1.1: Secret key encryption

There are various ways to establish a cryptosystem and the solutions can be divided
into the main categories of public key encryption and secret key encryption.

Secret key encryption is also called symmetric key encryption because Alice and
Bob hold the same key information i.e. Kd = Ke. Figure 1.1 shows how secret key
encryption, which is the objective of this project, works. Through a secure channel
the key value is communicated to Alice and Bob respectively, and they are then
ready to communicate using the secret key cryptosystem.

In a public key cryptosystem Alice has a public encryption key KeAlice
and a pri-

vate decryption key KdAlice
(sometimes referred to as Alice’s secret key). Whenever

someone wishes to send an encrypted message to Alice all he has to do is obtain
Alice’s public key KeAlice

and encrypt the message by applying this in the encryption
scheme. The schemes are constructed such that only a holder of Alice’s private key
KdAlice

is capable of decrypting messages encrypted with her public key KeAlice
.

The public key schemes have the advantage that the sender and receiver do not need
to share secret key information as opposed to the secret key systems. For the latter
a secret key is needed for every two persons wanting to communicate. However, in
practice the public key schemes are not efficient for encrypting a large amount of

1.2. SECURITY EVALUATION 3

data. The public key cryptosystems are therefore often applied to exchange keys for
a secret key cryptosystem which is then used to encrypt the data.

1.2 Security evaluation

When analyzing a cryptosystem we want to learn something about the security of
the cipher. Evaluating the security of a cipher or even better proving that it is in
fact secure is not easy at all. For most of the encryption schemes in use there is no
proof of security and they are always endangered by the possibility of new powerful
attacks being invented. This brings us to Shannon’s distinction [60] between the two
basic kinds of security namely unconditional security and computational security.

Definition 1.2 (Unconditional security). A cipher has unconditional security if it
is secure when the adversary has unlimited computational power.

This type of security is based on probability theory because a cipher being uncondi-
tionally secure means that given everybody acts as the protocol prescribes, there is
no better way for an adversary to determine the transmitted message than guessing.
In other words plaintext and ciphertext sampling must be described as independent
variables.

Corollary 1.1. X and Y are independent variables if and only if

pr(X = x|Y = y) = pr(X = x)

for all x ∈ X and all y ∈ Y .

I.e. for every instance x of X and y of Y the probability of x occurring given y
has already occurred equals the probability of x occurring with no constraint on the
value of y. Thus knowing y tells us absolutely nothing about x. This is the essence
of perfect secrecy.

Definition 1.3 (Perfect secrecy). A cryptosystem has perfect secrecy if

pr(P = p|C = c) = pr(P = p)

for every plaintexts p ∈ P and every ciphertext c ∈ C.

Perfect secrecy is obtained only if an adversary cannot extract any knowledge about
the plaintext from knowing the ciphertext. Therefore the ciphertexts must be dis-
tributed statistically random over all choices of the key.

4 CHAPTER 1. INTRODUCTION TO CRYPTOGRAPHY

The simplest cipher with perfect secrecy is the Vernam Cipher which is also called
the One-time pad, as the cipher obtains perfect secrecy when the keys are used only
once. The Vernam cipher was proved secure under Shannon’s definition of perfect
secrecy.

Example 1.1 (The Vernam Cipher). The Vernam Cipher is a stream cipher over
the alphabet Λ = {0, 1} where |P | = |C| = |K|.
A plain-text P = p0p1p2 · · · pnk

is encrypted into a ciphertext C = c0c1c2 · · · cnk
using

a randomly selected key K = k0k1k2 · · · knk
where pi, ci, ki ∈ Λ for i = 0, . . . , nk.

The encryption rule is defined by

eK(P) = eK(p0, p1, p2, · · · , pnk
) =

(p0 ⊕ k0, p1 ⊕ k1, p2 ⊕ k2, · · · , pn ⊕ knk
) = c0, c1, c2, · · · cnk

= C.

Since x ⊕ x = 0 ∀x ∈ Λ we have that

pi ⊕ ki ⊕ ki = pi.

Thus decryption is done in the same way as the encryption.
It is absolutely crucial for the security of this scheme that a key is used only once.
If this rule is broken all an adversary has to do is add up two cipher-texts encrypted
by the same key and this cancels out. Thus the adversary has the value of the two
plain-texts exclusive-ored. This can be used in a redundancy study.
If the scheme is used correctly, that is if for every encryption a new random key is
selected, then for every key bit ki of the key K

pr(ki = 0) =
1

2
and pr(ki = 1) =

1

2

hence

pr(pi = 0|ci = 0) = pr(ki = 0) =
1

2

pr(pi = 0|ci = 1) = pr(ki = 1) =
1

2

pr(pi = 1|ci = 0) = pr(ki = 1) =
1

2

pr(pi = 1|ci = 1) = pr(ki = 0) =
1

2

thus for every ciphertext bit ci in C = c0c1 · · · cn

pr(pi = 0) = pr(pi = 1) =
1

2

1.2. SECURITY EVALUATION 5

so the condition for perfect secrecy

pr(pi = xi|ci = yi) = pr(pi = xi)

is accomplished.

Clearly unconditional security is desirable and an ideal for cryptographic primitives.
However, it is not practical that the key must be the same length as the plaintext,
when it is only used once, as is the case in the One-time pad. Therefore the security
of most practical ciphers is based on the computational concept of security rather
than unconditional security.
The second type of security defined by Shannon is:

Definition 1.4 (Computational security). The adversary is modeled to have poly-
nomial computational power. The security is evaluated as the feasibility for the
adversary to compute the key using known methods for cryptanalysis.

In analysis of ciphers different methods, called attacks, are used to estimate the
computational requirements for breaking the cipher. The assumption of the Dutch
Auguste Kerckhoffs, first time published in 1883 in “Journal des sciences militaires”,
is the basis of all modern cryptanalysis.

Theorem 1.1 (Kerckhoffs’ Principle). A cryptosystem should be secure even if ev-
erything about the cipher, except the key, is public.

In practice governments, banks etc. apply secret algorithms while civilians make use
of public algorithms. In any case Kerckhoffs’ principle forms the basis of modern
cryptanalysis and invokes different attack scenarios. Figure 1.2 lists these scenarios
in descending order of severity.
Some attacks might only have limited application as they require a larger degree
of control than the attacker usually possesses. However any attack violating the
security threshold is considered a threat to the cryptosystem because it is often
possible to convert it into an attack that requires a lower degree of control by for
example applying more texts and/or executing more computational work.
It is not clearly defined what a successful attack is. In fact, the concept is used
in very different ways. The basic method of breaking ciphers is by exhaustive key
search (also called brute force). This security of a cipher based on computational
security is bounded by the computational requirements of this attack.

Definition 1.5 (Exhaustive key search). The method of trying all keys until the
right one is found is called exhaustive key search. On average it requires testing half
the keys.

6 CHAPTER 1. INTRODUCTION TO CRYPTOGRAPHY

ciphertext-only: The adversary has access to ciphertexts C only. This is weakest
attack type, and assumed always possible.

known-plaintext: The adversary has knowledge of plaintext-ciphertext pairs
(P, C) but no control of which pairs.

chosen text attack: The adversary can choose the plaintexts P and obtain the
corresponding ciphertexts C or vise versa.

adaptively chosen text attack: A chosen text attack where the adversary
chooses the texts adaptively.

Figure 1.2: Attack types

A cipher can always be broken by exhaustive key search provided the needed text
pairs are available. Therefore a cipher being computationally secure implies that
succeeding by exhaustive key search is computationally infeasible. In practice this
implies that the key must be of a certain size that makes exhaustive key search
intractable.

Definition 1.6 (Total break). If it is computationally feasible to determine the key,
the method by which this is done provides a total break.

When a total break is achieved the cipher is clearly not suitable for practical use but
this is not a very good definition for setting a bound on the security of the cipher.
The computational requirements for doing exhaustive key search specify when a
method of analysis provides a cryptographic break on a cipher.

Definition 1.7 (Cryptographic break). If it is theoretically possible to compute the
key faster than by exhaustive key search, the method by which this is done provides
a cryptographic break.

It is obviously safer to set security bounds from this definition. However, the fact
that a cryptographic break exists does not necessarily imply that an attack is feasible
in practice. If for instance the key length is 128 bits then we would have to try
approximately 2127 different keys in an exhaustive key search. This means an attack
determining the key using computational resources of 2124 encryptions would do
better than exhaustive key search but this is still an intractable job.
The computational requirements can be divided into three categories of complexity.

- Processing complexity: The time needed to do the computations.

1.3. NP-COMPLETENESS 7

- Data complexity: The amount of data (texts) needed to determine the key.

- Storage complexity: The space needed to store data.

Ciphers are designed so that the complexities of the known attacks are maximized
while the complexities of encryption are minimized. On one hand, an attack usu-
ally has an impact on the cipher when the complexities of the attack is reduced
substantially compared to exhaustive search. On the other hand, an attack that
compromises the security bound of exhaustive key search reveals an undesirable
weakness of the cipher.
It is always preferable for cryptanalysts to break a cipher by minimizing the compu-
tational requirements. If for instance an attack requires a large amount of known or
chosen text pairs one might argue that it would not be possible to break the cipher
in practice. So even if a cipher has already been broken one still tries to find new
attacks to see whether it is possible to improve the complexities of the break.
The attacks can be considered as methods of solving problems. The security of a
cipher is therefore based on the hardness of solving the problems which the methods
of analysis give rise to. This approach is due to Shannon’s principle of “reducibility
to a known problem”. If a specific type of cryptanalysis can be reduced to solving
an instance of a problem believed to be difficult, then breaking the cipher by this
approach is guaranteed intractable on condition that the underlying problem is in-
tractable. This principle is used in the RSA where the security relies on the hardness
of factoring products of big primes. Another example is the Diffie-Hellmann scheme
based on the discrete logarithm problem being difficult (given p, x, a = xb mod p,
for a prime p, find b). A class of problems which is of interest for the main objective
in this project is the so-called NP-complete problems.

1.3 NP-completeness

The P problems are a subset of the complexity class NP problems.

Definition 1.8 (Complexity class P). The complexity class P is the set of all deci-
sion problems that are solvable in polynomial time.

Being solvable in polynomial time O(nk) means that there exist an deterministic
algorithm that solves the problem. The running time of the algorithm, that is the
number of bit operations for solving the problem, is bounded by a constant degree
k polynomial f(n) as a function of the number of input bits n.

f(n) = a0 + a1n + · · · + akn
k

where the coefficient {a0, a1, · · · , ak} ∈ R.

8 CHAPTER 1. INTRODUCTION TO CRYPTOGRAPHY

Definition 1.9 (Complexity class NP). The complexity class NP is the set of all
decision problems for which a “yes” answer can be verified in polynomial time given
some extra information, called a certificate.

The certificate is some additional information that makes it possible to verify a yes-
answer. The equivalent problem of verifying a no-answer problem is called a co-NP
problem.

Definition 1.10 (Complexity class co − NP). The complexity class co-NP is the
set of all decision problems for which a no answer can be verified in polynomial time
given a certificate.

If a problem is a class P-problem it is therefore also a class NP-problem since if one
can find a solution in polynomial run time one can certainly verify the solution in
this run time or better.

Definition 1.11 (NP-complete problem). A decision problem is said to be NP-
complete if it is contained in the class of NP complex problems, and if there is a
polynomial reduction from any other decision problem to this problem in NP.

In general we believe that NP-complete problems are not P-problems and there are
only non-deterministic algorithms for solving these in polynomial time.
We now introduce the satisfiability problem [34]. For this we need the following
concepts:

Definition 1.12. Literals are variables or negations of variables. A clause is a
disjunction of literals.

A satisfiability problem is a conjunction of clauses. A solution to a satisfiability
problem is an assignment of the literals that satisfies all the clauses raised by the
problem.

Example 1.2. Let for instance

V = {v0, v1, v2, · · · , vn}

be a set of literals in GF (2). Any clause of assignment of this set of literals is a
function which is either true or false. The clause

C1 = v0 ∨ v1 ∨ v̂4

will be true only if v0 is true or v1 is true or v4 is false. A solution to a satisfiability
problem is an assignment of the literals that makes every clause C1, C2, · · ·Cm for
the given problem true.

1.3. NP-COMPLETENESS 9

Theorem 1.2 (Cook’s Theorem). The Satisfiability problem is NP-complete.

We believe that there is no deterministic algorithm for solving the satisfiability
problem in polynomial time. However, an assignment of literals can be verified
true in polynomial time. The satisfiability problem is particularly relevant to this
thesis since the objective of the algebraic attacks, namely solving certain algebraic
equations, is equivalent to solving an instance of the problem [4]. Chapters 4, 5, 6, 7
and 8 concern, in each their way, methods for solving algebraic equations over block
ciphers.

10 CHAPTER 1. INTRODUCTION TO CRYPTOGRAPHY

Chapter 2

Block Ciphers

Block ciphers are cryptographic primitives which allows encryption of large amounts
of data in a fast and secure way. The ciphers fall in the category of symmetric
encryption where we assume that the secret key is pre-distributed. A block cipher
is defined as follows:

Definition 2.1 (Block cipher). A block cipher is a collection of bijections. Under
a secret key K the cipher encrypts a plaintext block P of length nb into a ciphertext
block C of equal length. Encryption is realized using the encryption function

C = eK(P) : {0, 1}n → {0, 1}n.

Most block cipher designs aim towards providing a high level of security, efficiency,
and applicability in various software and hardware environments. A popular choice
of design structure is an SP-network.

Definition 2.2 (SP-network). An iterated block cipher where the round function is
composed of a substitution layer (sBoxLayer), a linear permutation layer (pLayer)
and linear key application is called an SP-network.

The substitution layer provides non-linearity to the cipher. Without this the whole
cipher could be written as a series of linear expressions which are easily solved by
linear algebra. The substitution layer is often realized by parallel application of
small non-linear functions called S-boxes. The permutation layer provides diffusion,
that ensures that the output of the substitution layer is mixed thoroughly across the
entire block. For a cipher that has good diffusion a small change in the plaintext
causes a big change in the ciphertext.
The Data Encryption Standard (DES) is perhaps the most applied block cipher
in the world for which reason it has been described many places in literature (e.g.

11

12 CHAPTER 2. BLOCK CIPHERS

[52, 60]). In the following section we provide a short description of the cipher not
only for completeness of the thesis but also because we in Chapter 8 apply a new
technique on the DES S-boxes.

2.1 Data Encryption Standard

Many people have heard of the Data Encryption Standard and most people are in
daily contact with it (or at least its variant triple-DES). For the past three decades
it had been the most applied block cipher and though it has been withdrawn as
a Federal Information Processing Standard (FIPS) standard more than three years
ago it remains in use many places in society. The cipher dates back to the early
1970’es where the NBS (National Bureau of Standards), today known as the NIST
(National Institute of Security and Technology), made a public request for proposals
for a new cryptographic standard. The design criterion were security, availability
to the public and low price in implementation. None of the candidates were found
suitable for the standard, and a new request was issued. This time IBM submitted
a proposal based on a cipher called Lucifer [30]. The cipher belongs to a special
category of block ciphers called Feistel networks (named after Horst Feistel), the
structure is shown in Figure 2.1.

Definition 2.3 (Feistel Network). An SP-network where only half the block is trans-
formed in each round is called a Feistel network. Let CR

i be the right half and CL
i be

the left half of the text block, and let f be the round function, then

(CL
i , CR

i) = (CR
i−1, f(CR

i−1) ⊕ CL
i−1) .

The NSA (National Security Agency) was responsible for the security evaluation of
DES and recommended to IBM some modifications of Lucifer. As a result the key
size was reduced from 128 bits to 56 bits, and the block size from 128 bits to 64
bits. Moreover the the S-boxes, which are the only non-linear part of the cipher,
were changed to improve the security of the cipher. The result was DES which
became the official encryption standard in November 1976, certified for protecting
sensitive unclassified federal data. Because of the secrecy governing the work of
NSA many critics have questioned whether the changes made to Lucifer introduced
a hidden trap door in DES. Other argued that the key size was too short for long
term security.

2.1.1 The algorithm

DES applies a 56-bit cipher key to encrypt a 64-bit block of text (the standard
specifies a 64-bit key, however 8 bits only serve as parity check and are not counted

2.1. DATA ENCRYPTION STANDARD 13

CL
0 CR

0

K0

f

Knr

f

CL
nr

CR
nr

Figure 2.1: Feistel Network. The ciphertext C = CL
nr

, CR
nr

is computed from the
plaintext P = CL

0 , CR
0 through nr rounds of encryption using nr round keys.

as part of the cipher key). The plaintext is processed by an initial permutation (IP),
after which the text is encrypted with a sixteen round Feistel structure (as shown
in Figure 2.1). The output of the final round is subjected to a final permutation
defined as the inverse of the initial permutation (IP−1).
In each round the round function of DES f(CR

i−1, Ki) encrypts the right half of the
text block as follows (see Figure 2.2): The 32-bit block CR

i is expanded to a 48-
bit block by an expansion function that repeats certain bits. The output of the
expansion function is exclusive-ored with a 48-bit round key Ki. The 48-bit block is
substituted into a 32-bit block, using the eight DES S-boxes. Each S-box substitutes
6 bits into a 4 bits (hence the 48 to 32-bit conversion). Finally, the round function
applies a fixed permutation to the 32-bit block.
The round keys are derived by a key schedule that basically selects 48 bits of the
cipher key for each round key. The DES decryption is exactly the same as the

14 CHAPTER 2. BLOCK CIPHERS

CR
i

Expansion

Ki+1

S1 S2 S3 S4 S5 S6 S7 S8

pLayer

f(CR
i)

Figure 2.2: The round function f(·) of DES.

encryption, only with the round keys used in reverse order.

2.2 Between standards

As time went by and computation power increased, DES became vulnerable to brute
force attacks due to the relative short key length of 56-bit. As a simple enhancement
of DES the triple-DES was specified [27]. As indicated by its name the cipher is
built from three DES encryption in sequence using three DES keys. While one might
think this scheme provides 168-bit security in fact it offers only 112-bit security due
to a meet in the middle attack. Another version called two-key triple DES was
proposed two enable communication between implementations of respectively single
and triple DES. This version is composed of one DES encryption with a first key
(K1), one DES decryption with a second key (K2) and a final DES encryption with

2.3. THE ADVANCED ENCRYPTION STANDARD 15

the first key (K1). Two-key Triple DES operates as single DES when the user selects
K2 = K1.

2.3 The Advanced Encryption Standard

On September 12, 1997 NIST called for proposals for a new encryption standard to
be named the Advanced Encryption Standard (AES). The algorithm was to replace
DES and it should be at least as safe as triple-DES while much faster. Fifteen
proposals were submitted and after two AES conferences (AES-1 and AES-2) NIST
announced in August, 1999, the five finalists: MARS [13], RC6 [57], Rijndael [24],
Serpent [6], and Twofish [32]. A third conference followed (AES-3) before NIST
on October 2, 2000, announced that the cipher Rijndael, proposed by the Belgians
Daemen and Rijmen, had been selected as the new standard AES. On May 19, 2005
(single) DES was finally withdrawn by NIST as FIPS 46-3 [53].
The AES is an iterated block cipher of the type SP-network (see Definition 2.2).
There are three variants of the AES, namely a 128-bit, a 192-bit, and a 256-bit key
version. In this thesis we often refer to the 128-bit version as AES-128. All three
versions are categorized as strong encryption. The number of rounds nr depends on
the key size:

128-bit key, nr = 10

192-bit key, nr = 12

256-bit key nr = 14

The AES proposal Rijndael has variable block size, but for AES the block size is
fixed to 128 bit. The 128-bit text block of AES, which is often referred to as the
state is arranged in a 4 × 4 array of 8-bit words.

2.3.1 Encryption

The round function is composed of four sub-functions in the following order (see
Figure 2.3):

• SubBytes (substitution layer)

• ShiftRows (part of the linear layer)

• MixColumns (part of the linear layer)

• AddRoundKey (key application)

16 CHAPTER 2. BLOCK CIPHERS

P

K0

SubBytes ShiftRows MixColumns

addRoundKey

Ki

Figure 2.3: Top level description of AES

Initially a pre-whitening key K0 is exclusive-ored with the plaintext. Next the round
function is applied nr − 1 times. Finally, a last round is performed in which the
MixColumns function is omitted. This enables decryption to be performed analogous
to encryption. Note that the linear layer after the last substitution layer does not
improve the security of the cipher. This is due to the fact that the key application is
also a linear function, which allows the cryptanalyst to swap the order of the linear
layer and the key application and hence peel off the linear layer of the final round.

2.3.2 The round function

Several of the functions operate in the finite field GF (28). The field is constructed
using the irreducible polynomial m(x) = x8 + x4 + x3 + x + 1, referred to as the
Rijndael polynomial. The field is denoted by F and θ is a root of m(x):

F = GF (2)[x]/〈x8 + x4 + x3 + x + 1〉 = GF (2)(θ).

Each 8-bit word is represented by a polynomial in θ where the most significant bit
is the coefficient of θ7.

2.3. THE ADVANCED ENCRYPTION STANDARD 17

2.3.3 The substitution layer

The substitution layer operates simulations on the sixteen 8-bit words. Each word
is substituted using the 8-bit to 8-bit AES S-box. The S-box is composed of the
inversion map

X−1 over GF (28) ,

for X 6= 0, and
X → X ,

for X = 0. The inversion is followed by a GF (2)-linear map defined as

g(X) = X(x7 + x6 + x5 + x4 + 1) mod x8 + 1

where X is an element of F = GF (28). SubBytes is finalized by addition with the S-
box constant 63x (in hexadecimal notation). The GF (2)-linear map is also specified
by an 8× 8 matrix over GF (2) in [54]. In practice the S-box is realized by a lookup
table with 256 entries that inputs one byte and outputs one byte.
The design rationale is that the inversion map provides good resistance towards
linear and differential cryptanalysis (see Chapter 3). The GF (2)-linear map and the
S-box constant are introduced to increase the algebraic complexity.

2.3.4 Diffusion layer

The diffusion/permutation layer is composed of the functions ShiftRows and Mix-
Columns. ShiftRows is defined as cyclic rotations to the left, of the i’th row of
the data block, by i positions. MixColumns is designed to create good byte level
diffusion in the 32 bits of each column of the state. In MixColumns the columns of
the state are considered as polynomials over F 4, i.e. polynomials of degree less than
four with coefficients in F . Each column vector a(X) is multiplied by c(X) modulo
X4 + 1 to obtain the output column b(X) (see Figure 2.4):

b(X) = a(X) · c(X) mod X4 + 1 ,

where

c(X) = (θ + 1)X3 + (1)X2 + (1)X + θ

= 03xX
3 + 01xX

2 + 01xX + 02x

(the second representation is in hexadecimal notation). c(X) is not an irreducible
polynomial but since it is co-prime to X4 + 1 its multiplicative inverse (c−1(X)) is
well defined:

18 CHAPTER 2. BLOCK CIPHERS

b1,1 b1,2 b1,3 b1,4

b2,1 b2,2 b2,3 b2,4

b3,1 b3,2 b3,3 b3,4

b4,1 b4,2 b4,3 b4,4

·c(x) ·c(x)·c(x)·c(x)

a4,1 a4,2 a4,3 a4,4

a3,1 a3,2 a3,3 a3,4

a2,1 a2,2 a2,3 a2,4

a1,1 a1,2 a1,3 a1,4

Figure 2.4: The MixColumns function

c−1(X) = (θ3 + θ + 1)X3 + (θ3 + θ2 + 1)X2 + (θ3 + 1)X + (θ3 + θ2 + θ) .

MixColumns is inverted by multiplying each column vector by c−1(X) modulo X4+1.

The MixColumns transformation can be rewritten as multiplication of the rows in
the state by the matrix A in the field F .

A =

θ (θ + 1) 1 1
1 θ (θ + 1) 1
1 1 θ (θ + 1)

(θ + 1) 1 1 θ

 =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 .

θ is a root of m(x) in GF (28).

Example 2.1. Let a = (20x, 40x, 02x, 02x)
T

2.3. THE ADVANCED ENCRYPTION STANDARD 19

be a column of the AES state. This is represented by

a(X) = 02xX
3 + 02xX

2 + 40xX + 20x

= (θ)X3 + (θ)X2 + (θ6)X + θ5

in F 4. According to the definition of MixColumns we compute

b(X) = a(X)c(X) =

(θ5 + θ2 + θ)X3 + (θ6 + θ5 + θ)X2 + (θ7 + θ5 + θ2)X + θ7 .

corresponding to the state column b =

80x

a4x

62x

26x

 , which is the same as we obtain

from the computation b = Aa.

2.3.5 Key application

The function AddRoundKey exclusive-ores a 128-bit round key with the 128-bit
state. The round keys are derived using the key schedule.

2.3.6 Key schedule

The AES round keys are generated from the cipher key using a key expansion func-
tion. For AES-128 the function applies four S-boxes per round to generate the
sixteen 8-bit words of the round key.
The 32-bit words wi each represent one column of a round key. For AES-128 the
round keys are derived as follows: The cipher key

K = (w3, w2, w1, w0)

is loaded directly into the first round key K(0).
All subsequent round keys

K(i) = (w3+4i, w2+4i, w1+4i, w4i) ,

for i = 1, . . . , 10, are derived by passing 32 bits of the previous round key (the
key word w3+4(i−1)) to the function RotWord which performs cyclic shifts on byte
level. The output of RotWord is transformed by four S-box applications and finally
exclusive-ored by a round constant consti−1. The round key is then derived linearly
from the 32-bit output of these S-boxes and the previous round key as shown in
Figure 2.5. The key schedule is written in details (for later use) in Appendix A.2.

20 CHAPTER 2. BLOCK CIPHERS

2.4 Modes of operation

Block ciphers operate on fixed length blocks while a message can have any length.
To accommodate for this five modes of operation have been defined. Given a block
cipher eK(·) with specified block length of nb bits, a plaintext P padded into a bit
string of nb · l bits

P = P1, . . . , Pl

is encrypted into a ciphertext
C = C1, . . . , Cl

by applying one of the following four modes of operations.
The Electronic CodeBook (ECB) mode applies the block cipher to encrypt
plaintext blocks one by one, i.e.

Ci = eK(Pi) for i = 1, . . . , l.

This means that identical blocks of the plaintext are encrypted to identical blocks
of ciphertext, and hence one might recognize patterns in the ciphertext.
The Cipher Block Chaining (CBC) mode addresses the problem of pattern
recognition by exclusive-oring the ciphertext of the previous block to the input of
the block cipher, i.e.

Ci = eK(Pi ⊕ Ci−1) for i = 1, . . . , l ,

where C0 is initialized to some initial value IV .
In Cipher FeedBack (CFB) mode the plaintext Pi is exclusive-ored with the text
block eK(Ci−1) obtained by encryption the previous ciphertext block Ci−1 under the
key K

Ci = Pi ⊕ eK(Ci−1) for i = 1, . . . , l ,

where where C0 is initialized to an initial value IV .
Output FeedBack (OFB) mode respectively Counter (CTR) mode are stream
cipher modes. They both apply the block cipher to produce a key stream (indepen-
dent of the text) which is exclusive-ored by the plaintext. The advantage of these
is that they actually don’t require padding of the plaintext since excessive keys bits
are simply discarded. Moreover, the counter mode offers parallel encryption of the
blocks without precomputing the entire key stream. The reader is referred to [60]
for details on modes of operation.

2.4. MODES OF OPERATION 21

w3

w7

R0

S
S
S
SRo

t
Wo
r
d

w2

w6

w1

w5

w0

w4

w39

w43

R9

S
S
S
SRo

t
Wo
r
d

w38

w42

w37

w41

w36

w40

Figure 2.5: Key schedule of AES-128

22 CHAPTER 2. BLOCK CIPHERS

Chapter 3

Block Cipher Cryptanalysis

The security of block ciphers is continuously evaluated by cryptographers worldwide.
The objective is to examine the resistance of the designs towards various types of
analysis. In this chapter we first describe the generic attacks namely exhaustive
key search, the table lookup attack, and a clever extension of this, the time mem-
ory trade-off attack. An important bound on the security offered by block ciphers
follows from these attacks. Also, we provide a short introduction to some of the
most powerful methods of analysis on block cipher, namely linear and differential
cryptanalysis. Finally, we give a short introduction algebraic cryptanalysis which is
the main objective of this thesis.

3.1 Exhaustive key search

In Chapter 1 we described the most general attack that applies to any cipher, namely
exhaustive key search. Let eK(·) be a cipher that maps a plaintext P to a ciphertext
C, under a secret key K ∈ K (where K is the key space),

C = eK(P) .

In an exhaustive key search the attacker exhaustively tries all keys until he finds a
key K that encrypts P to C. If the key length equals the block length (nb = nk),
the attack requires on average one known text pair (P, C) and exhaustive key search
takes on average 2nk−1 operations, when |K| = 2nk and one operation is defined as
the time spend on one encryption. If the key length is larger than the block length
(nb > nk) the attacker will have to apply more texts for the attack to succeed.

23

24 CHAPTER 3. BLOCK CIPHER CRYPTANALYSIS

3.2 Table lookup attack

The idea of the table lookup attack is to reduce the online computation time, by
doing almost all the work in the precomputation. For this we require some known
plaintext prior to the attack. In the online phase we need pairs where the plaintext
equals those which were specified in the precomputation phase. The attack therefore
falls into the category of chosen plaintext attacks. Again, let eK(·) be a cipher that
maps a plaintext P to a ciphertext C, under a secret key K ∈ K.

Precomputation Given a plaintext P = P0 generate for each key Ki ∈ K the
corresponding ciphertext

Ci = eKi
(P0).

Sort the pairs Ci, Ki with respect to the ciphertext in a table. If the size of the
key space is |K| = 2nk the precomputation takes 2nk operations (one operation
correspond to an encryption). The memory required to store the table is 2nk

ciphertext blocks.

Online If |C| = |K| (where C is the ciphertext space) we simply lookup the key
in the table at the entry of the ciphertext C = C0. The time to perform the
online part of the attack is constant. If |C| < |K| we need to apply more texts
i.e. a larger table to realize the attack.

For as long as the plaintext stays the same the table generated in the precomputation
phase can be used again to determine the secret key. This could occur in for example
emails where a certain part of the text is known always to be the same. For realistic
sized block ciphers, e.g. a block cipher with a 128-bit key, both the time for doing
the precomputation and the memory required to store the table make the attack
infeasible.

3.3 Cryptanalytic time-memory trade-off

The Time-Memory Trade-off attack was proposed in [37] by M. Hellman. It applies
not only to block ciphers but to any random function, e.g. to hash functions as well.
Like in the generic table lookup attack the precomputation phase applies a chosen
plaintext, and is therefore categorized as a chosen plaintext attack. The attack was
originally designed for DES, for which reason we in this description assume that
|C| ≥ |K|.
Let eK(P) be a block cipher that maps an nb-bit plaintext into a nb-bit ciphertext
using a nk-bit secret key.

3.3. CRYPTANALYTIC TIME-MEMORY TRADE-OFF 25

Let P0 be a fixed plaintext. Define

f(K) = Red(eK(P0))

where Red(·) is a reduction function that maps elements of the ciphertext space C
into the key space K. For ciphers with nk = nb, a straightforward choice of f would
be the identity map. The reduction function should be chosen such that computing
f(K) should be almost as fast as computing eK(P0). Note that computing K from
f(K) is equivalent to cryptanalysis. The attack is as follows:

Precomputation Choose m starting points SP1, SP2, . . . , SPm at random from the
key space. Set Xi,0 = SPi and compute from each starting point a chain of t
elements

Xi,j = f(Xi,j−1), j ∈ [1, . . . , t],

as shown in Figure 3.1. EPi = Xi,t is the endpoint we reach upon t iterations
of f starting at the point SPi. Table 3.1 contains the m chains. The chains are
sorted by endpoints and all intermediate points are discarded to save memory.
The result of the precomputation phase is in Table 3.2.

Online computation The attacker intercepts a ciphertext C0 and checks if Red(C0)
is among the endpoints in Table 3.2.

If EPj = Red(C0), either the key is given by Xj,t−1 or we have a false
alarm.

Else iteratively compute

C l
0 = f l(Red(C0)) = f(f(· · ·f(Red(C0)))), 1 ≤ l ≤ t − 1

starting by l = 1 and then increasing the value of l until we discover C l
0 among

the endpoints of Table 3.2. If C l
0 = EPj then either the key equals Xj,t−l−1,

or we have a false alarm.

A false alarm occurs because f(K) is a random function and not necessarily injective.
I.e. there might be more keys than the cipher key that satisfy C0 = eK(P0). These
invoke a false alarm.
If we assume that all elements of Table 3.1 are distinct, the probability that the key
is discovered in the procedure described previously is

P (S) =
m · t
2nk

.

26 CHAPTER 3. BLOCK CIPHER CRYPTANALYSIS

Table 3.1: Table T1

X1,0 = SP1
f→ X1,1

f→ X1,2 · · · f→ X1,t = EP1

X2,0 = SP2
f→ X2,1

f→ X2,2 · · · f→ X2,t = EP2

X3,0 = SP3
f→ X3,1

f→ X3,2 · · · f→ X3,t = EP3
...

Xm,0 = SPm
f→ Xm,1

f→ Xm,2 · · · f→ Xm,t = EPm

SPi

Xi,0 Xi,1 Xi,2 Xi,3 Xi,4 Xi,t−1

f f f f . . . f EPi

Xi,t

Figure 3.1: Generating a chain

However, since f is a random function we expect from the birthday paradox (Corol-
lary 3.1) to encounter a collision in the output upon 2nk/2 generated elements. Due
to the nature of the chains they enter a cycle from this point on and no new elements
are generated as shown in Figure 3.2.

Corollary 3.1 (Birthday Collisions). Suppose a random function f : C → K where
|K| = 2nk one expects a collision in about 2nk/2 evaluation of elements chosen at
random from C
As shown in Figure 3.3 the problem occurs both within a single chain, that at some
point starts repeating itself, and for several chains.
For this reason the size of Table 3.1 must be chosen such that there is only a reason-
able number of overlaps while the probability of success is good. In [37] the bound

Table 3.2: Table T2

X1,0 = SP1 X1,t = EP1

X2,0 = SP1 X2,t = EP2

X3,0 = SP1 X3,t = EP3
...

Xm,0 = SP1 Xm,t = EP1

3.3. CRYPTANALYTIC TIME-MEMORY TRADE-OFF 27

SP1
.

.

.

.

.

.

. .

Figure 3.2: Chain repeating itself

for this is derived to be m · t2 = 2nk .
If we fix m = t = 2nk/3 this is fulfilled but as stated in [37] the probability of success
is only is P (S) = 0.8 · 2−nk/3 .
To obtain a higher probability one chooses r reduction functions at random

f1, f2, . . . , fr

and computes for each function a table as before. Since the functions are random
but distinct, there will only be overlaps in the elements of distinct tables according
to the birthday paradox. This means that the probability of success when applying
all r tables in the attack is given by

P (S) = r · 0.8 · 2−nk/3 .

By choosing the parameter r = t = m = 2nk/3 we obtain a high probability of
success. The memory consumption is 22nk/3 and the online computation time is
22nk/3.
The online phase of both the table lookup and the time-memory attack is really
fast. The advantage of the time-memory trade-off is the memory requirements. In
Table 3.3 we list the requirements of respectively the exhaustive key search, the
table look-up, and the time-memory trade-off attacks.

28 CHAPTER 3. BLOCK CIPHER CRYPTANALYSIS

SP1.
.

. .

SP2.

.

.

.

SP3.

.

.

SP4.

.

.

.

.

.

.

. .

.

..

Figure 3.3: Chains overlapping

Table 3.3: Comparing Exhaustive key search, table look-up, and time-memory trade-
off

exhaustive key table look-up time-memory
pre. online pre. online pre. online

time 0 2nk 2nk small 2nk 2nk/3

memory 0 0 2nk 2nk 22nk/3 22nk/3

3.4 Differential cryptanalysis

Differential and linear cryptanalysis are the two most general techniques on block
ciphers. Differential cryptanalysis was first presented by Biham and Shamir on DES-
like cryptosystems [7]. It was noted that DES shows some resistance to differential
cryptanalysis which gives reason to believe that the designer (or most likely the
NSA) possessed knowledge of the technique at least ten years earlier, back when
DES was designed.

A few years later, in 1992, linear cryptanalysis was discovered by Matsui. The overall
structure of the technique is similar to differential cryptanalysis. Both attacks are
probabilistic techniques that require a significant amount of text.

Differential and linear cryptanalysis have had deep impact on today’s ciphers and
it is a mandatory part of the security evaluation to investigate the strength of a
cipher’s against these techniques. The attacks apply not only to block ciphers but

3.4. DIFFERENTIAL CRYPTANALYSIS 29

to hash functions and stream ciphers as well.
As implied by its name, differential cryptanalysis is analysis of the relations in text-
differences in succeeding rounds of the cipher. The objective is to analyze how
differences propagate throughout a cipher. Given an nr-round cipher the attacker
finds a so-called differential characteristic

α0, α1, . . . , αnr−1

over nr−1 rounds of the cipher. The characteristic predicts, with probability px, that
a text pair with input difference ∆C(0) = α0 follows the differential characteristic
and upon nr − 1 rounds of encryption has the difference ∆C(nr−1) = αnr−1. This
relation is exploited to distinguish the right from wrong guesses of the final round
key. The attack is a chosen plaintext attack because the attacker needs control of
differences between plaintexts.

Definition 3.1. The difference ∆ between two texts m1, m2 is defined by

∆m = ∆(m1, m2) = m1 ⊕ m−1
2

where m−1
2 is the inverse of m2 with respect to the group operator ⊕.

Differential cryptanalysis is based on the observation that differences are non-
deterministic for non-linear functions as opposed to linear/affine function. As de-
scribed in Chapter 2 the non-linear layer of most block ciphers is built from par-
allel application of small non-linear functions called S-boxes.Throughout the exam-
ples of this chapter, we consider a small toy cipher for which the round function
F (C(i), K(i+1)) is given by

C(i+1) = F (C(i), K(i+1)) = S(C(i)) ⊕ K(i+1)

where S(·) is the non-linear S-box given in Table 3.4. The ciphertext C(nr) is com-
puted by iterating the round function nr times, where each round applies a different
round key chosen uniformly random from the key space. The input to the first round
is computed by exclusive-oring the plaintext P with an initial whitening key K(0)

C(0) = P ⊕ K(0).

In Figure 3.4 we follow the difference ∆ = αi between two texts in the last two
rounds of encryption.
The core of differential cryptanalysis is to find high-probability differentials that
describe the input to output relation of the non-linear function. A differential (α →
β) is defined by an input difference α and an output difference β. The probability

30 CHAPTER 3. BLOCK CIPHER CRYPTANALYSIS

C
(nr−2)
1

K(nr−2)

S(·)

K(nr−1)

S(·)

K(nr)

C
(nr)
1

C
(nr−2)
2

S(·)

S(·)

C
(nr)
2

∆ αnr−2

∆ αnr−2

∆ αnr−1

∆ αnr−1

∆ αnr

∆ αnr

x

Figure 3.4: Difference between two texts in the last two rounds of the toy cipher.

of a differential is the ratio of text pairs m1, m2 with input difference α and output
difference β to all text pairs with input difference α. For the small S-boxes applied
in many block ciphers one-round differentials are found by establishing a difference
distribution table as the one shown in Table 3.5. In this the number of text pairs
satisfying each possible differential over one S-box are counted.

Example 3.1. Consider the non-linear S-box given in Table 3.4. We compute for
all mi ∈ [0, . . . , 24 − 1] the value S(mi). For each of the sixteen input differences α
we compute for all pairs (mi, mj) where

∆(mi, mj) = α

the value

β = ∆(S(mi), S(mj)).

3.4. DIFFERENTIAL CRYPTANALYSIS 31

Table 3.4: The S-box S(·) (in hexadecimal notation) of the toy cipher used in Ex-
ample 3.1, 3.2 and 3.4.

Input 0 1 2 3 4 5 6 7 8 9 a b c d e f
Output b 7 5 4 2 e 9 a 6 f d c 1 3 0 8

Table 3.5: Difference distribution for S(·) given in Table 3.4.

α → β 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 4 2 2 0 0 0 0 2 2 0 0 4 0 0 0
2 0 2 0 4 2 0 0 0 0 0 0 6 0 0 2 0
3 0 0 4 2 0 0 0 2 2 2 2 0 0 0 0 2
4 0 0 0 0 2 0 0 2 0 4 0 0 4 2 2 0
5 0 0 0 0 0 8 0 0 0 0 0 0 2 2 2 2
6 0 0 2 0 0 0 2 4 0 0 2 0 2 2 0 2
7 0 2 0 0 0 0 2 0 0 0 0 2 0 2 6 2
8 0 0 2 2 0 0 0 0 6 2 0 0 0 4 0 0
9 0 6 0 0 2 0 0 0 0 4 2 0 0 0 0 2
a 0 0 2 2 0 0 4 0 2 2 0 4 0 0 0 0
b 0 0 2 0 0 0 0 2 0 0 8 2 0 0 2 0
c 0 2 0 0 6 2 2 0 0 0 2 0 2 0 0 0
d 0 0 0 0 2 2 2 2 4 0 0 0 0 4 0 0
e 0 0 2 0 2 2 0 2 0 0 0 2 0 0 0 6
f 0 0 0 4 0 2 4 2 0 0 0 0 2 0 2 0

We count the number of pairs that follow each of the 28 differentials α → β. From
this we obtain the difference distribution Table 3.5. The rows and columns correspond
to differences respectively at the input and output of the S-box.

Example 3.2. We observe in Table 3.5, that the differential 0 → 0 has the highest
probability namely Pr(0 → 0) = 16/16 = 1. However, this is trivial since it is
obvious that mapping the same text twice results in the same text. We also observe
that both the differential

α = 5x → β = 5x

and the differential

α = bx → β = ax

are satisfied with probability 1/2.

32 CHAPTER 3. BLOCK CIPHER CRYPTANALYSIS

Once the difference distribution table is established we try to combine the one-round
differentials to a characteristic over multiple rounds.

Definition 3.2. A differential characteristic (α0, α1, . . . , αt) is a chain of differences
through t rounds of a cipher.

The probability of a characteristic is the probability that a pair with difference
∆C(0) = ∆P = α0 follows the characteristic computed as the average over all keys
and all texts.

PrP,K(α0, . . . , αt).

While attacking the cipher, the key is fixed and the plaintext is variable, thus the
probability is an average over all texts and a fixed key

PrP (α0, . . . , αt).

However, since we don’t know the value of the key we cannot compute this proba-
bility. We assume that for virtually all keys

PrP (α0, . . . , αt) = PrP,K(α0, . . . , αt).

For certain ciphers called Markov cipher, introduced in [44], it is fairly simple to
compute PrP,K(α0, . . . , αt).

Definition 3.3. An iterated cipher with round function

C(i+1) = F (C(i), K(i+1))

is a Markov cipher with respect to differential cryptanalysis, if there is a group
operation ⊕ defining differences such that

Pr(∆C(i) = β|∆C(i−1) = α)

is independent of the text C(i−1) for all α 6= e and β 6= e (where e is the neutral
element of the group), when the round keys are chosen uniformly at random.

For a Markov cipher with independent round keys, the probability of a characteristic
is given by

PrK,P (α0, . . . , αt) = PrK(α0, . . . , αt) =

t∏

i=1

(∆C(i) = αi|∆C(i−1) = αi−1) (3.1)

AES and DES are examples of Markov ciphers [41]. The toy cipher studied in the
examples of this chapter is also a Markov cipher. This is because equal sized round

3.4. DIFFERENTIAL CRYPTANALYSIS 33

key and text are exclusive-ored in the round function. Thus for a fixed text pair
the probability of a one-round differential over all keys equals the probability of the
differential over all text pairs. Therefore when the round keys are independent and
chosen uniformly at random, the probability of the differential is independent of the
text pair.
The probability of the characteristic px is important to the complexity because the
number of pairs required for the attack to succeed is proportional to p−1

x [41].
It is a fact that for practical block ciphers the round keys are derived from a key
schedule implying that the keys are dependent. However, for a number of ciphers,
it has been experimentally verified [41], that the probability given by the formula in
Equation 3.1 corresponds nicely with the actual probability.
For realistic block ciphers it is usually very time consuming to find a good character-
istic over a sufficient number of rounds. It is therefore attractive to find an iterative
characteristic over a few rounds, with a high probability. The iterative characteristic
is repeated a number of times to obtain a characteristic over the desired number of
rounds.

Definition 3.4. An s-round iterative characteristic is a differential chain of s + 1
elements

(αi, . . . , αi+s)

where αi = αi+s.

Example 3.3. Since 5 → 5 has the highest probability among the one-round differ-
entials for S(·) we iterate the differential nr − 1 times and obtain the characteristic

(α0, α1, . . . , αnr−1) = (5, 5, . . . , 5).

Since the toy cipher is a Markov cipher the probability of this characteristic is

Pr(5, 5, . . . , 5) = (
1

2
)nr−1.

In Chapter 9 we study a practical example of iterative characteristics for the cipher
Present.
We now sketch the procedure of a differential attack. Given an nr round cipher with
round function

C(i+1) = F (C(i), K(i+1)),

the differential attack is as follows:

Step 1 Establish the difference distributions tables for the non-linear functions of
the cipher.

34 CHAPTER 3. BLOCK CIPHER CRYPTANALYSIS

Step 2 Apply the tables of Step 1 to find a characteristic (α0, α1, . . . , αnr−1) with
high probability px, relating the input difference ∆C(0) = α0 to the difference
at the output of the after nr − 1 rounds of encryption.

Step 3 Choose a text P1 at random and compute P2 = P−1
1 ⊕α0 such that the pair

(P1, P2) has difference α0. Obtain the corresponding ciphertexts (C1, C2) =
(eK(P1), eK(P2)).

Step 4 Guess values of the last round key K(nr) and decrypt for each key guess the
last round (F−1(C1, K

(nr)), F−1(C2, K
(nr))).

Step 5 Compute, for each key guess, the difference
∆C(nr−1) = ∆(F−1(C1, K

(nr),), F−1(C2, K
(nr))). If the difference is

∆C(nr−1) = αnr−1 we say that the pair suggests the key. In Table 3.6 we
increment the counter for each keys suggested by the pair.

Step 6 Repeat Step 3 to 5, N times, each time with a new random text P1.

Table 3.6: Counting the of number pairs with difference ∆P = ∆C(0) = α0, sug-
gesting each of the key guesses K

(nr)
0 , . . . , K

(nr)
s .

K
(nr)
0 K

(nr)
1 K

(nr)
2 . . . K

(nr)
s

2 0 0 . . . 1

Example 3.4. The attacker chooses a plaintexts P1 at random and computes the
other half of the pair P2 = P1 ⊕ α0, where α0 = 5. The cipher is a Markov ci-
pher so he knows that for this pair one gets the difference ∆C(nr−1) = αnr−1 = 5
when encrypted, with probability px = (1

2
)nr−1. The attacker obtains the ciphertexts

(C1, C2) corresponding to the plaintext pair (P1, P2). He makes a list of guesses for
the last round key K(nr) (see Table 3.6). For each key guess he inverts the last round
function

C
(nr−1)
1 = F−1(C

(nr)
1 ⊕ K(nr)),

C
(nr−1)
2 = F−1(C

(nr)
2 ⊕ K(nr)).

He computes the difference ∆C(nr−1) for each key guess. If ∆C(nr−1) = αnr−1 = 5
we say that the pair suggests the key, and the attacker increments the counter for
this key. This process is repeated for different plaintexts chosen at random, until
a key, namely the right key, is suggested enough times to distinguish it from other
keys. If the probability of the differential is high enough the attack succeeds.

3.4. DIFFERENTIAL CRYPTANALYSIS 35

There is a number of other important issues in differential cryptanalysis such as
differentials over multiple rounds and in relation to this provable security against
differential cryptanalysis, impossible differentials, and truncated differentials. How-
ever, since this is already well-described [44, 42, 41] and differential cryptanalysis
is not the main objective of this thesis we shall not get further into that. In [8]
differential cryptanalysis is applied to break DES using 247 chosen plaintexts.

36 CHAPTER 3. BLOCK CIPHER CRYPTANALYSIS

3.5 Linear cryptanalysis

Linear cryptanalysis is a known plaintext attack. As in the differential attack we
search for a probabilistic description of the cipher. More specifically we search for
affine approximations of the non-linear functions of the cipher. In the basic attack
the idea is to combine linear approximations over all rounds to obtain a linear
expression in a number of key and text bits. From the linear approximation and
a certain amount of known texts we can deduce one bit of key information. In
an extended attack we search for a linear characteristic over nr − 1 rounds when
analyzing an nr-round SP-network. We apply the approximation to distinguish
the right from wrong guesses of the last round key, similar to what we did in the
differential attack.
Given a vector of b binary variables X = (xb−1, . . . , x0) and a b-bit vector α, known
as a linear mask, the inner product

α · X,

defines a linear expression in the variables of X.

Example 3.5. The linear mask α = (0, 1, 1, 0) defines the linear expression

0 · x3 ⊕ 1 · x2 ⊕ 1 · x1 ⊕ 0 · x0 = x2 ⊕ x1,

for the vector X = (x3, x2, x1, x0)
T .

Given a non-linear function S(·) with input vector X and output vector Y , a pair
of linear masks (α, β) defines a linear approximation

α · X = β · Y.

The probability of the approximation is

Pr(α · X = β · Y) =
1

2
+ ε,

where ε is known as the bias. For the non-linear functions applied in a block cipher
we search for an approximation with high probability. To find such approximations
we establish linear approximation tables for the S-boxes of the cipher, as described
in Example 3.6.

Example 3.6. Table 3.7 is the linear approximation table of the 4-bit S-box S(·)
given in Table 3.4. The rows contain the input masks and the columns contain the
output masks. The occurrence of the approximations is measured by their deviation
from the mean value. For instance the input mask α = (1, 1, 0, 1) is related to output
mask β = (1, 0, 1, 0) with probability px = 1/2 + 6/16 (See Table 3.7 d → a). One
can verify that the approximation is true for all inputs but two, namely {3, b}.

3.5. LINEAR CRYPTANALYSIS 37

Table 3.7: Linear approximations for the S-box S(·) .

1 2 3 4 5 6 7 8 9 a b c d e f

1 −2 2 −4 2 0 0 2 2 4 0 −2 0 2 2 0
2 −2 −6 0 0 −2 2 0 2 0 0 −2 2 0 0 −2
3 4 0 0 2 −2 −2 −2 0 0 0 −4 −2 −2 2 −2
4 −2 0 2 −6 0 −2 0 0 2 0 −2 −2 0 2 0
5 0 −2 −2 0 0 −2 6 −2 −2 0 0 −2 −2 0 0
6 0 −2 2 2 2 4 0 −2 2 0 0 −4 0 2 2
7 2 0 2 0 −6 0 2 0 2 0 2 0 2 0 2
8 0 −2 −2 0 0 −2 −2 0 0 2 2 −4 4 −2 −2
9 −2 0 2 2 0 −2 0 −2 0 −2 −4 0 2 −4 2
a 2 0 2 0 2 0 2 −2 0 −2 0 2 4 2 −4
b 0 −2 2 2 2 −4 0 0 4 2 2 2 −2 0 0
c −2 2 4 2 0 0 2 4 −2 2 0 −2 0 0 −2
d 0 0 0 0 0 0 0 −2 −2 6 −2 2 2 2 2
e −4 0 0 2 −2 −2 −2 −2 −2 −2 2 0 0 4 0
f −2 2 0 0 −2 2 0 −4 2 2 0 0 −2 −2 −4

Definition 3.5. An t-round linear characteristic is a chain of linear masks over t
rounds of the cipher

(α0, α1, . . . , αt).

Analogue to differential cryptanalysis we define a Markov cipher with respect to
linear cryptanalysis [41].

Definition 3.6. An iterated cipher is a Markov cipher with respect to linear crypt-
analysis, if the probability of approximation α · X(i) = β · Y (i) over one round

Pr(α · X(i) = β · Y (i))

is independent in the text X(i), for all α, β, when the round keys are chosen uniformly
at random.

Given a Markov cipher with independent round keys chosen uniformly at random, we
can apply Matsui’s piling-up lemma to compute the probability of the characteristic
(α0, α1, . . . , αt) .

Lemma 3.1 (Piling-up Lemma). Given t + 1 independent variables

v0, v1 . . . , vt

38 CHAPTER 3. BLOCK CIPHER CRYPTANALYSIS

that take on values from GF (2), the probability of the event that

v0 ⊕ v1 ⊕ . . . ⊕ vt = 0

is given by

px =
1

2
+ 2t

t∏

i=0

(pi −
1

2
)

where p0, p1, . . . , pt are the probabilities that v0 = 0, v1 = 0, . . . , vt = 0.

For a given characteristic with probability px the expected number of texts required
to discover a bias in the linear relation is about (px − 1

2
)−2 = ε−2 [41].

Example 3.7. For the toy cipher applied in our examples we define as follows:

X(i) = (x
(i)
3 , x

(i)
2 , x

(i)
1 , x

(i)
0)

Y (i) = (y
(i)
3 , y

(i)
2 , y

(i)
1 , y

(i)
0)

K(i) = (k
(i)
3 , k

(i)
2 , k

(i)
1 , k

(i)
0)

P = (p3, p2, p1, p0)

C = (c3, c2, c1, c0)

as the bit vectors of respectively the input and output of the S-box and the key K of
round i, the plaintext P , and the ciphertext C. Consider a two-round version of the
toy cipher shown in Figure 3.5.
For this we have

X(1) = P ⊕ K(0) (3.2)

Y (1) = S(X(1)) (3.3)

X(2) = Y (1) ⊕ K(1) (3.4)

Y (2) = S(X(2)) (3.5)

C = Y (2) ⊕ K(2) (3.6)

In Table 3.7 we find that the linear approximation defined by the linear masks (5, 7)
has bias 6

16
i.e. it has probability 14

16
. Also, we find that the approximation defined

by (7, 5) has bias −6
16

i.e. true with probability 2/16. Thus the approximation

7 · X ⊕ 1 = 5 · S(X)

is true with probability 1 − 2
16

= 14
16

. We apply the approximations

5 · X(1) = 7 · Y (1) (3.7)

7 · X(2) ⊕ 1 = 5 · Y (2) (3.8)

3.5. LINEAR CRYPTANALYSIS 39

p3p2p1p0 = P

k
(0)
3 k

(0)
2 k

(0)
1 k

(0)
0 = K(0)

x
(1)
3 x

(1)
2 x

(1)
1 x

(1)
0 = X(1)

S(·)

y
(1)
3 y

(1)
2 y

(1)
1 y

(1)
0 = Y (1)

k
(1)
3 k

(1)
2 k

(1)
1 k

(1)
0 = K(1)

x
(2)
3 x

(2)
2 x

(2)
1 x

(2)
0 = X(2)

S(·)

y
(2)
3 y

(2)
2 y

(2)
1 y

(2)
0 = Y (2)

k
(2)
3 k

(2)
2 k

(2)
1 k

(2)
0 = K(2)

c3c2c1c0 = C

Figure 3.5: Two round toy cipher for the purpose of describing linear cryptanalysis.

and establish the linear relation between the text and the round keys

5 · K(0) ⊕ 7 · K(1) ⊕ 5 · K(2) = 5 · P ⊕ 5 · C ⊕ 1

corresponding to the linear approximation

k
(0)
2 ⊕ k

(0)
0 ⊕ k

(1)
2 ⊕ k

(1)
1 ⊕ k

(1)
0 ⊕ k

(2)
2 ⊕ k

(2)
0 = p2 ⊕ p0 ⊕ c2 ⊕ c1 ⊕ 1.

Assuming that the approximations of the round functions are independent we can
apply the piling-up lemma to compute the probability of the approximation

px =
1

2
+ 2(

6

16
· 6

16
) =

1

2
+

9

32
.

From this we see that we can obtain one bit of key information when applying ap-
proximately (px − 1

2
)−2 ≈ 13 texts.

40 CHAPTER 3. BLOCK CIPHER CRYPTANALYSIS

Example 3.7 demonstrates the idea of the linear attack. However, as we would like to
recover more than just one bit of key information the attack is extended as follows:

Step 1 Establish a linear characteristic over nr − 1 round

(α0, α1, . . . , αnr−1),

with high probability px. The characteristic corresponds to a linear approxi-
mation of the form

α0 · K(0) ⊕ α1 · K(1) ⊕ . . . ⊕ αnr−1 · K(nr−1) = α1 · P ⊕ αnr−1 · X(nr) (3.9)

where Xnr is the input of the non-linear layer in the last round.

Step 2 Create a list of guesses for the last round key K(nr), containing two counters
T0 and T1 for each key guess.

Step 3 For each key guess invert the last round function for the ciphertext C cor-
responding to a known plaintext P , to obtain the value Xnr . Compute the
right hand side of Equation 3.9. For each key increment the counter T0 if the
sum is zero and T1 if the sum is one (see Table 3.8).

Step 4 Repeat Step 3 for N known texts. For the right key K(nr) one of the
counters, T0 or T1, has expected value pxN . For wrong keys the counters both
have the expected value N

2
.

Table 3.8: Counters T0, T1 for each guess of the last round key in a linear attack.

K
(nr)
0 K

(nr)
1 K

(nr)
2 . . . K

(nr)
s

T0 14 2 N − 15 . . . N − 14
T1 N − 14 N − 2 15 . . . 14

Note that for a fixed key the left hand side of Equations 3.9 has a fixed value. We
do not know this value but exploit that for the right key, the sum is either zero or
one for N

2
+ N · px of the N texts while for other keys the sum is zero respectively

one for N
2

of the texts.
In [48] Matsui presented linear cryptanalysis and applied it successfully on DES.
The method breaks 8 round DES using 221 known plaintext and the full 16-round
DES using 247 known plaintext. AES was designed to be strong towards linear and
differential cryptanalysis and seems not to be threatened by these approaches.

3.6. ALGEBRAIC ATTACKS 41

3.6 Algebraic attacks

In later years algebraic attacks on symmetric-key ciphers have received much at-
tention. The attacks have had notable impact in the area of stream ciphers due to
the discovery of powerful attacks on certain ciphers [19]. The techniques apply in
principle to (iterated) block ciphers although most results until now suggest that
this does not lead to very effective attacks.
Most modern block ciphers have the structure of an SP-network. As described in
Chapter 2, the round function is composed of a non-linear confusion layer, usually
realized by a parallel application of small S-boxes, followed by a linear layer that
provides diffusion across the block. The round is completed with linear application
of a round key. For such a cipher an algebraic attack is established by deriving a set
of algebraic equations that describes the linear layers (including the key application)
and the non-linear layers of the cipher. Joining these together we obtain a complete
description of the cipher. Algebraic attacks have the potential to recover the secret
key using only a few known text pairs. By solving a large set of equations a few
candidates for the right key are found. The right key is then easily obtained by
eliminating other key candidates using a few other text pairs.
AES has from the beginning attracted much attention for its elegant and simple
algebraic structure [33, 16]. In [20] an algebraic description of AES (and Serpent)
over GF (2) was presented along with some very controversial claims on the com-
plexity of the so-called XSL algorithm for solving these equations. The problem
of solving the AES equations is an instance of the well-known MQ-problem, that
is the problem of solving multivariate quadratic equations over a finite field. The
generic MQ-problem is known to be NP-complete (see Chapter 1). In fact there are
cryptosystems that rely on the difficulty of this problem, for instance Hidden Field
Equations which we describe in Chapter 5. By now not many people believe that
the XSL algorithm works as claimed in [20], and so far no other efficient algorithm
for solving the equations has been discovered. However, it is of course important to
analyze and examine new ideas to get an impression of whether one could develop
an efficient algorithm for solving the equations arising from block ciphers.
In the following sections we describe how to obtain algebraic equations for block
ciphers over GF (2). In the final section of this chapter we give a short description
of the GF (28)-description of AES presented in [50].

3.7 Obtaining an algebraic description

As described in Chapter 2 a block cipher is a bijective function (for a fixed key) that
maps an nb-bit input to an nb-bit output using a nk-bit cipher key. The goal in an

42 CHAPTER 3. BLOCK CIPHER CRYPTANALYSIS

P

K0

X1 S(·) Y1 L(·)

K1

X2 ... Xnr S(·) Ynr L(·)

Knr

C

Figure 3.6: A simple block cipher structure.

algebraic attack is to find the cipher key.
Most block ciphers in use are fairly simple constructions. The round function consists
a non-linear substitution layer S(·), a linear permutation layer L(·), and a linear key
application. The round keys Ki are often mixed with the data via the exclusive-or
operation while the non-linear layer typically is implemented by dividing the text
into smaller blocks (e.g., 4 or 8 bits) which are then transformed by non-linear
table lookups, the so-called S-boxes. By iterating the round function nr times the
ciphertext is obtained.
Our research mainly considers equations over GF (2) and the description of this
section concerns only this. Consider the following nr-round block cipher where the
encryption of a plaintext P into a ciphertext C is shown in Figure 3.6.
It follows that X1 = P ⊕ K0, and that

Xi+1 = Ki ⊕ L(S(Xi)) = Ki ⊕ L(Yi),

for i = 1, . . . , nr, and Xnr+1 = C. Of particular interest are block ciphers for which
one can obtain equations of low algebraic degree in the (bits of) the pairs (Xi, Yi) for
i = 1, . . . , nr. These equations are completely general for the cipher and independent
of the key, the plaintext, and the ciphertext. From the linear layer one gets a set
of linear equations connecting the round keys, the pairs (Xi, Yi), the plaintext, and
the ciphertext. Altogether the equations provide a complete algebraic description of
the cipher.

3.7.1 Equations over one S-box

First we show how to find deterministic, multivariate equations over GF (2) for an S-
box. The “maximum set of equations of degree-d” is obtained as follows: Consider an
S-box that maps b bits to c bits. To find all equations of degree less than or equal to d,
construct a binary matrix A with 2b rows and

∑d
i=0

(
b+c

i

)
columns. The 2b inputs of

the S-box are the row entries and the
∑d

i=0

(
b+c

i

)
ordered (according to e.g. graded

reverse lexicographic order) monomials of degree less than or equal to d are the

3.7. OBTAINING AN ALGEBRAIC DESCRIPTION 43

column entries. The bit of row i and column j is set if for the input i, the monomial
of column j has the value one. All deterministic equations f1 = 0, f2 = 0, . . . , fm = 0,
of degree less than or equal to d, over the S-box, are then obtained by computing
the basis of the null space of A. From this we obtain at least

e =

d∑

i=0

(
b + c

i

)
− 2b

equations of degree less than or equal to d. This is due to the fact that for a matrix
with p columns and q rows, where (p ≥ q), the null-space is spanned by at least p−q
vectors.

3.7.2 The linear layer

There are at least two ways to process the linear layers. For simplicity it is assumed
that the round keys Ki are derived from the cipher key K by a simple bit permutation
and it is assumed that there are no linear equations over the input and output of an
S-box.
A first method is the one proposed in [20]. The input variables to the S-box layer
(the bits of the Xis above) are eliminated by inserting a linear expression of the
round key and the outputs (the bit of the Yjs above) from the previous round. Let
nSbox denote the total number of S-boxes in the cipher and eqSbox denote the number
of non-linear equations of some degree over GF (2) for one S-box. Using this method
a total of nSbox · eqSbox · nr non-linear equations in nb · (nr + 1) variables is obtained.
The following describes another procedure which we later, in Chapter 6, apply to
analyze algebraic attacks on block ciphers. The idea is to eliminate the key variables,
and thereby keep the linear equations in the system (contrary to the first method
above). This is achieved by combining the equations

L(Yi) ⊕ Ki = Xi+1

and
L(Yj) ⊕ Kj = Xj+1

for all i < j, by pair wise exclusive-oring equations that contain the same key bit
variables. For each pair (i, j) this yields nb linear equations over GF (2) in bits from
Xi+1, Xj+1, Yi, and Yj. The linear equations are separated from the equations of the
S-box layer. In total one obtains a system of nb · nr linear equations in addition to
the nSbox · eqSbox · nr non-linear equations (of a certain degree). The total number
of variables is 2nb · nr. Note that although the equations do not contain any key

44 CHAPTER 3. BLOCK CIPHER CRYPTANALYSIS

variables, it is straightforward to extract the value of the secret key from a solution
to the other variables in the system.
The method is easily generalized to include ciphers with more complex key-schedules,
e.g., those containing S-boxes, which will be demonstrated later.

3.8 Algebraic descriptions of AES

The main observation in [20] is that the AES S-box is described by a set of 39
quadratic, deterministic equations over GF (2) and an additional probabilistic equa-
tion which is true with probability 255

256
. The 39 equations can be derived by the

method in Section 3.7.1. However, the equations can also be derived by considering
the algebraic structure of the AES S-box. Recall that the AES S-box is composed
of an inversion over GF (28), a GF (2)-linear map, and an addition of the constant
63x. Consider the inversion map over GF (28). We can write the 8-bit input X and
the 8-bit output Y of the map as

X = a0 + a1x
1 + a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7

and
Y = b0 + b1x

1 + b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7

where
X, Y ∈ GF (2)[x]/〈x8 + x4 + x3 + x + 1〉 = GF (2)(θ).

Assume that X 6= 0, Y 6= 0, then the following relations are satisfied

XY = 1, (3.10)

X2Y = X, (3.11)

Y X4 = X3, (3.12)

Y 2X = Y 2, (3.13)

Y 4X = Y 3. (3.14)

These relations each provide 8 quadratic equations in the binary variables

a0, . . . , a7, b0, . . . b7

over GF (2) because squaring is linear over GF (2). Note that the expression XY = 1
is not satisfied for X = 0, therefore one of the equations derived from this expression
is true only with 255

256
. For completeness the GF (2)−equations for the AES S-box are

listed in Appendix A.

3.8. ALGEBRAIC DESCRIPTIONS OF AES 45

3.8.1 Eliminating the key variables

In this section we demonstrate the procedure of eliminating the key variables applied
to AES-128. We first consider a variant of AES where all round keys are identical
with the exception of adding a round-dependent constant. We define as variables in
our system all the bits in the inputs and in the outputs of the S-boxes in all rounds.
This yields 2560 variables. Each S-box is described by 39 quadratic equations over
GF (2), thus in total we obtain 6240 quadratic S-box equations. The output bits
of the S-boxes in one round are then connected to the input bits of the S-boxes
in the following round by the linear transformation and a 128-bit round key. One
combines an expression involving the first round key with an expression involving the
second round key and so on. Note that there are 11 round keys in the AES. Hence
the round keys in these equations are eliminated and one obtains 10 · 128 = 1280
linearly independent, linear equations in 2560 (boolean) variables. In total we obtain
7520 equations of degree less than or equal to two in 2560 variables over GF (2).
Let us next consider the real AES-128. Here the user-selected key is loaded directly
into the first round key. Each of the following round keys are derived by passing one
32-bit word through a linear mix (RotWord), a layer of four S-boxes, and addition of
a round constant (see Appendix A.2 for details). Thus, there is a total of 40 S-box
applications in the AES key-schedule. To accommodate for this more complex key-
schedule compared to the simple version above, we introduce new variables for all
the input and output bits of the S-boxes in the key-schedule. Thus we introduce an
additional 640 variables. This allows us to establish 1280 linear equations, as before,
but now in 2560+640=3200 variables. In practice this is achieved by eliminating
all the key bits in the linear equations which are not input bits to the key-schedule
S-boxes. The round keys themselves are related by another 320 linear equations. In
total we can establish a set of 1600 linear equations in 3200 variables. It has been
checked that these 1600 equations for the (real) AES are linearly independent. The
equations are given in detail in Appendix A.3. AES-128 applies in total 200 S-boxes
from which we derive 7800 quadratic equations over GF (2). All together the cipher
is describes by 9400 equations of degree less than or equal to two in 3200 variables
over GF (2).

3.8.2 A description over GF (28)

The Bigger Encryption Standard (BES) was proposed by Murphy and Robshaw [50]
as a larger cipher in which one can embed AES. BES is an iterated cipher that
operates on 128-byte blocks with 128-byte keys. The round function is composed of
inversion, matrix multiplication, and key addition. All operations are over GF (28).
When embedding AES in BES, the GF (2)-linear map of the substitution layer of

46 CHAPTER 3. BLOCK CIPHER CRYPTANALYSIS

AES (see Section 2.3.3) is replaced by a mapping over GF (28) in BES. Thus one can
derive an algebraic description of BES hence of AES over GF (28). The idea is that
the algebraic description over GF (28) is simpler and sparser than the description
derived in the previous sections over GF (2).

Embedding AES in BES

AES is embedded in BES by mapping each of the sixteen elements of the state from
GF (28) into for the purpose defined vector conjugates over (GF (28))8.

Definition 3.7. Let F be a finite field of order q and k be an extension field of F
of degree d. The elements

a, aq, aq2

, . . . , aqd−1

are the conjugates of a ∈ k with respect to F

The vector conjugate mapping φ : GF (28) → (GF (28))8 is defined by

ã = φ(a) = (a20

, a21

, a22

, a23

, a24

, a25

, a26

, a27

).

The mapping is closed with respect to addition and preserves inverses because squar-
ing is a linear function over GF (2)

φ(b + b′) = φ(b) + φ(b′)

φ(b−1) = φ(b)−1.

The conversion from BES to AES via φ−1 is possible when the BES vector forms an
ordered set corresponding to an AES state. Each function of BES is defined such
that the property of the vector conjugates is preserved. Most of the functions of BES
are defined as a straightforward extension of the corresponding function of AES.

The Linear Layer

Both ShiftRows and MixColumns are defined over GF (28) in AES. Recall that in
AES MixColumns treats each column of the state (four bytes) as an element of
GF (24). This element is multiplied by

c(X) = (θ + 1)X3 + (1)X2 + (1)X + θ .

where θ is a root of the polynomial m(x) = x8 + x4 + x3 + x + 1 that generates the
field

GF (2)[x]/〈x8 + x4 + x3 + x + 1〉.

3.8. ALGEBRAIC DESCRIPTIONS OF AES 47

a1,1

φ

a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

φ

b1,1,0

b1,1,2

b1,1,3

b1,1,4

b1,1,5

b1,1,6

b1,1,7

.

.

.

.

.

.

.

.

.

.

.

.

.

.
b4,4,0

b4,4,1

b4,4,2

b4,4,3

b4,4,4

b4,4,5

b4,4,6

b4,4,7

Figure 3.7: Converting the AES state to a BES vector. Each byte of the AES state
is mapped into eight bytes of the BES vector.

In BES MixColumns multiplies the elements (for m = 0, . . . , 7) of the four vector
conjugates corresponding to a column of the AES state by the polynomial

c(X)(m) = (θ + 1)2m

X3 + (1)X2 + (1)X + θ2m

.

The ShiftRows function of AES rotates cyclic each row of the state in different
off-sets. In BES the rotation is repeated on all elements of the BES vector.

SubBytes

As described in Section 2.3.3 the SubBytes function is composed of inversion over
GF (28), a GF (2)-linear map, and addition with the constant 63x. The GF (2)-linear

48 CHAPTER 3. BLOCK CIPHER CRYPTANALYSIS

map g : GF (2) → GF (2) is actually the only part of AES that prevents an algebraic
description of the cipher over GF (28). In BES addition of the constant is moved
into the key schedule and hence removed from the SubBytes function. Inversion of
the BES vector in (GF (28))8 is defined by element-wise inversion over GF (28)

b−1 = (b−1
i,j,0, b

−1
i,j,1, b

−1
i,j,2, b

−1
i,j,3, b

−1
i,j,4, b

−1
i,j,5, b

−1
i,j,6, b

−1
i,j,7) .

Finally, the GF (2)-linear function is replaced by a so-called linearized polynomial.

Definition 3.8. A linearized polynomial f(X) ∈ k[X] is a polynomial given by

f(X) = c0X + c1X
q + c2X

q2

+ . . . + cd−1X
qd−1

where ci ∈ k. Thus a linearized polynomial f(X) is a polynomial whose evaluation
f(a) for any a ∈ k gives a linear combination of the d conjugates of a.

There exists a polynomial with coefficients in GF (28) which interpolates the GF (2)-
linear map of the AES S-box in its input-output points. The GF (2)-map of AES
can be written as

f(X) = 05xX
20

+09xX
21

+f9xX
22

+25xX
23

+f4xX
24

+01xX
25

+ b5xX
26

+8fxX
27

.

The operation is defined in BES by multiplication with an 8×8 matrix over GF (28).
The matrix replicates the action of the GF (2)-linear map of AES on the first byte
of the vector conjugate and ensures that the vector conjugate property is preserved
on the remaining 7 bytes.

The Round Keys

The AES key addition is defined by bitwise addition of a state and a round key.
This operation is well-defined over GF (28) hence also in BES and the only thing
lacking is to extend the round key derivation to fit the BES vector. The key schedule
of AES applies the same functions as the encryption function. As explained all of
these are well defined over GF (28) in BES, thus the key schedule is also well-defined.
As mentioned, addition of the constant in the SubBytes function of AES is in BES
transferred to the key schedule. This is done by embedding the image of the constant
in BES and adding it to the round keys.

3.8.3 BES equations

The encryption algorithm of BES applies 8 · 10 · 16 S-boxes. Each S-box gives rise
to three quadratic equations over GF (28). Let x be the input of an AES S-box,

3.8. ALGEBRAIC DESCRIPTIONS OF AES 49

and (x1, . . . , x8) be the vector conjugate input of eight S-boxes of BES. y is the
corresponding S-box output and (y1 . . . , y8) the BES vector conjugate output. Then
for i = 0, . . . , 7 we get the equations

xiyi = 1,

x2
i = xi+1

and
y2

i = yi+1,

where i + 1 is interpreted modulo 8, i.e. 3 quadratic equations per S-box.
In total the encryption algorithm is described by 3840 quadratic equations and 1408
linear equations in 2560 state variables and 1408 key variables. The key schedule
applies 320 S-boxes and is therefore described by 960 quadratic equations and 1600
linear equations in the 1408 key variables and 640 auxiliary variables.
As mentioned the motivation of describing AES over GF (28) instead of GF (2) is that
it is simpler and sparser. The authors of [50] noted that, given that the complexity
estimates of the XSL algorithm [20] were correct, the attack would be more efficient
for the GF (28) description (time complexity 2100). However, since XSL does not work
as anticipated by its designers and the complexity estimates have been shown to be
incorrect and too optimistic [14], this number means nothing at all. So far it remains
unclear whether the GF (2) or the GF (28) description of AES is more favorable for
mounting an algebraic attack. In Chapter 7 we outline a number of simulations over
GF (2) on the small scale variants of AES proposed in [15]. Compared to the results
of [15] over GF (28) our simulations suggests that after all the GF (2)-description
seems favorable.

50 CHAPTER 3. BLOCK CIPHER CRYPTANALYSIS

Chapter 4

Gröbner Bases Techniques

The theory of Gröbner bases was founded by Bruno Buchberger in his Ph.D thesis in
1965, and named after his supervisor Wolfgang Gröbner. Gröbner bases are applied
for many purposes in for instance combinatorial optimization, coding theory, and
robotics. Our interest in Gröbner bases is the application for solving algebraic
equations describing the secret key of a cipher.
Given a set of polynomial equations f1 = 0, . . . , fm = 0 we compute the reduced
Gröbner basis G = {g1, . . . , gl} for the polynomial ideal I generated by

〈f1, . . . , fm〉.

Due to Proposition 4.1 (which we give later in this chapter) solving the polynomial
equations g1 = 0, . . . , gl = 0 is equivalent to solving f1 = 0, . . . , fm = 0. The reason
that we prefer to solve g1 = 0, . . . , gl = 0 is that it is often easier than solving
f1 = 0, . . . , fm = 0.
Gröbner basis algorithms are perhaps the most promising methods regarding alge-
braic attacks on block ciphers. At least the best known algebraic results on block
ciphers are accomplished using the Gröbner basis algorithm F4 [28].
In this chapter we describe the concept of Gröbner bases and how to compute them
using respectively Buchberger’s algorithm [12] and F4. For more details and the
proofs, which we omit in this description, we refer the reader to [45, 28, 29].
Throughout this chapter we consider a polynomial ring k[x1, . . . , xn] over a finite
field k, in order to simplify the definitions of a Gröbner basis.

4.1 Polynomial ideals

At first we give a few important definitions.

51

52 CHAPTER 4. GRÖBNER BASES TECHNIQUES

Definition 4.1. Let k be a field, then k[x1, . . . , xn] is the polynomial ring over k in
the variables x1, . . . , xn. A polynomial f ∈ k[x1, . . . , xn] can be written

f = a1m1 + . . . + alml,

where ai ∈ k are the coefficients of the monomials

mi = x
α1,i

1 · · ·xαn,i
n αj,i ∈ N.

We denote ti = aimi, where ai 6= 0, as the terms of f . The total degree of f , denoted
deg(f), is the maximum

|αi| =

n∑

j=1

αj,i

where ai 6= 0.

Definition 4.2. A non-empty set of polynomials I ∈ k[x1, . . . , xn] is said to be an
ideal if

• fi + fj ∈ I for any fi, fj ∈ I,

• mf ∈ I for any f ∈ I and any m ∈ k[x1, . . . , xn]

Definition 4.3. Let f1, . . . , fm be a set of polynomials where fi ∈ k[x1, . . . , xn], then
〈f1, . . . , fm〉 is the ideal generated by f1, . . . , fm, i.e.

〈f1, . . . , fm〉 = {m1f1 + . . . + mmfm | m1, . . . , mm ∈ k[x1, . . . , xm]}

Definition 4.4. The affine variety V (f1, . . . , fm) of a set of polynomials f1, . . . , fm ∈
k[x1, . . . , xn] is the set of solutions (a1, . . . , an) ∈ kn satisfying all of the equations

f1(x1, . . . , xn) = 0,

...

fm(x1, . . . , xn) = 0

simultaneously.

Moreover the variety V (I) defined by an ideal I ⊆ k[x1, . . . , xn] in the affine space
kn is

V (I) = {(a1, . . . , an) ∈ kn|f(a1, . . . , an) = 0 for all f ∈ I}.

4.1. POLYNOMIAL IDEALS 53

Proposition 4.1. Let V (I) be the affine variety of the ideal I.
If

I = 〈f1, . . . , fm〉,
then

V (I) = V (f1, . . . , fm).

From Proposition 4.1 we have that solving the polynomial equations

f1 = 0, . . . , fm = 0

is equivalent to determining the variety of any set of polynomials that generates the
ideal

I = 〈f1, . . . , fm〉.
A Gröbner basis G = {g1, . . . , gk} for the ideal I = 〈f1, . . . , fm〉, is a generating set
for I with some special properties.
For the purpose of Gröbner basis computation we need an ordering on the elements
of k[x1 . . . , xn]. In the univariate ring k[x] there is a natural way of ordering the
monomials mi ∈ k[x], namely in ascending order with respect to the degree. As
opposed to this there are infinitely many ways to order the elements in the multi-
variate ring k[x1, . . . , xn]. We therefore need to specify a term order on the elements
of k[x1, . . . , xn]. A term order is a total order with extra conditions.

Definition 4.5. A total order on the monomials m ∈ k[x1, . . . , xn] is a relation ≤
that for all mi, mj, ml ∈ k[x1, . . . , xn] satisfies

- mi ≤ mi (reflexivity),

- mi ≤ mj and mj ≤ mi ⇒ mi = mj (antisymmetry),

- mi ≤ mj and mj ≤ ml ⇒ mi ≤ ml (transitivity),

- mi ≤ mj or mj ≤ mi (totality).

A term order is defined as follows.

Definition 4.6. A term order ≤ on k[x1, . . . , xn] is a total order that for all mi, mj, ml

satisfies

- 0 ≤ mi

- mi ≤ mj ⇒ miml ≤ mjml

54 CHAPTER 4. GRÖBNER BASES TECHNIQUES

We give as an example the graded reverse lexicographic (grevlex) order which is the
preferred choice for the F4 algorithm (described in Section 4.3).

Definition 4.7 (Graded Reverse Lexicographic Order). According to graded reverse
lexicographic order

xα1

1 · · ·xαn

n = xβ1

1 · · ·xβn

n

if αi = βi for all i, and
xβ1

1 · · ·xβn

n < xα1

1 · · ·xαn

n

if

|β| =
k∑

i=1

βi < |α| =
k∑

i=1

αi or |α| = |β|

and the rightmost non-zero entry of (α1 − β1, α2 − β2, . . . , αn − βn) is negative.

Example 4.1. Consider the ring GF (2)[x1, x2, x3]. The elements

{x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3}

in grevlex order are then

x3 < x2 < x1 < x2x3 < x1x3 < x1x2 < x1x2x3.

We define the head term of a polynomial f as follows.

Definition 4.8. The head term of a polynomial f with respect to a term order ≤
is defined as

HT(f) = aimi

where mi is the maximum monomial of f with respect to ≤ and where ai 6= 0.

Example 4.2. The polynomial

f = x1x2 + x1x3 + x2x3 + x3

has head term HT(f) = x1x2 according to grevlex order.

Buchberger’s algorithm for Gröbner bases computation basically consists of two
procedures which are repeated until a Gröbner basis is obtained. In the first we
generate polynomials, and in the second we reduce the polynomials. In the following
we describe the multivariate polynomial division algorithm which is a basic part of
Gröbner bases computation.

4.1. POLYNOMIAL IDEALS 55

Given a tuple of non-zero polynomials F = (f1, . . . , fm), a polynomial f , and a fixed
term order ≤, we can compute a remainder r such that

f = a1f1 + . . . amfm + r,

where either none of the terms in r are divisible by HT(f1), . . . , HT(fm) or r = 0.
The multivariate division algorithm is described as follows. Given a sequence of
polynomials F = f1, . . . , fm ∈ k[x1, . . . , xn], and a polynomial f ∈ k[x1, . . . , xn] we
fix a term order ≤. f is reduced modulo the polynomials in F by repeating the
following steps until f is invariant to the procedure:

Step 1 Find smallest i such that HT(fi) divides some term t of f .

Step 2 Replace f by f − t
HT(fi)

fi.

Definition 4.9. Suppose f ∈ k[x1, . . . , xn] and let F = f1, . . . , fm be a sequence of
non-zero polynomials in k[x1, . . . , xn]. Then

f mod F

denotes the remainder r from dividing f by F using the multivariate division algo-
rithm.

In the univariate ring k[x] there is only one order, namely the degree order, thus the
remainder coming from the division algorithm is uniquely defined. As shown in the
following examples this is not the case in general for multivariate rings k[x1, . . . , xn].

Example 4.3. Fix the term order ≤ to be grevlex. Given a list of polynomials
F = (f1, f2) = {x1x2 + x2, x2x3 + x3} in GF (2)[x1, x2, x3] we reduce the polynomial
f = x1x2x3 + x1x3 + x2 to

r = f mod F

as follows

r1 = f mod f1 = x1x3 + x2x3 + x2,

r = r1 mod f2 = x1x3 + x2 + x3.

Example 4.4. Consider the same equations as in Example 4.3 only this time we
swap the order of the elements in F , thus F = (f1, f2) = (x2x3 +x3, x1x2 +x2). The
polynomial division algorithm reduces f = x1x2x3 + x1x3 + x2 mod F to

56 CHAPTER 4. GRÖBNER BASES TECHNIQUES

r1 = f mod f1 = x1x2 + x1x3 + x2,

r = r1 mod f2 = x1x3.

A Gröbner basis is a generating set for an ideal I with the property that the remain-
der coming from the division algorithm is independent in the order of its element.

4.2 Buchberger’s algorithm

We first define the main object of Buchberger’s algorithm, namely the Gröbner basis.

Definition 4.10. A set of non-zero polynomials is a Gröbner basis

G = {f1, . . . , fl}
for an ideal

I ⊆ k[x1, . . . , xn]

with respect to a term order ≤ if G ⊆ I and for every f ∈ I \ {0} there is a fi ∈ G
for which HT(fi)|HT(f).

Theorem 4.1. Let k be a field, ≤ a term order, and I ⊆ k[x1, . . . , xn] an ideal.
Then I has a Gröbner basis with respect to ≤.

Buchberger’s algorithm computes a Gröbner basis for an ideal

I = 〈f1, . . . , fm〉
in a polynomial ring k[x1, . . . , xn] with respect to a fixed term order ≤.
For any non-zero pair f1, f2 ∈ k[x1, . . . , xn] we can define the S-polynomial S(f1, f2).

Definition 4.11. The S-polynomial of a pair of non-zero polynomials (f1, f2) is
defined as

S(f1, f2) =
lcm(HT(f1), HT(f2))

HT(f1)
f1 −

lcm(HT(f1), HT(f2))

HT(f2)
f2,

with respect to a term ordering ≤.

The pair (f1, f2) corresponding to the S-polynomial S(f1, f2) is commonly referred
to as a critical pair.

Corollary 4.1 (Buchberger’s S-criteria). A sequence G = {f1, . . . , fm} of polyno-
mials is a Gröbner basis if and only if S(fi, fj) = 0 mod G, for 1 ≤ i < j ≤ m.

Buchberger’s Algorithm takes as input a set of polynomials F = f1, . . . , fm ∈
k[x1, . . . , xn] and outputs a Gröbner basis G for the polynomial ideal
I = 〈f1, . . . , fm〉.

4.2. BUCHBERGER’S ALGORITHM 57

The algorithm is described as follows:

Step 1 Initialize G = F .

Step 2 For all pairs of polynomials fi, fj ∈ G, where i < j, compute

f = S(fi, fj) mod G.

If f 6= 0 set G′ = G ∪ f .

Step 3 If G = G′ return and output G. Else set G = G′ and go to Step 2.

Theorem 4.2. Buchberger’s Algorithm terminates and returns a Gröbner basis.

Theorem 4.2 can be proved by applying either Hilbert’s basis theorem or Dickson’s
lemma [45].

For a number of problems, and in particular those we consider in this chapter, we
know that the solutions of the polynomial equations are in kn, where k is a finite
field of q = 2m elements. We therefore add the field relations xq

i +xi for i = 1, . . . , n
to F , i.e.

F = f1, . . . , fm, xq
1 + x1, . . . x

q
n + xn.

This simplifies the computations because, in practice, xq
i is reduced to xi whenever

it appears. In this and the following chapters this is denoted by

I ⊆ k[x1, . . . , xn]/〈xq
1 + x1, . . . , x

q
n + xn〉.

Example 4.5. This and the following examples shows how we apply Gröbner bases
to find the solutions (a1, a2, a3) ∈ GF (2)3 of the polynomial equations

{f1 = 0, f2 = 0, f3 = 0} = {x2x3 + x3 = 0, x1x2 + x2 = 0, x1x2x3 + x1x3 + x2 = 0}

where f1, f2, f3 ∈ GF (2)[x1, x2, x3].
We fix the term order ≤ to grevlex order and compute a Gröbner basis for the
polynomial ideal

I = 〈f1, f2, f3〉
where I ⊆ GF (2)[x1, x2, x3]/〈x2

1 + x1, x
2
2 + x2, x

2
3 + x3〉.

f4 = S(f1, f2) = x1x3 + x3,

f5 = S(f1, f3) = x2,

f6 = S(f2, f3) = x3,

58 CHAPTER 4. GRÖBNER BASES TECHNIQUES

S(f1, f4) = S(f1, f5) = S(f1, f6) = S(f2, f4) = S(f2, f5) = S(f2, f6) = S(f3, f4) =

S(f3, f5) = S(f3, f6) = S(f4, f5) = S(f4, f6) = S(f5, f6) = 0.

Buchberger’s algorithm returns the Gröbner basis G = {f1, f2, f3, f4, f5, f6}.

We notice that many of the S-polynomials generated in Example 4.5 reduce to zero.
This is in fact an important problem concerning the complexity of Buchberger’s
algorithm. The following lemma optimizes Buchberger’s algorithm though it does
not solve the problem.

Lemma 4.1. Let ≤ be a term order on k[x1 . . . , xn]. Let f1, f2 ∈ k[x1 . . . , xn] and
suppose that HT(f1) and HT(f2) have no common divisors except constants, then

S(f1, f2) mod (f1, f2) = 0.

Lemma 4.1, known as Buchberger’s first criteria, allows us to sort out a number of
critical pairs that reduce to zero and hereby save time in computing and reducing
the S-polynomials.

Example 4.6. According to Lemma 4.1 we can omit the critical pairs

(f2, f6), (f4, f5), (f5, f6)

of Example 4.5 since the head terms pair wise have no common divisors.

There exists a Buchberger’s second criteria [5] which allows us to sort out more
critical pairs but in order to limit our description, we do not discuss this here. The
Gröbner basis computed by Buchberger’s algorithm is not unique but we can convert
it into a Gröbner basis of a special form which is unique. At first we define a minimal
Gröbner basis.

Definition 4.12. A minimal Gröbner basis G = {f1, . . . , fl} is a Gröbner basis
where

- HT(fi) is not divisible by HT(fj) for i 6= j

- The coefficient of HT(fi) is 1.

Definition 4.13. A reduced Gröbner basis, Gred = {f1, . . . , fl} is a minimal Gröbner
basis where no term in fi is divisible by HT(fj) for i 6= j.

Theorem 4.3. Every ideal I has a unique reduced Gröbner basis.

4.3. FAUGÈRE’S IMPROVEMENTS 59

Once a Gröbner basis is obtained we can apply the polynomial division algorithm
to compute the reduced Gröbner basis.

Example 4.7. For the Gröbner basis computed in Example 4.5

f1 = x2x3 + x3,

f2 = x1x2 + x2,

f3 = x1x2x3 + x1x3 + x2,

f4 = x1x3 + x3,

f5 = x2,

f6 = x3.

We compute, by polynomial division with respect to grevlex order, the reduced Gröbner
basis

Gred = {x2, x3}
everything else reduce to zero. Applying Proposition 4.1 we have that the solutions
to the polynomial equations {f1 = 0, f2 = 0, f3 = 0} is given by (x1, x2, x3) = (t, 0, 0)
where t ∈ GF (2).

The Gröbner basis reduction can be incorporated into Buchberger’s algorithm such
that the reduced Gröbner basis is computed directly.
There are several problems regarding Buchberger’s algorithm such as the huge num-
ber of S-polynomials reducing to zero, which term order is more appropriate for the
specific purpose, and in which order we treat the critical pairs.
The complexity of Buchberger’s algorithm is closely related to the total degree d of
the intermediate S-polynomials. Unfortunately this degree can be very big (in some
cases double exponential [16]) and the running time and memory consumption can
make the algorithm fail for a number of purposes.

4.3 Faugère’s improvements

This section primarily describes the F4 algorithm, which along with F5 is probably
the most powerful algorithm for Gröbner basis computations. The algorithms F4
and F5 were proposed by Faugère [28, 29] in respectively 1999 and 2002. Both al-
gorithms optimize Buchberger’s algorithm (in different ways). The idea of F4 is to
re-use reductors, i.e. the polynomials generated for the purpose of reducing other
polynomials. F5 works similar to F4 while its main target is to avoid generating
polynomials that reduce to zero. In F4 the improvement is carried out by simulta-
neous reduction of several S-polynomials. This is realized by methods from linear

60 CHAPTER 4. GRÖBNER BASES TECHNIQUES

algebra, where Gaussian elimination is generalized to non-linear polynomial equa-
tions. The algorithm does not improve the worst case complexity for Gröbner basis
computation but for a number of purposes it is much faster than Buchberger’s algo-
rithm. The F4 algorithm works on basis of any admissible order but it was designed
to be efficient for grevlex order.
F4 is implemented as the standard algorithm in Magma [59] for computing Gröbner
bases and has been applied to solve the first Hidden Field Equations (HFE) chal-
lenge of 80 quadratic equations in 80 variables over GF (2) [59]. In Chapter 7 we
give a number of timing results of algebraic attacks on small block cipher applying
Magma’s implementation of F4.
The following example is meant to motivate the idea of F4.

Example 4.8. Suppose we want to reduce the three polynomials f1, f2, f3 modulo f4

where

f1, f2, f3, f4 ∈ GF (2)[x1, x2, x3, x4]/〈x2
1 + x1, x

2
2 + x2, x

2
3 + x3, x

2
4 + x4〉 ,

and

f1 = x1x2x3 + x1x3 + x1 + x3 + 1,

f2 = x1x2x4 + x1x3 + x1,

f3 = x1x3x4 + x1x3 + x1 + x2,

f4 = x1 + x4 .

We choose the grevlex term order and compute by polynomial division

f1 mod f4 = f1 − (x2x3 + x3 + 1)f4 = x2x3x4 + x3x4 + x3 + x4 + 1,

f2 mod f4 = f2 − (x2x4 + x3 + 1)f4 = x2x4 + x3x4 + x4,

f3 mod f4 = f3 − (x3x4 + x3 + 1)f4 = x2 + x4 .

In Example 4.8 we note that the reductor x3f4 is generated several times. Such
redundancy in the polynomial reduction occurs often in Gröbner basis computation.
The next example shows how this problem is handled in the reduction step of F4.

Example 4.9. Consider the same polynomials as in Example 4.8. We reduce

f1 = x1x2x3 + x1x3 + x1 + x3 + 1,

f2 = x1x2x4 + x1x3 + x1,

f3 = x1x3x4 + x1x3 + x1 + x2

4.3. FAUGÈRE’S IMPROVEMENTS 61

simultaneous modulo f4 = x1 + x4 as follows.
Construct a matrix containing the coefficients of all of the polynomials which appear
in the division algorithm that is the coefficients of:

f1, f2, f3, f4, x2x3f4, x2x4f4, x3x4f4, x3f4 .

The monomials are ordered according to grevlex with the greatest monomial in the
left most column

x1x2x3 > . . . > x2x3x4 > x1x2 > . . . > x3x4 > x1 > x2 > x3 > x4 > 1

f1

f2

f3

f4

x2x3f4

x2x4f4

x3x4f4

x3f4

1 0 0 0 0 1 0 0 0 0 1 0 1 0 1
0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

Note that as opposed to Example 4.8, x3f4 is generated only once. By Gaussian
elimination and back substitution we obtain

1 0 0 0 0 0 0 0 0 1 0 0 1 1 1
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 0 0 1 1 1
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

corresponding to the polynomials

F =

{x1x2x3 + x3x4 + x3 + x4 + 1,
x1x2x4 + x3x4 + x4,
x1x3x4 + x3x4 + x4,
x2x3x4 + x3x4 + x3 + x4 + 1,
x2x4 + x3x4 + x4,
x1x3 + x3x4,
x1 + x4,
x2 + x4} .

62 CHAPTER 4. GRÖBNER BASES TECHNIQUES

The procedure given in Example 4.9 computes a set of polynomials F where for all
fi ∈ F , no terms of fi is divisible by HT(fj) for i 6= j. I.e. if the reduction algorithm
is applied to a Gröbner basis it returns the reduced Gröbner basis.

F4 computes a Gröbner basis G for a set of polynomials

F = {f1, . . . , fm} ∈ k[x1, . . . , xn] .

The basic steps of the algorithm are described below. In Step 4 a list of polynomials
L is reduced modulo a temporary polynomial basis G. This is done by constructing
a matrix containing both L and G as sketched in Example 4.9 and performing
Gaussian elimination and back substitution on this.

Step 1 Initialize G = F and create a list P of all critical pairs (fi, fj) where i < j
and fi, fj ∈ F .

Step 2 Select a subset of the critical pairs P ′ ⊆ P . Update P = P \ P ′.

Step 3 Generate a list L of polynomials which for each critical pair (fi, fj) in P ′

contains two polynomials fl =
lcm(HT(fi),HT(fj))

HT(fi)
fi and fr =

lcm(HT(fi),HT(fj))

HT(fj)
fj .

Step 4 Compute a list of polynomials L′ by reducing the polynomials of L modulo
G as described above.

Step 5 Update P by adding the pairs (fi, fj) where fi ∈ L′ \ G and fj ∈ G to the
list. Add the polynomials of L′ \ G to G.

Step 6 Go to Step 2.

The algorithm terminates and outputs G when the list of pairs P is empty.

Theorem 4.4. F4 computes a Gröbner basis G for the ideal generated by F =
{f1, . . . , fm}.
This description does not cover optimizations (e.g. how Buchberger’s criteria are
incorporated, and how the reduction bases are re-used) or the so-called symbolic
pre-processing which is part of the reduction function in Step 4.

The complexity of F4 is hard to estimate. Like for Buchberger’s algorithm it de-
pends on the degree of the intermediate polynomials, and the selection strategy.
Though F4 is faster than Buchberger’s algorithm for some purposes it often requires
more memory. The memory consumption is a problem of both the Buchberger’s
algorithm and F4 regarding the application to algebraic attacks on block ciphers.
In Chapter 7 we outline a number of tests on down scaled versions of AES applying
both Buchberger’s algorithm and F4.

Chapter 5

The Linearization Techniques

The method of Relinearization, XL (Extended Linearization) and XSL (Extended
Sparse Linearization) all belong to the category of linearization techniques. The
methods have each, at their time of publication, been claimed by their inventors
to run in polynomial time. This has been the subject of much discussion and the
approximations on their complexities derived in respectively [40, 18, 20] have been
widely criticized for being inaccurate and too optimistic (seen from the attackers
point of view). In a note [49] Moh describes how numbers, that are crucial to
the complexity of the Relinearization technique, are miscounted. Unfortunately the
note can be hard to follow and does not seem to cover all problems regarding the
complexity of the method.
The Relinearization attack was designed to cryptanalyze Hidden Field Equations
(HFE), and its description is somewhat hidden in the analysis of HFE [40]. However,
as stated by the authors of [40] its application extends to a large range of problems.
The XL attack is an extension of the Relinearization technique with the purpose of
being simpler and more adequate for overdefined sets of polynomial equations, as
those we encounter in algebraic descriptions of various block ciphers.
To this day, the critical question regarding the linearization techniques is determining
the complexity, and in particular of our interest, discovering whether they apply
to block ciphers. This chapter aims to give a clear description of the method of
Relinearization and XL as well as of the problems regarding their complexities.

5.1 Hidden field equations (HFE)

In this section we give a brief description of HFE to explain the motivation of the
Relinearization attack. The HFE is a public key cryptosystem. The cipher maps an
n-bit plaintext to an n-bit ciphertext by evaluating n polynomials over GF (q). The

63

64 CHAPTER 5. THE LINEARIZATION TECHNIQUES

recommended values for n and q are n = 128 and q = 2.
The private key

Ks = {P (X), S, T}
consists of two linear maps T, S over GF (q)n, and a univariate polynomial P (X),
chosen at random, over the extension field GF (qn):

P (X) =

r−1∑

i=0

r−1∑

j=0

pijX
qi+qj ∈ GF (qn)[X]

with r ≤ 13 in order to bound the degree of P (X).
The extension field GF (qn) is constructed from GF (q)[x]/m(x) where m(x) is an
irreducible polynomial of degree n. To generate the public key, we represent the poly-
nomial P (X) as vector of n multivariate quadratic polynomials in GF (q)[x0, . . . , xn−1].
The input and the output of the polynomials are processed by respectively S and T
to obtain the public key

Kp = {P0(x0, . . . , xn−1), P1(x0, . . . , xn−1), . . . , Pn−1(x0, . . . , xn−1)}.
Noting that f(X) = Xqi

is a linear function over GF (qn), and aq = a in GF (q), one
can verify that the polynomials of Kp are quadratic and homogeneous.

Example 5.1 (Toy example of HFE). Consider HFE with r = 2, n = 4 and q =
2. We construct the extension field GF (24) over the polynomial ring modulo the
irreducible polynomial m(x) = x4+x+1. For the secret key we choose the polynomial

P (X) = xX2 + x2X3 + (x2 + 1)X3 + x3X4

where X = a3x
3 + a2x

2 + a1x + a0 is an element of the extension field GF (24). We
compute

P (X) = x3(a0 + a1) + x2(a0a2 + a1a2 + a2a3 + a0) +

x(a0a1 + a0a2 + a1a3 + a0 + a1 + a2) +

(a1a3 + a2a3 + a0 + a1 + a2) .

Now we interpret the coefficients (a0, a1, a2, a3) of the polynomial representation of
X as variables over GF (2) and extract the following four equations over
GF (2)[x0, x1, x2, x3]

y3 = x0 + x1,

y2 = x0x2 + x1x2 + x2x3 + x0,

y3 = x0x1 + x0x2 + x1x3 + x0 + x1 + x2,

y0 = x1x3 + x2x3 + x0 + x1 + x2 .

5.2. LINEARIZATION 65

y0, y1, y2, y3 is transformed by T and x0, x1, x2, x3 by S to obtain the public key

Kp = {P0(x0, . . . , x3), P1(x0, . . . , x3), P2(x0, . . . , x3), P3(x0, . . . , x3)}.
The ciphertext is computed by evaluating the n-bit plaintext in the n (public) poly-
nomials

P0(x0, . . . , xn−1), . . . , Pn−1(x0, . . . , xn−1) .

To decrypt the holder of the secret key applies the inverse of T to the ciphertext,
retrieving P (X). P (X) is inverted, using e.g. Berlekamps algorithm [45], and finally
the inverse of S is applied to obtain the plaintext.

The security of HFE is based on the difficulty of solving quadratic equations over
GF (q). While it is feasible to invert the polynomial P (X) (because of the bound on
the degree of P (X)), the problem of computing x0, . . . , xn−1 from

P0(x0, . . . , xn−1), . . . , Pn−1(x0, . . . , xn−1)

is NP-complete.

In [40] Kipnis and Shamir convert the original problem of solving n quadratic equa-
tions in n variables over GF (q) into a problem of solving n(n−r) quadratic equations
in r(n − r) + n variables over GF (qn).

{G0(X0, . . . , Xr(n−r)+n), G1(X0, . . . , Xr(n−r)+n), . . . , Gn(n−r)(X0, . . . , Xr(n−r)+n)}.
For r << n this is approximately n2 equations in rn variables. If one can solve these
equations then one can recover the affine transformation T and subsequently P (X)
and S (this is proven in [40]). For the purpose of solving these equations Kipnis and
Shamir propose a new technique called Relinearization, as an extension of the basic
linearization technique. Moreover they claim that it, for a given value ε ≥ 0.1, is
capable of solving a random system of εn2 equations in n variables, in polynomial
time. This claim has been widely discussed [49, 18] for several reasons which we
describe later.

5.2 Linearization

Consider a set of m equations of degree d in n variables

E :

f0(x0, . . . , xn−1) = 0
f1(x0, . . . , xn−1) = 0

· · ·
· · ·

fm−1(x0, . . . , xn−1) = 0.

66 CHAPTER 5. THE LINEARIZATION TECHNIQUES

The basic linearization technique replaces any monomial
∏n−1

i=0 aix
bi

i of degree greater
than one by a new auxiliary variable yj to obtain a linear system. The system is
then, if possible, solved by Gaussian elimination.

Definition 5.1 (Linearization degree). The linearization degree is the maximum de-
gree of the monomials which are replaced by new auxiliary variables in linearization.

The time complexity of Gaussian elimination is O(l3) and the memory complexity
is O(l2), where l is the number of variables upon linearization. The method of
linearization and performing Gaussian elimination is sometimes referred to as the
multivariate extension of Gaussian elimination. In some cases the linearized system
of equations contains some of the original variables and sometimes the solution
to these are found directly upon Gaussian elimination. In other cases, where for
instance the monomials

x2
i , x

2
j , xixj

are replaced by

yii, yjj, yij,

one might find the value of e.g. yii, yjj and yij but neither the value of xi nor xj .
In this case the square roots of yii and yjj are extracted to find the set of possible
solutions to xi and xj and subsequently to xixj . By comparing the suggested values
of xixj to the actual value of yij some (maybe all) wrong solutions are filtered out.
If E is defined over a finite field GF (q) the field equations xq

i + xi = 0 are applied
to reduce xq

i to xi, for all i = 0, . . . , n − 1. In the case where GF (q) = GF (2)
the monomials x2

i reduce to xi, for i = 0, . . . , n − 1, thus extracting square roots
and filtering is not necessary. Finally, in some cases Gaussian elimination does not
provide the solution to neither the quadratic nor the linear terms of the original
system. In this case the method of linearization fails.

Example 5.2. Consider the four equations over GF (2)[x0, x1, x2]

0 = x0 + x1

0 = x0x2 + x1x2 + x0

0 = x0x2 + x0 + x1 + x2

0 = x1x2 + x0 + x1 + x2

To solve the system by linearization we introduce a new variable yij for each quadratic
monomial xixj occurring in the equations. There are

(
3
2

)
= 3 quadratic and 3 linear

5.3. RELINEARIZATION 67

monomials in GF (2)[x0, x1, x2] but only 5 of them are present in this case

0 = x0 + x1

0 = y02 + y12 + x0

0 = y02 + x0 + x1 + x2

0 = y12 + x0 + x1 + x2.

After Gaussian elimination (and back substitution) we obtain

0 = y12 + x2 = x2(x1 + x2)

0 = x0

0 = x1.

x0 = 0 and x1 = 0 are given directly upon Gaussian elimination while the value of
x2 is obtained by insertion of the value of x1 in the first equation x2(x1 +x2) = x2

2 =
x2 = 0.

For a quadratic set of equations in GF (2)[x0, . . . , xn−1] the linearization technique

introduces (at most) n +
(

n
2

)
= n(n+1)

2
new variables thus in total the system con-

tains n(n+3)
2

variables. Provided that the equations are linearly independent and

the system has a unique solution one expects to find the solution if m ≥ n(n+3)
2

. If

m << n(n+3)
2

the method will probably fail.

Recall that in [40] Kipnis and Shamir derived a set of about m = n2 equations
in rn variables (for r << n) for HFE. By linearizing the equations we obtain a

set of m = n2 equations in rn +
(

rn
2

)
= rn(rn+1)

2
≈ r2n2

2
variables. According to

our discussion this system is solvable if n2 ≥ r2n2

2
equivalently 1

r2 ≥ 1
2
. For HFE

1
r2 < 1

2
and the system is not solvable by Gaussian elimination. For the purpose of

solving such equations, Kipnis and Shamir propose the Relinearization method as
an extension to the linearization technique.

5.3 Relinearization

The method of Relinearization is a dedicated method for solving m = εn2 equations
in n variables, where 0.1 ≤ ε < 1

2
. Relinearization extends the method of lin-

earization by adding extra equations to the linearized system of equations and then
linearizing again. In the following we explain Relinearization for solving quadratic
equations. The method extends in a straight forward way to equations of higher

68 CHAPTER 5. THE LINEARIZATION TECHNIQUES

degree. Consider a set of m quadratic equations in n variables over GF (q)

E :

f0(x0, . . . , xn−1) = 0
f1(x0, . . . , xn−1) = 0

· · ·
· · ·

fm−1(x0, . . . , xn−1) = 0.

Step 1 Replace each quadratic term xixj by a new variable yij (linearization) .

Step 2 Perform Gaussian elimination on the new linear system and write, for each
variable yij a parametric description yij = a0z0 + . . . + akzk, introducing the
new variables z0, z1, . . . , zk.

Step 3 Generate quadratic equations in the variables z0, . . . , zk induced by commu-
tativity of multiplication yijykl = yikyjl = yilyjk. Add the generated equations
to E

Step 4 Repeat linearization, this time on the new quadratic equations in
z0, z1, . . . , zk. Perform Gaussian eliminations on the linearized equations. The
goal is to obtain the solution to z0, z1, . . . , zk.

Step 5 The possible set of solutions to yij and ykl is derived from the values of
zm = y2

ij and zn = y2
kl. Wrong solutions are filtered out by combining the

solutions and comparing them to the value of zk = yijykl. Once the solution
of yij = xixj is known the filtering process is repeated to obtain the solution
of xi and xj .

Example 5.3 (Relinearization). Consider the four linearized equations modulo 7
below

y12 = z + 1

y13 = z

y34 = z + 5

y24 = z + 2

use the relation y12y34 = y13y24 to generate the equation

(z + 1)(z + 5) = z(z + 2) mod 7 ⇔
z2 + 6z + 5 = z2 + 2z mod 7 ⇔

4z = 2 mod 7 ⇔
z = 4 mod 7

Following y12 = 5, y13 = 4, y24 = 6, y34 = 2.

5.3. RELINEARIZATION 69

In Example 5.3 we do not need to linearize in Step 4 of the algorithm because z2

cancels out. However, the example shows how we benefit from exploiting the relation
y12y34 = y13y24 which is the idea of the Relinearization method.
According to Kipnis and Shamir [40] the attack is expected to succeed when

m4

12
≥ ((1

2
− ε)n2)2

2
.

However, this bound is based on an inadequate approximation on the generated
number of equations and auxiliary variables. In [49] a more accurate bound is given.
The procedure is to count the number of equations that are generated in Step 3.
Given that the equations are linearly independent we expect to be able to solve the
equations by linearization when there are about as many equations as monomials.
Consider the following categories of monomials where xa 6= xb 6= xc 6= xd

Type 1 x4
a = y2

aa : Generates no equations.

Type 2 x3
axb = yaayab : Generates no equations.

Type 3 x2
ax

2
b = xaxbxaxb ⇒ yaaybb = y2

ab : Generates one equation. The number of

“Type 3” equations is
(

n
2

)
= n(n−1)

2
.

Type 4 x2
axbxc = xaxbxaxc ⇒ yaaybc = yabyac : Generates one equation. The num-

ber of “Type 4” equations is n +
(

n−1
2

)
= n(n−1)(n−2)

2
(because one can select

xa in n ways and xb, xc in
(

n−1
2

)
ways).

Type 5 xaxbxcxd = xaxcxbxd = xaxdxbxc ⇒ yabycd = yadybc = yacybd : Gener-
ates two additional equations. The number of “Type 5” equations is 2

(
n
4

)
=

n(n−1)(n−2)(n−3)
12

.

In total one can generate

E =
n(n − 1)

2
+

n(n − 1)(n − 2)

2
+

n(n − 1)(n − 2)(n − 3)

12
=

n4

12
+

n2

12
(5.1)

equations (as stated in [49]). In Step 1 n+
(

n
2

)
= n(n+1)

2
new variables are introduced

by linearization thus the parametric description introduces n(n+1)
2

−m new variables
z0, . . . , zk. The equations generated in Step 3 contain

V =

(n(n+1)
2

− m

2

)
+ 2(

n(n + 1)

2
− m) =

(n(n+1)
2

− m)(n(n+1)
2

− m + 3)

2
(5.2)

70 CHAPTER 5. THE LINEARIZATION TECHNIQUES

monomials i.e. new variables in Step 4. One therefore expects to be able to solve
the system when

n4

12
+

n2

12
≥ (n(n+1)

2
− m)(n(n+1)

2
− m + 3)

2
. (5.3)

5.3.1 Complexity

In [40] the Relinearization attack is claimed to run in polynomial time. The estimate
is based on the assumption that all equations generated in Step 3 of the algorithm are
linearly independent. If that was the case one could apply the bound of Equation 5.3
to determine which systems the Relinearization technique could solve at linearization
degree 4. In this case the runtime of Relinearization would be bounded by the
complexity of Gaussian elimination O(l3) where l is the number of variables in
the linearized system. However, there is no reason to believe that the equations
generated in Step 3 are all linearly independent, in fact simulations [18] show the
opposite.
At linearization degree 4 (i.e. the equations in z1, . . . , zk have degree 2) it is claimed
in [40] that one can prove that the equations generated in Step 3 are linearly in-
dependent. If you consider only trivial linear dependencies then for each 4-tuple
xa, xb, xc, xd it is true that two out of three equations

yabycd = xaxbxcxd = xaxcxbxd = yacybd

yabycd = xaxbxcxd = xaxdxcxb = yadybc

yacybd = xaxcxbxd = xaxdxcxb = yadybc

are linearly independent. However, when the parametric descriptions of
yabycd, yabybd, yadybc are inserted this property may be lost.

Example 5.4. Consider the parametric description of the linearized variables:

y12 = x1x2 = z1 + z2

y34 = x3x4 = z1 − z2

y13 = x1x3 = −z2 + z3

y24 = x2x4 = z2 + z3

y56 = x5x6 = z1 + z4

y78 = x7x8 = z1 − z4

y57 = x5x7 = z3 − z4

y68 = x6x8 = z3 + z4

5.4. THE EXTENDED LINEARIZATION ATTACK (XL) 71

Generating the equations from y12y34 = y13y24 and y56y78 = y57y68

(z1 + z2)(z1 − z2) = (−z2 + z3)(z2 + z3)

(z1 + z4)(z1 − z4) = (z3 − z4)(z3 + z4)

we get

z2
1 − z2

2 = −z2
2 + z2

3

z2
1 − z2

4 = z2
3 − z2

4

which are linearly dependent.

If Relinearization does not work at degree 4 a natural extension is to take the method
to the next level, namely degree-six linearization, where we consider permutations of
six-tuples (xa, xb, xc, xd, xe, xf) instead. Formulas for counting equations and vari-
ables are given in [49] and in [18] the linear dependencies are explored further.
As a conclusion the linearization degree required for the Relinearization attack to
work remains unknown because no-one so far has been capable of determining the
number of linearly independent equations generated by the method.

5.4 The extended linearization attack (XL)

The Extended Linearization (XL) attack was proposed by Courtois, Klimov, Patarin,
and Shamir in 2000 [18]. The attack is strongly inspired by the Relinearization
method but claimed (by the authors) to be both simpler and more powerful. The
attack has successfully been applied to break the stream cipher Toyocrypt [17].
However, as in the case of Relinearization the complexity of the XL algorithm has
been subject to much discussion, and to this day no good estimate exists.
Given a set of m equations of degree greater than one in n variables

E :

f0(x0, . . . , xn−1) = 0
f1(x0, . . . , xn−1) = 0

· · ·
· · ·

fm−1(x0, . . . , xn−1) = 0

.

Choose the linearization degree D > d where d is the lowest degree of an equation
appearing in E .

Step 1 Multiply each equation fi ∈ E by all monomials, one at the time, of degree
less than or equal to D − di, where di = deg(fi) is the degree of fi.

72 CHAPTER 5. THE LINEARIZATION TECHNIQUES

Step 2 Replace each monomial of degree greater than one by a new auxiliary vari-
able. Perform Gaussian elimination on the linear system.

Step 3 If univariate equations appear upon Step 2, solve these by e.g. Berlekamps
algorithm (see for example [45]). Else the algorithm terminates.

Step 4 Simplify the equations by the solutions obtained in Step 3 and go to Step
1 to find the solution of other variables.

As explained in Section 5.2 if E is defined over a finite field GF (q) the field equations
xq

i −xi = 0 are applied to reduce xq
i to xi, for all i = 0, . . . , n− 1. This is sometimes

referred to as Reduced XL. If q is small, solving a univariate polynomial equation in
Step 3 is done by testing which of the q elements solves the equation. In the case
where q = 2 any univariate equation reduces to a linear equation which provides the
solution directly, when all univariate (i.e. linear) equations are obtained.

Example 5.5. Given the three polynomial equations

E :

x0x1 + x2 = 0
x0x2 + 1 = 0
x1x2 + 1 = 0

in GF (2)[x0, x1, x2]. By applying XL with linearization degree D = 3 we obtain in
Step 1 the following equations in addition to the equations in E

0 = x0x1 + x0x2

0 = x0x1 + x1x2

0 = x0x1x2 + x2

0 = x0x2 + x0

0 = x0x1x2 + x1

0 = x0x2 + x2

0 = x0x1x2 + x0

0 = x1x2 + x1

0 = x1x2 + x2

Upon linearization followed by Gaussian elimination and substitution back into the

5.4. THE EXTENDED LINEARIZATION ATTACK (XL) 73

original variables we obtain

0 = x0x1x2 + x2

0 = x0x1 + x2

0 = x0x2 + x0

0 = x1x2 + x1

0 = x0 + x2

0 = x1 + x2

1 = x0

1 = x1

1 = x2

5.4.1 Complexity

The complexity of the XL algorithm depends on the number of linearly independent
equations generated by the method. In [18] it is assumed that the equations gen-
erated by XL are uniformly random distributed and thus one expects that almost
all equations generated by XL are linearly independent. Based on this assumption
one can derive the linearization degree D as follows. Given a set of m quadratic
equations in n variables the XL attack generates

E = m

D−2∑

i=0

(
n

i

)

equations at linearization degree D. The number of variables in the linearized system
is at most

V =

D∑

i=0

(
n

i

)
.

The attack will succeed when the numbers of variables and equations are approxi-
mately the same

m
D−2∑

i=0

(
n

i

)
≈

D∑

i=0

(
n

i

)
.

Thus one gets the following bound on D

D ≈ n√
m

. (5.4)

74 CHAPTER 5. THE LINEARIZATION TECHNIQUES

Unfortunately (seen from the attackers point of view) the assumption is not true. In
practice it (often) turns out that many of the equations generated in the XL attack
are linearly dependent. In Example 5.5 there are many linear dependencies among
the equations generated in Step 1. In general one can find a number of obvious
linear dependencies among the equations generated by XL.

Example 5.6. Consider the equation f ∈ E in GF (2)[x0, . . . , xn−1]

f : m1 + m2 + m3 = 0

where m1, m2, m3 ∈ GF (2)[x0, . . . , xn−1] are monomials of degree d. For lineariza-
tion degree D ≥ 2d, m1f , m2f , and m3f are among the equations generated in Step
1. These are linearly dependent since

(m1 + m2 + m3)f = f 2 = f

in
GF (2)[x0, . . . , xn−1]/〈x2

0 + x0, . . . , x
2
n−1 + xn−1〉 .

Clearly the bound on the required linearization degree given by Equations 5.4 is
not an exact number. We have already argued that it is not an upper bound,
however it is not a lower bound either. The reason is that it is assumed that one
needs as many equations as there are monomials of degree less than or equal to D.
However, in practice some monomial might not appear in the generated equations
and some might cancel out after linearization and Gaussian elimination. To this day
the complexity of the XL method remains unknown. Moreover as opposed to the
Gröbner bases algorithm described in Chapter 4 there is no guarantee that the XL
will terminate. If Step 2 does not produce a univariate polynomial the algorithm
gets stuck. One can construct examples for which XL fails no matter the choice of
the degree D [16].

5.4.2 Other variants

The FXL algorithm is suggested as an extension to XL in [18]. The method basically
fixes a number of variables before applying the usual XL algorithm. No results on
this approach has (to our knowledge) been reported. Chapter 8 concerns application
of probabilistic equations in algebraic attacks. In relation to this we explore an FXL
like approach combined with Gröbner bases computations.
As mentioned, XSL [20] was proposed along with some very controversial statements
regarding its impact on important ciphers like AES. The idea of XSL is to reduce the
number of monomials generated in XL by “carefully selecting” a subset of equations

5.4. THE EXTENDED LINEARIZATION ATTACK (XL) 75

and monomials. The algorithm has been subject to much critics and after analysis in
[14] it is concluded that the method does not provide an effective method for solving
the AES system of equations. For this reason we do not discuss the algorithm
further.

76 CHAPTER 5. THE LINEARIZATION TECHNIQUES

Chapter 6

Analysis of the Algebraic Attacks

Although it is possible to establish a set of low-degree equations for the secret key (-
bits) of many block ciphers, as described in Chapter 3, solving them efficiently is far
from trivial. As mentioned the problem regarding the Gröbner bases techniques is to
determine the exact complexity. So far the conclusion is that memory requirements
and time consumption obstructs the application even on small ciphers (as we explore
in Chapter 7). The XL method has been surrounded by criticism. However, the
advantage of the XL method is that for a given degree d, one has a good estimate
on the time complexity of the approach. The drawback of applying XL to block
ciphers is that it is hard to determine the degree d for which the attack will succeed.
Moreover, the original XL attack is not guaranteed to succeed. If, at a certain degree
d, the number of linearly independent equations is about as big as the number
of terms occurring in the equations, the XL attack succeeds. The problem is to
determine the number of linearly independent equations generated by XL at degree
d. This is a problem no-one has been able to solve yet, though some results suggest
that d may be large for modern block ciphers [26].
A first step towards the solution of the problem could be to determine exactly how
many linearly independent equations one can obtain by multiplication of an initial
set of equations. In this chapter we approach this subject. Initially we describe a
variant of XL, which is a natural extension of XL. By using Gröbner bases theory,
we argue that this variant is guaranteed to solve the equations (provided that a
solution exists) for some degree d. For further information on the relation between
the XL algorithm and the Gröbner bases techniques the reader is referred to [61].
The purpose is not to propose a new algebraic attack but rather to provide a tool to
analyze the application of XL and related methods on block ciphers. The technique
is to treat the equations of respectively the linear layer (which we denote pLayer or
simply L(·)) and the S-box layer separately in the initial multiplication step. For

77

78 CHAPTER 6. ANALYSIS OF THE ALGEBRAIC ATTACKS

this approach we can determine the exact number of linearly independent equations
of higher degrees generated from each set. However, it is clear that in order to obtain
the solution we will have to combine the two sets of equations but it is yet unclear
how the equations interact in e.g. an Gaussian elimination as the amount of linear
dependencies is unknown. While the method does not give us the exact complexity
of the attacks on block ciphers, it contributes with a new angle on the algebraic
attacks.
We proceed as follows. Section 6.1 briefly describes the systems of equations we
attempt to solve. In Section 6.2 the XL-like iterated attack is described and we
argue that it will return a solution given that one exists. Section 6.3 contains two
results about the number of linearly independent equations one can generate from
the linear layer L(·) respectively the non-linear (S-box) layer of a block cipher.
Moreover we give a systematic way of generating these, which ensures that only
linearly independent equations are generated in the first part of the attack. In
Section 6.4 the results are applied to AES-128 and to a variant of AES-128. In
Section 6.5 we present a number of simulations on small block ciphers and finally in
Section 6.6 we discuss the output of the work.

6.1 The equations

As described in Chapter 3 there are more ways to obtain an algebraic description
of a block cipher. In this chapter we apply the method where all key variables are
eliminated. Consider an nb-bit block cipher with nr rounds of encryption, applying
nSbox S-boxes per round. Assume that each (non-linear) S-box is described by eqSbox

equations of some degree d. To keep the description simple we consider a strictly
linear key schedule. However, the method extends to non-linear key schedules as
well and in Section 6.4.1 the approach is applied to AES.
Let Xi, and Yi denote respectively the input, the output of the S-box layer of round
i and let Ki denote the round key (see Figure 3.6). Recall that we combine the
equations

L(Yi) ⊕ Ki = Xi+1

and

L(Yj) ⊕ Kj = Xj+1

for all i < j, where L(·) is the linear transformation. For each pair (i, j) this yields
nb linear equations over GF (2) in bits from Xi+1, Xj+1, Yi, and Yj. In total we obtain
a system of nb · nr linear equations and nSbox · eqSbox · nr non-linear equations. The
total number of variables is 2nb · nr.

6.2. ITERATED XL 79

6.2 Iterated XL

For the purpose of the systematic techniques and the accompanying analysis of this
chapter we need to specify an admissible monomial order (compatible with multi-
plication) in the polynomial ring GF (2)[x1, . . . , xn]. The order must be a graded
order (an order for which the total degree of the monomial is the main criterion),
and for the remainder of this chapter, we specify it to be the graded reverse lexico-
graphic order (grevlex), see Definition 4.7. The notion of the head term HT(eq) of
a (polynomial) equation

eq(x1, . . . , xn) = a0 +

k∑

i=1

aimi = 0, ai ∈ GF (2) for i = 0, 1, . . . , k

refers to the head term of the polynomial

a0 +
k∑

i=1

aimi

(see Definition 4.8). In the following section we describe an iterated XL-like attack
(based on [18] and [20]). The objective is as usual to find the secret key used for
encryption. Note that if one has the solution to the linear equations, then these can
be used to find the value of the secret key. We assume that for a given plaintext
and ciphertext only a (very) few values of the secret key could have been used in
the encryption.

6.2.1 The basic attack for degree d

We refer to Chapter 3 (or the review in Section 6.1) for the method of setting up the
equations over a block cipher and let n = 2nb·nr denote the number of variables in the
system. Let T denote the set of all monomials over GF (2)[x1, . . . , xn]. Throughout
the attack any monomial of the form x2

i is immediately reduced to xi, for i = 1, . . . , n.
In this way we implicitly include the field equations x2

i +xi = 0 in GF (2)[x1, . . . , xn].
The idea of the algorithm is that by multiplying monomials onto the equations from
the linear layer L and from the S-box layer S one may get degree-d equations from
each of the two sets with identical head terms. In a Gaussian elimination this may
result in equations with head terms of degrees less than d, say degree d − 1. Such
equations may have identical head terms with other equations of degree d−1, which
may result in equations with head terms of even lower degrees. This may in turn
lead to linear equations which were not in the initial set of equations. Prior to the
attack we specify the degree d.

80 CHAPTER 6. ANALYSIS OF THE ALGEBRAIC ATTACKS

Step 1 Generate the set of equations E = ∪d̃≤d{E d̃
L ∪ E d̃

S}:
E d̃

L is the maximum set of degree-d̃ equations, one can generate from L. A
systematic procedure is given by the algorithm in Figure 6.1, Page 88.
E d̃

S is the maximum set of degree-d̃ equations, one can generate from S. A
systematic procedure is given by the algorithm in Figure 6.2, Page 92.

Step 2 Arrange the equations of E in a matrix and perform the multivariate exten-
sion of Gaussian elimination on this, resulting in Eg .

Step 3 Let F = ∅. For all equations eq in Eg which have a head term different from
the head term of any equation in E , add eq to F .

Step 4 If F is empty, then stop and return Eg.

Step 5 Compute the maximum set of equations Fm of degree at most d, one can
generate from F . In practice this is done by multiplying all equations fi ∈ F
by all monomials ti ∈ T for which deg(tifi)) ≤ d, one at the time. For each
generated equation tifi proceed as follows :

If HT(tifi) is not head term of any equation in Eg, tifi is added to the sets
Eg and Fm.

Else apply the polynomial division algorithm (described in Chapter 4) to
reduce f modulo the polynomials of Eg. Let fr denote the remainder from the
polynomial division. If fr 6= 0 add fr to each of the sets Eg and Fm.

Step 6 Set F = Fm and Fm = ∅, and go to Step 4.

After termination, find the possible values of the secret key from the linear equations
in E . Note that the set of linear equations at this point could contain many possible
(including wrong) values of the key. If too many values remain, the attack has failed
for the particular value of d.
Note that upon Step 3 we can discard E . Thus the memory requirements are bounded
by the size of Eg and F .

For a given degree d, this bound is (
∑d

i=0

(
n
i

)
)2. On the other hand, our attack is not

guaranteed to succeed for any value of d < n. With d = n our attack is guaranteed
to work, since in this case it is a redundant version of Buchberger’s algorithm and
we have assumed that the system of equations has at least one solution.

6.3 Counting linearly independent equations

In the following sections we devise a method for counting the exact number of
linearly independent equations of degrees d ≥ 2 one can generate from multiplying

6.3. COUNTING LINEARLY INDEPENDENT EQUATIONS 81

monomials onto the elements in each of the two sets. The following two lemmas
follow from basic linear algebra.

Lemma 6.1. Let
F = {eq1, . . . , eqm}

be a set of m linearly independent polynomial equations, and ≤ an order on the
terms of F . Then one can write a set of m linearly independent equations

{eq′1, . . . , eq′m}
where the head terms

HT(eq′1), . . . , HT(eq′m)

are all distinct and where each equation eq′i is a linear combination of eq1, . . . , eqm.

Lemma 6.2. Let
F = {eq1, . . . , eqm}

be a set of polynomial equations and ≤ an order on the terms of F . Then, if the
head terms

HT(eq1), . . . , HT(eqm)

are all distinct, the equations eq1, . . . , eqm are linearly independent.

The head terms of linearly independent equations are not necessarily distinct. How-
ever, the consequence of Lemma 6.1 is that, any set of linearly independent equations
can be linearly transformed into a set of equally many linearly independent equations
where the head terms, according to a term order ≤, are distinct. The remainder of
this section provides tools to determine the upper bound on the number of linearly
independent equations generated in Step 1 of the algorithm of Section 6.2.1. Later
Lemmas 6.1 and 6.2 are applied to determine the lower bound on this number.
First a few definitions [22].

Definition 6.1. Let I ⊂ k[x1, . . . , xn] be an ideal. The radical of I is the set
√

I = {g ∈ k[x1, . . . , xn] | gm ∈ I for some m ≥ 1}
An ideal is said to be a radical ideal if

√
I = I.

In algebraic geometry the algebraic dimension of an ideal is an important concept.
A zero-dimensional ideal over k is an ideal where the number of solutions in the
algebraic closure of the field k is finite. We restrict ourselves to this because in
algebraic attacks on block ciphers we are always dealing with zero-dimensional ideals.
Meanwhile the notation Dimkk[x1, . . . , xn]/I denotes the dimension of the vector
space k[x1, . . . , xn]/I. In [21, Theorem 2.10] we find the following useful theorem
concerning DimCC[x1, . . . , xn]/I.

82 CHAPTER 6. ANALYSIS OF THE ALGEBRAIC ATTACKS

Theorem 6.1. Let I be a zero-dimensional ideal in C[x1, . . . , xn] and let A =
C[x1, . . . , xn]/I. Then DimCA is greater than or equal to the number of points in
V (I). Moreover, equality occurs if and only if I is a radical ideal.

Theorem 6.1 concerns a polynomial ring over the complex numbers, but it actually
applies to any polynomial ring A = k[x1, . . . , xn], where k is an algebraically closed
field.

Definition 6.2. A field k is said to be algebraically closed if every polynomial in
one variables of degree at least one, with coefficients in k, has a root in k.

Though GF (2) is not algebraically closed the theorem applies if we take for k the
algebraic closure of GF (2), which we denote GF (2).

Lemma 6.3. Let I ∈ GF (2)[x1, . . . , xn] be a polynomial ideal generated by m poly-
nomials f1, . . . , fm and the polynomials x2

i + xi, for i = 1, . . . , n

I = 〈f1, . . . , fm, x2
1 + x1, . . . , x

2
n + xn〉,

for which the variety V (I) is a non-empty set. Let |V (I)| denote the number of
points in V (I). Then

DimGF (2)(GF (2)[x1, . . . , xn]/ I) = |V (I)|.

Proof. I is a radical ideal since f 2 = f for any element

f ∈ GF (2)[x1, . . . , xn]/〈x2
1 + x1, . . . , x

2
n + xn〉.

So if fm ∈ I, then
f = (f − fm) + fm ∈ I.

Since x2
i + xi ∈ I for i = 1, . . . , n, it follows that any solution over the algebraic

closure GF (2) is already defined over GF (2). In other words |V (I)| over GF (2)
equals |V (I)| over GF (2).
Also, we have that

DimGF (2)GF (2)[x1, . . . , xn]/I = DimGF (2)GF (2)[x1, . . . , xn]/〈x2
1 + x1, . . . , x

2
n + xn〉

−DimGF (2)I/〈x2
1 + x1, . . . , x

2
n + xn〉

and likewise

DimGF (2)GF (2)[x1, . . . , xn]/I = DimGF (2)GF (2)[x1, . . . , xn]/〈x2
1 + x1, . . . , x

2
n + xn〉

−DimGF (2)I/〈x2
1 + x1, . . . , x

2
n + xn〉 .

6.3. COUNTING LINEARLY INDEPENDENT EQUATIONS 83

where

DimGF (2)GF (2)[x1, . . . , xn]/〈x2
1 + x1, . . . , x

2
n + xn〉 =

n∑

i=0

(
n

i

)
= 2n

and

DimGF (2)GF (2)[x1, . . . , xn]/〈x2
1 + x1, . . . , x

2
n + xn〉 =

n∑

i=0

(
n

i

)
= 2n .

By considering the vector space I/〈x2
1 + x1, . . . , x

2
n + xn〉 over respectively GF (2)

and GF (2) we find that

DimGF (2)I/〈x2
1 + x1, . . . , x

2
n + xn〉 = DimGF (2)I/〈x2

1 + x1, . . . , x
2
n + xn〉 ,

hence

DimGF (2)GF (2)[x1, . . . , xn]/I = DimGF (2)GF (2)[x1, . . . , xn]/I

thus by Theorem 6.1 the result follows.

We note that Theorem 6.1 is applied over GF (2) several places in literature e.g. in
[2] with reference to [21].

Lemma 6.4. Let there be given m linearly independent equations in n variables over
GF (2), and a term order ≤. Let |V | be the number of common solutions to these
equations. Consider the set of equations obtained from multiplying the equations
with all monomials in the n variables, one at the time, and write the maximal set of
linearly independent equations

eq1, . . . , eqmax

where the head terms

HT(eq1), . . . , HT(eqmax)

are distinct, then

max = 2n − |V |.

Proof. Let

I = 〈f1, . . . , fmax, x
2
1 + x1, . . . , x

2
n + xn〉

where fi is the polynomial corresponding to the polynomial equations eqi for

i = 1, . . . , max .

84 CHAPTER 6. ANALYSIS OF THE ALGEBRAIC ATTACKS

Consider the linear map

ϕ : GF (2)[x1, . . . , xn]/〈x2
1 + x1, . . . , x

2
n + xn〉 → GF (2)[x1, . . . , xn]/I

where
ϕ(xi) = [xi] for i = 1, . . . , n,

where [xi] is the remainder class of GF (2)[x1, . . . , xn]/I. The polynomial ring

GF (2)[x1, . . . , xn]/〈x2
1 + x1, . . . , x

2
n + xn〉

is isomorphic with the vector space GF (2)2n

thus

DimGF (2)(GF (2)[x1, . . . , xn]/〈x2
1 + x1, . . . , x

2
n + xn〉 = 2n.

From linear algebra we have the dimension formula for homomorphisms (e.g page
704 in [35])

2n = Dim(Im(ϕ)) + Dim(ker(ϕ)).

From Lemma 6.3 we have

Dim(Im(ϕ)) = DimGF (2)(GF (2)[x1, . . . , xn]/I) = |V (I)|,

thus
2n = |V (I)| + Dim(ker(ϕ)).

To determine Dim(ker(ϕ)) consider the isomorphic GF (2)-vector space where any

f = a1 + a2x1 + . . . an+1xn + an+2x1x2 + . . . + a2nx1 · · ·xn

in
GF (2)[x1, . . . , xn]/〈x2

1 + x1, . . . , x
2
n + xn〉

is represented by a vector of GF (2)2n

f : (a1, . . . , , a2n).

Since by assumption each polynomial (equation) f has a unique head term, the
vectors in GF (2)2n

are linearly independent and the vector space has dimension
max, i.e Dim(ker(ϕ)) = max thus

2n = |V (I)| + max.

6.3. COUNTING LINEARLY INDEPENDENT EQUATIONS 85

6.3.1 Equations generated from pLayer (L(·))
The following theorem determines the exact number of equations with distinct
degree-d head terms one can obtain from a set of m linearly independent degree-one
equations. Note that

(
n
k

)
= 0 for k > n by definition.

Theorem 6.2. Let EL be a system of m linearly independent equations of degree one
in n variables over GF (2), i.e. m ≤ n. Assume that EL has at least one solution.
Choose d > 0 such that n − m ≥ d − 1, and multiply all equations of EL by all
monomials of degree d − 1. Arrange the generated equations in a matrix with the
terms sorted according to a graded ordering. By performing Gaussian elimination
one gets exactly

N =

(
n

d

)
−

(
n − m

d

)
(6.1)

linearly independent equations with distinct degree-d head terms.

Proof. According to Lemma 6.1 the equations of EL can be linearly transformed such
that each equation has a unique head term. Thus m variables are head term of an
equation and n − m variables are not a head term of any equation. Therefore

GF (2)[x1, . . . , xn]/〈x2
1 + x1, . . . , x

2
n + xn〉

contains
(

n
d

)
−

(
n−m

d

)
monomials of degree d which are divisible by the head term

of at least one equation of EL. The remaining
(

n−m
d

)
degree-d monomials are not

divisible by the head term of any equation of EL. Thus one can generate at least(
n
d

)
−

(
n−m

d

)
equations with distinct degree-d head terms i.e., a system of

(
n
d

)
−

(
n−m

d

)

linearly independent equations.
By summing the expression (6.1) for d = {0, 1, . . . , n} we get

n∑

d=0

(
n

d

)
−

(
n − m

d

)
= 2n − 2n−m.

According to Lemma 6.4 the maximal number of linearly independent equations
with distinct head terms is

max = 2n − |V (I)| = 2n − 2n−m,

since a set of m degree-one linearly independent equations has 2n−m common solu-
tions. Therefore Theorem 6.2 gives the exact number of polynomials with distinct
head terms one can generate from the equations of EL.

86 CHAPTER 6. ANALYSIS OF THE ALGEBRAIC ATTACKS

Example 6.1. EL1
is a set of linear degree-one equations over

GF (2)[x1, x2, x3, x4]

EL1
=

(
eq1 : x1 + x3 + 1 = 0
eq2 : x2 + x3 + x4 = 0 .

)

By multiplication of all equations with all monomials, one at the time, of degree one
we generate the set
EL2

= {x1eq1, x2eq1, x3eq1, x4eq1, x1eq2, x2eq2, x3eq2, x4eq2}.

EL2
=

x1eq1 : x1x3 = 0
x2eq1 : x1x2 + x2x3 + x2 = 0
x3eq1 : x1x3 = 0
x4eq1 : x1x4 + x3x4 + x4 = 0
x1eq2 : x1x2 + x1x3 + x1x4 = 0
x2eq2 : x2 + x2x3 + x2x4 = 0
x3eq2 : x2x3 + x3 + x3x4 = 0
x4eq2 : x2x4 + x3x4 + x4 = 0

The equations are arranged in a matrix with the terms sorted with respect to reverse
lexicographic degree monomial order

x1x2 > x1x3 > x1x4 > x2x3 > x2x4 > x3x4 > x1 > x2 > x3 > x4 > 1

and upon the multivariate extension of Gaussian elimination we obtain

EL2g =

x1x2 + x2x3 + x2 = 0
x1x3 = 0

x1x4 + x3x4 + x4 = 0
x2x3 + x3x4 + x2 + x4 = 0

x2x4 + x3x4 + x4 = 0

five linearly independent degree-two equations with distinct degree-two head term, as
anticipated from Theorem 6.2

Example 6.2. Consider the same set of equations EL1
as in Example 6.1

EL1
=

(
eq1 : x1 + x3 + 1 = 0
eq2 : x2 + x3 + x4 = 0 .

)

From multiplication by all monomials of degree two

T = {x1x2, x1x3, x1x4, x2x3, x2x4, x3x4}

6.3. COUNTING LINEARLY INDEPENDENT EQUATIONS 87

we generate the set EL3
.

EL3
= {x1x2eq1, x1x3eq1, x1x4eq1, x2x3eq1, x2x4eq1, x3x4eq1,

x1x2eq2, x1x3eq2, x1x4eq2, x2x3eq2, x2x4eq2, x3x4eq2}

EL3
=

x1x2eq1 : x1x2x3 = 0
x1x3eq1 : x1x3 = 0
x1x4eq1 : x1x3x4 = 0
x2x3eq1 : x1x2x3 = 0
x2x4eq1 : x1x2x4 + x2x3x4 + x2x4 = 0
x3x4eq1 : x1x3x4 = 0
x1x2eq1 : x1x2 + x1x2x3 + x1x2x4 = 0
x1x3eq1 : x1x2x3 + x1x3 + x1x3x4 = 0
x1x4eq2 : x1x2x4 + x1x3x4 + x1x4 = 0
x2x3eq2 : x2x3x4 = 0
x2x4eq2 : x2x3x4 = 0
x3x4eq2 : x2x3x4 = 0

Performing the multivariate extension of Gaussian elimination we obtain the set

EL3g
=

x1x2x3 = 0
x1x2x4 + x2x3x4 + x2x4 = 0

x1x3x4 = 0
x2x3x4 = 0

x1x2 + x2x4 = 0
x1x3 = 0

x1x4 + x2x4 = 0 .

As anticipated from Theorem 6.2 we obtain
(
4
3

)
− 0 = 4 linearly independent equa-

tions with distinct degree-three head term. In addition to the cubic equations we
obtain three quadratic equations. Note that these however are linearly spanned by
the equations in EL2g

of Example 6.1.

6.3.2 Systematic procedure for pLayer (L(·))
This section describes a method for generating all equations of degree d, over the
linear transformation (L(·)) of a cipher.
Let L = {eq1, eq2, . . . , eqm} be a set of m linearly independent equations of degree
one over GF [2](x1, x2, . . . , xn). Assume the system has at least one solution i.e.

88 CHAPTER 6. ANALYSIS OF THE ALGEBRAIC ATTACKS

n ≥ m. Choose an admissible monomial order, e.g. grevlex (≥). Let hti = HT(eqi)
denote the head term of equations eqi with respect to ≥.
Express the equations of L in a form where each equation has a unique head term
and sort them according to grevlex where hti > hti+1. Arrange the terms in each
equation, eqi, such that

eqi = hti + tj + . . . + tk .

where hti > tj > · · · > tk.
Figure 6.1 describes a systematic procedure for generating the equations of the linear
layer. T denotes the set of monomials in GF (2)[x1, . . . , xn] of degree d − 1, for a
fixed degree d. The subset Ti ⊆ T denotes the set of monomials that have common
divisors with hti. All generated equations have distinct head term and are therefore
linearly independent.

Step 1 Initialize EL = ∅.

Step 2 For all
eqi ∈ L for i = 1, . . . , m,

compute for all t ∈ T \ {T1 ∪ · · · ∪ Ti}

f = t · eqi

and update
EL = EL ∪ f.

Step 3 Return EL.

Figure 6.1: Equations for L(·)

Example 6.3. Consider again the equations from Example 6.1 over GF (2)[x1, x2, x3, x4].

L1 =

(
eq1 : x1 + x3 + 1 = 0
eq2 : x2 + x3 + x4 = 0 .

)

Fix d = 3 (generate all equations of degree 3). According to Theorem 6.2 we can
generate 4 such equations. The set of all monomials of degree two is

T = {x1x2, x1x3, x1x4, x2x3, x2x4, x3x4} .

6.3. COUNTING LINEARLY INDEPENDENT EQUATIONS 89

Following the systematic procedure we multiply eq1 by T \ T1 = {x2x3, x2x4, x3x4}
and eq2 is multiplied by T \ {T1 ∪ T2} = x3x4. As in Example 6.2 we obtain four
linearly independent equations with distinct degree three head term.

L3g
=

x2x3eq1 : x1x2x3 = 0
x2x4eq1 : x1x2x4 + x2x3x4 + x2x4 = 0
x3x4eq1 : x1x3x4 = 0
x3x4eq2 : x2x3x4 = 0

but without generating excessive equations or performing Gaussian elimination.

6.3.3 Equations over the S-box layer

In this section the exact number of degree-d equations which can be generated from
several applications of an S-box with b-bit input and c-bit output is determined.
The non-linear layer of most block ciphers, including AES, consists of a number of
“parallel” applications of one S-box. In the following we consider s applications of
such an S-box.
Each S-box is described by a set of multivariate equations over GF (2). Assume the
equations are generated according to the procedure in Section 3.7.1 of Chapter 3.
Let h(i) denote the number of degree-i monomials in the b+ c variables of the S-box
which are not a head term of an equation. The constant term is never the head term
of an equation so h(0) = 1. For most S-boxes one has h(1) = b + c, since otherwise
there would be linear relations between the input and output of probability one. In
general the numbers h(i) for higher values of i are found by simply counting the
number of distinct degree-i head terms of the polynomials f1, f2, . . . , fm. Note that
for any function mapping b bits to c bits it holds that

b+c∑

i=0

h(i) = 2b. (6.2)

To see this, note that we find all multivariate equations over a b-bit function by
computing the null space of the matrix A (as describes in Section 3.7.1) for d = b+c

one finds exactly 2b+c − 2b deterministic equations.

Example 6.4. It is well-known [20] that there are 39 quadratic equations over GF (2)
for the AES S-box, thus in this case, h(2) =

(
16
2

)
− 39 = 81

Example 6.5. Consider a four to four-bit S-box with no deterministic linear equa-
tions. Since there are 16 inputs and a total of 37 monomials of degree at most two,
one can always find at least 21 quadratic equations in the input and output bits as

90 CHAPTER 6. ANALYSIS OF THE ALGEBRAIC ATTACKS

described above. Also, one can always find at least 77 equations of degrees at most
three, since there are exactly

(
8
3

)
= 56 monomials of degree three in eight variables.

Thus, if there are exactly 21 quadratic equations, then there are exactly 56 equations
of degree three. Note that, in general, if one can generate all degree-d polynomials
with distinct head terms, then this is the case also for d′ > d. The maximum set
of equations for this four-bit S-box is then defined as the 21 quadratic equations and
all degree-d equations for d > 2. In other words, in this case we have h(0) = 1,
h(1) = 8, h(2) = 7, h(3) = h(4) = · · · = h(8) = 0 thus

∑
h(i) = 16.

Next we count the number of degree-d monomials in the variables of s distinct S-
boxes which are not divisible by any head term of the s sets of S-box equations.
These degree-d monomials are expressed as v1 · v2 · v3 · · · vs, where v1 is a monomial
from the first S-box which is not head term of any of its equations, v2 is a monomial
of the second S-box which is not head term of any of its equations and so on. Let
di denote the degree of vi. Then by computing

Sd =
∑

d=d1+d2+···+ds

s∏

i=1

h(di) (6.3)

we find the exact number of all such degree-d monomials. The sum is taken over all
combinations of d1, d2, . . . , ds which sum to d. Consider the polynomial

P (x) = h(0) + h(1)x + h(2)x2 + . . . + h(b + c)xb+c. (6.4)

It follows that the values of Sd can be found from the coefficients of

P (x)s = S0 + S1x + S2x
2 + . . . + S(b+c)sx

(b+c)s. (6.5)

Now we can prove the following result.

Theorem 6.3. Let there be given s applications of a b-bit to c-bit S-box, each de-
scribed by the maximum set of equations in the b + c input and output bits. Assume
that within each of these sets, h(di) monomials of degree di for di ∈ [0; b+ c] are not
a head term of any equation. Then there exist exactly

Nd =

(
n

d

)
− Sd, (6.6)

equations with distinct head terms of degree d in the joint set of n = (b+c)s variables,
where Sd =

∑
d=d1+d2+···+ds

∏s
i=1 h(di).

6.3. COUNTING LINEARLY INDEPENDENT EQUATIONS 91

Proof. As there are 2b solutions to each set of S-box equations, and since the S-
boxes have independent inputs, the number of solutions to the complete set of S-box
equations is 2bs. It follows that max = 2n−2bs in Lemma 6.4. Thus one can generate
at most 2n − 2bs equations of degree less than or equal to n. This is exactly what
one gets by summing over the expression in (6.6):

n∑

d=0

Nd =

n∑

d=0

(
n

d

)
−

n∑

d=0

Sd = 2n − P (1)s = 2n − 2bs. (6.7)

In addition to the proof we note that we have experimentally verified Theorem 6.3
for various number of S-boxes s and degrees d.

Example 6.6 (Computing Nd). For a system of four 4-bit S-boxes each described
by 21 quadratic equations (e.g. the Noekeon [23] S-box)

P (X) = 1 + 8X + 7X2 .

We have
P (X)4 = (1 + 8X + 7X2)4

from which we extract S5 = 19040 as the coefficient of X5 in P (X)4 and find that
there are

N5 =

(
8 · 4
5

)
− S5 = 182336

equations with distinct degree-five head terms.

6.3.4 Systematic procedure for S-box layer

The procedure described in Figure 6.2 generates the maximum set of equations of
a fixed degree d for a system of nSbox S-boxes. Each S-box is described by b + c
variables thus n = nSbox · (b + c) is the total number of variables in the system. S d̃

i

is the set of linearly independent equations of degree d̃ that describes S-box Si over
GF (2)[x1+i(b+c), . . . , x(i+1)(b+c)]. Initially one generates for each S-box Si the sets of
equations

S1
i , S

2
i , S

3
i , . . . , S

d
i . (6.8)

Note that S1
i = ∅ for a non-linear S-box. In the following T d denotes the set of all

monomials GF (2)[x1, . . . , xn] of degree d. T d
i ⊂ T d is the set of monomials of degree

d which are divisible by the head term of a least one equation in {S1
i , S

2
i , S

3
i , ..., S

d
i }.

Ti is the set of monomials divisible by monomials of degree one from S-box Si. The

92 CHAPTER 6. ANALYSIS OF THE ALGEBRAIC ATTACKS

Step 1 Initialize ES = ∅.

Step 2 For i = 0, . . . , nSbox − 1

generate {S1
i , S

2
i , S

3
i , . . . , S

d
i }.

Step 3 For d̃ = 1, . . . , d over all

eq ∈ S d̃
i

and for all
t ∈ T ′ = T d−d̃ \ {T d−d̃

1 , . . . , T d−d̃
i−1 , Ti}

compute
f = t · eq

and update
ES = ES ∪ f.

Step 4 Return ES.

Figure 6.2: Equations for S-boxes

point of the procedure given in Figure 6.2 is the same as for the procedure of Figure
6.1, namely to ensure that we generate as many equations, of the chosen degree d,
as possible without generating more equations with the same head term.

6.4 Number of equations for some block ciphers

In this section we apply the results of the previous section to determine the number
of linearly independent equations one can generate for various ciphers. AES has
been criticized for its use of the inverse mapping in GF (28) in the construction of
the S-box. It is well-known that this leads to the existence of 39 quadratic GF (2)
equations over the S-box [20] (see Section 3.8). Thus in total an AES-key can be
described as the solution to a system of equations with 1600 linear equations and
7800 quadratic equations in 3200 variables. In the following we compare AES to the
variant where the S-box is replaced by an S-box for which no quadratic equations
exist. First we describe AES-128 by the methods of this chapter.

6.4. NUMBER OF EQUATIONS FOR SOME BLOCK CIPHERS 93

6.4.1 AES

As shown in Section 3.8.1 AES-128 is described by a set of 9400 quadratic equations
out of which 1600 are linear in 3200 variables over GF (2). We verified (by the matrix
method of 3.7.1) for the AES S-box that there are no equations of degree one, 39
equations of degree two, 432 equations of degree three, and 1790 equations of degree
four. Note that the number of monomials in sixteen variables of degrees two, three
and four are respectively 120, 560 and 1820. Furthermore we confirmed that one
can generate

(
16
5

)
equations each with a distinct head term of degree 5, and therefore

one gets
(
16
d

)
equations each with a distinct head term of degree d, for d > 5. For

the AES S-box one gets h(0) = 1, h(1) = 16, h(2) = 81, h(3) = 128, h(4) = 30, and
for i ≥ 5, h(i) = 0. With these values one can apply the result of Theorem 6.3 for
the AES S-boxes. The results of this are listed i Table 6.1.

6.4.2 A variant of AES-128

We define a variant of AES-128 simply by replacing the S-box used in AES-128 with
a “randomly chosen” eight-bit S-box. Note that this S-box needs to be bijective.
All other components of this variant are identical to those of AES-128.
We choose an S-box for which there are no linear equations and no quadratic equa-
tions. By using the method of Section 3.7.1 it follows that the probability that there
are quadratic equations over a randomly chosen eight-bit S-box is very small. With
no linear and quadratic equations it follows that there are

(

3∑

i=0

(
16

i

)
) − 256 = 441

equations of degree three, and thus one gets

h(0) = 1, h(1) = 16, h(2) = 120, h(3) = 119,

and h(i) = 0 for i ≥ 4.

6.4.3 Comparison of the ciphers

One advantage of our approach compared to that of others, e.g., [20], is that we
are able to compare certain algebraic properties of AES to other ciphers rather
easily. To do this, we set up a systems of equation for each of the ciphers, then
divide the equations into two sets, cf. earlier, and finally compute how many linearly
independent equations are obtained by multiplying the equations within each set to
a certain degree d.

94 CHAPTER 6. ANALYSIS OF THE ALGEBRAIC ATTACKS

Table 6.1: The number of linearly independent equations generated from respectively
the linear and the S-box layer plus the number of terms for AES-128 and the AES
variant.

Degree # terms # equations # equations from S-box layer
from L(·)

AES-128 AES-variant
1 3200 1600 0 0
2 222.29 221.87 7800 0
3 232.35 232.15 224.57 216.43

4 241.99 241.89 235.21 228.07

5 251.31 251.26 245.26 238.70

6 260.36 260.34 254.90 248.76

..
10 294.63 294.62 290.72 285.59

Table 6.1 lists these numbers for the degrees d = 1, . . . , 6 and 10 together with
the total number of degree-d terms for both AES-128 and the variant introduced
above. There are several things worth noting in the table. First of all, although not
surprisingly, the majority of the degree-d equations are generated from the linear
equations. Also, the numbers of equations obtained from the S-boxes in the AES
variant are remarkably smaller than for the AES-128.
While the equations within each of the two sets for each cipher are linearly indepen-
dent, the big question is of course how many linear dependencies one finds when the
two set of equations are combined, e.g., as in the approach from Section 6.2. At this
point in time we are not able to answer this question, which remains an open prob-
lem and a (good) topic for further research. However, we can say something about
generic XL-like approaches using our results. Given an initial set of equations in n
variables consider an attack for breaking block ciphers, which determines a degree
d such that all equations of degree d can be generated. Then one finds the secret
key using a multivariate extension of Gaussian elimination. Let |Td| be the number
of monomials of degree d. Then with n variables one gets |Td| =

(
n
d

)
. Let |Ld| be

the number of linearly independent equations of degree d one can generate from the
linear layer and let |Sd| be the number of linearly independent equations of degree
d one can generate from the S-box layer. Thus for the XL-like approach to succeed
it must hold that |Td| ≤ |Ld| + |Sd|. For AES-128 this inequality holds for d ≥ 6.
Note that this degree is a minimum, there is nothing in our results that indicate
that such an attack will succeed at this degree. It is interesting to note, though, that
for the AES variant the inequality holds only for d ≥ 10. It appears that the AES

6.5. SIMULATIONS 95

variant provides a (much) higher resistance against algebraic attacks. However, in
fairness of AES-128 it should be noted that for d = 6, one gets |T6| =

(
3200

6

)
' 260.

Therefore, even under very optimistic assumptions about the success of attacks like
the ones we have presented here, with d = 6 one would get an attack which is more
costly than an exhaustive search for the key and which will require an unrealistically
large amount of memory, and as such it is not a threat for the security of AES-128.

6.5 Simulations

We performed a series of algebraic attacks on small(er) ciphers using the iterated XL
approach. Consider first an iterated cipher with eight-bit blocks where each round
is as follows. First add (modulo 2) a round key to the text, then divide the text
into two nibbles each of which are evaluated through a four-bit S-box, and finally
apply a linear mapping on the eight-bit block. After the last application of the linear
mapping a final round-key is added to produce the ciphertext. The round keys are
derived from the user-selected eight-bit key added to a round-dependent constant,
the S-box is derived from the inverse mapping in GF (24), and the linear mapping
is a randomly chosen eight to eight bit invertible matrix. The linear mapping and
the set of round key constants were chosen at random in each test, the S-box was
the same in all tests. Each S-box can be described by 21 quadratic equations over
GF (2). In the following let n be the number of variables in the attack. We picked a
randomly chosen plaintext and a randomly chosen key. The resulting ciphertext and
the plaintext were used in setting up the linear equations of the cipher. In the tests
where the linear equations and/or the S-box equations were multiplied to higher
degrees, it was checked and confirmed that the numbers obtained were identical to
those found from Theorems 6.2 and 6.3.

20 tests for a 3-round cipher with 6 S-boxes :
Here n = 48, so there is a maximum of 17,296 degree-3 monomials, 1128 degree-2
monomials, and 48 degree-1 monomials in the system. The basic attack using d = 2
never succeeded. Initially there are 978 quadratic equations and 24 linear equations,
while there are 1128 monomials of degree two. By multiplication we obtain 15,272
equations and 5,376 equations of degree three from the linear equations respectively
the S-box equations. In total 20,648 cubic equations, while there are 17,296 degree-
three monomials. In 20 tests, the attack identified all values of the key which encrypt
the plaintext to the ciphertext.

10 tests for a 4-round cipher with 8 S-boxes :
Here n = 64, so there is a maximum of 41,664 degree-3 monomials, 2016 degree-2
monomials, and 64 degree-1 monomials in the system. The basic attack using d = 2

96 CHAPTER 6. ANALYSIS OF THE ALGEBRAIC ATTACKS

never succeeded. By multiplication we found 36,704 degree-two equations from the
linear equations and 9,856 degree-three equations from the S-boxes. In six of the
ten cases, the attack identified all values of the key which encrypt the plaintext to
the ciphertext.

20 tests for a 2-round AES-like cipher with 6 S-boxes :
In these tests the cipher is the same as above with the (important) exception that the
round keys were generated from the input key in an AES-like fashion, as proposed in
[15]. There are four S-box applications in the encryption routine and an additional
two S-boxes in the key-schedule. The equations of this mini-AES cipher were set up
exactly analogue to the way the equations are set up for the AES, cf. Section 3.8.
We have n = 48. The number of linear equations and S-box equations obtained is
the same as in the above test on the 3-round cipher. All 20 tests succeeded at degree
three, the complexity of these tests were very similar to the complexity of the above
test for the 3-round cipher.

All the above tests were implemented in C++ using the NTL library [58]. All tests
were run on a modern laptop, except those for the 4-round cipher. These were run
on a SunFire V440 workstation with 8GB RAM.

6.5.1 Probabilistic equations

Consider the tests on the 4-round cipher above. In four of ten cases the solution was
not found at degree d = 3. One possible way to try to find the solution is to run
the algorithm for d = 4. Another way which we explore in Chapter 8 is to generate
some additional probabilistic equations. A very simply way is to choose the value
of a degree-d monomial (such that a new linearly independent degree-d equation is
obtained). E.g., consider the 4-round cipher from the test above. For each of the
four failed cases we fed the algorithm with the same initial equations as earlier plus
one additional degree-two equation consisting of one degree-two monomial, but such
that the equation was true for the correct value of the key. Perhaps surprisingly
this additional equation was sufficient for the attack to succeed, and in all four cases
the correct value of the secret key was identified. Note that in an actual attack
one would guess the value of this equation, run the attack, and if unsuccessful, add
the constant ’1’ to the extra equation and run the attack again. Clearly such an
approach can be extended to guess the values of several degree-d monomials and/or
equations.

6.6. DISCUSSION 97

6.6 Discussion

A big issue regarding the XL and similar attacks is estimating the complexity. In
[18] the degree d at which the XL is expected to succeed for a system of quadratic
equations f1, . . . , fm in n variables is estimated by assuming that almost all generated
equations are linearly independent. If this is the case the attack will succeed when
there are as many equations as monomials, that is, when

m

d−2∑

i=0

(
n

i

)
≈

d∑

i=0

(
n

i

)
.

For n >> d the approximation d ≈ n√
m

is applied in [18]. This means that for the

system of 8000 quadratic equations established in [20] the degree d is estimated to
d = 1600√

8000
= 18. However, the big issue in this estimate is whether the assumption

of linearly independence of the involved equations is correct and/or reasonable.
Proposition 6 of [26] provides a lower bound on the degree d given a system of
quadratic polynomials. According to this proposition d is at least 20 for our exam-
ple. As shown in this work the key is also be described by a set of equations out of
which 1600 are linear. Proposition 6 of [26] does not seem to be applicable in this
case and the complexity of finding a solution remains open.
In this chapter we developed methods for counting the number of linearly indepen-
dent equations generated from a set of linear equations and a set of S-box equations
respectively. We found for AES-128 that for d = 6 the sum of these two numbers
exceeds the total number of terms. However, it is unclear exactly how many linear
dependencies there are among the two sets and one cannot claim that the attack
described in this chapter will work at this degree on AES-128. To obtain better
estimates of the complexities of XL-similar attacks on block ciphers more knowledge
on the interaction of these sets of equations is needed. We remind the reader that so
far no real-life block cipher has been broken by algebraic attacks, not even in theory.
However, we feel that our approach provides a good basis for further progress in the
area.

98 CHAPTER 6. ANALYSIS OF THE ALGEBRAIC ATTACKS

Chapter 7

Small Scale Variants of AES

When a new cipher is proposed it is common practice to examine its resiliency
towards known methods of cryptanalysis by analyzing down scaled versions of the
cipher. In particular AES is, for obvious reasons, a cherished target for cryptanalysis.

In [15] a family of small scale variants of AES is proposed to create common
ground for algebraic analysis of AES. The ciphers are defined for 4-bit and 8-bit
S-boxes, but in this thesis we only consider the 4-bit S-box version, which we name
SmallAES(nr, r, c). nr is the number of rounds of encryption and r, c are the number
of rows and columns of the state. Each sub-function of SmallAES(nr, r, c) is defined
as a down scaled version of the corresponding sub-function of AES.
As described in Section 3.6 AES can be described by algebraic equations in the
polynomial ring over GF (2) or GF (28) (by embedding AES in BES). In [15] Cid,
Murphy and Robshaw primarily explore the latter by deriving a description of
SmallAES(nr, r, c) over GF (24) and applying Magma’s implementation of F4 for
Gröbner bases computation. For details on this approach, we refer the reader to
[15].
Our work focuses on the description of SmallAES(nr, r, c) over GF (2). As in [15]
we apply Magma’s implementation of F4 for the Gröbner bases computation. The
timing results are measured in seconds taken by the CPU. The idea is to study
the growth of the Gröbner basis computation time when increasing respectively
the block size and the number of rounds. We successfully accomplish this for
SmallAES(nr, 1, 1) and SmallAES(nr , 2, 1) from one to eleven rounds of encryption.
This improves the results of [15] where the simulations on SmallAES(nr , 2, 1) can
handle only one to four rounds of encryption. Our simulations on SmallAES(nr , 2, 2)
can handle only up to two rounds of encryption. Though this is an improvement
compared to the results presented in [15] where they are only successful in com-
puting a Gröbner basis for the one round version of SmallAES(nr, 2, 2), it is not

99

100 CHAPTER 7. SMALL SCALE VARIANTS OF AES

Table 7.1: The S-box of SmallAES(r, c, n) and SmallAES-2(r, c, n) (in hexadecimal
notation).

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] 6 b 5 4 2 e 7 a 9 d f c 3 1 0 8

very impressive and does not tell us much about the behavior of the attack when
increasing the number of rounds.
To take the attack a step further we propose in Chapter 8 a technique which
applies probabilistic equations. We discovered that a slightly modified version of
SmallAES(nr, r, c) is interesting regarding this technique. We name this cipher
SmallAES-2(nr, r, c) and in Section 7.2 we describe the difference between this cipher
and SmallAES(nr , r, c).

7.1 SmallAES(nr, r, c)

SmallAES(nr, r, c) is an nr-round cipher which has a state size r · c · 4, where r is
the number of rows and c is the number of columns of the state. The word size is
decreased from 8 to 4 bits compared to AES. This means that a number of operations
are computed over GF (24) instead of GF (28). The field GF (24) is established as
the extension field GF (2)[x]/m(x) where

m(x) = x4 + x + 1

is irreducible in GF (2)[x].

As for the full scale AES the round function is composed of four sub-functions:
SubBytes, MixColumns, ShiftRows and AddRoundKey, which we briefly describe in
the following.

7.1.1 The substitution layer

The SubBytes function divides the state into 4-bit words which are each substituted
using a 4-bit S-box. The S-box, given in Table 7.1, is composed of inversion over
GF (24) followed by a GF (2)-linear map and finally by addition of the constant 6x.
The S-box is described by 21 polynomial equations over GF (2):

f1 = 0, . . . , f21 = 0

in the binary variables

7.1. SMALLAES(NR, R, C) 101

(x1, x2, x3, x4), (x5, x6, x7, x8)

of respectively the input and the output of the S-box. The polynomials f1, . . . , f21

generate the polynomial ideal I = 〈f1, . . . , f21〉, where

I ⊆ GF (2)[x1, . . . , x8].

In Figure 7.1 we list the reduced Gröbner basis of

I ⊆ GF (2)[x1, . . . , x8]/〈x2
1 + x1, . . . , x

2
8 + x8〉

with respect to grevlex order

7.1.2 The diffusion layer

The diffusion layer is composed of the functions MixColumns and ShiftRows. ShiftRows
performs words-based left rotations with different off-sets.
For 0 ≤ i ≤ r − 1, row i + 1 is rotated i places to the left. In our simulations we
apply the state sizes:

(r = 1, c = 1), (r = 2, c = 1), (r = 2, c = 2).

When the state has only one column (c=1), ShiftRows is defined as the identity
map. In this case, the MixColumns function alone creates the diffusion in the round
function.
MixColumns is defined as multiplication of the state by the invertible matrix A over
GF (24).
When the state consists of only one row (r=1), MixColumns is given by the identity
map

A =
(

1
)
.

In this case there is no diffusion in the outputs of the S-boxes of the round function.
This means that, for c > 1, one can divide the cipher into smaller subsystems which
can be analyzed independently. Since such ciphers are not interesting we omit the
state size r = 1, c = 2 in our simulation.
For r=2, A is given by

A =

(
(θ + 1) θ

θ (θ + 1)

)
.

where θ is a root of m(x) = x4 + x + 1.
Figures 7.2 and 7.3 contain the algebraic equations of the linear layer for respectively
the state where (r = 2, c = 1) and (r = 2, c = 2).

102 CHAPTER 7. SMALL SCALE VARIANTS OF AES

x6x7x8 + x2x8 + x5x8 + x8,

x1x2 + x5x8 + x6x8 + x2 + x4 + x5 + x8,

x1x3 + x2x8 + x6x8 + x7x8 + x2 + x3 + x6 + x7,

x2x3 + x6x7 + x2x8 + x3x8 + x4x8 + x6x8 + x7x8 + x2 + x7 + x8,

x1x4 + x2x8 + x5x8 + x1 + x2 + x4 + x5 + x8,

x2x4 + x6x7 + x2x8 + x3x8 + x4x8 + x1 + x2 + x4 + x5 + x6 + x7 + 1,

x3x4 + x2x8 + x3x8 + x4x8 + x6x8 + x1 + x3 + x5 + x6 + x7,

x1x5 + x2x8 + x4x8 + x1 + x2 + x4 + x5 + x8,

x2x5 + x6x7 + x3x8 + x6x8 + x2 + x3 + x4 + x5 + x8 + 1,

x3x5 + x6x7 + x4x8 + x5x8 + x7x8 + x2 + x4 + x7 + x8,

x4x5 + x6x7 + x2x8 + x3x8 + x6x8 + x1 + x2 + x5 + x6 + x7 + x8 + 1,

x1x6 + x4x8 + x8,

x2x6 + x3x8 + x5x8 + x6x8 + x7x8 + x1 + x4 + x5 + x6 + 1,

x3x6 + x6x7 + x3x8 + x5x8 + x7x8 + x1 + x4 + x5 + 1,

x4x6 + x6x7 + x2x8 + x5x8 + x7x8 + x4 + x6 + x7 + x8 + 1,

x5x6 + x6x7 + x3x8 + x4x8 + x5x8 + x6x8 + x1 + x5 + x7 + x8,

x1x7 + x2x8 + x5x8 + x6x8 + x7x8 + x2 + x4 + x5 + x8,

x2x7 + x6x7 + x2x8 + x4x8 + x6x8 + x3 + 1,

x3x7 + x2x8 + x3x8 + x4x8 + x5x8 + x6x8 + x7x8 + x3 + x7 + x8 + 1,

x4x7 + x2x8 + x4x8 + x5x8 + x6x8 + x7x8,

x5x7 + x6x7 + x2x8 + x6x8 + x7x8 + x2 + x3 + x4 + x5 + x8 + 1,

x1x8 + x3x8 + x4x8 + x5x8 + x6x8 + x7x8 + x1 + x3 + x4 + x5 + x6 + x7.

Figure 7.1: Gröbner basis for the polynomial ideal of the S-box of SmallAES(nr , r, c)
and SmallAES-2(nr, r, c).

7.1. SMALLAES(NR, R, C) 103

y1 = x4 + x5 + x8

y2 = x1 + x4 + x5 + x6 + x8

y3 = x2 + x6 + x7

y4 = x3 + x7 + x8

y5 = x1 + x4 + x8

y6 = x1 + x2 + x4 + x5 + x8

y7 = x2 + x3 + x6

y8 = x3 + x4 + x7

Figure 7.2: Equations of the diffusion layer of one round of SmallAES(nr, 2, 1). The
output bit variables y1, . . . , y8 are described by linear expressions in the input bit
variables x1, . . . , x8.

7.1.3 Key application

The function AddRoundKey exclusive-ores a 4rc-bit round key to the 4rc-bit state.
The round keys are derived by the key schedule.

7.1.4 Key schedule

The key schedule of SmallAES(nr, r, c) is defined such that each row of the state
invokes an S-box application in the key schedule. The cipher key is loaded directly
into the first round key. For the state size of four bits (r = 1, c = 1) the first round
key is

K(0) = w0

while the following round keys are derived as

K(i) = wi = S(wi−1) ⊕ Ri−1,

for i = 1, . . . , nr, where Ri is a round constant and S(·) is the same S-box as the
function SubBytes applies. For the state size of eight bits (r = 2, c = 1) the first
round key is

K(0) = (w1, w0)

and the following round keys

K(i) = (w1+2i, w2i)

104 CHAPTER 7. SMALL SCALE VARIANTS OF AES

y1 = x5 + x8 + x12

y2 = x5 + x6 + x8 + x9 + x12

y3 = x6 + x7 + x10

y4 = x7 + x8 + x11

y5 = x1

y6 = x1 + x2 + x13

y7 = x2 + x3 + x14

y8 = x3 + x4 + x15

y9 = x8 + x9 + x12

y10 = x5 + x8 + x9 + x10 + x12

y11 = x6 + x10 + x11

y12 = x7 + x11 + x12

y13 = x4 + x13 + x16

y14 = x1 + x4 + x13 + x14 + x16

y15 = x2 + x14 + x15

y16 = x3 + x15 + x16

Figure 7.3: Equations of the diffusion layer of one round of SmallAES(nr, 2, 2). The
output bit variables y1, . . . , y16 are described by linear expressions in the input bit
variables x1, . . . , x16.

7.2. SMALLAES-2(NR, R, C) 105

w1

S

R0

w3

w0

S

w2

Figure 7.4: The Key schedule of SmallAES(nr, 2, 1)

for i = 1, . . . , nr are derived using the key schedule shown in Figure 7.4.
Finally, the first round key for the state size of sixteen bits (r = 2, c = 2) is

K(0) = (w3, w2, w1, w0),

and the following round keys K(i)

K(i) = (w3+4i, w2+4i, w1+4i, w4i),

for i = 1 . . . nr, are derived by the key schedule shown in Figure 7.5. The key
schedule applies the same S-box as the encryption function. Like in AES the key
schedule exclusive-ores a round constant Ri upon the S-box application. The number
of S-boxes applied in the key schedule is given by nr · r.

7.2 SmallAES-2(nr, r, c)

The cipher SmallAES-2(nr, r, c) is very similar to SmallAES(nr , r, c). In fact, the
only difference between the two ciphers is the key schedule. We reduce the number
of S-boxes in the key schedule because S-boxes in the key schedule complicate the
Gröbner basis computations (we have tested this and Magma is always faster in
computing the Gröbner basis when we replace the non-linear key schedule by a linear

106 CHAPTER 7. SMALL SCALE VARIANTS OF AES

w2

w3

w6

w7

w0

w1

S
S

R0

w4

w5

Figure 7.5: The Key schedule of SmallAES(nr, 2, 2)

key schedule). In [15] the number of S-boxes applied in the key schedule equals nr ·r
(as mentioned). This means that both SmallAES(nr, 2, 1) and SmallAES(nr, 2, 2)
applies two S-boxes to derive each of the round keys K(i), for i = 1, . . . , nr. Thus
the ratio in the number of 4-bit words of the round keys to the number of S-box
applications is respectively 1 : 1 and 2 : 1. The state of AES-128 contains sixteen
8-bit words (so does each round key) and the key schedule applies four 8-bit S-boxes
to derive each key K(i), for i = 1, . . . , 9, thus the ratio here is 4 : 1. For this
reason we think it is fair to define a slightly less complex key schedule. The key
schedule of SmallAES-2(nr, r, c) applies when possible the ratio 4 : 1 in the number
of 4-bits words of the state to the number of S-box applications in the round key
derivation of the keys K(i), for i = 1, . . . , nr. E.g for SmallAES-2(nr, 2, 2) the key
schedule applies one S-box to derive each round key (except for the first). Figure
7.6 shows the key schedule of SmallAES(nr, 2, 2). In our opinion the key schedule
of SmallAES-2(nr, 2, 2) retains more properties of the AES key schedule than that
of SmallAES(nr, 2, 2). As mentioned the former has some interesting properties
regarding the technique we present in Chapter 8.

7.3. SIMULATIONS 107

w3

w7

w2

w6

w1

w5

w0

S
R0

w4

Figure 7.6: The Key Schedule of SmallAES-2(nr, 2, 2)

7.3 Simulations

We have performed a number of simulations on SmallAES(nr, r, c) and
SmallAES-2(nr, r, c). In the following we list the mean values and variance of the
tests on respectively 4, 8 and 16-bit blocks ciphers of up to eleven rounds of en-
cryption. The tests presented in this chapter are performed for keys and plaintexts
chosen at random. When nothing else is stated, the ciphertext is computed by
encrypting the chosen plaintext under the chosen key. Whenever we establish a sys-
tem of polynomial equations on basis of such a text pair, we know the system has
at least one solution, namely the one that provides us the key which was applied for
encryption.

Our test results on the 4-bit block cipher are listed in Table 7.2. For this block size
the SmallAES(nr, r, c) and SmallAES-2(nr, r, c) are defined to be exactly the same.
The round function and the key schedule applies one S-box per round and since the
text block has the size of just one S-box input/output the round function has no
diffusion layer. Each S-box is described by 21 polynomials equations of degree two.
Thus in total the cipher is described by

#equations = nr · 2 · 21, #variables = nr · 2 · 4

Our results are visualized in Figure 7.7.

A more interesting cipher is SmallAES(nr, 2, 1). Because the cipher has only one
column, MixColumns alone provides the diffusion of the round function. Both the
round function and the key schedule applies two S-boxes per round. The cipher is

108 CHAPTER 7. SMALL SCALE VARIANTS OF AES

Table 7.2: Tests over GF (2) on SmallAES(nr, 1, 1) and SmallAES-2(nr, 1, 1)

nr # tests # variables # equations average time st. deviation

2 100 16 84 3.0 · 10−2 6.7 · 10−3

3 100 24 126 1.5 · 10−1 8.1 · 10−3

4 100 32 168 3.9 · 10−1 1.3 · 10−2

5 100 40 210 8.5 · 10−1 9.0 · 10−3

6 100 48 252 1.8 4.0 · 10−2

7 100 56 294 3.4 9.8 · 10−2

8 100 64 336 6.0 9.8 · 10−2

9 100 72 378 10.2 2.6 · 10−1

10 100 80 420 15.6 2.9 · 10−1

11 100 88 462 23.1 4.4 · 10−1

number of rounds (nr)

2
.

3
.

4
.

5

.

6

.

7

.

8

.

9

.

10

.

11

.

2

10

20

time in sec.

Figure 7.7: Gröbner basis computation times for SmallAES(nr, 1, 1) and SmallAES-
2(nr, 1, 1)

7.3. SIMULATIONS 109

described by
#equations = nr · 4 · 21, #variables = nr · 4 · 4

over GF (2). In Table 7.3 we list our timing results (in seconds) on
SmallAES(nr, 2, 1). N/A denotes insufficient memory to complete the computation.
Our simulations can handle up to eleven rounds of encryption, while the simulations
given in [15] can handle only up to four rounds of encryption. We quote the simu-
lations of [15] in Table 7.4. The reader should be advised that the number of tests
and the standard deviation are not given in [15].
The authors of [15] note that from their results on SmallAES(nr , 1, 1) it seems to be
faster to compute a Gröbner basis for the GF (2)-description of SmallAES(nr, 1, 1).
However, they present no results on Gröbner bases computations over GF (2) for
SmallAES(nr, 2, 1) or SmallAES(nr, 2, 2). Our results on SmallAES(nr, 2, 1) are
shown in Figure 7.8.

Table 7.3: Tests over GF (2) on SmallAES(nr, 2, 1)

nr # tests # variables # equations average time st. deviation

2 256 32 168 1.8 3.3 · 10−2

3 256 48 252 9.5 6.9 · 10−2

4 174 64 336 47.7 3.1
5 10 80 420 207.9 11.7
6 10 96 504 755.7 44.5
7 10 112 588 1915.0 252.6
8 10 128 672 3672.2 365.9
9 10 144 756 6702.3 416.2
10 10 160 840 10327.3 358.4
11 10 176 924 15716.0 727.7
12 10 192 1008 N/A -

In [15] both F4 and Buchberger fail to compute the Gröbner basis for the two round
version of SmallAES(nr , 2, 2). In our simulations on SmallAES(nr, 2, 2) we can han-
dle only two rounds because of the memory consumption. The average computation
time for SmallAES(2, 2, 2) is 1715.72 seconds when the plaintext and the key is cho-
sen at random. For SmallAES-2(2, 2, 2) the computation time is better, however we
still fail to compute the Gröbner basis on SmallAES-2(3, 2, 2). The results are listed
in Table 7.5.
It would be of great interest to obtain some results on SmallAES(nr, 2, 2) or
SmallAES-2(nr, 2, 2) over more rounds of encryption because they share more prop-
erties with AES than the smaller versions. In particular the diffusion layer is more

110 CHAPTER 7. SMALL SCALE VARIANTS OF AES

Table 7.4: Tests over GF (24) on SmallAES(nr , 2, 1) from [15]

nr # tests # variables # equations average time st. deviation

2 - 72 144 24.55 (F4) -
3 - 104 208 519.92 (F4) -
4 - 136 272 28999 (BA) -
5 - 168 332 N/A -

number of rounds (nr)

2
.

3
.

4
.

5
.

6

.

7

.

8

.

9

.

10

.

11

.

103

104

time in sec.

Figure 7.8: Gröbner basis computation times for SmallAES(nr, 2, 1)

7.3. SIMULATIONS 111

realistic because MixColumns and ShiftRows together create the diffusion of the
round function. An important observation from our simulations is, that even though
the GF (2)-descriptions of respectively SmallAES(3, 2, 1) and SmallAES(2, 2, 2) con-
tain the same number of equations and variables, the difficulty of finding the solu-
tion for the two by Gröbner bases computation are in contrast. This means that
the diffusion layer (which is the vital difference between SmallAES(nr , 2, 1) and
SmallAES(nr, 2, 2)) seems to have great impact on the difficulty of the problem.

Table 7.5: Tests over GF (2) on SmallAES(nr, 2, 2) and SmallAES-2(nr, 2, 2)

cipher nr # tests # variables # equations average time

SmallAES 2 10 48 252 1715.72
SmallAES-2 2 10 40 210 891
SmallAES 3 10 72 378 N/A

SmallAES-2 3 10 60 315 N/A

From all simulations on SmallAES(nr , r, c) and SmallAES-2(nr, r, c), we observe that
it does not seem to effect the Gröbner bases computation time whether the polyno-
mial equations have one or more solutions.
As an additional test on SmallAES(2, 2, 2) we chose both the plaintext and the ci-
phertext at random and measured the Gröbner bases computation time. In half of
the tests, Magma outputs the Gröbner basis G = {1} i.e. the polynomial equa-
tions have no common solution. This phenomena occurs when no key encrypts the
specified plaintext to the specified ciphertext. The average computation time of all
tests is 1683.22 which is only a marginal different from the 1715.72 seconds listed in
Table 7.5. The tests show no relation between the computation time and whether
the equations are solvable or not. This result is surprising compared to the results
of [1], in which the authors observe the opposite and exploit it in an attack that
combines differential and algebraic cryptanalysis.
To conclude this chapter we note that it is not clear whether the advantage of work-
ing over GF (2) compared to GF (24) is partly because Magma is optimized to work
over this field. However, our timing results obtained from simulations over GF (2)
are clearly better than those over GF (24) presented in [15]. To our knowledge the
results presented in this chapter are so far the best algebraic results on small scale
variants of AES.

112 CHAPTER 7. SMALL SCALE VARIANTS OF AES

Chapter 8

Probabilistic Equations

Linear and the differential cryptanalysis are probabilistic approaches that often re-
quire a large amount of text to cryptanalyze block ciphers. Algebraic cryptanalysis
requires in principle only a few known texts to obtain a set of polynomial equations,
for which the solution yields the secret key. However, in practice it appears to be very
difficult to solve the equations for realistic block ciphers. This makes one wonder
whether it is possible to improve the complexity of an algebraic attack by converting
it into an approach that benefits from more than just one or two known texts. One
idea is to combine algebraic and differential cryptanalysis, this is discussed in [1]. In
this chapter we introduce the idea of applying probabilistic equations in algebraic
attacks on block ciphers. As described in Section 3.6, it was noted in [20] that for
the AES S-box there exists one probabilistic quadratic equations over GF (2) which
is true with probability 255

256
. Applying probabilistic equations seems to be a natu-

ral extension of the algebraic attacks, and certainly it is important to examine the
existence of probabilistic equations and the possibilities of their application. In [11]
the idea is explored on stream ciphers. To our knowledge our results are the first of
their kind on block ciphers.
There are a couple of things (probably more) that need to be examined. First of
all, how to find high-probability equations, and secondly, given a set of probabilistic
equations, how to apply them in an algebraic attack? For some ciphers we can derive
both deterministic and probabilistic equations. In this case one may ask what is the
impact of applying the probabilistic equations and how does it compare to the deter-
ministic algebraic approach? This chapter aims to answer some of these questions.
For the latter part we outline a number simulations on SmallAES-2(nr, r, c) (defined
in Chapter 7) and compare them to the results of the deterministic approach. Our
simulations show that the impact of the high-probability equations is not impressive,
however we also discover that a simple and straightforward guessing technique does

113

114 CHAPTER 8. PROBABILISTIC EQUATIONS

improve the computation time. We find that for SmallAES-2(2, 2, 2), it is possible to
exploit the structure of the key schedule in this approach. In some cases we obtain
a reduction of a factor of 27 in the computation time compared to the deterministic
approach. However, when we add an extra round of encryption the method seems
to require a notable amount of extra probabilistic equations.
The first part of this chapter concerns how to obtain and apply probabilistic equa-
tions in an algebraic attack. We present two ways of finding probabilistic equations
for S-boxes, the matrix method and the product method. The matrix method is suit-
able for small S-boxes where it is possible to search exhaustively for the equations.
The product method is inspired by an observation on a DES S-box where a deter-
ministic quadratic equation arises as the product of two linear approximations of
the S-box. The method utilizes linear approximations of the S-boxes to obtain high-
probability quadratic equations. This method suits large S-boxes in particular for
which it is not feasible to perform the exhaustive search for probabilistic equations.

8.1 Applying probabilistic equations

Given a cipher described by a combined set of probabilistic and deterministic equa-
tions one idea is simply to apply Buchberger’s algorithm or F4 (as described in
Chapter 4). If we find that the system has no solution, we apply another set of
probabilistic equations and repeat the computation. A natural approach would be
a maximum likelihood approach where we start out by applying the set of equations
which has the highest probability. If this does not provide the solution the compu-
tation is repeated, but this time with the set of equations having the next highest
probability etc. When we obtain a few solutions, and hereby some key suggestions
e.g. K ′, we test its consistency by encrypting a plaintext P (different from the one
applied for the Gröbner basis computation, and for which the ciphertext C is known)
under the key K ′

C ′ = eK ′(P).

If C ′ = C we probably found the right key which can be double checked by applying
another known text pair. If C ′ 6= C for all key suggestion non of them are the
right key and we repeat the Gröbner bases computation for the set of probabilistic
equations with the next highest probability. We assume that each set of equations
yields a limited set of solutions for a fixed text pair. The probability of success, in
i iterations of the attack is given by

Pr(i) = p1 + (1 − p1)p2 + (1 − p1)(1 − p2)p3 + . . . + (1 − p1) · · · (1 − pi−1)pi

8.2. THE MATRIX METHOD 115

where pi is the probability that the i’th most likely set of equations is true for a key
and plaintext chosen at random.
The following sections discuss how to find the probabilistic equations.

8.2 The matrix method

For non-linear functions like the DES S-boxes which map six bits to four bits, or
the Serpent, Noekeon and Present S-boxes that map four bits to four bits, it is not
difficult to find probabilistic equations. The matrix method offers a simply way to
obtain multivariate probabilistic equations of degree less than or equal to d.
Let

f : {0, 1}m → {0, 1}n

be a non-linear function. Arrange a matrix Td of 2m rows and
∑d

i=0

(
n+m

d

)
columns.

Each row corresponds to an input of f , and each column holds the values of a
monomial of degree less than or equal to d, in the input and output bit variables of
f . As described in Section 3.6 all deterministic equations of degree d are obtained
by computing the null space of Td.

If
d∑

i=0

(
n + m

d

)
> 2m

thus the null space of Td is spanned by at least

e =
d∑

i=0

(
n + m

d

)
− 2m

vectors, i.e. we obtain at least this many linearly independent equations of degree d.
To obtain additional probabilistic equations we remove t rows of Td before computing

the null space.
If we remove one row of Td and

∑d
i=0

(
n+m

d

)
> 2m−1, we obtain at least one equation

which is true with probability at least 2m−1
2m .

If
d∑

i=0

(
n + m

d

)
> 2m − t,

and we remove t rows from Td we obtain at least t additional equations which are

simultaneously true with probability at least 2m−t
2m .

116 CHAPTER 8. PROBABILISTIC EQUATIONS

Example 8.1. For a random four bit S-box (n = m = 4) there are at least

|Ed| =

(
8

2

)
+

(
8

1

)
+

(
8

0

)
− 24 = 21

equations of degree less than or equal to two. If there is exactly 21 deterministic
equations and we remove one row of T2 we get an additional equation of degree at

most two, which is true with probability at least 15
16

.

Example 8.2. For a random six to four bit S-box (m = 6, n = 4) there are not
necessarily any deterministic equations of degree less than or equal to two since

(
10

2

)
+

(
10

1

)
+

(
10

0

)
= 56 < 26.

If we remove 9 rows we know with certainty that there is at least one equation of
degree at most two which is true with probability 55

64
.

There are (
2m

t

)

ways to remove t rows of Td. For example for the 8-bit AES S-box this number is

big even when t is relatively small.

Example 8.3. Consider the AES S-box where m = n = 8. To find quadratic
probabilistic equations we establish T2, which has dimensions 256 × 137. To search

for equations with probability 255
256

we remove one row from T2. This can be done in

256 ways, which leads us to find only one such equation, namely the one first noted
in [20], and which is obtained by removing the row corresponding to the input 0.
To search for equations which are true with probability 254

256
we remove two rows of

T2, there are
(
28

2

)
= 32640 ways to do this. We tried all of these but obtained no

additional equations. Considering alone the dimensions of T2, we do not expect that

there are deterministic or high-probability quadratic equations. However, as noted in
[20] there are 40 quadratic equations over GF (2) from of which 39 are deterministic
and one is true with probability 255

256
.

8.3 The product method

In Chapter 3 we described how linear cryptanalysis combines linear probabilistic
equations in the input/output variables of the S-boxes to linear expressions over

8.4. APPLICATION TO THE DES S-BOXES 117

several rounds. The product method applies these equations to obtain equations of
higher degree with higher probabilities.
Consider a non-linear function

f : {0, 1}m → {0, 1}n.

Let (x1, . . . , xn+m) be the input and output bits of f . Given a linear equation

a0 +

n+m∑

i=1

aixi = 0, ai ∈ GF (2) for i = 0, 1, . . .

that holds for 2m − k of the 2m inputs. We search for a linear equation

b0 +

n+m∑

i=1

bixi = 0, bi ∈ GF (2) for i = 0, 1, . . .

that holds for k − t, where t < k, of the remaining k inputs. For inputs chosen at
random we know that the equation

(a0 +
n+m∑

i=1

aixi)(b0 +
n+m∑

i=1

bixi) = 0

holds with probability 2m−t
2m and has degree at most two. This procedure is repeated

for several linear approximations such that we obtain a large set of quadratic equa-
tions. The method extends in the straightforward way to generating equations of
higher degrees. Compared to the matrix method, the advantage of the product
method is that it is very fast. This is in particular relevant for large S-boxes where
the matrix method is slow even when we remove only a few rows of Td.

8.4 Application to the DES S-boxes

The eight S-boxes of DES S1, S2, S3, S4, S5, S6, S7, S8 each maps six bits to four bits.
Given the input bit string (x6, x5, x4, x3, x2, x1), where x6 is the most significant
bit, the integer representation (2x6 + x1) of the binary string (x6, x1) determines
a row entry of the S-box Si (see e.g. Table 8.1), and the integer representation of
(x5, x4, x3, x2) determines the column entry of the S-box.
For each DES S-box Si we establish the matrix T2, which has dimensions 64×56. As

stated in Table 8.3, we find that the S-box S1, S4, S5 are described by respectively 1,
5 and 1 quadratic equations which are true with probability one (this was previously

118 CHAPTER 8. PROBABILISTIC EQUATIONS

Table 8.1: The S-box S1 of DES substitutes the bit sting (x6, x5, x4, x3, x2, x1) by
(y4, y3, y2, y1).

x5, x4, x3, x2

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
x6, x1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

noted in [39, 62]). However, a total of seven quadratic equations for eight S-boxes
is not enough to mount an algebraic attack on DES by neither the Gröbner bases
nor the linearization techniques. In this following we expand the set of quadratic
equations by a number of probabilistic quadratic equations applying respectively the
matrix method and the product method.

Example 8.4. Consider S-box S1 of DES. The only deterministic equation of degree
at most two (also listed in [62]) is

1 + x1 + x2 + x3 + x4 + x5 + x6 + y1 + y2 + y3 + y4 + x1x5 + x1y1 + x1y2 +

x1y3 + x1y4 + x2x5 + x2y1 + x2y2 + x2y3 + x2y4 + x3x5 + x3y1 +

x3y2 + x3y3 + x3y4 + x4x5 + x4y1 + x4y2 + x4y3 + x4y4 + x5x6 +

x5y2 + x5y3 + x5y4 + x6y1 + x6y2 + x6y3 + x6y4 + y1y2 + y1y3 + y1y4 = 0.

By removing the row of T2, corresponding to the input string

(x6, x5, x4, x3, x2, x1) = (1, 1, 0, 0, 1, 1)

we obtain an extra probabilistic equation. No other single row elimination produces
additional equations, but there are 75 ways of eliminate two rows which do. Increas-
ing the elimination to three rows we find that 14 ways to eliminate rows in T2 which

all produce three equations.
There are two ways to remove four rows of T2 where we obtain four equations, namely

by removing either rows (1, 10, 51, 33) or (23, 41, 44, 51). For example for the latter

8.4. APPLICATION TO THE DES S-BOXES 119

Table 8.2: The S-box S5 of DES substitutes the bit sting (x6, x5, x4, x3, x2, x1) by
(y4, y3, y2, y1).

x5, x4, x3, x2

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
x6, x1 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

we obtain

1 + x1 + x2 + x4 + x5 + x6 + y1 + y4 + x1x5 + x1y1 + x1y2 + x1y3 + x1y4 +

x2x4 + x2x5 + x2x6 + x2y1 + x4x5 + x4y4 + x5x6 + x5y1 + x6y4 + y2y4 + y3y4 = 0

x1x3 + x1x4 + x1y2 + x1y3 + x1y4 + x2x3 + x2x6 + x3x4 + x3x6 + x3y1 + x3y2 +

x3y3 + x4x5 + x4x6 + x4y1 + x5y1 + x6y1 + x6y4 + y1y2 + y1y3 + y1y4 = 0

1 + x1 + x2 + x4 + x5 + x6 + y1 + y2 + y3 + y4 + x1x3 + x1x4 + x1x5 + x1y1 +

x2x3 + x2x5 + x2x6 + x2y1 + x2y2 + x2y3 + x2y4 + x3x4 + x3x6 + x3y1 + x3y2

+x3y3 + x4x6 + x4y2 + x4y3x4y4 + x5x6 + x6y2 + x6y3 = 0

x3 + x3x5 + x3y1 + x3y2 + x3y3 + x3y4 + x5y1 + x5y2 + x5y3 + x5y4 = 0.

The four equations are simultaneously true with probability 60
64

.

For each of the eight S-boxes, the maximum number of quadratic equations that
are simultaneous true with probabilities from 58

64
to 64

64
, are listed in Table 8.3. The

results obtained by systematically removing from one to six rows of the matrix T2,

as described in Example 8.4.

The matrix method is practical for finding equations that are true with high prob-
ability. However, the amount of equations we can derive using the matrix method
in a reasonable time might not suffice to mount an algebraic attack. To find more
equations we will try to lower the probability. For this purpose the matrix method
is not practical because it has to run through too many combinations. For the DES
S-boxes there are

(
64
t

)
ways to eliminate t rows of the T -matrix. For example this

means that to find the largest set of probabilistic equations which are true with
probability 54

64
we would have to compute the null space of the matrix T2 about 237

times.

120 CHAPTER 8. PROBABILISTIC EQUATIONS

Table 8.3: Number of quadratic equations describing the DES S-boxes. For each
S-box Si we tested all combinations of removing from zero to six rows of T2. This

table holds the highest number of equations obtained by this technique.

probability = 64
64

≥ 63
64

≥ 62
64

≥ 61
64

≥ 60
64

≥ 59
64

≥ 58
64

S1 1 2 2 3 4 4 5
S2 0 1 1 2 3 3 4
S3 0 0 1 2 2 3 4
S4 5 5 6 6 7 7 8
S5 1 2 3 4 4 5 6
S6 0 0 1 2 3 3 4
S7 0 1 2 3 3 4 5
S8 0 1 2 2 3 4 4

In the following we apply the product method to the DES S-boxes. The first step is
to find linear probabilistic equations that holds for 26 − k of the 26 inputs of S-box
Si (where k is small). Next we search for another linear probabilistic equation that
holds for as many as possible, of the k inputs that do not satisfy the first probabilistic
equation.

Example 8.5. For the DES S-box S1 we have the linear equation

x5 + y4 + y3 + y2 + y1 + 1 = 0

which is true for 50 of the 64 inputs. For the 14 remaining inputs we find that the
linear equation

1 + x1 + x2 + x3 + x4 + x6 + y2 + y3 + y4 = 0

is true with probability one. Thus the quadratic equation

(x5 + y4 + y3 + y2 + y1 + 1)(1 + x1 + x2 + x3 + x4 + x6 + y2 + y3 + y4) = 0

is true with probability one. We find that the linear equation 1+x1+x2+x4+x5+x6+
y2+y3+y4 = 0 is true for 13 out of the 14 inputs while 1+x2+x5+y1+y2+y3+y4 = 0
is true for 12 of the 14 inputs. Thus the quadratic equation

(x5 + y4 + y3 + y2 + y1 + 1)(1 + x1 + x2 + x4 + x5 + x6 + y2 + y3 + y4) = 0

is true with probability 63
64

and

(x5 + y4 + y3 + y2 + y1 + 1)(1 + x2 + x5 + y1 + y2 + y3 + y4) = 0

is true with probability 62
64

.

8.5. THE PRODUCT METHOD ON 8-BIT S-BOXES. 121

In [62] it is noted that the deterministic quadratic equations for S-box S5 can be
factorized into two polynomials of degree one, and that “surprisingly” one factor is
the best linear approximation for this S-box. Example 8.6 shows that the existence
of the quadratic equations is a consequence of linear approximations of the S-box.

Example 8.6. For the DES S-box S5 we have the linear equation

l1(x, y) = x5 + y4 + y3 + y2 + y1 + 1 = 0

which is true for 52 of the 64 inputs. For the 12 remaining inputs we find two linear
equations

l2(x, y) = (1 + x6 + x5 + x2) = 0

l3(x, y) = (1 + x2 + x6 + y1 + y2 + y3 + y4) = 0

which are true with probability one. However, we note that

l1l3 = l1(l2 + 1 + l1) = l1l2 + l1 + l21 = l1l2

when we apply l2i = li for reduction. Thus we obtain only one quadratic equation

(x5 + y4 + y3 + y2 + y1 + 1)(1 + x6 + x5 + x2) = 0

which is true with probability one.

8.5 The product method on 8-bit S-boxes.

The product method was tested on three 8-bit S-boxes namely the AES S-box,
the SAFER S-box [47] and a randomly chosen S-box (given in Appendix C). For
each S-box we generated a linear approximation table and selected the best linear
approximations of the S-box.
For the AES S-box the best linear approximations have bias 16

256
, or −16

256
, i.e. the

corresponding linear equations hold for 144 of the 256 inputs. By choosing three of
these, we found for the remaining 112 inputs a number linear approximations with
bias 71

112
. Thus the corresponding quadratic equations have probability 215

256
. Below

we list three such equations for the AES S-box:

(x0 + y3 + y7)(x1 + x3 + y0 + y2 + y3 + y4 + y5 + y6) = 0

(x3 + y1 + y4 + y6)(x0 + x2 + x3 + x4 + y1 + y4 + y6 + y7) = 0

(x4 + y1 + y2 + y4 + y6)(x1 + y3 + y6) = 0 .

122 CHAPTER 8. PROBABILISTIC EQUATIONS

We note that compared to the deterministic equations (listed in Appendix A.1) these
probabilistic equations are far sparser.
For the SAFER S-box the best linear approximation,

3ax → 32x ,

has bias −46
256

. Applying this approximation we find the following equation which is
true with probability 237

256
:

(1 + x1 + x3 + x4 + x5 + y1 + y4 + y5)(x0 + x1 + x5 + y4 + y5 + y6 + y7) = 0 .

The second best linear approximations for the SAFER S-box have probability −45
256

.
Applying such two approximations the following two equations are derived:

(x0 + x4 + y1 + y2 + y3 + y4 + y5 + y6 + y7)(x1 + x3) = 0

(1 + x1 + x3 + x5 + y0 + y3 + y4 + y7)(x3 + x6 + y0 + y4) = 0

The first equation is true with probability 236
256

, and the second with probability 237
256

.
It is interesting to note that we can generate probabilistic equations with probability
237
256

from both the best and the second best linear approximation. Also, we tried
deriving a quadratic equation from a linear approximation with bias 42

256
. From this

we obtained the following quadratic equation, which also has probability 237
256

:

(x1 +x2 +x5 + y0 + y1 + y3 + y5 + y7)(x0 +x1 +x3 +x4 +x5 +x6 +x7 + y3 + y6 + y7) .

For the randomly chosen S-box we list the following three equations:

(x0 + y0 + y7)(x0 + x1 + x2 + x4 + x6 + y3 + y4 + y7) = 0

(x0 + y1 + y5 + y7)(x2 + x5 + y0 + y1 + y2 + y3 + y4 + y5 + y6 + y7) = 0

(x1 + y0 + y3 + y4 + y6 + y7)(x0 + x2 + x3 + x4 + x7 + y1 + y2 + y3 + y4) = 0 .

The first is true with probability 223
256

, the second with probability 225
256

and the third
with probability 226

256
.

By comparing the equations of the three S-boxes, we note that the highest prob-
abilities were obtained for the SAFER S-box and the lowest probabilities for the
AES S-box. However, our search was not exhaustive. We focused on the best linear
approximations. For the SAFER S-box we found examples which show that the best
linear approximation is not necessarily better than other approximations in appli-
cation to the product method. For future research one idea is to do an exhaustive
search for probabilistic equations using the product method.
Whether there is an intelligent way of applying the probabilistic equations in an

8.6. SIMULATIONS 123

attack is unknown. One idea is to try to exploit the sparsity of the probabilistic
equations which for the AES S-box is much more evident than for the determin-
istic equations (see Appendix A.1). Another idea is to try to exploit their special
form of being a product of two linear equations. Also, we note that we have much
freedom in choosing the probabilistic equations. For each linear approximation we
found that there are many quadratic equations with the same probability. One idea
is to choose the probabilistic equations such that certain terms are eliminated in a
Gaussian elimination or a Gröbner basis computation.

8.6 Simulations

This section contains the results of our simulations of the probabilistic approach
applied on SmallAES-2(nr, r, c). The simulations were performed using Magma’s
2.13-1 implementation of F4 version 1.8 GHz processor with 1GB ram (compared
to the results of Chapter 7 the Gröbner basis computation times are improved by a
factor of about two). The timing results are measured in seconds taken by the CPU.
The goal is to get an impression of whether or not and to which extent algebraic
attacks benefit from applying probabilistic equations.

8.6.1 Applying high-probability equations

We begin by applying high-probability equations obtained by the matrix method for
the four-bit S-box applied in SmallAES(nr, r, c) and SmallAES-2(nr, r, c). At first
we search for improvement in the Gröbner basis computation time on SmallAES-
2(nr, 2, 1) when adding probabilistic equations to the set of deterministic equation.
Table 8.4 presents the results where we add between zero and six probabilistic S-box
equations to the sets of deterministic equations describing respectively S1 and S2

(see Figure 8.1). The plaintexts and keys are chosen at random and we report the
computation time as the average of all tests, whether the probabilistic equations are
true or not.
First of all we note that for two, three and four rounds of encryption there is al-
most no reduction in the computation time when we add 1, 2, 3 or 4 probabilistic
equations. For five rounds of encryption we gain on average 20 percent reduction in
computation time (from 101.9 to 80.9 seconds) by adding 4 equations. The prob-
ability that the four equations are simultaneous true is 3

4
. To test whether it is

better to apply the probabilistic approach to more S-boxes at a time but with less
probabilistic equations per S-box we repeated the simulations (same texts, only this
time we add two probabilistic equations to each set of equations for respectively
S1 and S2). As stated in Table 8.4 we found that while the average Gröbner basis

124 CHAPTER 8. PROBABILISTIC EQUATIONS

p1p2p3p4

x1x2x3x4

S1

x9x10x11x12

p5p6p7p8

x5x6x7x8

S2

x13x14x15x16

pLayer

Figure 8.1: SmallAES(nr , 2, 1)

computation time for the first approach was 80.9 seconds, the time for this approach
was 89.4 seconds. The probability that the four equations, of the latter, are simul-
taneous true is (14

16
)2. We conclude that though our tests are not very extensive,

applying high-probability equations for the S-boxes does not appear to be very ef-
fective, because the reduction in the computation time is not large enough compared
to the trade-off in having to run the attack more times. When we increase the size
of the state and consider SmallAES(nr, 2, 2), then the approach of applying high-
probability equations only has very little impact on the computation time compared
to the deterministic approach. The approach was also tested on SmallAES-2(nr, 2, 2)
which produced similar results.

8.6.2 Guessing bits

Though the tests reported in the previous section are not very exhaustive, they
show only a marginal effect on the Gröbner basis computation time, which indi-
cates the approach of applying high-probability equations in algebraic attacks on
SmallAES(nr, 2, 2) and SmallAES-2(nr, 2, 2) may not be very effective. Therefore
we test a simple guessing technique and examine to which extend this affects the
computation time. The technique is simply to fix some state or key bit variables
prior to the Gröbner basis computation. Since the variables are binary, each guess
is true with probability one half. It turns out that the technique is more efficient on
the cipher SmallAES-2(nr, 2, 2) than on SmallAES(nr, 2, 2) for which reason we fo-

8.6. SIMULATIONS 125

Table 8.4: Applying high-probability equations on SmallAES(nr, 2, 1). The simula-
tions apply between 0 and 6 probabilistic S-box equations distributed on the two
S-boxes of the first round of encryptions. #prob (S1, S2) is the number of proba-
bilistic equation applied over respectively S-box S1 and S2.

nr # tests # variables # equations # prob (S1, S2) average time

2 100 32 168 (0,0) 0.7
2 100 32 169 (1,0) 0.7
2 100 32 170 (2,0) 0.7
2 100 32 171 (3,0) 0.7
3 100 48 252 (0,0) 3.8
3 100 48 253 (1,0) 3.8
3 100 48 254 (2,0) 3.8
3 100 48 255 (3,0) 3.8
4 10 64 336 (0,0) 22.4
4 10 64 337 (1,0) 22.2
4 10 64 338 (2,0) 22.0
4 10 64 339 (3,0) 22.0
4 10 64 340 (4,0) 17.5
5 10 80 420 (0,0) 101.9
5 10 80 424 (4,0) 80.9
5 10 80 424 (2,2) 89.4
5 20 80 425 (3,2) 70.9
5 10 80 426 (4,2) 57.2
6 10 96 504 (0,0) 315.62
6 10 96 510 (4,2) 180.9

cus on SmallAES-2(nr, 2, 2). The encryption routine of SmallAES-2(2, 2, 2) is shown
in Figure 8.2 and the key schedule in Figure 8.3.

For some parts of our tests (those where we guess only one bit) there are no clear
patterns in the results, i.e. the standard deviation in the computation time is large,
for which reason we do not list a full series of these. Instead we bring out a few
examples for fixed text values. Table 8.5 (on page 128) holds the timing results
when fixing the value of one variable prior to the Gröbner bases computation. If we
specify the value of one fixed variable, the Gröbner basis computation time varies
for different choices of the plaintext and the key.

The results listed in Table 8.5 should be compared to the computation time when
no variables are fixed which is 892 seconds. Regarding this example it is interesting,

126 CHAPTER 8. PROBABILISTIC EQUATIONS

p1p2p3p4

x1x2x3x4

S1

x17x18x19x20

p5p6p7p8

x5x6x7x8

S2

x21x22x23x24

p9p10p11p12

x9x10x11x12

S3

x25x26x27x28

p13p14p15p16

x13x14x15x16

S4

x29x30x31x32

pLayer

x33x34x35x36

S5

x49x50x51x52

c1c2c3c4

x37x38x39x40

S6

x52x54x55x56

c5c6c7c8

x41x42x43x44

S7

x57x58x59x60

c9c10c11c12

x45x46x47x48

S8

x61x62x63x64

c13c14c15c16

Figure 8.2: SmallAES(2,2,2)/SmallAES-2(2,2,2)

and not very intuitive, to note that while guessing one bit often reduce the Gröbner
basis computation time it actually sometimes has the opposite effect. For example
by guessing x49 = 0 the computation time is 948.9 seconds. Also, we note that while
fixing x13 = 1 reduces the computation time to 31.7 seconds, fixing x13 = 0, which
is the correct assignment, only reduces the computation time to 635.1 seconds. A
possible explanation for the difference is that in the first case the equations have no
solution, whereas in the second (slow) case they do, which supposedly [1] makes the
Gröbner bases computation time slower. However, another result also listed in Table
8.5 contradicts this. When fixing x14 = 0 the computation time is 614.9 seconds,
and we find that there is no solution, while when fixing x14 = 1 the Gröbner basis
is computed, and the solution obtained, in only 29.0 seconds. This example serves
to show the unclear results we observe when guessing the value of just one variable,
but it also shows that the technique in some cases provides a remarkable reduction
in the computation time.
The next results are obtained by fixing the value of two variables. Fortunately in this
case the results are more structured. In Table 8.6 we give examples of the Gröbner
basis computation time, for a fixed plaintext and key, where two variables are fixed
prior to the computation.

It is interesting to note, that we obtain the best results by fixing two variables of
S-box S1. In fact we obtain a reduction of more than a factor of 100. To test whether
this is only a lucky incident, we performed a number of tests with the plaintext and
key chosen at random, and fixed the values of two input variables of the S-box S1.

8.6. SIMULATIONS 127

x1, x2, x3, x4

x33, x34, x35, x36

x5, x6, x7, x8

x37, x38, x39, x40

x9, x10, x11, x12

x41, x42, x43, x44

x13, x14, x15, x16

Sk1

R0

x45, x46, x47, x48

x49, x50, x51, x52x53, x54, x55, x56x57, x58, x59, x60

Sk2

R0

x61, x62, x63, x64

Figure 8.3: Key Schedule of SmallAES-2(2, 2, 2)

Similarly we performed tests, where we fixed the value of two input variables of the
other S-boxes of the encryption function. Table 8.7 holds the results. We note that
for S-box S1 the Gröbner basis computation time is reduced by a factor 100 for all
tests (note that the deviation is very small). In the probabilistic approach we will
in worst case have to repeat the Gröbner basis computation (assigning the variables
to new values) four times. In this case the total computation time on average is
31.2 seconds. Comparing this to the average computation time of the deterministic
approach of 853.0 seconds this is an improvement of more than a factor 27. Also, we
note from Table 8.7 that we obtain a reduction in the computation time no-matter
which S-box we fix bits for. However, if we consider the results on S-box S7, we
find that if we will have to repeat the Gröbner basis computation four times in the
probabilistic approach, the total computation time amounts to 752.4 seconds which
is better but not very impressive compared to the results on S-box S1. Moreover
we note that for these guesses the standard deviation in the computation time is
rather large. We find that the average computation time and the standard deviation
is low for respectively S-box S1, S5 and S8. By considering the key schedule and the
encryption algorithm shown in Figures 8.2 and 8.3 we find a possible explanation
for this observation. For S-box S1, we note that the input variables x1, x2, x3, x4 are
also input variables to the S-box Sk1 of the key schedule. Likewise for S-box S5, the
key bits entering this S-box (x33, x34, x35, x36) are also input variables of S-box Sk2

of the key schedule. Finally, for the S-box S8 the key bit variables x45, x46, x47, x48

entering the S-box are also the output variables of S-box Sk2. The conclusion of

128 CHAPTER 8. PROBABILISTIC EQUATIONS

Table 8.5: Computation time to obtain a Gröbner basis for SmallAES(2, 2, 2) apply-
ing F4 and guessing one bit. + denotes that we find the correct key while ÷ denotes
the guess of the bit value is wrong and Magma returns the Gröbner basis {1}. This
example applies the key a67fx, the plaintext 0123x, and the ciphertext= 62a5x.

time time time time

- 891.7 +

x1 437.7 ÷ x1 + 1 419.3 + x2 440.8 ÷ x2 + 1 425.8 +
x3 301.0 ÷ x3 + 1 431.8 + x4 417.1 ÷ x4 + 1 428.5 +
x5 506.7 ÷ x5 + 1 797.0 + x6 796.7 ÷ x6 + 1 553.1 +
x13 635.1 + x13 + 1 31.7 ÷ x14 614.9 ÷ x14 + 1 29.0 +
x15 622.2 + x15 + 1 732.6 ÷ x16 652.3 ÷ x16 + 1 31.4 +
x29 658.9 ÷ x29 + 1 745.1 + x30 33.2 ÷ x30 + 1 26.7 +
x31 31.3 ÷ x31 + 1 613.6 + x32 653.8 ÷ x32 + 1 31.2 +
x37 712.2 ÷ x37 + 1 727.6 + x38 684.5 ÷ x38 + 1 705.1 +
x49 948.9 + x49 + 1 731.9 ÷ x50 937.0 ÷ x50 + 1 713.9 +
x61 550.0 ÷ x61 + 1 696.0 + x62 555.4 + x62 + 1 27.9 ÷
x63 24.4 + x63 + 1 644.7 ÷ x64 552.0 + x64 + 1 24.9 ÷

this observation is that by guessing variables that simplifies the S-box equations of
both an S-box in the key schedule and the encryption algorithm we obtain the best
results of the approach. Figures 8.4 and 8.5 show what the S-box polynomials look
like when we fix respectively one and two input variable of S-box S1. Figure 7.1 in
Chapter 7 holds the S-box polynomials where no variables are fixed.

Also, we tested the effect of guessing three variables of one S-box. The results are
listed in Table 8.8. We see that there is a reduction in the computation time, however
it is marginal compared to the computation time obtained when guessing two bits.

Next we apply the guessing approach to SmallAES-2(3, 2, 2). As noted in Chapter
7 Magma runs out of memory when trying to compute the Gröbner basis in the
deterministic approach. As a natural choice we tested the approach, which was
most efficient on SmallAES-2(2, 2, 2), namely to guess bits that simplifies the S-box
equations of both the key schedule and the encryption algorithm. However, the re-
sults we obtained from this were not very impressive. We had to guess six bits even
for Magma to be able to compute the Gröbner bases, and for this the computation
time ranges (in our limited tests) from 22 to 1112 seconds without any apparent
explanation of this notable difference in the computation time.

In this chapter we looked into the possibilities of deriving and applying probabilistic
equations in algebraic attacks on block cipher. We showed that the approach seems

8.6. SIMULATIONS 129

Table 8.6: Example of guessing two bits prior to the Gröbner basis computation.
The key is 0008x, the plaintext is 0000x and the ciphertext is 7339x. The system
of equations has more than one solution. + denotes that the right key is found, ÷
denotes that the system has no solution, i.e. Magma returns the Gröbner basis {1},
· denotes that a wrong solution is found.

time time

− 853.0 +

x1, x2 7.937 + x13, x14 + 1 12.984 ÷
x1, x2 + 1 8.219 · x13 + 1, x14 212.266 ·
x1 + 1, x2 7.890 ÷ x13 + 1, x14 + 1 16.141 ÷
x1 + 1, x2 + 1 7.844 · x13, x15 13.907 +
x1, x3 8.109 + x13, x15 + 1 13.656 ·
x1, x3 + 1 7.921 ÷ x13 + 1, x15 14.250 ·
x1 + 1, x3 8.062 · x13 + 1, x15 + 1 13.359 ÷
x1 + 1, x3 + 1 8.360 ÷ x13, x16 224.063 +
x1, x4 8.062 · x13, x16 + 1 14.109 ÷
x1, x4 + 1 8.156 + x13 + 1, x16 13.750 ·
x1 + 1, x4 7.984 · x13 + 1, x16 + 1 14.500 ÷
x1 + 1, x4 + 1 8.109 ÷ x14, x15 224.422 +
x1, x5 112.891 + x14, x15 + 1 13.062 ·
x1, x6 123.422 + x14 + 1, x15 201.344 ÷
x1, x7 129.781 + x14 + 1, x15 + 1 13.204 ÷
x1, x8 118.984 + x14, x16 12.437 +
x13, x14 13.015 + x14, x16 + 1 13.172 ÷

to have some potential though our results do not pose a threat on any cipher.
However, more research needs to be done. Regarding the product method it would
be interesting to explore whether one can exploit the fact that the equations are
products of linear equations. Also, we did not search exhaustively for the best
probabilistic equations.

130 CHAPTER 8. PROBABILISTIC EQUATIONS

Table 8.7: Tests on SmallAES-2(2, 2, 2) where the value of two variables of S-box Si

is guessed prior to the Gröbner basis computation.

Si # tests # variables # equations average time deviation

− 10 40 210 870 40.0
S1 60 40 212 7.9 0.34
S2 60 40 212 100.8 110.7
S3 60 40 212 77.2 112.8
S4 60 40 212 40.6 66.4
S5 12 40 212 10.6 0.13
S6 12 40 212 182.2 172.2
S7 12 40 212 188.1 179.9
S8 12 40 212 13.1 2.6

Table 8.8: Computation time to obtain a Gröbner basis for SmallAES-2(2, 2, 2) when
guessing three bits. The text pair is chosen such that there is only one key in the
variety of the ideal. + denotes that we find the key.

time time time

x1, x2, x3 4.249 + x1, x5, x9 5.391 + x1, x2, x4 4.046 +
x1, x2, x13 4.593 + x1, x4, x15 4.640 + x1, x5, x16 5.531 +

8.6. SIMULATIONS 131

x2x4 + x6x7 + x6 + x7 + x8 + 1,

x2x5 + x6x7 + x4 + x5 + x6 + x7 + x8 + 1,

x4x5 + x6x7 + x2 + x5 + x6 + x7 + x8 + 1,

x2x6 + x4 + x5 + x6 + x8 + 1,

x4x6 + x6x7 + x4 + x6 + x7 + 1,

x5x6 + x6x7 + x2 + x4 + x7 + x8,

x2x7 + x6x7 + x4 + x5 + x6 + x7 + x8 + 1,

x4x7 + x2 + x4 + x5,

x5x7 + x6x7 + x4 + x5 + x6 + x7 + x8 + 1,

x2x8 + x2 + x4 + x5,

x4x8 + x8,

x5x8 + x8,

x6x8 + x2 + x4 + x5,

x7x8 + x2 + x4 + x5,

x1,

x3 + x4 + x5 + x6 + x7

Figure 8.4: The Gröbner basis of S-box S1 when x1 = 0.

x5x7,

x5x8 + x8,

x7x8,

x1,

x2,

x3 + x7 + x8 + 1,

x4 + x5,

x6 + x8 + 1

Figure 8.5: The Gröbner basis of S-box S1 when x1 = 0 and x2 = 0.

132 CHAPTER 8. PROBABILISTIC EQUATIONS

Chapter 9

Present

With the establishment of the AES, the need for new block ciphers has been greatly
diminished; for almost all block cipher applications the AES is an excellent and
preferred choice. However, it is not suitable for extremely constrained environments
such as RFID tags and sensor networks. In [10] we propose an ultra-lightweight
block cipher, Present. Both security and compact hardware efficiency have been
equally important during the design of the cipher. Intriguingly, the hardware re-
quirements for Present make it competitive with the leading compact stream ciphers
in the eSTREAM [51] stream cipher initiative.
One defining trend of this century’s IT landscape will be the extensive deployment of
tiny computing devices. These devices appear routinely in consumer items and also
form an integral part of a common communication infrastructure. For example as in
RFID-biometric and as artifact of everyday life, such as tags on clothes instructing
washing machines and a refrigerator handling the shopping in an intelligent house.
It is already recognized that such deployments bring a range of very particular se-
curity risks. Yet at the same time the cryptographic solutions, and particularly the
cryptographic primitives, we have at hand are unsatisfactory for extreme resource-
constrained environments.
Present is a hardware-optimized block cipher that has been carefully designed with
area and power constraints uppermost in mind. At the same time we have tried to
avoid a compromise in security. Present is inspired by the pioneering work embod-
ied in the DES [52] and complemented with features from two of the AES finalist
candidates: Rijndael [25] and Serpent [6] which demonstrated excellent performance
in hardware.
It is reasonable to ask why we might want to design a new block cipher. After all,
it has become an “accepted” fact that stream ciphers are, potentially, more com-
pact. Indeed, renewed efforts to understand the design of compact stream ciphers

133

134 CHAPTER 9. PRESENT

are underway with the eSTREAM project and several promising proposals offer ap-
pealing performance profiles. But we note a couple of reasons why we might want
to consider a compact block cipher. First, a block cipher is a flexible primitive and
by running a block cipher in counter mode we get a stream cipher. But second, and
perhaps more importantly, the art of block cipher design seems to be a little better
understood than that of stream ciphers.
The following sections describes the cipher Present and its security in particular
regarding the differential and algebraic properties of the cipher.

9.1 Goals and environment of use

The design criteria of Present are security, simplicity and efficiency. In this sec-
tion the design decisions are explained. First, however, we describe the anticipated
application requirements.
The cipher Present is suitable for extremely constrained environments and its design
does not aim for wide-spread use; we already have the AES [54] for this. Instead, it
targets specific applications for which the AES is unsuitable. These will generally
have the following characteristics.

• Applications will only require moderate security levels. Consequently, 80-bit
security will be more than adequate. Note that this is also the position taken
for hardware profile stream ciphers submitted to
eSTREAM [51].

• Applications are unlikely to require the encryption of large amounts of data.

• For many applications the key will be fixed at the time of device manufacture.
There will often be no need to re-key a device and many sophisticated key
manipulation attacks on block ciphers will not be possible. Attackers trying
to exploit some relation between encryption keys would need to physically
search among thousands of devices to find an appropriate pair.

• After security, the physical space required for an implementation will be the
primary consideration. This is closely followed by peak and average power
consumption, with the timing requirements being a third important metric.

• In applications that demand the most efficient use of space, the block cipher
will often only be implemented as encryption-only. In this way it can be
used within challenge-response authentication protocols and, with some careful
state management, it could be used for both encryption and decryption of
communications to and from the device by using the counter mode [55].

9.2. THE BLOCK CIPHER PRESENT 135

generateRoundKeys()
for i = 1 to 31 do

addRoundKey(state,Ki)
sBoxLayer(state)
pLayer(state)

end for

addRoundKey(state,K32)

plaintext

sBoxLayer

pLayer

...

sBoxLayer

pLayer

ciphertext

key register

addRoundKey

...

update

update

addRoundKey

Figure 9.1: A top-level algorithmic description of Present.

Taking all these considerations into account, we decided to make Present a 64-bit
block cipher with an 80-bit key. The literature contains a wide range of attacks that
manipulate time-memory-data trade-offs [9] or the birthday paradox when encrypt-
ing large amounts of data (see Chapter 3). However, such attacks depend alone on
the parameters of the block cipher and exploit no inner structure. Our goal is that
these attacks will be the best available to an adversary.

Encryption and decryption with Present have roughly the same physical require-
ments. Opting to support both encryption and decryption will result in a lightweight
block cipher implementation and one that is much smaller than an encryption-only
implementation of AES. However, opting to implement encryption-only Present will
give an ultra-lightweight solution.

We note that side-channel and invasive hardware attacks are likely to be a threat
to Present, as they are to all cryptographic primitives. For the likely applications,
however, the moderate security requirements reflect the very limited gain any at-
tacker would make in practice. In a risk assessment such attacks are unlikely to be
a significant factor.

9.2 The block cipher Present

Present is an SP-network that consists of 31 rounds. The block length is 64 bits
and two key lengths of 80 and 128 bits are supported. Given the applications
we have in mind, we recommend the version with 80-bit keys. This is more than
adequate security for the low-security applications typically required in tag-based
deployments, but just as important, this matches the design goals of hardware-
oriented stream ciphers in the eSTREAM project and allows us to make a fairer

136 CHAPTER 9. PRESENT

comparison.
Each of the 31 rounds consists of exclusive-or to introduce a round key Ki for
1 ≤ i ≤ 32, where K32 is used for post-whitening, a linear bitwise permutation
and a non-linear substitution layer. The non-linear layer uses a single 4-bit S-box
S which is applied 16 times in parallel in each round. The cipher is described in
pseudo-code in Figure 9.1, and each stage is now specified in turn. Throughout this
chapter we number bits from zero, with bit zero as the rightmost bit of the state or
word.

addRoundKey.

Given round key Ki = ki
63 . . . ki

0 for 1 ≤ i ≤ 32 and current state x63 . . . x0, ad-
dRoundKey consists of the operation for 0 ≤ j ≤ 63,

xj → xj ⊕ ki
j.

9.2.1 The permutation layer

pLayer

The bit permutation used in Present is given by the following table. Bit i of state
is moved to bit position P (i).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Design of the pLayer

When choosing the mixing layer, our focus on hardware efficiency demands a linear
layer that can be implemented with a minimum number of processing elements, i.e.
transistors. This leads us directly to bit permutations.
To obtain good diffusion, we would like each bit of the state to depend on each of the
input bits after a few rounds. If we assume that all four output bits from a four-bit
S-box depend on all four input bits, then at least three rounds will be needed to
achieve good diffusion for a block length of 64 bits.

9.2. THE BLOCK CIPHER PRESENT 137

ki+1

S S S S S S S S S S S S S S S S

ki

S S S S S S S S S S S S S S S S

Figure 9.2: The S/P network for Present.

When considering the bit permutation P , one condition for good diffusion can be
phrased in terms of matrices. Define the 4 × 4 and 64 × 64 GF(2k) matrices A and
S such that

A =

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 and S =

A 0 0 . . . 0
0 A 0 . . . 0
...

. . .
...

0 . . . 0 A 0
0 . . . 0 0 A

.

If L denotes the 64 × 64 matrix that represents the bit permutation P , then every
bit of the three-round output will depend on every bit of input if, and only if, the
matrix SLSLS is the “all one” matrix. This is the case for our chosen permutation.
Given our focus on simplicity, we have chosen a very regular bit-permutation and
this in turn helps to make a clear security analysis.

9.2.2 The S-box

sBoxlayer

The S-box used in Present is a four-bit to four-bit S-box S : F
4
2 → F

4
2. The action

of this function in hexadecimal notation is given by the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

138 CHAPTER 9. PRESENT

For sBoxLayer the current state x63 . . . x0 is considered as sixteen 4-bit words w15 . . . w0

where wi = x4∗i+3||x4∗i+2||x4∗i+1||x4∗i for 0 ≤ i ≤ 15 and the output nibble S[wi]
provides the updated state values in the obvious way.

Design of the S-box

The cipher applies a single four-bit to four-bit S-box, S : F
4
2 → F

4
2. Such a small

S-box is a direct consequence of the pursuit of hardware efficiency, with the imple-
mentation of such an S-box typically being much more compact than that required
for an eight-bit S-box.
Since we use a bit permutation for the linear diffusion layer, AES-like diffusion
techniques [25] are not an option for Present. Therefore we place some additional
conditions on the S-boxes to improve the so-called avalanche of change. More pre-
cisely, the S-box for Present is chosen to fulfill the following conditions:

1. For any fixed non-zero input difference ∆I ∈ F
4
2 and any fixed non-zero output

difference ∆O ∈ F
4
2 we require

#{x ∈ F
4
2 |S(x) + S(x + ∆I) = ∆O} ≤ 4.

This means that the best one round differential has probability 2−2.

2. For any fixed non-zero input difference ∆I ∈ F
4
2 and any fixed output difference

∆O ∈ F
4
2 such that wt(∆I) = wt(∆O) = 1, where wt(∆) is the weight of ∆,

we have

{x ∈ F
4
2 |S(x) + S(x + ∆I) = ∆O} = ∅.

This means that when the S-box input has only one bit set to one, the output
has at least two bits set to one.

3. The bias of all linear approximations is at most 2−2.

4. The bias of any single-bit approximation is at most 2−3.

The differential and linear distribution of the Present S-box is given in Table 9.1
and Table 9.2

9.2.3 Key schedule

Present can take keys of either 80 or 128 bits. The user-supplied key is stored in
a key register K and represented as κ79κ78 . . . κ0. At round i the 64-bit round key

9.2. THE BLOCK CIPHER PRESENT 139

Table 9.1: Difference distribution for the Present S-box

α → β 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0
2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0
3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0
4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0
5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0
6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4
7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4
8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4
9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0
a 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0
b 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0
c 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0
d 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0
e 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0
f 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4

Table 9.2: Linear approximations for the Present S-box

α → β 1 2 3 4 5 6 7 8 9 a b c d e f

1 0 0 0 0 −4 0 −4 0 0 0 0 0 −4 0 4
2 0 2 2 −2 −2 0 0 2 −2 0 4 0 4 −2 2
3 0 2 2 2 −2 −4 0 −2 2 −4 0 0 0 −2 −2
4 0 −2 2 −2 −2 0 4 −2 −2 0 −4 0 0 −2 2
5 0 −2 2 −2 2 0 0 2 2 −4 0 4 0 2 2
6 0 0 −4 0 0 −4 0 0 −4 0 0 4 0 0 0
7 0 0 4 4 0 0 0 0 −4 0 0 0 0 4 0
8 0 2 −2 0 0 −2 2 −2 2 0 0 −2 2 4 4
9 4 −2 −2 0 0 2 −2 −2 −2 −4 0 −2 2 0 0
a 0 4 0 2 2 2 −2 0 0 0 −4 2 2 −2 2
b −4 0 0 −2 −2 2 −2 −4 0 0 0 2 2 2 −2
c 0 0 0 −2 −2 −2 −2 4 0 0 −4 −2 2 2 −2
d 4 4 0 −2 −2 2 2 0 0 0 0 2 −2 2 −2
e 0 2 2 −4 4 −2 −2 −2 −2 0 0 −2 −2 0 0
f 4 −2 2 0 0 −2 −2 −2 2 4 0 2 2 0 0

140 CHAPTER 9. PRESENT

Ki = k63k62 . . . k0 consists of the 64 leftmost bits of the current contents of register
K. Thus at round i we have that:

Ki = k63k62 . . . k0 = κ79κ78 . . . κ16.

After extracting the round key Ki, the key register K = κ79κ78 . . . κ0 is updated as
follows.

1. [κ79κ78 . . . κ1κ0] = [κ18κ17 . . . κ20κ19]
2. [κ79κ78κ77κ76] = S[κ79κ78κ77κ76]
3. [κ19κ18κ17κ16κ15] = [κ19κ18κ17κ16κ15] ⊕ round_counter

Thus, the key register is rotated by 61 bit positions to the left, the left-most four bits
are passed through the Present S-box, and the round_counter value i is exclusive-
ored with bits κ19κ18κ17κ16κ15 of K with the least significant bit of round_counter
on the right.
The key schedule for the version of Present that takes 128-bit keys is described as
follows. The user-supplied key is stored in a key register K and represented as
κ127κ126 . . . κ0. At round i the 64-bit round key Ki = k63k62 . . . k0 consists of the 64
leftmost bits of the current contents of register K. Thus at round i we have that:

Ki = k63k62 . . . k0 = κ127κ126 . . . κ64.

After extracting the round key Ki, the key register K = κ127κ126 . . . κ0 is updated
as follows.

1. [κ127κ126 . . . κ1κ0] = [κ66κ65 . . . κ68κ67]
2. [κ127κ126κ125κ124] = S[κ127κ126κ125κ124]
3. [κ123κ122κ121κ120] = S[κ123κ122κ121κ120]
4. [κ66κ65κ64κ63κ62] = [κ66κ65κ64κ63κ62] ⊕ round_counter

Thus, the key register is rotated by 61 bit positions to the left, the left-most eight bits
are passed through two Present S-boxes, and the round_counter value i is exclusive-
ored with bits κ66κ65κ64κ63κ62 of K with the least significant bit of round_counter
on the right.

9.3 Hardware performance

In [10] the hardware performance of Present is discussed in detail. The results are
summarized in Table 9.3. For each algorithm it states the key length, the block
size, and the number of cycles required to encrypt one block of the appropriate
length. The throughput is stated in Kbps, which is equivalent to 1000 bits per

9.4. DIFFERENTIAL ATTACKS 141

Table 9.3: A comparison of the clock cycles, the power consumption, and the gate
count required for a variety of hardware efficient ciphers. Where appropriate we
have taken the version of the cipher that provides the closest fit to the parameters
of Present.

Key Block Cycles Throughput Logic Area
size size per at 100KHz process GE rel.
(bits) (bits) block (Kbps) (µW) pJ/bit (GE)

Block ciphers

Present-80 80 64 32 200 0.18µm 1570 1

AES-128 [31] 128 128 1032 12.4 0.35µm 3400 2.17

HIGHT [38] 128 64 1 6400 0.25µm 3048 1.65

mCrypton [46] 96 64 13 492.3 0.13µm 2681 1.71

Camellia [3] 128 128 20 640 0.35µm 11350 7.23

DES [56] 56 64 144 44.4 0.18µm 2309 1.47

DESXL [56] 184 64 144 44.4 0.18µm 2168 1.38

Stream ciphers

Trivium [36] 80 1 1 100 0.13µm 2599 1.66

Grain [36] 80 1 1 100 0.13µm 1294 0.82

second. Although power figures are not comparable for different processes, we list
both the total power consumption at a clock speed of 100 KHz and the logic process
which was used for the implementation. From these figures we derive the energy
consumption per bit, which is of great interest for battery powered devices. The last
two columns provide the area requirements both in absolute and relative figures.
One gate equivalence (GE) equals the area which is occupied by a NAND gate of
the appropriate process.

9.4 Differential attacks

This section mainly contains our differential observations on Present. In Section
9.4.1 we give a short description of the differential result on 16 rounds of Present.
In order to evaluate the resistance of Present to differential and linear cryptanalysis
we provide a lower bound to the number of so-called active S-boxes involved in a
differential (or linear) characteristic.

Theorem 9.1. Any five-round differential characteristic of Present has a minimum
of 10 active S-boxes.

142 CHAPTER 9. PRESENT

Figure 9.3: The grouping of S-boxes in Present for the purposes of cryptanalysis.
The input numbers indicate the S-box origin from the preceding round and the
output numbers indicate the destination S-box in the following round.

We make the following observations. We divide the 16 S-boxes in Present into four
groups: boxes 0 to 3, boxes 4 to 7, boxes 8 to 11, and boxes 12 to 15 (see Figure 9.3).
By examining the permutation layer one can then establish the following.

1. The four input bits to a particular S-box come from 4 distinct S-boxes of the
same group.

2. The sixteen input bits to a group of four S-boxes come from 16 different S-
boxes.

3. The four output bits from a particular S-box enter four distinct S-boxes, each
of which belongs to a distinct group of S-boxes in the subsequent round.

4. The output bits of S-boxes in distinct groups go to distinct S-boxes in the
subsequent round.

The proof of Theorem 9.1 follows from these observations.

Proof. Recalling that the rounds are indexed from 1 to 31, consider five consecutive
rounds of Present ranging from i−2 to i+2 for i ∈ [3 . . . 29]. Let Dj be the number of
active S-boxes in round j. If Dj ≥ 2, for i−2 ≤ j ≤ i+2, then the theorem trivially
holds. So let us suppose that one of the Dj is equal to one. We can distinguish
several cases:

Case Di = 1. The S-box of Present is such that a difference in a single input bit
causes a difference in at least two output bits (cf. the second design criterion).
Thus Di−1 + Di+1 ≥ 3. Using observation 1 above, all active S-boxes of round
i − 1 belong to the same group, and each of these active S-boxes have only
a single bit difference in their output. So according to observation 2 we have
that Di−2 ≥ 2Di−1. Conversely, according to observation 3, all active S-boxes

9.4. DIFFERENTIAL ATTACKS 143

in round i + 1 belong to distinct groups and have only a single bit difference
in their input. So according to observation 4 we have that Di+2 ≥ 2Di+1.
Together this gives

∑i+2
j=i−2 Dj ≥ 1 + 3 + 2 × 3 = 10.

Case Di−1 = 1. If Di = 1 we can refer to the first case, so let us suppose that
Di ≥ 2. According to observation 3 above, all active S-boxes of round i belong
to distinct groups and have only a single bit difference in their input. Thus,
according to observation 4, Di+1 ≥ 2Di ≥ 4. Further, all active S-boxes
in round i + 1 have only a single bit difference in their input and they are
distributed so that at least two groups of S-boxes contain at least one active
S-box. This means that Di+2 ≥ 4 and we can conclude that

∑i+2
j=i−2 Dj ≥

1 + 1 + 2 + 4 + 4 = 12.

Case Di+1 = 1. If Di = 1 we can refer to the first case. So let us suppose
that Di ≥ 2. According to observation 1 above, all active S-boxes of round i
belong to the same group and each of these active S-boxes has only a single bit
difference in their output. Thus, according to observation 2, Di−1 ≥ 2Di ≥ 4.
Further, all active S-boxes of round i − 1 have only a single bit difference in
their output, and they are distributed so that at least two groups contain at
least two active S-boxes. Thus, we have that Di−2 ≥ 4 and therefore that∑i+2

j=i−2 Dj ≥ 4 + 4 + 2 + 1 + 1 = 12.

Cases Di+2 = 1 or Di−2 = 1. The reasoning for these cases is similar to those for
the second and third cases.

The theorem follows.

By using Theorem 9.1 we see that any differential characteristic over 25 rounds of
Present must have at least 5 × 10 = 50 active S-boxes. The maximum differen-
tial probability of a Present S-box is 2−2 and so the probability of a single 25-round
differential characteristic is bounded by 2−100. Advanced techniques allow the crypt-
analyst to remove the outer rounds from a cipher to exploit a shorter differential
characteristic. However, even if we were to allow an attacker to remove six rounds
from the cipher, a situation without precedent, then the amount of data required to
exploit the remaining 25-round differential characteristic exceeds the data available.
The security bounds are more than we require.

Simulations

We can identify differential characteristics that only involve ten S-boxes over five
rounds. For instance, the following two-round iterative differential characteristic

144 CHAPTER 9. PRESENT

involves two S-boxes per round and holds with probability 2−25 over five rounds.

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

→ 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 = ∆.

We have experimentally confirmed the probability of the two-round iterative differ-
ential. In experiments over 100 independent keys using 223 chosen plaintext pairs,
the observed probability was as predicted. This seems to suggest that for this par-
ticular characteristic there is no accompanying significant differential.

There is also a more complicated five-round differential characteristic that holds
with probability 2−21 over five rounds.

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 0

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A

→ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

→ 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

→ 0 0 0 0 0 0 0 0 0 0 8 8 0 0 8 8

→ 0 0 3 3 0 0 0 0 0 0 3 3 0 0 3 3.

The five round characteristic extends to eight rounds by adding the characteristic

∆ = 0 0 3 3 0 0 0 0 0 0 3 3 0 0 3 3.

→ 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3 3.

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B.

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.

It looks a bit odd that it comes back to having a single S-box after having had as
many as six active S-boxes. For this reason we did some further analysis of the
phenomena. We found that it is not an isolated event. In fact we discovered other
characteristics that add to the 8 round differential

(0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 0) → (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1)

9.4. DIFFERENTIAL ATTACKS 145

for example the characteristic given below

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 0

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A

→ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

→ 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

→ 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

→ 0 0 0 0 0 0 0 0 0 0 3 3 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.

However, these eight round characteristics have probabilities 2−42 respectively 2−50

and therefore is seems that the eight round differential will not be particular useful.
Nevertheless the observation of the 7-round differential

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A) → (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1)

encourage examining whether there are other characteristics which starts and end
with only one active S-box, and whether they are accompanied by significant differ-
entials. It turns out that there are many such characteristics and among these some
that contribute to the same differential. In Appendix B.1.1 we list a number of five,
six, seven and eight round characteristics with the special property that they start
and end with only one active S-box.
In the following we examine the seven round differential

(0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 0) → (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1).

We note that this differential has the same differences as the eight-round differential
given above. The characteristics (which we found) that contribute to respectively
the seven and the eight-round differential are listed in Appendix B.1.1. For the seven
round differential we found three characteristics that contribute to the differential.
Their probabilities are 2−39, 2−40, and 2−46. This implies that in order to confirm
the probability of the differential we would have to encrypt at least 239 pairs which
is rather time consuming. Instead we examine the four round differential

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A) → (0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3)

146 CHAPTER 9. PRESENT

which is satisfied for four-round subchains of the three seven-round characteristics.
The probabilities of the four round characteristics are 2−26, 2−27, and 2−33. The
four round differential was tested over 100 keys chosen at random and 226 chosen
plaintext pairs, i.e. a total of almost 233 pairs. In the experiments we counted 154
right pairs out of which 52 followed the characteristic

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A

→ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

→ 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

→ 0 0 0 0 0 0 0 0 0 0 3 3 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3,

which has probability 2−27. The remaining 102 pairs followed the characteristic

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A

→ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

→ 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

→ 0 0 0 0 0 0 0 0 0 0 5 5 0 0 5 5

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3,

which has probability 2−26. Compared to the anticipated number of right pair
2332−27 = 26, 2332−26 = 27, and 2332−33 = 1 the outcome of our tests seems reason-
able and does not reveal other characteristics. The simulations were also performed
for the five-round differential

(0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7) → (0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3)

Again the differential was tested for 100 keys chosen at random and 226 chosen
plaintext pairs. We found in total 8 right pairs out of which 5 follow the characteristic

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A

→ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

→ 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

→ 0 0 0 0 0 0 0 0 0 0 5 5 0 0 5 5

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3.

9.4. DIFFERENTIAL ATTACKS 147

which has probability 2−30. The remaining 3 pairs follow the characteristic

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A

→ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

→ 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

→ 0 0 0 0 0 0 0 0 0 0 3 3 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3.

which has probability 2−31. Again the numbers fit nicely with the expected number
of right pairs which is respectively 233/230 = 6 and 233/231 = 4.
As a final observation we give the six-round iterative characteristic given below

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

→ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

→ 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

→ 0 0 0 0 0 0 0 0 0 0 3 3 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

which has probability 2−35. We examined the characteristic using 229 chosen text
pairs and 100 keys chosen at random. As anticipated from we find one pair that
satisfies the six-round differential, namely one that follows the characteristic.
Summing up, it seems that even though more characteristics comprise a differential
with the property of starting and ending with only one active S-box, the probability
is too low to threaten the security of the cipher. However, we are aware that the
effect of more characteristics contributing to the same differential is likely to increase
with the number of rounds.

9.4.1 Analysis of 16-Round Present

In [63] a differential attack on 16 rounds of Present is described. The paper presents
a 14-round characteristic with probability 2−62 and a 15-round characteristic with

148 CHAPTER 9. PRESENT

probability 2−66. The authors find the following four-round iterative characteristic

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 4

→ 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 9

→ 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

→ 0 5 0 0 0 0 0 0 0 0 0 0 0 5 0 0

→ 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 4

which has probability 2−18. The characteristic is applied to build a 14-round charac-
teristic which has probability 2−62. They also find 23 similar 14-round characteristics
that all have probability 2−62. The characteristics, which all have two active S-boxes
in both first and last round, are applied to derive 8 bits of the second last round key
and 24 bits of the last round key of a 16-round version of Present. The remaining
48 bits of the cipher key are obtained by exhaustive search.

The 14-round characteristics and 16-round differential attack are the best known
differential results on Present. However, we note that the attack is very far from
compromising the security of Present. Further more we note that no accompanying
differential is reported for any of the characteristics presented in [63].

9.4.2 Algebraic attacks

Algebraic attacks have had better success when applied to stream ciphers than block
ciphers. Nevertheless, the very simple structure of Present means that they merit
serious study. This is particularly the case since, in principle, the key could be
recovered from only a few known plaintext/ciphertext pairs.

The Present S-box is described by 21 quadratic equations in the eight input/output-
bit variables over GF (2). This is not surprising since it is well-known that any
four bit S-box can be described by at least 21 such equations. The entire cipher
can then be described by e = n × 21 quadratic equations in v = n × 8 variables,
where n is the number of S-boxes in the encryption algorithm and the key schedule.
For Present we have n = (31 × 16) + 31 thus the entire system consists of 11, 067
quadratic equations in 4, 216 variables. Applying the method of Chapter 6 we find
by Theorem 6.3 and 6.2 that, at degree five, there are less equations than terms.
At degree six there are 262.759 equations in at most 262.755 terms, i.e. the number of
equations exceeds the number of terms by 254. As described it is unclear whether
this means that the iterated XL solves the equations at degree five, but even if it
would, the computation complexity would be about 2191.

9.5. FURTHER INFORMATION 149

As described in Chapter 7 simulations on small-scale versions of the AES show that
for all but the very smallest SP-networks one quickly encounters difficulties in both
time and memory complexity (see Chapter 7). The same applies to Present.

Simulations

We ran a number of simulations on small-scale variants of Present using the F4

algorithm in Magma. When there is a single S-box, i.e. a very small block size of
four bits, then Magma can solve the resulting system of equations over many rounds.
However, by increasing the block size and adding S-boxes, along with an appropriate
version of the linear diffusion layer, the system of equations soon becomes too large.
Even when considering a system consisting of seven S-boxes, i.e. a block size of 28
bits, we were unable to get a solution in a reasonable time to a two-round version
of the reduced cipher. Our analysis suggests that algebraic attacks are unlikely to
pose a threat to Present.

9.5 Further information

In this chapter we only discussed differential and algebraic attacks on Present. Other
important information regarding the security against linear cryptanalysis and more
advanced techniques as well as the performance of Present can be found in the cipher
proposal [10]. For instance there is a result, similar to Theorem 9.1, that limits the
maximum bias of linear characteristics. The theorem implies that a linear attack
based on a linear characteristic over 28 rounds of Present requires at least 284 known
plaintext/ciphertext which exceeds the size of the text space.

150 CHAPTER 9. PRESENT

Chapter 10

Conclusion

The objective of this thesis was block cipher analysis. We studied general types
of cryptanalysis while the main focus was aimed towards algebraic cryptanalysis.
The ambition has been to extend the theory of algebraic attacks and the practical
experience on block ciphers. The author also took part in the design of a new block
cipher Present. The cipher targets constrained environments like for instance RFID
chips for which reason it has a block size of 64 bits. We focused in particular on the
security of Present against differential and algebraic attacks.
The most important issue regarding any attack is determining the complexity (both
time and memory). While this is well-understood in linear and differential crypt-
analysis it is still unanswered for algebraic cryptanalysis. The algebraic attacks can
be classified into the categories of linearization techniques and Gröbner bases tech-
niques. Though the categories are closely related the linearization techniques turn
out to be advantageous for the analysis presented in Chapter 6. In relation to this
we proposed a new method for generating the algebraic equations in an XL similar
approach. The idea is to treat the equations of the linear layer and the S-box layer
separately in the initial multiplication step of XL. Our approach preserves the struc-
ture of the algebraic equations and hereby provides a new angle on the equations
over block cipher generated by XL techniques. Two theorems are presented giving
the exact number of linearly independent equations one can generate in the initial
steps of the algorithm. The results are applied to AES and a variant of AES, and
it is suggested that the variant resists algebraic attacks better than AES. Also, we
presented a number of simulations on small block ciphers.
While people believe that algebraic attacks in their current form are not likely to
compromise the security of any realistic block cipher it is important to seek through
possible improvement and ideas. In this work we looked into the possibility of
applying probabilistic equations on algebraic attacks. The idea and procedure of

151

152 CHAPTER 10. CONCLUSION

obtaining probabilistic equations for S-boxes of different dimensions was presented
and discussed.
Also, this work extends the practical experience with algebraic attacks by a number
of simulations of algebraic attacks. We applied Magma’s implementation of F4 for
Gröbner bases computation on respectively small scale variants of AES and Present.
To our knowledge the results presented in this thesis are the best algebraic results
on small scale variants of AES. Moreover, the approach of Chapter 6 was tested on
some small block ciphers with some success. Finally, the derivation and application
of probabilistic equations in algebraic attacks on block cipher was examined. From
this we make interesting observations and in some cases improve the computation
time significantly. However, for the most realistic down scale of AES the results are
limited to only a few rounds of encryption because we are bounded by the maximal
memory consumption allowed by the software package Magma.

10.1 Future Research

The chapter on probabilistic equations certainly leaves open questions for research.
For example how do we find the best probabilistic equations and how do we apply
them in practice? Regarding the probabilistic equations over 8-bit to 8-bit S-boxes it
would be interesting to examine whether one could exploit their special form, being
products of two linear equations and extremely sparse.
In Chapter 6 we presented methods of counting and generating equations in an XL
like approach. Regarding this, there is still one important question left open, namely
how many equations will be linearly independent when the equations of the S-box
layer and the linear layer are mixed in Gaussian elimination? This appears to be a
difficult question to answer, but we think that it is a good topic for further research.

Appendix A

AES

A.1 The AES ecryption

In the following the input of the SubBytes function is expressed as four 32-bit words
(state columns)

x4 cot i+3x4 cot i+2x4 cot i+1x4 cot i

for i = 0, . . . , 9. The output of MixColumns is expressed as

y4 cot i+3y4 cot i+2y4 cot i+1y4 cot i

for i = 0, . . . , 9. The corresponding plaintext and cipher text is expressed as

p3, p2, p1, p0,

c3, c2, c1, c0 .

The round keys are similarly defined as

w4 cot i+3w4 cot i+2w4 cot i+1w4 cot i

are i = 0, . . . , 10. These 32-bit words are related by the following equations:

x0 = p0 + w0, (A.1)

x1 = p1 + w1, (A.2)

x2 = p2 + w2, (A.3)

x3 = p3 + w3. (A.4)

153

154 APPENDIX A. AES

x4 = y0 + w4, (A.5)

x5 = y1 + w5, (A.6)

x6 = y2 + w6, (A.7)

x7 = y3 + w7. (A.8)

x8 = y4 + w8, (A.9)

x9 = y5 + w9, (A.10)

x10 = y6 + w10, (A.11)

x11 = y7 + w11. (A.12)

x12 = y8 + w12, (A.13)

x13 = y9 + w13, (A.14)

x14 = y10 + w14, (A.15)

x15 = y11 + w15. (A.16)

x16 = y12 + w16, (A.17)

x17 = y13 + w17, (A.18)

x18 = y14 + w18, (A.19)

x19 = y15 + w19. (A.20)

x20 = y16 + w20, (A.21)

x21 = y17 + w21, (A.22)

x22 = y18 + w22, (A.23)

x23 = y19 + w23. (A.24)

x24 = y20 + w24, (A.25)

x25 = y21 + w25, (A.26)

x26 = y22 + w26, (A.27)

x27 = y23 + w27. (A.28)

x28 = y24 + w28, (A.29)

x29 = y25 + w29, (A.30)

x30 = y26 + w30, (A.31)

x31 = y27 + w31. (A.32)

A.2. THE KEY-SCHEDULE OF AES WITH 128 BIT KEYS 155

x32 = y28 + w32, (A.33)

x33 = y29 + w33, (A.34)

x34 = y30 + w34, (A.35)

x35 = y31 + w35. (A.36)

x36 = y32 + w36, (A.37)

x37 = y33 + w37, (A.38)

x38 = y34 + w38, (A.39)

x39 = y35 + w39. (A.40)

c0 = y36 + w40, (A.41)

c1 = y37 + w41, (A.42)

c2 = y38 + w42, (A.43)

c3 = y39 + w43. (A.44)

A.2 The key-schedule of AES with 128 bit keys

The 11 AES round keys, each consisting of four 32-bit key words are derived as fol-
lows. The cipher key is loaded directly into the first round key K(0) = (w0, w1, w2, w3).
The subsequent round key for i ∈ [0; 9]
w4(i+1), w4(i+1)+1, w4(i+1)+2, w4(i+1)+3 contains a non-linear part derived by passing
w4(i)+3 through a linear mix R (RotWord) and an S-box layer S consisting of four
S-boxes and subsequently adding a round dependent constant consti. We denote
the S-box variables of the key schedule sin

i , sout
i . They are defined by

sout
i = S(R(sin

i)) = S(R(w4i+3)) + consti .

K(0) =

w0 ,

w1 ,

w2 ,

w3 ,

K(1) =

w4 = S(R(sin
0)) + const0 + w0 = sout

0 + w0 ,

w5 = w4 + w1 ,

w6 = w5 + w2 ,

w7 = w6 + w3 = sin
1 ,

156 APPENDIX A. AES

K(2) =

w8 = S(R(sin
1)) + const1 + w4 = sout

1 + w4 ,

w9 = w8 + w5 ,

w10 = w9 + w6 ,

w11 = w10 + w7 = sin
2 ,

K(3) =

w12 = S(R(sin
2)) + const2 + w8 = sout

2 + w8 ,

w13 = w12 + w9 ,

w14 = w13 + w10 ,

w15 = w14 + w11 = sin
3 ,

K(4) =

w16 = S(R(sin
3)) + const3 + w12 = sout

3 + w12 ,

w17 = w16 + w13 ,

w18 = w17 + w14 ,

w19 = w18 + w15 = sin
4 ,

K(5) =

w20 = S(R(sin
4)) + const4 + w16 = sout

4 + w16 ,

w21 = w20 + w17 ,

w22 = w21 + w18 ,

w23 = w22 + w19 = sin
5 ,

K(6) =

w24 = S(R(sin
5)) + const5 + w20 = sout

5 + w20 ,

w25 = w24 + w21 ,

w26 = w25 + w22 ,

w27 = w26 + w23 = sin
6 ,

K(7) =

w28 = S(R(sin
6)) + const6 + w24 = sout

6 + w24 ,

w29 = w28 + w25 ,

w30 = w29 + w26 ,

w31 = w30 + w27 = sin
7 ,

K(8) =

w32 = S(R(sin
7)) + const7 + w28 = sout

7 + w28 ,

w33 = w32 + w29 ,

w34 = w33 + w30 ,

w35 = w34 + w31 = sin
8 ,

K(9) =

w36 = S(R(sin
8)) + const8 + w32 = sout

8 + w32 ,

w37 = w36 + w33 ,

w38 = w37 + w34 ,

w39 = w38 + w35 = sin
9 ,

K(10) =

w40 = S(R(sin
9)) + const9 + w36 = sout

9 + w36 ,

w41 = w40 + w37 ,

w42 = w41 + w38 ,

w43 = w42 + w39 .

A.3. LINEAR EQUATIONS FOR THE AES 157

A.3 Linear equations for the AES

In the following we list the linear equations for AES derived according to the de-
scription of Section 3.8.1. The key variables which are not inputs or output of an
S-box in the key schedule. The equations describes 32-bit words and therefore each
correspond to 32 equations over GF (2), in total we obtain 50 · 32 = 1600 linear
equations over GF (2).

x4 + sout
0 + y0 + x0+ = p0

x5 + sout
0 + y1 + y0 + x1 = p1 + p0

x6 + sout
0 + y2 + x2 + x1 + x0 = p2 + p1 + p0

x7 + sout
0 + y3 + x3 + x2 + x1 + x0 = p3 + p2 + p1 + p0

x8 + sout
1 + y4 + x4 + y0 = 0

x9 + sout
1 + y5 + x5 + sout

0 + y1 + x0 = p0

x10 + sout
1 + y6 + x6 + y2 + x1 = p1

x11 + sout
1 + y7 + x7 + y7 + sout

0 + x2 + x0 = p2 + p0

x12 + sout
2 + y8 + x8 + y4 = 0

x13 + sout
2 + y9 + x9 + sout

1 + y5 + sout
0 + x0 = p0

x14 + sout
2 + y10 + x10 + x6 + sout

0 + x1 + x0 = p1 + p0

x15 + sout
2 + y11 + x11 + y7 + sout

1 + x2 + x1 = p2 + p1

x16 + sout
3 + y12 + x12 + y8 = 0

x17 + sout
3 + y13 + x13 + sout

2 + y9 +

sout
1 + sout

0 + x0 = p0

x18 + sout
3 + y14 + x14 + y10 + sout

1 + x1 = p1

x19 + sout
3 + y15 + x15 + y11 + sout

2 + x2 = p2

x20 + sout
4 + y16 + x16 + y12 = 0

x21 + sout
4 + y17 + x17 + sout

3 + y13 +

sout
2 + sout

1 + sout
0 + x1 + x0 = p1 + p0

x22 + sout
4 + y18 + x18 + y14 + sout

2 + sout
0 + x0 = p0

x23 + sout
4 + y19 + x19 + sout

3 + y15 +

sout
0 + x2 + x1 + x0 = p2 + p1 + p0

158 APPENDIX A. AES

x24 + sout
5 + y20 + x20 + y16 = 0

x25 + sout
5 + y21 + x21 + sout

4 + y17 +

sout
3 + sout

2 + sout
1 + sout

0 + x0 = p0

x26 + sout
5 + y22 + x22 + y18 + sout

3 + sout
1 + x1 = p1

x27 + sout
5 + y23 + x23 + sout

4 + y19 + sout
1 + sout

0 + x2 + x0 = p2 + p0

x28 + sout
6 + y24 + x24 + y20 = 0

x29 + sout
6 + y25 + x25 + sout

5 + y21 +

sout
4 + sout

3 + sout
2 + sout

1 + sout
0 + x0 = p0

x30 + sout
6 + y26 + x26 + y22 +

sout
4 + sout

2 + sout
0 + x1 + x0 = p1 + p0

x31 + sout
6 + y27 + x27 + y23 +

sout
5 + sout

2 + sout
1 + x2 + x1 = p2 + p1

x32 + sout
7 + y28 + x24 + y20 = 0

x33 + sout
7 + y29 + x25 + sout

6 + y21 +

sout
5 + sout

4 + sout
3 + sout

2 + sout
1 + sout

0 + x0 = p0

x34 + sout
7 + y30 + x26 + y22 +

sout
5 + sout

3 + sout
1 + x1 = p1

x35 + sout
7 + y31 + x27 + sout

6 + y23 + sout
3 + x2 = p2

x36 + sout
8 + y32 + x28 + y24 = 0

x37 + sout
8 + y33 + x29 + sout

7 + y25 +

sout
6 + sout

5 + sout
4 + sout

3 + sout
2 + sout

1 + sout
0 + x0 = p0

x38 + sout
8 + y34 + x30 + y26 +

sout
6 + sout

4 + sout
2 + sout

0 + x0 = p0

x39 + sout
8 + y35 + x31 + y27 +

sout
7 + sout

4 + sout
3 + sout

0 + x2 + x1 + x0 = p2 + p1 + p0

y36 + sout
9 + y32 + x36 = c0

y37 + sout
9 + y33 + sout

8 + x37 +

sout
7 + sout

6 + sout
5 + sout

4 + sout
3 + sout

2 + sout
1 + sout

0 + x0 = c1 + p1

y38 + sout
9 + y34 + x38 +

sout
7 + sout

5 + sout
3 + sout

1 + x1 = p1 + c2

y39 + sout
9 + y35 + x39 +

sout
8 + sout

5 + sout
1 + sout

0 + x2 + x0 = p2 + p0 + c3

sin
0 + x3 = p3

sin
1 + sout

0 + x3 + x2 + x1 + x0 = p3 + p2 + p1 + p0

sin
2 + sout

1 + x3 + x1 = p3 + p1

sin
3 + sout

2 + x3 + x2 = p3 + p2

sin
4 + sout

3 + x3 = p3

sin
5 + sout

4 + sout
1 + x3 + x2 + x1 + x0 = p3 + p2 + p1 + p0

sin
6 + sout

5 + x3 + x1 = p3 + p1

sin
7 + sout

6 + sout
2 + x3 + x2 = p3 + p2

A.3. LINEAR EQUATIONS FOR THE AES 159

16
0

A
P

P
E

N
D

IX
A

.
A

E
S

Figure A.1: Equations for one AES S-box over GF (2) in the input-output bits
x7, x6, x5, x4, x3, x2, x1, x0, y7, y6, y5, y4, y3, y2, y1, y0

y6y7 + y5y6 + y4y7 + y4y5 + y3y6 + y2y6 + y2y4 + y1y7 + y1y5 + y1y4 + y1y3 + y0y5 + y0y4 + x7y7 + x7y6 + x7y5 + x7y4 + x7y3 +

x7y1 + x7y0 + x6y6 + x6y2 + x6y0 + x5y6 + x5y5 + x5y2 + x5y0 + x5x6 + x4y7 + x4y6 + x4y5 + x4y2 + x4y1 + x4x6 + x4x5 + x3y5 + x3y4

+x3y1 + x3y0 + x3x7 + x3x6 + x3x5 + x3x4 + x2y7 + x2y6 + x2y4 + x2y1 + x2x7 + x2x6 + x2x5 + x2x3 + x1y6 + x1x3 + x0x6 + 1 = 0

y5y6 + y4y7 + y4y6 + y4y5 + y3y7 + y3y6 + y2y7 + y2y5 + y2y4 + y2y3 + y1y7 + y1y2 + y0y7 + y0y6 + y0y5 + y0y3 + y0y1 + x7y7 +

x7y6 + x7y5 + x7y3 + x7y2 + x7y0 + x6y7 + x6y6 + x6y5 + x6y4 + x6y3 + x6y1 + x5y6 + x5y5 + x5y0 + x4y6 + x4y4 + x3y7 + x3y4 +

x3y2 + x3y1 + x3y0 + x2y7 + x2y5 + x2y4 + x2y2 + x1y7 + x1y6 + x0 = 0

y4y7 + y4y6 + y4y5 + y3y7 + y3y5 + y3y4 + y2y6 + y2y3 + y1y7 + y1y6 + y1y4 + y1y3 + y1y2 + y0y7 + y0y5 + y0y4 + y0y2 + x7y7 +

x7y2 + x7y0 + x6y3 + x6y0 + x5y7 + x5y6 + x5y5 + x5y4 + x5y2 + x5y0 + x5x6 + x4y6 + x4y5 + x4y4 + x4y1 + x4y0 + x4x6 + x4x5 + x3y7

+x3y6 + x3y5 + x3y3 + x3y1 + x3x7 + x3x6 + x3x5 + x3x4 + x2y7 + x2y6 + x2y5 + x2y4 + x2y2 + x2x7 + x2x6 + x2x5 + x2x3 + x1y7 +

x1x3 + x0x6 + x1 = 0

y6y7 + y5y7 + y5y6 + y4y7 + y4y6 + y3y6 + y3y4 + y2y6 + y2y5 + y2y4 + y2y3 + y1y7 + y1y6 + y1y4 + y1y3 + y0y7 + y0y6 + y0y4 +

y0y3 + y0y2 + y0y1 + x7y7 + x7y6 + x7y4 + x7y3 + x7y1 + x7y0 + x6y5 + x6y4 + x6y3 + x6y1 + x5y7 + x5y6 + x5y5 + x5y3 + x4y1 + x4y0

+x3y6 + x3y5 + x3y4 + x3y3 + x3y2 + x3y1 + x2y6 + x2y4 + x2y2 + x2y1 + x1y7 + x1y6 + x2 = 0

y5y6 + y4y5 + y3y7 + y3y5 + y2y4 + y0y7 + y0y4 + y0y1 + x7y7 + x7y4 + x7y0 + x6y6 + x6y5 + x5y4 + x5y3 + x5y2 + x5y1 + x4y5 +

x4y3 + x4y2 + x4y0 + x3y6 + x3y5 + x3y4 + x3y3 + x3y2 + x3y0 + x2y4 + x2y2 + x2y1 + x1y7 + x1y6 + x3 = 0

y5y7 + y4y7 + y4y6 + y3y7 + y3y4 + y2y6 + y2y5 + y2y4 + y2y3 + y1y7 + y1y6 + y1y5 + y1y4 + y1y3 + y1y2 + y0y3 + y0y2 + x7y5 +

x7y4 + x7y3 + x6y6 + x6y5 + x6y4 + x6y3 + x5y4 + x5y3 + x5y1 + x5y0 + x5x6 + x4y3 + x4y0 + x4x6 + x4x5 + x3y7 + x3y6 + x3y3 + x3y1 +

x3x7 + x3x6 + x3x5 + x3x4 + x2y6 + x2y3 + x2x7 + x2x6 + x2x5 + x2x3 + x1y6 + x1x3 + x0x6 + x4 = 0

y6y7 + y5y6 + y4y7 + y4y6 + y4y5 + y3y6 + y3y5 + y3y4 + y2y6 + y2y3 + y1y7 + y1y6 + y1y5 + y1y4 + y1y3 + y0y6 + y0y5 + y0y2 +

y0y1 + x7y7 + x7y6 + x7y2 + x7y1 + x7y0 + x6y6 + x6y5 + x6y4 + x6y2 + x5y5 + x5y3 + x5y2 + x5y0 + x4y6 + x4y5 + x4y4 + x4y3 + x4y1 +

x3y7 + x3y6 + x3y4 + x3y2 + x3y1 + x2y7 + x2y3 + x1y6 + x5 = 0

y5y7 + y5y6 + y4y7 + y4y6 + y4y5 + y3y5 + y3y4 + y2y6 + y2y5 + y2y3 + y1y7 + y1y6 + y1y5 + y1y4 + y1y3 + y1y2 + y0y7 + y0y4 +

y0y3 + y0y2 + y0y1 + x7y7 + x7y6 + x7y5 + x7y3 + x7y1 + x6y6 + x6y5 + x6y2 + x6y1 + x5y7 + x5y6 + x5y5 + x5y4 + x5y2 + x5y1 + x5y0

+x5x6 + x4y5 + x4y1 + x4x6 + x4x5 + x3y7 + x3y5 + x3y2 + x3y1 + x3x7 + x3x6 + x3x5 + x3x4 + x2y5 + x2y4 + x2y3 + x2y2 + x2y1 +

x2x7 + x2x6 + x2x5 + x2x3 + x1x3 + x0x6 + x6 = 0

y6y7 + y5y7 + y4y5 + y3y7 + y3y5 + y3y4 + y2y6 + y2y4 + y2y3 + y1y7 + y1y5 + y1y4 + y1y3 + y0y5 + y0y3 + x7y7 + x7y5 + x7y4 +

x7y3 + x7y2 + x7y0 + x6y7 + x6y3 + x6y2 + x5y7 + x5y6 + x5y5 + x5y2 + x5y1 + x5y0 + x4y6 + x4y5 + x4y2 + x4y1 + x4y0 + x3y5 + x3y3

+x3y2 + x3y1 + x2y6 + x2y5 + x2y3 + x1y7 + x7 = 0

y6y7 + y5y7 + y5y6 + y4y6 + y3y5 + y3y4 + y2y7 + y2y4 + y2y3 + y1y4 + y0y6 + y0y4 + y0y3 + y0y1 + x7y4 + x7y3 + x7y0 + x6y6 +

x6y3 + x6y2 + x6y1 + x6y0 + x5y6 + x5y3 + x5y0 + x4y7 + x4y5 + x4y4 + x4y3 + x4y1 + x4y0 + x3y6 + x3y2 + x3y1 + x3y0 + x2y7 + x2y6

+x2y5 + x2y4 + x2y3 + x2y2 + x2y1 + x1y7 + y0 = 0

y6y7 + y4y6 + y3y7 + y3y5 + y3y4 + y2y7 + y2y5 + y2y4 + y2y3 + y1y5 + y1y4 + y0y6 + y0y5 + y0y4 + x7y7 + x7y5 + x7y4 + x7y2 +

x7y1 + x7y0 + x6y7 + x6y6 + x6y4 + x6y3 + x6y1 + x6y0 + x5y5 + x5y4 + x4y7 + x4y5 + x4y0 + x3y7 + x3y6 + x3y5 + x3y4 + x3y3 + x2y6

+x2y5 + x2y4 + x2y3 + x2y2 + x1y6 + y1 = 0

A
.3.

L
IN

E
A

R
E

Q
U

A
T

IO
N

S
F
O

R
T

H
E

A
E

S
161

y5y7 + y5y6 + y3y7 + y3y5 + y2y7 + y2y5 + y2y4 + y2y3 + y1y7 + y1y6 + y1y2 + y0y5 + y0y4 + y0y2 + y0y1 + x7y6 + x7y4 + x7y1 +

x6y7 + x6y6 + x6y5 + x6y4 + x6y3 + x6y0 + x5y5 + x5y4 + x5y3 + x5y0 + x4y7 + x4y6 + x4y5 + x4y3 + x4y2 + x4y0 + x3y5 + x3y4 + x3y2

+x2y6 + x2y4 + x2y2 + x1y7 + y2 = 0

y6y7 + y4y5 + y3y6 + y2y7 + y2y3 + y1y7 + y1y6 + y0y6 + y0y4 + y0y3 + y0y2 + x7y6 + x7y0 + x6y7 + x6y5 + x6y4 + x6y2 + x5y4 +

x5y3 + x4y7 + x4y6 + x4y4 + x4y3 + x3y5 + x3y3 + x3y2 + x2y6 + x2y5 + x2y4 + x2y2 + x2y1 + x1y7 + x1y6 + y3 = 0

y5y6 + y4y7 + y4y6 + y2y7 + y2y4 + y1y5 + y1y4 + y1y2 + y0y7 + y0y4 + x7y7 + x7y5 + x7y0 + x6y6 + x6y4 + x6y1 + x5y7 + x5y6 +

x5y5 + x5y4 + x5y2 + x5y0 + x4y7 + x4y2 + x4y1 + x3y4 + x3y1 + x2y6 + x2y2 + x2y1 + y4 = 0

y5y6 + y4y6 + y3y6 + y3y5 + y2y6 + y2y5 + y2y4 + y1y7 + y1y6 + y1y5 + y1y4 + y1y3 + y1y2 + y0y4 + y0y2 + x7y7 + x6y6 + x6y5 +

x6y4 + x6y1 + x5y7 + x5y2 + x5y1 + x4y6 + x4y5 + x4y2 + x4y1 + x4y0 + x3y6 + x3y4 + x3y2 + x2y6 + x2y5 + x2y1 + x1y7 + y5 = 0

y5y7 + y4y7 + y4y5 + y3y6 + y3y4 + y2y4 + y2y3 + y0y7 + y0y3 + y0y1 + x7y7 + x7y6 + x7y5 + x7y4 + x7y2 + x6y7 + x6y6 + x6y5 +

x6y4 + x6y0 + x5y7 + x5y3 + x5y2 + x5y1 + x5y0 + x4y5 + x4y4 + x4y2 + x3y7 + x3y6 + x3y4 + x3y3 + x3y1 + x2y7 + x2y4 + x2y2 + y6 = 0

y5y7 + y3y7 + y3y6 + y3y4 + y2y6 + y2y3 + y1y7 + y1y4 + y1y3 + y1y2 + y0y6 + y0y5 + y0y3 + x7y6 + x7y3 + x7y0 + x6y7 + x6y4 +

x6y3 + x6y1 + x5y7 + x5y3 + x5y1 + x4y6 + x4y4 + x3y7 + x3y5 + x3y4 + x2y6 + x2y4 + x1y7 + x1y6 + y7 = 0

y3y5 + y3y4 + y2y6 + y2y4 + y1y3 + y1y2 + y0y7 + y0y5 + y0y3 + y0y1 + x7y6 + x7y5 + x6y3 + x6x7 + x5y5 + x5y4 + x5y2 + x5x7 + x5x6

+x4y6 + x4y5 + x4y4 + x4y0 + x4x5 + x3y7 + x3y5 + x3y4 + x3y2 + x3x6 + x3x5 + x3x4 + x2y7 + x2y6 + x2y2 + x2x6 + x2x3 + x1y7 +

x1y6 + x1x7 + x1x3 + x0x1 = 0

y5y7 + y5y6 + y4y5 + y3y6 + y3y5 + y3y4 + y2y6 + y2y4 + y2y3 + y1y7 + y1y4 + y1y3 + y1y2 + y0y7 + y0y6 + y0y5 + y0y4 + y0y3 +

y0y1 + x7y5 + x7y3 + x7y1 + x7y0 + x6y7 + x6y6 + x6y5 + x6y2 + x6y1 + x6y0 + x6x7 + x5y6 + x5y4 + x5y2 + x5y1 + x5y0 + x4y4 + x4y1 +

x4x6 + x4x5 + x3y7 + x3y6 + x3y5 + x3y3 + x3y2 + x2y7 + x2y5 + x2y4 + x2x6 + x2x5 + x2x3 + x1y7 + x1x7 + x1x5 + x1x4 + x1x3 + x0x2 = 0

y6y7 + y5y7 + y5y6 + y3y4 + y2y6 + y2y3 + y1y7 + y1y5 + y1y4 + y1y3 + y0y7 + y0y5 + y0y4 + y0y3 + y0y1 + x7y7 + x7y6 + x7y4 +

x7y3 + x6y7 + x6y6 + x6y5 + x6y3 + x6y2 + x6y1 + x6x7 + x5y7 + x5y3 + x5y1 + x4y4 + x4y1 + x4x6 + x3y7 + x3y5 + x3y4 + x3y0 +

x3x7 + x2y7 + x2y6 + x2y4 + x2y2 + x2y1 + x2x7 + x1y7 + x1y6 + x1x4 + x0x6 + x0x3 = 0

y6y7 + y5y7 + y4y5 + y3y7 + y3y5 + y3y4 + y2y6 + y2y4 + y2y3 + y1y7 + y1y5 + y1y4 + y1y3 + y0y5 + y0y3 + x7y3 + x6y6 + x6y5 +

x6y4 + x6y3 + x6x7 + x5y6 + x5y5 + x5y3 + x4y7 + x4y6 + x4y5 + x4y4 + x4y3 + x4y2 + x4y1 + x4x5 + x3y7 + x3y6 + x3y4 + x3y2 + x3y1

+x3x7 + x3x5 + x2y5 + x2y3 + x2y1 + x2x5 + x2x4 + x2x3 + x1x7 + x0x6 + x0x4 = 0

y5y7 + y5y6 + y4y5 + y3y6 + y3y5 + y3y4 + y2y6 + y2y4 + y2y3 + y1y7 + y1y4 + y1y3 + y1y2 + y0y7 + y0y6 + y0y5 + y0y4 + y0y3 +

y0y1 + x7y4 + x7y2 + x7y1 + x7y0 + x6y6 + x6y2 + x6y1 + x6y0 + x5y5 + x5y4 + x5y3 + x5x7 + x4y7 + x4x7 + x4x6 + x3y6 + x3y4 + x3x7 +

x3x6 + x3x5 + x3x4 + x2y6 + x2y4 + x2y2 + x2y1 + x2x5 + x2x4 + x2x3 + x1y7 + x1x6 + x1x5 + x1x3 + x0x6 + x0x5 = 0

y6y7 + y5y7 + y5y6 + y4y7 + y4y6 + y3y6 + y3y4 + y2y6 + y2y5 + y2y4 + y2y3 + y1y7 + y1y6 + y1y4 + y1y3 + y0y7 + y0y6 + y0y4 +

y0y3 + y0y2 + y0y1 + x7y3 + x7y2 + x7y1 + x6y6 + x6y3 + x6y1 + x5y5 + x5y0 + x4y7 + x4y6 + x4y3 + x4y2 + x4y0 + x4x5 + x3y6 + x3y5 +

x3y4 + x3y3 + x3y2 + x3x7 + x3x6 + x3x4 + x2y7 + x2y6 + x2y2 + x2x7 + x2x5 + x2x3 + x1y7 + x1y6 + x1x6 + x1x4 + x1x3 + x0x7 = 0

y5y7 + y5y6 + y3y7 + y3y5 + y3y4 + y2y6 + y2y5 + y2y4 + y1y5 + y1y3 + y1y2 + y0y7 + x7y6 + x7y5 + x6y5 + x6y2 + x5y6 + x5y5 +

x5y4 + x5y3 + x4y6 + x4y4 + x4y3 + x3y3 + x3y0 + x2y7 + x2y5 + x2y3 + x2y1 + x0y0 = 0

y5y6 + y4y7 + y4y6 + y3y5 + y2y3 + y1y7 + y1y6 + y1y4 + y0y7 + y0y3 + y0y2 + x7y6 + x7y3 + x7y1 + x6y7 + x6y6 + x6y5 + x6y4 +

x6y2 + x6y1 + x6y0 + x5y4 + x5y3 + x5y2 + x5y0 + x4y7 + x4y2 + x4y1 + x3y7 + x3y5 + x3y4 + x3y3 + x3y1 + x2y7 + x2y5 + x2y4 + x2y3

+x2y1 + x1y6 + x0y1 = 0

y5y7 + y3y7 + y3y6 + y2y7 + y1y6 + y1y5 + y1y4 + y1y2 + y0y7 + y0y6 + y0y4 + y0y3 + y0y2 + y0y1 + x7y6 + x7y5 + x7y3 + x7y0 +

x6y7 + x6y4 + x6y3 + x6y2 + x6y1 + x5y7 + x5y4 + x5y3 + x5y2 + x4y7 + x4y4 + x4y3 + x4y2 + x4y1 + x4y0 + x3y5 + x3y4 + x3y3 + x3y1

+x2y6 + x2y1 + x0y2 = 0

16
2

A
P

P
E

N
D

IX
A

.
A

E
S

y6y7 + y5y7 + y4y7 + y4y6 + y4y5 + y3y7 + y3y6 + y3y4 + y2y7 + y2y6 + y2y5 + y2y4 + y1y5 + y1y4 + y1y3 + y1y2 + y0y6 + y0y4 +

x7y7 + x7y5 + x7y4 + x7y2 + x7y1 + x6y3 + x6y1 + x6y0 + x5y4 + x5y1 + x4y7 + x4y5 + x4y4 + x4y1 + x3y4 + x3y3 + x3y2 + x2y7 + x2y5

+x2y4 + x1y7 + x0y3 = 0

y4y7 + y4y6 + y3y6 + y3y5 + y2y7 + y2y5 + y2y3 + y1y7 + y1y2 + y0y6 + y0y5 + y0y4 + y0y3 + x7y7 + x7y5 + x7y3 + x7y0 + x6y6 +

x6y5 + x6y4 + x6y3 + x6y2 + x6y1 + x5y7 + x5y5 + x5y4 + x5y3 + x5y2 + x5y0 + x4y6 + x4y2 + x4y1 + x3y7 + x3y6 + x3y1 + x2y6 + x2y5 +

x2y2 + x2y1 + x0y4 = 0

y5y7 + y5y6 + y4y5 + y3y6 + y3y4 + y2y7 + y2y6 + y1y6 + y1y5 + y1y4 + y1y3 + y0y7 + y0y6 + y0y5 + y0y2 + y0y1 + x7y5 + x7y4 +

x7y3 + x7y2 + x7y1 + x6y7 + x6y1 + x5y5 + x5y4 + x5y1 + x4y7 + x4y3 + x4y1 + x3y6 + x3y5 + x2y6 + x2y4 + x2y2 + x1y7 + x0y5 = 0

y6y7 + y4y7 + y4y6 + y4y5 + y2y7 + y2y5 + y2y4 + y2y3 + y1y7 + y1y5 + y0y5 + y0y4 + y0y3 + x7y6 + x7y4 + x7y2 + x6y5 + x6y2 +

x6y0 + x5y6 + x5y5 + x5y2 + x5y0 + x4y7 + x4y5 + x4y3 + x4y2 + x4y0 + x3y7 + x3y6 + x3y5 + x2y7 + x2y6 + x2y3 + x1y6 + x0y6 = 0

y5y7 + y4y7 + y4y6 + y4y5 + y3y6 + y3y5 + y1y6 + y0y7 + y0y6 + y0y4 + y0y3 + y0y2 + x7y6 + x7y3 + x7y2 + x7y1 + x6y6 + x6y4 +

x6y2 + x6y1 + x6y0 + x5y7 + x5y5 + x5y4 + x5y2 + x4y6 + x4y2 + x4y1 + x3y6 + x3y4 + x3y3 + x3y2 + x3y1 + x2y7 + x2y6 + x2y4 + x2y2 +

x1y7 + x0y7 = 0

y5y6 + y4y7 + y4y6 + y3y4 + y2y6 + y2y4 + y2y3 + y1y7 + y1y6 + y1y4 + y1y3 + y1y2 + y0y5 + y0y2 + y0y1 + x7y5 + x7y3 + x6y7 +

x6y6 + x6y5 + x6y3 + x6y2 + x6y0 + x5y7 + x5y4 + x5y3 + x5y2 + x5y0 + x5x7 + x4y7 + x4y0 + x4x6 + x4x5 + x3y6 + x3y3 + x3x6 + x3x5 +

x2y7 + x2y5 + x2y2 + x2x7 + x2x5 + x2x4 + x2x3 + x1y7 + x1x4 + x1x2 = 0

y6y7 + y5y7 + y5y6 + y4y5 + y3y7 + y3y6 + y3y5 + y2y5 + y2y4 + y1y2 + y0y6 + y0y5 + y0y3 + y0y1 + x7y7 + x7y4 + x7y1 + x6y5 +

x6y2 + x6y0 + x5y4 + x5y3 + x4y6 + x4y4 + x4y0 + x3y7 + x3y5 + x3y2 + x2y6 + x2y5 + x2y3 + x1y7 + x1y6 + x1y0 = 0

y5y6 + y4y7 + y4y6 + y4y5 + y3y7 + y3y6 + y3y5 + y2y5 + y1y6 + y1y5 + y0y7 + y0y6 + y0y5 + y0y4 + y0y2 + y0y1 + x7y6 + x7y4 +

x7y3 + x7y2 + x6y6 + x6y4 + x5y7 + x5y5 + x5y4 + x5y3 + x5y2 + x5y1 + x4y7 + x4y6 + x4y5 + x4y4 + x4y2 + x4y1 + x3y5 + x2y7 + x2y6

+x2y5 + x2y4 + x2y2 + x1y1 = 0

y6y7 + y5y7 + y5y6 + y4y7 + y4y6 + y3y6 + y3y5 + y2y5 + y2y3 + y1y7 + y1y6 + y1y4 + y1y2 + y0y6 + y0y5 + y0y4 + y0y2 + x7y5 +

x7y2 + x6y5 + x6y2 + x6y1 + x5y7 + x5y5 + x5y3 + x5y2 + x5y1 + x5y0 + x4y7 + x4y6 + x4y5 + x4y2 + x4y0 + x3y7 + x3y2 + x2y7 +

x2y6 + x2y3 + x1y7 + x1y6 + x1y2 = 0

y6y7 + y4y7 + y4y6 + y3y7 + y3y6 + y3y5 + y2y3 + y1y7 + y1y6 + y1y5 + y1y4 + y1y2 + y0y6 + y0y4 + y0y3 + y0y2 + y0y1 + x7y5 +

x7y3 + x7y1 + x6y7 + x6y3 + x6y1 + x5y7 + x5y5 + x5y4 + x5y3 + x5y2 + x4y6 + x4y4 + x4y3 + x4y2 + x4y1 + x3y5 + x3y4 + x3y3 + x3y2

+x3y1 + x2y4 + x2y3 + x2y2 + x1y7 + x1y6 + x1y3 = 0

y4y5 + y3y7 + y3y6 + y3y5 + y3y4 + y2y6 + y2y5 + y2y4 + y2y3 + y1y7 + y1y5 + y1y4 + y1y3 + y1y2 + y0y7 + y0y6 + y0y4 + x7y6 +

x7y4 + x7y3 + x6y7 + x6y5 + x6y4 + x6y3 + x6y2 + x6y0 + x5y7 + x5y6 + x5y5 + x5y3 + x5y2 + x5y1 + x5y0 + x4y6 + x4y2 + x4y1 + x4y0

+x3y7 + x3y6 + x3y5 + x3y3 + x3y1 + x2y7 + x2y5 + x2y4 + x2y3 + x2y1 + x1y4 = 0

y6y7 + y5y6 + y4y7 + y4y6 + y3y7 + y2y5 + y2y4 + y1y6 + y1y2 + y0y7 + y0y5 + y0y4 + y0y2 + y0y1 + x7y6 + x7y4 + x7y3 + x7y2 +

x7y0 + x6y3 + x6y2 + x6y1 + x6y0 + x5y6 + x5y1 + x4y3 + x3y7 + x3y5 + x3y4 + x2y4 + x2y2 + x1y7 + x1y6 + x1y5 = 0

y6y7 + y5y7 + y5y6 + y4y7 + y4y6 + y4y5 + y3y7 + y3y5 + y1y6 + y1y5 + y1y2 + y0y3 + y0y2 + y0y1 + x7y5 + x7y4 + x6y7 + x6y5 +

x6y4 + x6y1 + x6y0 + x5y6 + x5y5 + x5y3 + x5y1 + x5y0 + x4y7 + x4y6 + x4y5 + x4y4 + x4y1 + x4y0 + x3y7 + x3y6 + x3y4 + x3y2 + x2y7

+x2y4 + x2y3 + x2y0 = 0

Appendix B

Present

B.1 Test vectors

The test vectors for Present with an 80-bit key are shown below in hexadecimal
notation.

plaintext key ciphertext
00000000 00000000 00000000 00000000 0000 5579C138 7B228445

00000000 00000000 ffffffff ffffffff ffff e72c46c0 f5945049

ffffffff ffffffff 00000000 00000000 0000 a112ffc7 2f68417b

ffffffff ffffffff ffffffff ffffffff ffff 3333dcd3 213210d2

B.1.1 Differential characteristics -Present

Six round differential characteristic for Present with probability 2−35:

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

→ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

→ 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

→ 0 0 0 0 0 0 0 0 0 0 3 3 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

prchar = (
1

8
)7(

1

4
)7 = 2−35

163

164 APPENDIX B. PRESENT

Six round iterative differential characteristic for Present with probability 2−45:

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

→ 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

→ 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

→ 0 0 0 0 0 0 0 0 0 0 a a 0 0 a a

→ 0 0 3 3 0 0 0 0 0 0 3 3 0 0 0 0

→ 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3 0

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

prchar = (
1

8
)11(

1

4
)6 = 2−45

Six round differential characteristic for Present with probability 2−35:

∆ = 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

→ 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

→ 0 0 0 0 0 0 0 0 0 0 2 2 0 0 2 2

→ 0 0 0 0 0 0 3 3 0 0 0 0 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

prchar = (
1

4
)7(

1

8
)7 = 2−35 .

Five round differential characteristic for Present with probability 2−40:

∆ = 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

→ 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

→ 0 0 0 0 0 0 0 0 0 2 2 2 0 2 2 2

→ 0 0 0 0 0 0 7 7 0 0 0 0 0 0 7 7

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

prchar = (
1

4
)8(

1

8
)8 = 2−40 .

B.1. TEST VECTORS 165

Seven round differential characteristic for Present with probability 2−39:

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 0

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

→ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

→ 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

→ 0 0 0 0 0 0 0 0 0 0 5 5 0 0 5 5

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

pr = (
1

4
)9(

1

8
)7 = 2−39 .

The four round sub-characteristic

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

→ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

→ 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

→ 0 0 0 0 0 0 0 0 0 0 5 5 0 0 5 5

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

has probability 2−26.

Seven round differential characteristic for Present with probability 2−40:

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 0

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

→ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

→ 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

→ 0 0 0 0 0 0 0 0 0 0 3 3 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

pr = (
1

4
)8(

1

8
)8 = 2−40 .

166 APPENDIX B. PRESENT

The four round sub-characteristic

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

→ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

→ 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

→ 0 0 0 0 0 0 0 0 0 0 3 3 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

has probability 2−27.

Seven round differential characteristic for Present with probability 2−46:

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 0

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

→ 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

→ 0 0 0 0 0 0 0 0 0 0 e e 0 0 e e

→ 0 0 0 0 0 0 0 0 0 0 3 3 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

pr = (
1

4
)5(

1

8
)12 = 2−46 .

The four round sub-characteristic

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

→ 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

→ 0 0 0 0 0 0 0 0 0 0 e e 0 0 e e

→ 0 0 0 0 0 0 0 0 0 0 3 3 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

has probability 2−33.

B.1. TEST VECTORS 167

Eight round differential characteristic for Present with probability 2−42:

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 0

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

→ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

→ 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

→ 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

→ 0 0 0 0 0 0 0 0 0 0 3 3 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

pr = (
1

4
)9(

1

8
)8 = 2−42 .

The five round sub-characteristic

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

→ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

→ 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

→ 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

→ 0 0 0 0 0 0 0 0 0 0 3 3 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

has probability 2−29.

Eight round differential characteristic for Present with probability 2−52:

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 0

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

→ 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

→ 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

→ 0 0 0 0 0 0 0 0 0 0 a a 0 0 a a

→ 0 0 0 0 0 0 0 0 0 0 3 3 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

pr = (
1

4
)8(

1

8
)12 = 2−52 .

168 APPENDIX B. PRESENT

The five round sub-characteristic

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

→ 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

→ 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

→ 0 0 0 0 0 0 0 0 0 0 a a 0 0 a a

→ 0 0 0 0 0 0 0 0 0 0 3 3 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

has probability 2−49.
Eight round differential characteristic for Present with probability 2−56:

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 0

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

→ 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1

→ 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1

→ 0 0 0 0 0 0 0 0 0 0 d d 0 0 d d

→ 0 0 0 0 0 0 0 0 0 0 3 3 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

pr = (
1

4
)10(

1

8
)12 = 2−56 .

The five round sub-characteristic

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

→ 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1

→ 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1

→ 0 0 0 0 0 0 0 0 0 0 d d 0 0 d d

→ 0 0 0 0 0 0 0 0 0 0 3 3 0 0 3 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

has probability 2−45.

Appendix C

Randomly chosen 8-bit S-box

The randomly chosen S-box applied in Section 8.5 is generated in a c++ program
using the rand() number generator. The S-box is presented in hexadecimal form in
Table C.1. For example the element 2ax is substituted by the element of row 2x,
column ax resulting in 24x.

Table C.1: Random 8-bit to 8-bit S-box in hexadecimal notation. The S-box is
applied in Section 8.5.

x,y 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 2d cf 46 29 4 b4 78 d8 68 a7 ff 3f 2b f1 fc d9
1 7a 96 9 2c a5 57 74 64 c4 af 15 28 a4 e9 db 5e
2 20 fb 38 a8 4e a6 14 93 25 56 24 44 df 59 8d 43
3 7b be 90 16 89 9d 7e 77 c6 2f 26 98 88 f5 30 d4
4 34 3a d f bd a1 f7 f4 3c 35 e5 8f 2a cd c2 40
5 c1 52 71 6a 72 23 b0 5b 1b a3 82 19 e f2 6b ae
6 84 49 d6 83 42 17 e7 39 73 e6 8a fe 21 e4 75 8e
7 87 85 58 dd 5d 8b 5a a9 ef ec 91 9c 41 18 eb 6
8 ee b8 6c 33 70 97 d7 12 d2 94 95 66 6f fa ab aa
9 bf ba 5f b1 81 61 45 47 c7 4a 3b d0 d5 7 bc cc
a 62 86 55 1c e3 b3 27 10 9a 5 8 a 3e d1 e0 65
b 6d b 60 de b7 36 bb a2 48 c9 c5 69 32 c8 51 1d
c ed 67 fd ea 53 dc 4c 1a 7f 4f cb f6 f9 54 b5 1e
d 63 ac e1 f0 4d 50 b6 8c c3 c 5c 1f 11 76 ad 7d
e 0 c0 e2 a0 1 13 9e 80 f8 ce f3 2e 92 31 22 b2
f 9b 37 ca 7c 6e 99 d3 4b 2 3 da 3d 9f e8 b9 79

169

170 APPENDIX C. RANDOMLY CHOSEN 8-BIT S-BOX

Bibliography

[1] Martin Albrecht and Carlos Cid. Algebraic Techniques in Differential Crypt-
analysis. In First International Conference on Symbolic Computation and Cryp-
tography, 2008.

[2] Henning Ejnar Andersen. On puncturing of codes from Norm-Trace curves.
Finite Fields and their Applications, 13 nr 1:136–157, 2007.

[3] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and
T. Tokita. Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms
- Design and Analysis. In Douglas R. Stinson, editor, Proceedings of Selected
Areas in Cryptography 2000, volume 2012 of Lecture Notes in Computer Science,
pages 39–56. Springer-Verlag, 2000.

[4] Gregory V. Bard, Nicolas T. Courtois, and Chris Jefferson. Efficient Meth-
ods for Conversion and Solution of Sparse Systems of Low-Degree Multivariate
Polynomials over GF(2) via SAT-Solvers,
Available via http://eprint.iacr.org/2007/024, 2007.

[5] Thomas Becker and Volker Weispfenning. Gröbner Basis a Computational Ap-
proach to Commutative Algebra. Springer-Verlag, 1993.

[6] Eli Biham, Ross J. Anderson, and Lars R. Knudsen. Serpent: A New Block
Cipher Proposal. In Serge Vaudenay, editor, Fast Software Encryption ’98,
volume 1372 of Lecture Notes in Computer Science, pages 222–238, 1998.

[7] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosys-
tems. Journal of Cryptology, pages 3–72, 1991.

[8] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Full 16-round DES.
In Ernest Brickell, editor, Advances in Cryptology - CRYPTO ’92, volume 740
of LectureNotes in Computer Science, pages 487–496. Springer-Verlag, 1991.

171

172 BIBLIOGRAPHY

[9] Alex Biryukov, Sourav Mukhopadhyay, and Palash Sarkar. Improved Time-
memory Trade-offs with Multiple Data. In Bart Preneel and Stafford Tavares,
editors, Proceedings of SAC 2005, volume 3897 of Lecture Notes in Computer
Science, pages 110–127. Springer-Verlag, 2006.

[10] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and Charlotte Vikkelsø.
PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, volume 4727 of Lecture Notes in Computer Science, pages 450–466, 2007.

[11] An Braeken and Bart Preneel. Probabilistic Algebraic Attacks. In 10th IMA
International Conference, volume 3796 of Lecture Notes in Computer Science,
pages 290–303, 2005.

[12] Bruno Buchberger. Bruno Buchberger’s PhD thesis 1965: An algorithm for find-
ing the basis elements of the residue class ring of a zero dimensional polynomial
ideal. Journal of Symbolic Computation, 41:475–511, 2006.

[13] Carolynn Burwick, Rosario Gennaro, Shai Halevi, Charanjit Jutla, Stephen M.
Matyas, Jr. Luke, Oconnor Mohammad Peyravian, David Safford, and Nevenko
Zunic. MARS - A Candidate Cipher for AES. NIST AES Proposal, 1998.

[14] Carlos Cid and G. Leurant. An Analysis of the XSL Algorithm. In B. Roy,
editor, Advances in Cryptology - ASIACRYPT 2005, volume 3788 of Lecture
Notes in Computer Science, pages 333–352. Springer-Verlag, 2005.

[15] Carlos Cid, Sean Murphy, and Matthew J.B. Robshaw. Small Scale Variants of
the AES. In H. Gilbert and H. Handschuh, editors, Fast Software Encryption,
12th International Workshop, Paris,France, volume 3557 of Lecture Notes in
Computer Science, pages 145–162. Springer-Verlag, 2005.

[16] Carlos Cid, Sean Murphy, and Matthew J.B. Robshaw. Algebraic Aspects of
the Advanced Encryption Standard. Springer-Verlag, 2006.

[17] Nicolas Courtois. Higher Order Correlation Attacks, XL algorithm and Crypt-
analysis of Toyocrypt. In P.J. Lee and C.H Lim, editors, The 5th International
Conference on Information Security and Cryptology ICISC-2002, Seoul, Korea,
volume 2587, pages 182–199. Springer-Verlag, 2003.

[18] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient
Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equa-
tions. In B. Preneel, editor, Advances in Cryptology - Eurocrypt 2000, volume

BIBLIOGRAPHY 173

1807 of Lecture Notes in Computer Science, pages 392–407. Springer-Verlag,
2000.

[19] Nicolas Courtois and Willy Meier. Algebraic Attacks on Stream Ciphers with
Linear Feedback. In Eli Biham, editor, Eurocrypt 2003, volume 2656 of Lecture
Notes in Computer Science, pages 345–359. Springer-Verlag, 2003.

[20] Nicolas Courtois and Josef Pieprzyk. Cryptoanalysis of Block Ciphers with
Overdefined System of equations. In Y. Zheng, editor, Advances in Cryptology
-Asiacrypt 2002, volume 2501 of Lecture Notes in Computer Science, pages
267–287. Springer-Verlag, 2002.

[21] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Springer-Verlag,
first edition, 1998.

[22] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms, An In-
troduction to Computational Geometry and Commutative Algebra. Springer-
Verlag, second edition, 2005.

[23] Joan Daemen, Michäel Peeters, Gilles. Van Assche, and Vincent Rijmen. Nessie
proposal: NOEKEON. Submitted as a NESSIE Candidate Algorithm. Available
via http://www.cryptonessie.org.

[24] Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael, 1999.

[25] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer-Verlag,
Secaucus, NJ, USA, 2002.

[26] Claus Diem. The XL-Algorithm and a Conjecture from Commutative Algebra.
In P .J. Lee, editor, Advances in Cryptology - ASIACRYPT 2004, volume 3329
of Lecture Notes in Computer Science, pages 323–337, 2004.

[27] Withfield Diffie and Martin Hellman. Special Feature Exhaustive Cryptanalysis
of the NBS Data Encryption Standard. Computer, 10(6):74–84, 1977.

[28] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases
(F4). Journal of Pure and Applied Algebra, 139:61–88, 1999.

[29] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases
without reduction to 0 (F5). In T. Mora, editor, Proceedings of ISSAC, pages
75–83. ACM Press, 2002.

[30] H. Feistel. Cryptography and Computer Privacy. 228:15–23, 1973.

174 BIBLIOGRAPHY

[31] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong Authentication for
rfid Systems Using the AES algorithm. In M. Joye and J.-J. Quisquater,
editors, Proceedings of CHES 2004, volume 3156 of Lecture Notes in Computer
Science, pages 357–370. Springer-Verlag, 2004.

[32] Niels Ferguson, Chris Hall, John Kelsey, Bruce Schneier, David Wagner, and
Doug Whiting. Twofish: A 128-bit Block Cipher. In First Advanced Encryption
Standard (AES) Conference, 1998.

[33] Niels Ferguson and Bruce Schneier. Practical Cryptography. Wiley publishing,
Inc, 2003.

[34] Michael R. Garey and David S. Johnso. Computers and Intractability. Bell
Telephone Laboratories, Incorporated, 1979.

[35] Joachim Von Zur Gathen and Jurgen Gerhard. Modern Computer Algebra.
Cambridge University Press, New York, NY, USA, 2003.

[36] T. Good, W. Chelton, , and M. Benaissa. Hardware Results for Se-
lected Stream Cipher Candidates, Presented at SASC 2007. Available via
http://www.ecrypt.eu.org/stream/, 2007.

[37] Martin Hellman. A cryptanalytic time-memory trade-off. Transactions on In-
formation Theory,IEEE, it-26, no. 4:401–406, 1980.

[38] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B.-S. Koo, C. Lee, D. Chang, J. Lee,
K. Jeong, H. Kim, J. Kim, and S. Chee. HIGHT: A New Block Cipher Suitable
for Low-Resource Device. In L. Goubin and M. Matsui, editors, Proceedings of
CHES 2006, volume 4249 of Lecture Notes in Computer Science, pages 46–59.
Springer-Verlag, 2006.

[39] Thomas Jakobsen. Higher Order Cryptanalysis of Block Ciphers. PhD thesis,
Technical University of Denmark, 1999.

[40] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE Public Key Cryp-
tosystem by Relinearization. In M. Wiener, editor, CRYPTO ’99: Proceed-
ings of the 19th Annual International Cryptology Conference on Advances in
Cryptology, volume 1666 of Lecture Notes in Computer Science, pages 19–30.
Springer-Verlag, 1999.

[41] Lars Ramkilde Knudsen. Personal communication.

BIBLIOGRAPHY 175

[42] Lars Ramkilde Knudsen and Kaisa Nyberg. Provable Security Against a Dif-
ferential Attack. Journal of Cryptology: the journal of the International Asso-
ciation for Cryptologic Research, 8(1):27–37, 1995.

[43] Lars Ramkilde Knudsen and Charlotte Vikkelsø. Technical report: On Alge-
braic Attacks on Block Ciphers, 2005.

[44] Xuejia Lai, James L. Massey, and Sean Murphy. Markov Ciphers and Dif-
ferential Cryptanalysis. In Proceedings of EUROCRYPT’91, Lecture Notes in
Computer Science, pages 17–38. Springer-Verlag, 1991.

[45] Niels Lauritzen. Concrete Abstract Algebra, volume 3.0. Cambridge University
Press, February 2002.

[46] C. Lim and T. Korkishko. mCrypton - A Lightweight Block Cipher for Security
of Low-cost RFID Tags and Sensors. In J. Song, T. Kwon, and M. Yung,
editors, Workshop on Information Security Applications - WISA’05, volume
3786 of Lecture Notes in Computer Science, pages 243–258. Springer-Verlag,
2005.

[47] James L. Massey. SAFER K-64: A byte-oriented block ciphering algorithm. In
Ross Anderson, editor, Fast Software Encryption, volume 809 of Lecture Notes
in Computer Science. Springer-Verlag, 1993.

[48] M. Matsui. Linear cryptanalysis method for DES cipher. In editor T. Helleseth,
editor, Advances in Cryptology EUROCRYPT 93, volume 765 of Lecture Notes
in Computer Science, pages 386–397. Springer-Verlag, 1993.

[49] T. Moh. The Method of ”Relinearization” of Kipnis and Shamir and its appli-
cation to TMM.

[50] Sean Murphy and Matthew J.B. Robshaw. Essential Algebraic Structure within
AES. In M. Yung, editor, Advances in Cryptology CRYPTO 2002, volume 2442
of Lecture Notes in Computer Science. Springer-Verlag, 2002.

[51] ECRYPT Network of Excellence. The Stream Cipher: estream. Available via
www.ecrypt.eu.org/stream.

[52] National Bureau of Standards. Data Encryption Standard. Federal Informa-
tion Processing Standard (FIPS), Publication 46, National Bureau of Standards,
U.S. Department of Commerce, Washington D.C., January 1977.

176 BIBLIOGRAPHY

[53] Nationale Institute of Standards and Technology. Accouncement avail-
able via http://csrc.nist.gov/publications/fips/05-9945-des

-withdrawl.pdf, 2005.

[54] Nationale Institute of Standards and Technology. Advanced Encryption Stan-
dard. FIPS 197, US Department of Commerce, Washington D.C., November
2001.

[55] Nationale Institute of Standards and Technology. SP800-38A. Available via
www.csrc.gov.

[56] A. Poschmann, G. Leander, K Schramm, and C Paar. A Family of Light-Weight
Block Ciphers Based on DES Suited for RFID Applications. In A. Biryukov,
editor, Proceedings of FSE 2007, volume 4593 of Lecture Notes in Computer
Science. Springer-Verlag, 2007.

[57] Ronald L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin. The RC6 TM
Block Cipher. In First Advanced Encryption Standard (AES) Conference, 1998.

[58] Victor Shoup. Ntl: A Library for Doing Number Theory. Available via
http://www.shoup.net/ntl/.

[59] Allan Steel. Allan Steel’s Gröbner Basis Timing Page. Available via
http://magma.maths.usyd.edu.au/users/allan/gb/.

[60] Douglas R. Stinson. Cryptography Theory and Practice. RC Press LLC, 1995.

[61] Makoto Sugita, Mitsuru Kawazoe, and Hideki Imai. Relation between the XL
Algorithm and Gröbner Basis Algorithms. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci., E89-A:11–18, 2006.

[62] Toshinobu Kaneko Takeshi Shimoyama. Quadratic Relation of S-box and Its
Application to the Linear Attack of Full Round DES. In H. Krawczyk, edi-
tor, Advances in Cryptology CRYPTO 1998, volume 1462 of Lecture Notes in
Computer Science. Springer-Verlag, 1998.

[63] Meiqin Wang. Differential Cryptanalysis of Reduced-Round PRESENT. In
AFRICACRYPT, pages 40–49, 2008.

