
 Eindhoven University of Technology

MASTER

Behaviour of Algebraic Ciphers in Fully Homomorphic Encryption

Toprakhisar, Dilara

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/8265ebd7-4e9f-4983-ad4d-20a33efe97ce


Behaviour of Algebraic
Ciphers in Fully

Homomorphic Encryption
Master Thesis

Dilara Toprakhisar

Department of Mathematics and Computer Science
Coding Theory and Cryptology Group

Supervisors:
Capt. (r.) Dr. Tomer Ashur

Dr. Ir. L. A. M. (Berry) Schoenmakers
Dr. Boris Škorić
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Abstract

Traditional block ciphers like AES and 3DES are used in a wide range of applica-
tion areas in practice: wireless security, IoT devices, processor security, SSL/TLS,
etc. What these application areas have in common is the need for efficient software
and hardware implementations. Consequently, traditional block ciphers are optim-
ized for speed and resource consumption. However, the rapidly increasing number
of applications that employ advanced cryptographic protocols such as multi-party
computation or zero-knowledge proofs shifts the optimization focus to a different
metric, arithmetic complexity, determined by the number of non-linear operations.
Ciphers that are optimized with respect to arithmetic complexity are called algeb-
raic ciphers.

Although fully homomorphic encryption (FHE) is a widely used advanced cryp-
tographic protocol, designing algebraic ciphers employed by an FHE application is
still an open problem in modern cryptography. This thesis stands as a contribution
to this research problem.

In this thesis I evaluate the behavior of algebraic ciphers when implemented as
a circuit in an FHE protocol. To this end, I present a state-of-the-art comparison of
AES as a traditional block cipher, and VISION and RESCUE as algebraic ciphers
implemented using HElib. The preliminary results of this comparative study was
published in SiTB [35]. Next, I establish the properties affecting the efficiency
of an FHE implementation that evaluates an algebraic cipher as a circuit. Then,
I identify the bottlenecks of the FHE implementations that evaluate the VISION

and RESCUE circuits, and work to improve them. This results in two new ciphers:
SELJUK and CHAGHRI. Our first proposal SELJUK was accepted to CFail [36].
The FHE implementations of the SELJUK and CHAGHRI circuits are benchmarked.
These benchmarks confirm that SELJUK is more efficient than both VISION and
RESCUE when implemented in FHE. Moreover, CHAGHRI achieves a compact
algebraic description optimized to FHE and by far it is more efficient than any other
cipher, including the next best candidate, AES. This work is being prepared for
submission to IEEE Symposium on Security and Privacy (IEEE S&P; Oakland). In
addition, we are working to merge our code implementing these algebraic ciphers
back to HElib.
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Notation

Z ring of integers
Zm quotient ring Z/mZ, ring of integers modulo m,

m integer
Z∗m group of units in Zm (i.e., elements with multi-

plicative inverses)
Φm(X) mth cyclotomic polynomial
A = Z[X]/Φm(X) polynomial ring defined by Φm(X)
φ(·) Euler’s totient function
Aq = A/qA Z[X]/(Φm(X), q), the set of integer polynomi-

als of degree up to φ(m)− 1 reduced modulo q
Fpn the finite field of order pn

� the Hadamard product (element-wise product)
|G| the order of the group G
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Chapter 1

Introduction

Block ciphers are fundamental components in modern cryptography. They can be
found in a broad range of application domains. An IoT device that has a small
processor and/or a limited hardware area, and a router that manages high speed
data transfers are two examples of these application domains. As there are many
potential application domains, there are many constraints in terms of security and
efficiency when designing a block cipher.

Traditional block ciphers such as AES consists of linear and non-linear lay-
ers. When these layers are carefully chosen, ciphers resist well studied attacks.
In addition to being secure, traditional block ciphers are designed to be efficient
in hardware and software implementations. Their design focuses on running time,
gate count, or memory/power consumption depending on the target application do-
main. For instance, while gate count and memory/power consumption are the main
constraints for an implementation targeting an IoT device, latency is the main con-
straint for an implementation targeting a router that handles high speed communic-
ation. However, these efficiency constraints are different than the ones that make
block ciphers efficient in advanced cryptographic protocol applications. Multi-
Party Computation (MPC), Zero-Knowledge (ZK) proofs, and Fully Homomorphic
Encryption (FHE) are examples of such advanced cryptographic protocols.

Consider the following scenario in which an advanced cryptographic protocol
employs a block cipher: a client sends its data encrypted under an FHE scheme
to a cloud server that operates on encrypted data. As we will see in Section 2.3,
depending on the complexity of the function that is performed by the cloud server,
the parameters of the scheme might be eminently large. This would consequently
increase the size of the ciphertext, adding unwanted overhead to the communica-
tion. One solution to this problem is transciphering meaning all the private data
sent by a client can be encrypted under a block cipher. Then, the server decrypts
homomorphically and consequentially, they are able to operate on encrypted data
without additional overhead to the communication [26].

MPC, ZK proofs, and FHE coincide in being described via algebraic opera-
tions. These operations can be translated into arithmetic computations and vice

Behaviour of Algebraic Ciphers in Fully Homomorphic Encryption 1



CHAPTER 1. INTRODUCTION

versa. Converting computations into a sequence of algebraic operations over a fi-
nite field is called arithmetization and it was first applied to cryptographic protocols
by Lund et al. [25].

As advanced cryptographic protocols increase in popularity, different design
constraints are emerging. These in turn give rise to new designs such as MIMC [1],
JARVIS [3], VISION, and RESCUE [2]. Unlike traditional block ciphers, the design
rationale of these algorithms is to minimize the number of non-linear arithmetic
operations, so called arithmetic complexity. Consequently, they improve the ef-
ficiency of the protocol employing them. Such ciphers are collectively known as
algebraic ciphers.1 The relevant attacks and security of algebraic ciphers are thus
also different.

Designing an algebraic cipher is a research area that is still evolving. Besides
novel cipher proposals, there are several design strategies introduced that stand as a
framework for designing algebraic ciphers. The Marvellous design strategy [2] and
the Hades design strategy [18] are examples of such design strategies. The ciphers
that are proposed following these design strategies are shown to be efficient in ZK
and MPC applications.

Although numerous algebraic ciphers were proposed for ZK and MPC applic-
ations, little to no attention was given to algebraic ciphers in the context of FHE.
As an incontrovertible fact, FHE is an effective tool to remove privacy barriers ob-
structing data sharing. Therefore, an FHE-optimized algebraic cipher still stands
as a research area that needs to be improved.

This thesis provides an exploratory study of algebraic ciphers when implemen-
ted as a circuit in an FHE protocol. Three ciphers are implemented: AES [16],
VISION, and RESCUE; and their performance is adequately compared. This is
an extended version of the comparison provided in SiTB [35] for AES and VIS-
ION. Then, by addressing the key factors affecting the performance I suggest two
novel FHE-optimized ciphers: SELJUK and CHAGHRI. The former was accepted
to CFail [36] and the latter is currently being prepared for submission to IEEE S&P
2022. Furthermore, implemented using the HElib software library CHAGHRI is 2.3
times faster than AES, making it, to the best of my knowledge, the most efficient
block cipher in this setting.

In this thesis, I aim to answer the following research questions:

• How do algebraic ciphers behave in FHE when compared to their traditional
counterparts?

• What are the specific efficiency metrics that make algebraic ciphers efficient
in FHE?

1Some older works use the term arithmetization-oriented ciphers which is now considered obsol-
ete.
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CHAPTER 1. INTRODUCTION

1.1 The Structure of This Thesis

This thesis is structured as follows: in Chapter 2, some mathematical background,
relevant features of AES, and an introduction to FHE including the FHE scheme
used in this work are presented. Chapter 3 deals with algebraic ciphers: gen-
eral design considerations of algebraic ciphers, the Marvellous design strategy,
and a description of VISION and RESCUE. Then, in Chapter 4, working packed
implementations of leveled homomorphic encryption that can evaluate the AES-
128 [16], VISION, and RESCUE circuits are described. Subsequently, in Chapter
5, the findings of the exploratory study that compares VISION and RESCUE with
AES are presented. Additionally, the efficiency metrics that improves the perform-
ance of the algebraic ciphers are identified. Then, in Chapter 7, our first algebraic
cipher design SELJUK is described. This design serves to the purpose of exploring
the efficiency metrics further and designing our second algebraic cipher, CHAGHRI.
Next, in Chapter 8, CHAGHRI is introduced and the specifications of the cipher are
given. Finally, in Chapter 9, a conclusion given.
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Chapter 2

Preliminaries

In this chapter I recall some prior knowledge required for this thesis. Section 2.1
provides the necessary mathematical background. Then, Section 2.2 gives an over-
view of AES. Finally, Section 2.3 introduces the basics of FHE and the FHE
scheme used in this thesis.

2.1 Mathematical Background

Definition 2.1.1 (Group). A group< G,+ > is a setG together with an operation,
denoted by ‘+’, defined on elements of G:

+: G×G→ G : (a, b) 7→ a+ b. (2.1)

Then, < G,+ > satisfies the following properties:

• Closure: ∀a, b ∈ G : a+ b ∈ G.

• Identity: ∃0 ∈ G,∀x ∈ G : 0 + x = x+ 0 = x.

• Associativity: ∀a, b, c ∈ G : (a+ b) + c = a+ (b+ c).

• Inverse: ∀a ∈ G, ∃b ∈ G : a+ b = 0.

Definition 2.1.2 (Subgroup). Let < G,+ > be a group, and H be a subset of G.
If H forms a group under the same operation ‘+’, then < H,+ > is said to be a
subgroup of < G,+ >.

Definition 2.1.3 (Ring). A ring< R,+, · > is a set R together with two operations
denoted by ‘+’ and ‘·’, defined on elements of R:

+ : R×R→ R : (a, b) 7→ a+ b,

· : R×R→ R : (a, b) 7→ a · b. (2.2)

Then, < R,+, · > satisfies the following properties:

Behaviour of Algebraic Ciphers in Fully Homomorphic Encryption 4
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• < R,+ > is an Abelian group (commutative): ∀a, b ∈ R : a+ b = b+ a.

• ‘·’ is closed and associative over R, and there is an identity element for ‘·’ in
R.

• ‘+’ and ‘·’ are related by the law of distributivity: ∀a, b, c ∈ R : (a+b) ·c =
(a · c) + (b · c).

Definition 2.1.4 (Field). A field< F,+, · > is a set F together with two operations
denoted by ‘+’ and ‘·’, defined on elements of F :

+ : F × F → F : (a, b) 7→ a+ b,

· : F × F → F : (a, b) 7→ a · b. (2.3)

Then, < F,+, · > satisfies the following properties:

• < F,+, · > is a commutative ring (the operation ‘·’ is commutative).

• F \ {0} (the set F without the additive identity 0) is an abelian group under
‘·’.

A field is denoted by F.

Definition 2.1.5 (Finite Field). A finite field is a field with a finite number of
elements. The number of elements in the set is said to be the order of the field. A
field of order q exists if and only if q is of the form pn for a positive integer n and a
prime p. Then, p is said to be the characteristic of the field. A finite field is denoted
by Fpn .

Definition 2.1.6 (Subfield). Let F be a field, and S be a subset of F. If S forms a
field under the same operations ‘+’ and ‘·’, then S is said to be a subfield of F. F
is also said to be an extension of S.

Definition 2.1.7 (Polynomial over a Field). A polynomial over a field F is an ex-
pression of the form

b(x) = bn−1x
n−1 + bn−2x

n−2 + ...+ b2x
2 + b1x+ b0,

where x is the indeterminate of the polynomial and the coefficients bi ∈ F. The
degree of the polynomial is the highest of the degrees of the monomials with non-
zero coefficients.
If bi = 0 for all i, then the degree of the polynomial is said to be −∞. If the
degree of the polynomial is zero or −∞, then the polynomial is said to be trivial.
Otherwise, the polynomial is said to be nontrivial.

Definition 2.1.8 (Irreducible Polynomial). A polynomial over a field F is said to
be irreducible if it cannot be factored into nontrivial polynomials over F.

Behaviour of Algebraic Ciphers in Fully Homomorphic Encryption 5



CHAPTER 2. PRELIMINARIES

Definition 2.1.9 (Linearized Polynomial). A polynomial L(x) over a finite field
Fqn is said to be a linearized polynomial if the exponents of all the monomials are
powers of q:

L(x) =

n−1∑
i=0

aix
qi ,where ai ∈ Fqn .

Definition 2.1.10 (Linearized Affine Polynomial). Let L(x) be a linearized poly-
nomial over a finite field Fqn . A polynomial A(x) of the form:

A(x) = L(x) + a−1 =
n−1∑
i=0

aix
qi + a−1,where ai ∈ Fqn

is said to be an Fq-linearized affine polynomial over Fqn .

Definition 2.1.11 (Permutation Polynomial). A polynomial L(x) over a field F is a
permutation polynomial if the map x 7→ L(x) where x ∈ F is a bijection. In other
words, L(x) maps distinct elements in F to distinct elements in F (i.e., one-to-one)
and for every y in F, there is an x in F such that L(x) = y (i.e., onto).

Theorem 2.1.1 (Lagrange’s Theorem). If H is a subgroup of a group G, then the
order of H divides the order of G.

2.2 Advanced Encryption Standard (AES)

AES is a key-iterated block cipher that repeatedly applies a round function R to
its state S. The state is an element in the vector space F4×4

28
at a specific point

in the execution [9]. The elements of the AES state are defined by the Rijndael
polynomial x8 + x4 + x3 + x + 1, and viewed as bytes. AES encrypts 128-bit
plaintext blocks, and supports 128-, 192-, and 256-bit keys. The number of rounds
is a function in the key size: 10 rounds for 128-bit keys; 12 rounds for 192-bit keys;
and 14 rounds for 256-bit keys.

An AES round consists of four steps with a slight exception in the last round:

• SubBytes: a fixed permutation is applied to each byte of the state. This
permutation consists of an inversion (g : a 7→ b = a−1 with 0 mapped to 0)
followed by an affine transformation f : F8

2 7→ F8
2, b = f(a):

f(a) =



b7
b6
b5
b4
b3
b2
b1
b0


=



1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1


×



a7
a6
a5
a4
a3
a2
a1
a0


⊕



0
1
1
0
0
0
1
1
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The mappings from F28 to F28 can be represented by a polynomial over
F28 , and this polynomial can be derived by means of Lagrange interpolation.
The polynomial representation of the affine transformation b = f(a) is the
following F2-linearized affine polynomial:

f(a) = 63+05a2
0
+09a2

1
+f9a2

2
+25a2

3
+f4a2

4
+01a2

5
+b5a2

6
+8fa2

7
.

F2-linearized affine polynomials are immensely efficient to compute with
respect to the normal basis. There exists an element α ∈ F2n such that the
set {α, α2, ..., α2n−1} constitutes a basis of F2n over F2 which is said to be
a normal basis. Then, any element x ∈ F2n can be represented as a vector
(a0, a1, ..., an−1) as follows:

x =
n−1∑
i=0

aiα
2i

Then, a squaring is simply a right cyclic shift in this representation;

• ShiftRows: rowi (0 ≤ i < 4) of the state is cyclically shifted to the left by i
positions: 

α00 α01 α02 α03

α10 α11 α12 α13

α20 α21 α22 α23

α30 α31 α32 α33

 7→

α00 α01 α02 α03

α11 α12 α13 α10

α22 α23 α20 α21

α33 α30 α31 α32

 ;

• MixColumns: a linear bijection is applied to the state. To apply this opera-
tion, the columns of the state are considered as polynomials over F28 which
are then multiplied modulo x4 + 1 with a fixed polynomial c(x):

c(x) = 03x3 + 01x2 + 01x+ 02;

• AddRoundKey: the round key is added to the state using a bit-wise XOR.
The round keys are derived from the master key by means of a key schedule
algorithm. As the AES key schedule algorithm is out of the scope of this
thesis, the interested reader is referred to [9] for a detailed description.

The MixColumns operation is removed in the last round of AES. Additionally,
prior to the first round, an AddRoundKey operation is applied. Figure 2.1 depicts
a schematic description of the encryption and decryption operations where Nr is
the number of rounds.

AES is a natural choice for a benchmark of advanced cryptographic protocol
implementations [10, 22, 29] due to several reasons. Firstly, AES is used in a wide
range of applications. Secondly, the AES circuit is not complicated, and on the
other hand, it is not trivial. Thirdly, AES is immensely efficient and suitable for
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Figure 2.1: AES encryption and decryption

optimizations. For instance, it can improve its efficiency using low level processor
support (i.e., AES-NI). Moreover, its quite algebraic structure being unique among
traditional block ciphers allows it to be easily implemented in advanced crypto-
graphic protocols.
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2.3 Fully Homomorphic Encryption (FHE)

Homomorphic encryption is an advanced cryptographic primitive that allows users
to evaluate a permitted set of circuits on encrypted data without first decrypting
it. In addition to three algorithms KeyGenE , EncryptE and DecryptE that any
public key encryption scheme E employs, homomorphic encryption also employs
EvaluateE . KeyGenE is a randomized algorithm that takes a security parameter
λ; outputs a secret key sk and a public key pk. pk defines a ciphertext space C and
a plaintext space P . EncryptE is a randomized algorithm that takes a plaintext
π ∈ P and sk; outputs a ciphertext ψ ∈ C. DecryptE takes a ciphertext ψ and
a secret key sk; outputs the corresponding plaintext π. EvaluateE is an efficient
algorithm that takes a public key pk, a circuit C from the set of permitted circuits
CE , and a tuple of ciphertexts Ψ = 〈ψ1, ..., ψt〉 of size equal to the circuit input
where ψi encrypts πi under pk; outputs a ciphertext encrypting C(π1, ..., πt) [12].
Following definitions state the correctness and the compactness of a homomorphic
encryption scheme:

Definition 2.3.1. A homomorphic encryption scheme E is said to be correct for
the circuits in CE if for any (sk, pk) pair generated by KeyGenE , any circuit C ∈
CE , any plaintexts π1, ..., πt, and any ciphertexts Ψ = 〈ψ1, ..., ψt〉 with ψi ←
EncryptE(pk, πi), it holds that:

if ψ ← EvaluateE(pk,C,Ψ), then DecryptE(sk, ψ) = C(π1, ..., πt).

Definition 2.3.2. A homomorphic encryption scheme E is compact if there exists
a polynomial f such that, for every value of the security parameter λ, DecryptE
can be expressed as a circuit of size at most f(λ).

Definition 2.3 defines the minimal requirement of the functionality of EncryptE .
Consider a scheme thatEvaluateE(pk, C,Ψ) outputs C and Ψ without processing
the circuit, decrypts Ψ and applies C to the results. Although this scheme is cor-
rect, we are interested in the schemes evaluating circuits on the ciphertexts. Defin-
ition 2.3 ensures this by setting an upper-bound for the length of the ciphertexts
output by EvaluateE . Then, these definitions lead to the definition of FHE:

Definition 2.3.3. A homomorphic encryption scheme E is said to be an FHE
scheme if it is correct, compact and it can evaluate any circuit.

In other words, a homomorphic encryption scheme that allows users to evaluate
any circuit on encrypted data without first decrypting it is said to be FHE. The idea
behind FHE was introduced by Rivest, Adleman and Dertouzos [30] as privacy
homomorphism shortly after the invention of RSA [31], in itself the first homo-
morphic encryption scheme. Since then, several pre-FHE schemes were proposed
that are either partially or somewhat homomorphic encryption schemes.

Partially homomorphic encryption schemes employ only a single type of oper-
ation (i.e., addition or multiplication) and possess no limitation on the number of
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operations performed. RSA, Paillier [28], and Goldwasser–Micali [17] are a few
instances of partially homomorphic encryption schemes. Somewhat homomorphic
encryption (SWHE) schemes preserve both operations (i.e., addition and multiplic-
ation), but restricts their number. That is, a correct decryption is no longer possible
when the number of operations exceeds a certain limit. Boneh-Goh-Nissim [5] and
Sander-Young-Yung [32] are two instances of somewhat homomorphic encryption
schemes.

2.3.1 From pre-FHE to FHE

Pre-FHE schemes served as intermediate steps that eventually led to an FHE scheme.
In 2009, Gentry introduced the first practical FHE scheme [12]. Gentry’s pioneer-
ing FHE construction gave a lead to many FHE schemes (e.g., [37, 33, 14]) using
the same design structure.

The first step in Gentry’s FHE construction is to construct a SWHE scheme
limited to computing low degree polynomials homomorphically. The encryption
process of this scheme adds a small amount of noise to the output ciphertext. Then,
each operation on ciphertexts increases this noise. Moreover, the correctness of this
scheme is retained only if the noise level remains below a certain threshold.

The second step of Gentry’s construction is to transform the SWHE scheme to
an FHE scheme using bootstrapping. Bootstrapping is a method to reduce the noise
of a ciphertext by applying a recryption function to obtain a ciphertext encrypting
the same plaintext with less noise. Recryption applies the decryption function to
the ciphertext homomorphically using the encrypted secret key. If a SWHE scheme
is able to evaluate circuits that are deeper than its decryption circuit, this scheme is
said to be bootstrappable. Let DE be the decryption circuit of the FHE scheme E ,
(sk1, pk1) and (sk2, pk2) be two E key pairs, and Ψ be the encryption of π under
pk1. Then, the recryption algorithm is listed as following:

Algorithm 1 Recryption
Input : pk2, DE , EncryptE(pk2, sk1), Ψ

1: Ψ← EncryptE(pk2,Ψ)
2: return EvaluateE(pk2,DE , 〈EncryptE(pk2, sk1),Ψ〉)

The output of the recryption algorithm is thus a fresh ciphertext that is the encryp-
tion of π under pk2.

A squashing step is needed when the depth of the decryption algorithm is more
than the scheme can handle. This step decreases the complexity of the decryption
algorithm. The interested reader is referred to [12] for a detailed description of
the squashing step as it is out of the scope of this thesis. Unfortunately, both
bootstrapping and squashing cause the FHE schemes that use Gentry’s construction
to have a poor performance in terms of efficiency.

The first major deviations from Gentry’s original FHE construction were pro-
posed by Gentry and Halevi [13], and Brakerski and Vaikuntanathan [7]. They
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independently proposed methods to construct an FHE scheme without using the
squashing step. However, these schemes did not eliminate the performance pen-
alty resulting from bootstrapping.

2.3.2 Brakerski-Gentry-Vaikuntanathan (BGV) Scheme

BGV is a leveled FHE scheme proposed by Brakerski, Gentry and Vaikuntan-
athan [6]. It deviates from Gentry’s construction in how it handles the noise.
Leveled FHE is more restricted than FHE in that the depth of circuits it can evaluate
is bounded by the parameters of the scheme. BGV uses modulus-switching intro-
duced by Brakerski and Vaikuntanathan [7] to keep the noise under the threshold.
Modulus switching is originally applied one time to obtain a ciphertext with less
noise, whereas it is iteratively applied in BGV to control the noise growth.

In this work we use a BGV variant proposed by Gentry, Halevi and Smart [15].
In this scheme both ciphertexts and secret keys are represented as vectors over the
polynomial ring A, and the plaintext space is all polynomials over Ap for p ≥ 2.
Additionally, at any point during the homomorphic evaluation, there are current
integer modulus q and current secret key s that evolve as the homomorphic opera-
tions are applied. Decryption is done by taking the inner product of the ciphertext
c and the current secret key s over Aq. Then the result is reduced modulo p:

a← [ [ 〈c, s〉 mod Φm(X)] q︸ ︷︷ ︸
noise

] p. (2.4)

In this context, keeping the noise in check means ensuring that it does not exceed
q. Five different operations are defined in this scheme. Addition, multiplica-
tion and automorphism are used to evaluate circuits and therefore, alter the plain-
texts encrypted under these ciphertexts. Key-switching and modulus-switching
are used to control the complexity of the evaluation and therefore, do not affect the
underlying plaintext.

Addition. Homomorphic addition is simply performed by means of a vector
addition over Aq (with respect to the same secret key and modulus q). This opera-
tion slightly increases the noise of the ciphertext, and does not change the current
secret key and the current modulus.

Multiplication. Homomorphic multiplication is performed by means of a
tensor product over Aq. If the two arguments of this operation have dimension n
over Aq, the output then has dimension n2. The change in the dimension of the
ciphertext consequently results in a change in the dimension of the secret key. This
is because the output ciphertext would then be valid with respect to the secret key
s′ of dimension n2. Therefore, the operation changes the current secret key, but
not the current modulus. Homomorphic multiplication remarkably increases
the noise of the ciphertext.
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Automorphism. Automorphism maps a polynomial a(X) ∈ A to a(i)(X) =
a(Xi) mod Φm(X). The set of transformations {a 7→ ai : i ∈ (Z/mZ)∗} forms a
group under the composition operation, and this group is isomorphic to (Z/mZ)∗.
Let c be a valid ciphertext encrypting a with respect to s and q. Then the output
of the automorphism operation c(i) is a valid ciphertext encrypting a(i) with re-
spect to s(i) and q. Different than the addition and the multiplication, this
operation does not increase the noise of the ciphertext.1

Key-switching. Key-switching is used after the operations increasing the di-
mension of the secret key. It converts a valid ciphertext with respect to s′ to a valid
ciphertext capturing the same plaintext with respect to s such that the dimension of
s is lower than s′. It does not change the current modulus, but increases the noise
of the ciphertext.

Modulus-switching. Modulus-switching is applied to reduce the noise of the
ciphertext. The output ciphertext captures the same plaintext with respect to the
same key, but different modulus q′. If the q′ is sufficiently smaller than q, then the
output ciphertext has less noise. A property of BGV-type schemes is that they have
a chain of moduli q0 < q1 < ... < qL−1, and fresh ciphertexts are encrypted with
respect to qL−1. Modulus-switching is applied when the noise gets uncontrol-
lably large to decrease the modulus q from qi to qi−1. When the output ciphertexts
reach modulus q0, it is no longer possible to operate on them, and bootstrapping is
required.

Packed Ciphertexts. This FHE scheme allows performing operations on packed
ciphertexts. Smart and Vercauteren [33] proposed using the Chinese Remainder
Theorem to represent the plaintext space Ap as a vector of plaintext slots. This
applies when Φm(X) factors modulo p into l irreducible polynomials such that
Φm(X) =

∏l
j=1 Fj(X) mod p. Then, a plaintext polynomial a(X) ∈ Ap can

be represented as encoding l different plaintext polynomials with aj = a mod Fj .
Addition and multiplication operations are then performed slot-wise. How-
ever, this is not the case for automorphism. If i is a power of two, then the
transformation a 7→ a(i) can be realized for each slot separately, and this trans-
formation is called a Frobenius automorphism2. Conversely, if i is not a power
of two, then the transformation acts as a shift operation between the different slot
elements.

The security level of this scheme is directly proportional to φ(m), and inversely
proportional to the depth of the circuit that is evaluated.

1Each automorphism requires a key-switching which increases the noise. However, this is not a
significant increase and we ignore it in this work.

2The properties of the Frobenius automorphism are exploited extensively throughout this thesis.
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Chapter 3

Algebraic Ciphers

In this chapter, I focus on the Marvellous design strategy and its two families:
VISION and RESCUE. In Section 3.1 I discuss the general design considerations
of the algebraic ciphers. Then, in Section 3.2 I introduce the Marvellous design
strategy [2]. Finally, in Section 3.3 and Section 3.4, the Marvellous families VIS-
ION and RESCUE are described, respectively.

3.1 Algebraic Cipher Design

Many methods have been proposed for block cipher design to reduce the effort in
designing efficient block ciphers that are resistant to attacks. Some of these meth-
ods employ a specific set of operations to design block ciphers (e.g., ARX ciphers),
whereas some employ general-purpose structures (e.g., Feistel, SPN). Additionaly,
many of the proposed methods aim to determine the number of rounds provid-
ing desired security properties. Nevertheless, algebraic ciphers deviate from their
traditional counterparts in terms of their relevant attacks and security analysis in
addition to efficiency metrics. Therefore, algebraic cipher design calls for different
considerations.

Non-Procedural Computation. Procedures simply consist of a series of com-
putational steps. In procedural computation, the system’s state at any point in time
is a function of the system’s state at the previous point in time. However, advanced
cryptographic protocols tend to violate this procedural model of computation. Even
though the participants in the protocols are procedural computers, some phenom-
ena are better interpreted with respect to an alternative timeline. These phenomena
are called non-procedural computations [2]. For instance, masked operations in
MPC offer non-procedural properties by referring certain computations to an off-
line phase. Likewise, Frobenius automorphism in the FHE scheme used in this
work offer non-procedural properties by computing an exponentiation of the form
Xpi over Fpn . The running time of this operation is independent of the exponent.
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Non-procedural computations allow constant time execution in operations that
would otherwise had resulted in variable running time. Therefore, exploiting non-
procedural computation improves the efficiency in advanced cryptographic proto-
cols that support it.

Efficiency Metrics. Recall that running time, number of gates, and energy/memory
consumption are not the main efficiency metrics that are considered in algebraic
ciphers. Instead, efficiency metrics are defined specific to the advanced crypto-
graphic protocol. For ZK proofs, AIR or R1CS constraints; for MPC, number of
multiplications and number communication rounds are driving factors. Interest-
ingly, the cost of the operations do not depend on the size of the field that the
operation is defined over in ZK proofs and MPC. However, we will see that this
does not hold for FHE. The number of required operations to perform certain com-
putations depend on the field size in FHE.

Cryptanalytic Focus. The design of the algebraic ciphers thwarts statistical at-
tacks in a small number of rounds by means of flexible field sizes [2]. Therefore,
traditional security arguments are not the main considerations in algebraic ciphers.
Algebraic ciphers operate on finite fields. Therefore, every function that the cipher
employs can be represented by a polynomial. Optimizing these polynomials for ef-
ficiency enables attacks that manipulate simple polynomials. These attacks include
the interpolation attack [23], higher order differentials [24], the GCD attack [1],
and Gröbner basis attacks [8]. The interpolation and the GCD attacks exploit the
univariate polynomial relation between the plaintext and the ciphertext. In order
to prevent these attacks, the univariate polynomial that describes the cipher should
be dense and have a high degree. Conversely, Gröbner basis attacks exploit the
multivariate polynomial description of the cipher. Gröbner basis attacks are con-
ceptually similar to Gaussian elimination. Their objective is to solve a system of
polynomials instead of a system of linear equations. Hence, low non-linear com-
plexity of a cipher poses a weakness to Gröbner basis attacks. This brings the fol-
lowing contradiction: the design goal of algebraic ciphers to have a low non-linear
complexity conflicts with their security against Gröbner basis attacks.

3.2 The Marvellous Design Strategy

The Marvellous design strategy [2] introduces a set of decisions to be taken when
designing a secure and efficient algebraic cipher. A Marvellous design is a substitution-
permutation (SP) network that repeatedly applies rounds of substitution boxes (S-
box) and permutation boxes (P-box). The design principles of the Marvellous
design strategy prioritize security, simplicity, robustness, and efficiency.

The state of a Marvellous design is an element in the vector space F`q, with q
either a power of 2 or a prime number and ` > 1. A Marvellous design repeatedly
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applies its round function to its state for N iterations. Figure 3.1 depicts a schem-
atic description of the encryption operation of a Marvellous design. A plaintext
and a master key are the inputs to the first round. Each round consists of two steps
and each step employs three layers: S-box, linear, and subkey injection. The sub-
keys used in subkey injection are derived from the master key by means of a key
schedule algorithm.

Figure 3.1: The Marvellous encryption operation

The S-box layer of a Marvellous round applies an S-box to each of the ` state
elements. Each S-box consists of a power map g : xα possibly followed by an
affine transformation. The two steps of the Marvellous round employ different S-
boxes in terms of their degrees. The S-box employed in the first step is denoted
with θ0, and the S-box employed in the second step is denoted with θ1. θ0 is
chosen such that it has a high degree when the encryption is performed and a low
degree when the decryption is performed. θ1 is chosen such that it serves the
opposite goal: it has a low degree when the encryption is performed and a high
degree when the decryption is performed. This construction provides a high degree
in both encryption and decryption, and consequently results in the same cost for
both. The motivation behind employing power map S-boxes is their cryptanalytic
properties [27].

For Marvellous ciphers operating over binary fields, the power map is followed
by an invertible affine transformation. Owing to its efficiency, an F2-linearized
affine polynomial is recommended to be used which is of the form:

B(x) = b−1 +
n−1∑
i=1

bix
2i ∈ F2n [x].

The coefficients of this polynomial are randomly generated such that they consti-
tute a permutation polynomial. An F2-linearized affine polynomial is a permuta-
tion if and only if its linear part (i.e., B(x) − b−1) only has the root 0 in F2n .
While the affine transformation has no effect on the non-linearity of the S-box, it
increases the algebraic degree, which provides security against algebraic attacks.

The linear layer diffuses local properties to the entire state. This is realized by
multiplying the Marvellous state vector by a maximum distance separable (MDS)
matrix. An MDS matrix is defined as follows:

Definition 3.2.1. Let x 7→ Mx be a linear transformation from F`q to Fsq defined
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by the s × ` matrix M . M is then said to be an MDS matrix if the set of all
pairs (x,Mx) is a linear code of dimension `, length `+ s, and minimum distance
s+ 1 [19].

The linear layer of the Marvellous design does not change the size of the state
vector. Therefore, the MDS matrix used in the Marvellous round is an `×` square
matrix.

Using a key scheduling algorithm and different subkeys for each subkey injec-
tion increases the complexity of the system of polynomials describing the cipher.
Therefore, this strategy increases the security of the cipher against Gröbner basis
attacks. The key schedule algorithm of the Marvellous design is indeed the iter-
atively applied Marvellous round function. In order to generate the subkeys, the
round function takes the master key instead of the plaintext input, and takes addi-
tional round constants instead of the subkeys injected. The intermediate state after
the round constant injection is provided as a subkey. Round constants are used to
prevent possible symmetries and similarities in the algorithm to thwart certain type
of attacks (e.g., rotational cryptanalysis). The round constants should be chosen
such that they are not rotational-invariant and they do not belong to any subfield of
Fq.

The number of rounds in a Marvellous design is set to be

2 ·max(r0, r1, 5),

where r0 is set to be the maximum number of Marvellous rounds that can be at-
tacked by differential and linear cryptanalysis, higher order differentials and inter-
polation attacks; r1 is said to be the instance-specific number of rounds that can
be attacked by a Gröbner basis attack, and five is the sanity factor that protects the
cipher against redundant optimization attempts weakening it.

Security of a Marvellous design. The Marvellous design strategy includes coun-
termeasures against certain type of attacks. Against differential and linear crypt-
analysis, the wide trail strategy [9] is followed. The wide trail strategy is an ap-
proach for designing secure and efficient block ciphers that are resistant to differ-
ential and linear cryptanalysis.

Differential cryptanalysis exploits the propagation of differences in plaintext
pairs to the corresponding ciphertext pairs [4]. Therefore, achieving low differ-
ence propagation probabilities is crucial for security against differential cryptana-
lysis. Linear cryptanalysis exploits a linear approximation between plaintext bits
and ciphertext bits. Therefore, achieving low correlation amplitudes is crucial for
security against linear cryptanalysis.

Self-similarity attacks exploit the possible self-similarity of an algorithm. The
working principle of these attacks is to divide an algorithm into sub-algorithms
such that they are similar to one another with respect to a similarity definition.
Round constants that break the self-similarity are used to thwart such attacks.
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Invariant subfield attacks exploit the existence of two subfields Fq1 ⊂ Fq and
Fq2 ⊂ Fq such that for any x ∈ Fq1 given to the round function as input, the output
y satisfies y ∈ Fq2 . These attacks are only relevant for binary fields as prime fields
do not have non-trivial subfields. To thwart such attacks, the coefficients of the
F2-linearized affine polynomial B and round constants are chosen such that they
do not lie in any subfield of F2n .

Higher order differential cryptanalysis exploits the low algebraic degree of
an algorithm. The resistance of Marvellous designs operating on binary fields is
provided by the S-box. An F2-linearized affine polynomial is used in constructing
the S-box to increase the algebraic degree.

Interpolation attacks also exploit the low degree of an algorithm by reconstruct-
ing the polynomial description of the algorithm from input/output pairs. In a Mar-
vellous design, at least one of the S-boxes employ a high degree power map to
thwart interpolation attacks.

Gröbner basis attacks attract further attention due to the nature of algebraic
ciphers that minimizes the multiplicative complexity as a design goal. Rather than
a generic security argument, a novel framework to determine the resistance of a
given algorithm against Gröbner basis attacks is proposed in [2]. Interested reader
is referred to Appendix A in [2] for a comprehensive discussion.

Table 3.1 summarizes the maximal number of rounds that can be covered by
the attacks described above with respect to a security parameter s.

Table 3.1: Resistance of a Marvellous design to cryptanalytic attacks

Type of Attack Binary Fields Prime Fields

Differential
Cryptanalysis

2s

log2(q
`+1)−2·(`+ 1)

2s

log2(q
`+1)−log2((α− 1)`+1)

Linear
Cryptanalysis

s

log4(q
`+1)−2·(`+ 1) -

Higher Order
Differentials

log2(s)

log2(n− 1) -

Interpolation 3 3

3.3 Vision

VISION is a Marvellous family operating on binary fields with its native field F2n .
Most aspects of VISION are directly derived from the Marvellous design strategy.
Therefore, VISION-specific design decisions are limited to the S-box layer. The
state is an element of F`2n which has ` field elements. The S-boxes consist of an
inversion (with 0 mapped to 0) followed by an affine transformation. They are
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constructed by first choosing a 4th degree F2-linearized affine polynomial B(x).
Then,

θ1 : F2n 7→ F2n : x 7→ B(x−1),

and

θ0 : F2n 7→ F2n : x 7→ B−1(x−1).

The design decisions regarding choosing the F2-linearized affine polynomial and
constructing the linear layer were provided in Section 3.2.

Figure 3.2 depicts a schematic description of the VISION round function. To
generate the ciphertext from a given plaintext, the round function is iterated N
times. A key injection with a subkey derived from the master key takes place before
the first round, between every two steps, and after the last round. Pseudo-code of
VISION is listed in Algorithm 2.

Figure 3.2: A VISION round function

Algorithm 2 Vision
Input : Plaintext P, subkeys Ks for 0 ≤ s ≤ 2N
Output: Vision(K,P )

1: S0 = P +K0

2: for j ← 1 to N do
3: for i← 1 to ` do
4: Interj [i] = (Sj−1[i])

−1

5: Interj [i] = B−1(Interj [i])
6: end for
7: for i← 1 to ` do
8: Sj [i] =

∑`
t=1M [i, t]Interj [t] +K2j−1[i]

9: end for
10: for i← 1 to ` do
11: Interj [i] = (Sj [i])

−1

12: Interj [i] = B(Interj [i])
13: end for
14: for i← 1 to ` do
15: Sj [i] =

∑`
t=1M [i, t]Interj [t] +K2j [i]

16: end for
17: end for
18: return SN
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To obtain a security level of s, in bits, the required number of rounds is set to
N = 2 · max(r0, r1, 5). r0 is the number of maximum rounds that can be covered
by the attacks listed in Table 3.1, and r1 = ds+`+8

8`
e is the number of rounds that

can be attacked by Gröbner basis attack. Interested reader is referred to Section 5.1
in [2] for a detailed description of determining r1.

3.4 Rescue

RESCUE is another Marvellous family this time operating on Fp where p is an
odd prime instead of a power of 2. Same as VISION, most aspects of RESCUE

are directly derived from the Marvellous design strategy. A RESCUE state is an
element of F`p which has ` field elements. The S-boxes consist of a power map.
They are constructed by first finding the smallest prime α such that gcd(p−1, α) =
1. Then,

θ0 : Fp 7→ Fp : x 7→ x1/α,

and

θ1 : Fp 7→ Fp : x 7→ xα.

The design decisions regarding constructing the linear layer were provided in Sec-
tion 3.2.

Figure 3.3 depicts a schematic description of the RESCUE round function. To
generate the ciphertext from a given plaintext, the round function is iterated N
times. A key injection with a subkey derived from the master key takes place before
the first round, between every two steps, and after the last round. Pseudo-code of
RESCUE is listed in Algorithm 3.

Figure 3.3: A RESCUE round function

To obtain a security level of s, in bits, the required number of rounds is set to
N = 2 · max(r0, r1, 5). r0 is the number of maximal rounds that can be covered

by the attacks listed in Table 3.1, and r1 =

{
ds+2

4`
e for α = 3

ds+3

5.5`
e for α = 5

is the number of

rounds that can be attacked by Gröbner basis attack. Interested reader is referred
to Section 6.1 in [2] for a detailed description of determining r1.
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Algorithm 3 Rescue
Input : Plaintext P, subkeys Ks for 0 ≤ s ≤ 2N
Output: Rescue(K,P )

1: S0 = P +K0

2: for j ← 1 to N do
3: for i← 1 to ` do
4: Interj [i] = K2j−1[i] +

∑`
t=1M [i, t](Sj−1[t])

1/α

5: end for
6: for i← 1 to ` do
7: Sj [i] = K2j [i] +

∑`
t=1M [i, t](Interj [t])

α

8: end for
9: end for

10: return SN



Chapter 4

Homomorphic Evaluation of the
AES, Vision, and Rescue Circuits

In this chapter, I describe the working packed implementations of leveled homo-
morphic encryption evaluating the AES-128, VISION and RESCUE circuits. All
implementations are built using HElib, a software library implementing the BGV
variant described in Subsection 2.3.2. The library is written in C++ and uses
the NTL mathematical library. An AES-128 circuit is implemented by Gentry et
al. [16], and used in this work without any modification. Novel VISION and RES-
CUE circuits are completely implemented. The implementations of these ciphers
are solely used for running time comparison featured in Chapter 5. Hence, all the
VISION and RESCUE related parameters (e.g., state size in bits, field size, etc.) are
chosen to support this comparison. Note that throughout this chapter, ciphertext
refers to an FHE ciphertext occurring during homomorphic computations.

4.1 Parameters and Input Encoding

This section deals with setting an appropriate FHE scheme to evaluate the AES,
VISION, and RESCUE circuits.

4.1.1 Native Plaintext Space

The native plaintext space of the FHE scheme is chosen to support the implemented
cipher’s native field, i.e., addition and multiplication over Fpn . The native plaintext
space is defined by the ring polynomial induced by the mth cyclotomic polynomial
Φm(X).

4.1.2 Ring Polynomial

Recalling Subsection 2.3.2 paragraph Packed Ciphertexts, the ring polynomial Φm(X)
is chosen such that it factors modulo p into degree-d irreducible polynomials and
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n|d. This structure provides the layout that holds elements of Fpd in its plaintext
slots. As Fpn is a sub-field of Fpd , the elements of the cipher’s state F`pn can be
embedded into this layout. Besides defining the plaintext space, m sets an upper
bound for the multiplicative level L that the FHE scheme can evaluate with respect
to φ(m). Finding a suitable m to evaluate a given circuit having multiplicative
depth L is not deterministic, but chosen empirically.

4.1.3 Rotation Over the State Elements

Each of AES, VISION, and RESCUE employ a matrix multiplication in their linear
layer. Multiplying the cipher’s state by a matrix requires computing the sum of
all state elements. This requires that the elements be rotated to align them for
summation. Therefore, rotation is an essential operation for our implementations.

For the layout structured by Φm(X) to provide rotation of ` plaintext slots, m
is chosen such that there exists an element g ∈ Z∗m whose order is ` in both Z∗m and
Z∗m/〈p〉. This condition allows representing ` plaintext slots as t, tg, tg2, ..., tg`−1

for some t ∈ Z∗m. Then, the operation X 7→ Xg shifts the state cyclically.

4.1.4 Choosing m

The required steps to find a suitable m are:

• Finding an m′ value such that p’s order in Z∗m′ is a multiple of n (i.e., d is
the smallest positive integer satisfying pd ≡ 1 mod m′ such that n|d);

• Checking if there exists an element g ∈ Z∗m′ that has order ` in both Z∗m′ and
Z∗m′/〈p〉.

If m′ satisfies both conditions, then m← m′.

4.1.5 Packed State Representation

AES. The AES state in plaintext

A = (αij)i,j =


α00 α01 α02 α03

α10 α11 α12 α13

α20 α21 α22 α23

α30 α31 α32 α33


is encoded using column-first ordering:

a ≈ [α00α10α20α30α01α11α21α31α02α12α22α32α03α13α23α33] .

Behaviour of Algebraic Ciphers in Fully Homomorphic Encryption 22



CHAPTER 4. HOMOMORPHIC EVALUATION OF THE AES, VISION, AND
RESCUE CIRCUITS

Vision and Rescue. For a fair latency comparison, instances of VISION and RES-
CUE having 128-bit states are used to fix the throughput. To this end, we imple-
mented VISION instances operating on F2n where n ∈ {8, 16, 32, 64}. This can
be interpreted as VISION instances having n bits of data in their plaintext slots.
Therefore, the respective number of elements in the cipher’s state is ` = 128/n.

Due to the hardness of parameter selection, only one RESCUE instance having
state elements over F317 is used. Then, the respective number of elements is ` =
128/blog2 317c = 16. The VISION and RESCUE states are represented as

[α1, α2, ..., α`] , where αi ∈ Fpn .

4.2 Homomorphic Evaluation of the AES, Vision, and Res-
cue Operations

As mentioned in Subsection 2.3.2, circuits having a deeper multiplicative level re-
quire larger φ(m) to provide a fixed security level. Increasing φ(m) consequently
causes the primitive operations (i.e., additions, multiplications, automorphisms)
to be more expensive. Therefore, operations consisting of numerous multiplica-
tions arranged in a deep circuit will have considerably longer running times. For
binary fields, employing a Frobenius automorphism, see Section 2.3.2, would be
beneficial in decreasing the depth of the circuit and allowing lower φ(m) para-
meter. The fact that the running time of a Frobenius automorphism X 7→ X2i for
i ∈ {1, 2, ..., n− 1} does not depend on i, but only on φ(m) motivates a wide use.
Furthermore, the Frobenius automorphism will be instrumental in optimizing our
cipher in Chapter 7.

4.2.1 Power Maps

A power map is a function consisting of a single term in the form of X 7→ Xe.
Power maps are widely used in S-box layers owing to their cryptanalytic proper-
ties [27]. Carefully chosen power maps provide high nonlinearity, high nonlinear
order, and resistance against differential cryptanalysis. There are several classes
of power maps that are well studied: x 7→ x−1 (inversion), x 7→ x2

k+1 (Gold
exponents) [27], x 7→ x2

2m−2m+1 (Kasami exponents) [21], x 7→ x2
m−2m/2−1

(Niho exponents) [11], etc. In particular, inversion is used in AES and VISION to
construct the S-box.

For a power map to be employed in an S-box, the exponent should be chosen
such that the function is a permutation polynomial (Definition 2.1.11). A power
map x 7→ xe permutes Fpn if and only if gcd(e, pn − 1) = 1.

Packed representation of the cipher’s state enables the parallelization of com-
puting the power maps on each element. Therefore, the running time of power
maps does not depend on the number of elements in the cipher’s state. However,
many of the above mentioned power maps are not suitable for an FHE implement-
ation. The Frobenius automorphism is not solely enough to compute these power

Behaviour of Algebraic Ciphers in Fully Homomorphic Encryption 23



CHAPTER 4. HOMOMORPHIC EVALUATION OF THE AES, VISION, AND
RESCUE CIRCUITS

maps which in turn results in deep circuits. If the exponent depends on the field
size and cannot be simply represented in form X2i+c, then the required number of
operations to implement it increases rapidly. In the following paragraph we will
see that inversion heavily depends on the field size.

AES and Vision. The SubBytes operation of AES and the S-box layer of VIS-
ION employ inversion. This power map over F2n is equivalent to computing x 7→
x2

n−2, due to Lagrange’s theorem (Theorem 2.1.1). The non-zero elements of F2n

form a finite group G of order 2n − 1 under multiplication. The order of any ele-
ment x ∈ G is equal to the order of the cyclic subgroup generated by itself, 〈x〉.
Then, by Lagrange’s theorem, |〈x〉| | (2n − 1). Therefore, x2

n−1 ≡ 1, where 1 is
the identity element of G. Then, the following statement can be concluded for F2n

(with 0 mapped 0):

x−1 ≡ x−1 · 1 ≡ x−1 · x2n−1 ≡ x2n−2.

Algorithm 4 lists the pseudo-code of the implementation for computing the map
x 7→ x2

n−2.

Algorithm 4 Inversion over F2n

Input : x, n
1: exp← 2
2: tmp1← x2 // Frobenius automorphism
3: tmp2← x2 · x = x3 // Multiplication (-1 level)
4: for i← 2 to log n do
5: x = (tmp2)2

exp
// Frobenius automorphism

6: tmp1 = x · tmp1 // Multiplication (-1 level)
7: if i == log n then
8: return tmp1
9: end if

10: tmp2 = x · tmp2 // Multiplication1

11: exp = 2 · exp
12: end for

Computing inversion using Algorithm 4 requires log n Frobenius automorphisms
and 2(log n− 1) multiplications arranged in a depth-log n circuit.

Rescue. RESCUE’s S-box employs two different power maps: x 7→ x1/α and
x 7→ xα. In our implementation, the prime field is chosen such that α = 3. In
the rest of this thesis, the power functions will always be written as x 7→ x1/3 and
x 7→ x3.

1This multiplication is parallel to the one in line 6. Therefore, it does not increase the circuit
depth.
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x 7→ x3 is computed as a simple exponentiation using square and multiply. On
the other hand, computing x 7→ x1/3 requires an exponent manipulation such that
x1/3 ≡ xe mod p, e ∈ N. Similar to F2n , the non-zero elements of Fp form a
finite group G under multiplication and |G| = p − 1. Similarly, the order of any
element x ∈ G is equal to the order of the cyclic subgroup generated by itself,
〈x〉. Then, by Lagrange’s theorem (Theorem 2.1.1), |〈x〉| | (p − 1). Therefore,
xp−1 ≡ 1, where 1 is the identity element of G. Then, the following statement can
be concluded for Fp (with 0 mapped 0):

x 7→ x1/3 ≡ x1/3 · x(2p−2)/3 ≡ x(2p−1)/3.
Algorithm 5 lists the pseudo-code of the implementation for computing exponen-
tiation recursively using square and multiply.

Algorithm 5 Exponentiation(x, e)
Input : State: x, exponent: e
Output: xe

1: if e == 1 then
2: return x
3: else if e% 2 == 0 then // exponent is even
4: x = x2

5: return Exponentiation(x, e/2)
6: else // exponent is odd
7: return x · Exponentiatation(x2, (e− 1)/2)
8: end if

Let v = (v0, v1, ..., vt) be the binary representation of the exponent where v0 is the
most significant bit. Then, Γ = (t+HW (v′)) is the required number of multiplic-
ations, where v′ = (v1, ..., vt) and HW (·) is a function that outputs the Hamming
weight of the input. The multiplications are arranged in a depth-Γ circuit.

4.2.2 Affine Transformation

Both AES and VISION employ an affine transformation in their S-Boxes. As stated
in Section 2.2, each F2 affine transformation can be represented as an F2n affine
transformation over the conjugates in the form of A(X) = a0 +

∑n−1
i=0 ai · X2i

over F2n . Then, A(X) is said to be an F2-linearized affine polynomial (Defini-
tion 2.1.10).

Recall that the goal in employing an affine transformation following an inver-
sion is the simple algebraic expression of the inversion (see Section 3.2). As stated
by Daemen et al. [9], properly chosen F2-linearized affine polynomials increase
the algebraic complexity of the S-box.

Similar to power maps, for an F2-linearized affine polynomial to be employed
in an S-box, it should be a permutation polynomial (Definition 2.1.11). An F2-
linearized affine polynomialA(x) = L(x)+a−1 over F2n whereL(x) =

∑n−1
i=0 aix

2i
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is a permutation if and only if 0 is the only root of L(x) in F2n . In other words,
A(x) is a permutation if and only if det(a2

j

i−j) 6= 0 for i, j = 0, 1, ..., n− 1.
There are two types of affine transformations. Both types can be represented

as an F2-linearized affine polynomials, either sparse or dense. The F2-linearized
affine polynomial A(X) = a0 +

∑n−1
i=0 aiX

2i over F2n is said to be sparse if most
of the coefficients of A(X) are 0, and dense otherwise. Both AES and VISION

employ a dense F2-linearized affine polynomial.
Considering the implementation of F2-linearized affine polynomials as a circuit

in FHE, dense polynomials require more operations which in turn would result in
longer running times.

Specifically, the F2-linearized affine polynomial of the AES SubBytes opera-
tion is a polynomial of degree 27. Recall that the two F2-linearized affine poly-
nomials in VISION are different in terms of their degrees, depending if the step
is even or odd. The F2-linearized affine polynomial B of θ1 is a polynomial of
degree 4, and B−1 of θ0 is a polynomial of degree 2n−1. Algorithm 6 lists pseudo-
code for computing the F2-linearized affine polynomials in AES and VISION. This
computation requires two Frobenius automorphisms for B, n − 1 for B−1, and
seven for AES. F2-linearized polynomials can be arranged in a depth-0.5 circuit;
the consumption of 0.5 levels is due to the constant multiplication.

Algorithm 6 Affine Transformation
Input : x

1: if θ0 then
2: deg = n− 1
3: else if θ1 then
4: deg = 2
5: else if AES then
6: deg = 7
7: end if
8: sum← γ0 · x
9: for i← 1 to deg do // Frobenius automorphism

10: sum += γi · x2
i

// constant multiplication (-0.5 levels)
11: end for
12: sum += δ
13: return sum

4.2.3 Linear Layers

The purpose of a linear layer is to diffuse local properties to the entire state. The lin-
ear layer of AES is obtained through a composition of ShiftRows and MixColumns.
ShiftRows is simply a byte-permutation and MixColumns is a multiplication of the
cipher’s state with an MDS matrix. Conversantly, linear layers of VISION and
RESCUE consist of an MDS matrix multiplication.

Behaviour of Algebraic Ciphers in Fully Homomorphic Encryption 26



CHAPTER 4. HOMOMORPHIC EVALUATION OF THE AES, VISION, AND
RESCUE CIRCUITS

AES. In the implementation of AES ShiftRows and MixColumns are lumped
together as a single linear transformation over the vectorized state v ∈ (F28)16.
To implement these operations l-SELECT [15] is used. The l-SELECT operation
is implemented as follows: given a set of indices I that will be selected out of
the l plaintext slots, a vector v of select bits (v0, v1, ..., vl−1) is constructed such
that vi = 1 if i ∈ I and vi = 0 otherwise. The multiplication of the ciphertext
input with the select vector v yields a ciphertext capturing the plaintext elements
corresponding to the indices in I , and zero elsewhere.

To yield ShiftRows and MixColumns, four ciphertexts are obtained by using
rotation and l-SELECT operations. Then, these four ciphertexts are linearly com-
bined with the appropriate coefficients (1, X, and (X+1)). The constant multiplic-
ation with the select vector v can be embedded into the constant multiplications
of the linear combination. As a result, due to the parallelized arrangement of the
constant multiplications, ShiftRows and MixColumns consume only half a level in
terms of added noise.

Recall the vectorized AES state representation:

A =


α00 α01 α02 α03

α10 α11 α12 α13

α20 α21 α22 α23

α30 α31 α32 α33



a ≈ [α00α10α20α30α01α11α21α31α02α12α22α32α03α13α23α33] .

Three right rotations by 11, 6, and 1 slots are applied to the state vector a to get
the vectors a11, a6 and a1 representing the state matricesA11, A6, andA1, respect-
ively:

A11 =


α11 α12 α13 α10

α21 α22 α23 α20

α31 α32 α33 α30

α02 α03 α00 α01

 A6 =


α22 α23 α20 α21

α32 α33 α30 α31

α03 α00 α01 α02

α13 α10 α11 α12



a11 ≈ [α11α21α31α02...α20α30α01] a6 ≈ [α22α32α03α13...α31α02α12]

A1 =


α33 α30 α31 α32

α00 α01 α02 α03

α10 α11 α12 α13

α20 α21 α22 α23


a1 ≈ [α33α00α10α20...α03α13α23]

The top rows of A, A11, A6, and A1 describe exactly the output of ShiftRows. Be-
fore we move to show how to compute MixColumns, note that the top row elements
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also correspond to positions 0, 4, 8 and 12. These are the elements required for
computing MixColumns, and selected by means of an l-SELECT operation. The
MDS matrix of MixColumns consists of the coefficients 1, X and X + 1. There-
fore, they are encoded in three plaintexts such that they contain the coefficients in
positions 0, 4, 8 and 12, and zero elsewhere. Then, the four ciphertexts encrypting
a, a11, a6, and a1 are multiplied by these constants. Following equations describe
the output of MixColumns:

m′0 = a · (X) + (a1 + a6) · (1) + a11 · (X + 1);

m′1 = (a+ a1) · (1) + a6 · (X + 1) + a11 · (X);

m′2 = (a+ a11) · (1) + a1 · (X + 1) + a6 · (X);

m′3 = a · (X + 1) + a1 · (X) + (a6 + a11) · (1).

Now, the top rows of the corresponding matrix representations of mi’s capture
exactly the output of MixColumns. Moreover, the other rows contain only zeros,
which simplifies the subsequent computation. Finally, three rotations are required
to arrange the elements in the correct order and form the state after the linear layer:

m = m′0 + (m′1 � 1) + (m′2 � 2) + (m′3 � 3),

where� denotes a right rotation. Algorithm 7 lists the implementation of ShiftRows
and MixColumns.

Algorithm 7 AES ShiftRows and MixColumns
Input : x, constants 1, X , (X + 1): C1, CX , CX+1

1: x0 ← x
x1 ← x� 1
x6 ← x� 6
x11 ← x� 11

2: //constant multiplication (-0.5 levels)
x′0 ← x0 · CX + (x1 + x6) · C1 + c11 · CX+1

x′1 ← (x0 + x1) · C1 + x6 · CX+1 + c11 · CX
x′2 ← (x0 + x11) · C1 + x1 · CX+1 + c6 · CX
x′3 ← x0 · CX+1 + x1 · CX + (c6 + c11) · C1

3: return x′0 + (x′1 � 1) + (x′2 � 2) + (x′3 � 3)

Vision and Rescue. The linear layer of the VISION and RESCUE rounds consist
of a multiplication of the state vector with an MDS matrix. The elements of the
output state are linear combinations of input state elements. Computing a linear
combination requires input state elements to be aligned, which is realized by data
movement techniques, e.g., rotation. The MDS matrix is not in encrypted form;
thus data movement is restricted to the ciphertext capturing the cipher’s state.
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To implement the matrix multiplication, a similar approach to the total-sums
algorithm presented in [20] is used. The total-sums algorithm takes a vector v
of length lv as input, and outputs a vector w such that w[j] =

∑lv−1
i=0 v[i] for

j ∈ {0, 1, ..., lv − 1}. We modify the algorithm to yield the output vector w such
that w[j] = total-sums(MDS[j]� v) for j ∈ {0, 1, ..., lv − 1} given a vector v of
length lv. Figure 4.1 illustrates the modified algorithm for the matrix multiplication
of a vector of size four with a 4×4 matrix where Rotation-x denotes a cyclic right
shift by x slots:

a b c d
e f g h
i j k l
m n o p

 ·


1
2
3
4

 =


a1 + b2 + c3 + d4
e1 + f2 + g3 + h4
i1 + j2 + k3 + l4
m1 + n2 + o3 + p4

 (4.1)

Figure 4.1: Illustration of the matrix multiplication algorithm for Equation 4.1

As depicted in Figure 4.1, the re-positioning of the matrix elements is required
so that the vector elements are multiplied by the respective matrix elements. The
pseudo-code for computing the matrix multiplication for VISION and RESCUE is
listed in Algorithm 8. This operation requires ` constant multiplications that con-
sume half a level in terms of added noise, and 1, 2, 4, 6, and 10 rotations for
` = 2, 4, 8, 16, 32, respectively.

4.2.4 Subkey Injection

Subkey injection is simply an addition of the ciphertexts encrypting the state and
the round key.
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Algorithm 8 Matrix Multiplication
Input : preprocessed MDS rows: MDS, vector state: x, number of slots: `

1: vec = [], vec2 = [] // Place holders
2: if l == 2 then
3: // Constant multiplication (-0.5 levels)
4: x′ = MDS[1] · (x� 1) // Rotation
5: x = MDS[0] · x
6: return x+ x′

7: else if ` == 4 then // Initialization for variable number of slots
8: iter ← 1, rot amount← 1
9: else if ` == 8 or ` == 16 or ` == 32 then

10: iter ← log `− 2, rot amount← 3
11: end if
12: groups← `/(rot amount+ 1)
13: vec.push back(x)
14: for i← 1 to rot amount do
15: vec.push back(vec[i− 1]� 1) // Rotation
16: end for
17: for i← 0 to groups− 1 do
18: sum← 0
19: for j ← 0 to rot amount do
20: // Constant multiplication (-0.5 levels)
21: sum += MDS[j + i ∗ (rot amount+ 1)] · vec[j]
22: end for
23: vec2.push back(sum)
24: end for
25: rot amount += 1
26: for i← 1 to iter do
27: groups /= 2
28: for j ← 0 to groups− 1 do
29: // Rotation
30: vec2[j] = (vec2[j]� rot amount)
31: vec2[j] += vec2[j + groups]
32: end for
33: rot amount ∗= 2
34: end for
35: return vec2[0]
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4.3 Expected Costs

In this section the expected costs of the three ciphers are presented considering
different metrics: number of key-switching calls, multiplications, automorphisms,
and circuit depth. The number of key-switching calls is a dominating factor in
terms of latency. Key-switching is called after each multiplication and automorph-
ism. Note that the expected numbers for the circuit depth are underestimates. The
actual numbers depend onm and the accumulation of noise caused by the primitive
operations.

AES. The number of elements in an AES state and the degree of the field exten-
sion are constant. Table 4.1 presents the cost of one AES round in terms of the
different cost metrics.

Table 4.1: The cost of an AES round

Circuit Depth 4
Number of
Multiplications

4

Number of Frobenius
Automorphisms

11

Number of Rotations 6

Vision. Unlike AES, the cost of implementing the VISION round is a function of
n and `. Table 4.2 presents the cost of one VISION round in terms of the different
cost metrics for variable ` values.

Table 4.2: The cost of a VISION round

`

Cost Metric Circuit
Depth

No. Multi-
plication

No. Frobenius
Automorphisms

No.
Rotations

2

2 log n+ 2 4 log n− 4 2 log n+ n+ 1

2
4 4
8 8
16 12
32 20

Rescue. Similar to Vision, the cost of implementing the RESCUE round is a func-
tion of p and `. Table 4.3 presents the cost of one RESCUE round in terms of
different cost metrics for variable ` values.
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`

Cost Metric Circuit
Depth

No. Multi-
plication

No.
Rotations

2

Γ + 3 Γ + 2

2
4 4
8 8

16 12
32 20



Chapter 5

Benchmarks

In this chapter, I evaluate the behavior of VISION and RESCUE in FHE. To this end,
a comparative analysis of VISION, RESCUE and AES for 128-bit state, and 128-bit
security is performed in terms of latency. In this context, latency refers to the time
it takes the encryption function to finish. Preliminary results from comparative
study were published in [35].

For a fixed state size, we can choose the degree of the field extension for VIS-
ION, and the field size for RESCUE. A VISION state with 16 elements over F28 and
a RESCUE state with 16 elements over Fp, log p ≈ 8 have the same state size as the
AES state, i.e., the same throughput. In the benchmarks we used instances of VIS-
ION operating on F28 , F216 , F232 and F264 , and an instance of RESCUE operating
on F317. Especially for larger fields, parameter selection is challenging in order to
satisfy the constraints listed in Subsection 4.1.2 and Subsection 4.1.3.

For VISION, the increase in the degree of the field extension d requires larger
m values to satisfy the constraint n|d. If φ(m) also gets larger, the latency would
increase in addition to abundant security level that is provided by the parameter m.
If φ(m) gets smaller, the provided security level will be insufficient again decreas-
ing the number of eligiblem values. Moreover, further candidates are eliminated as
Z∗m might not contain a suitable generator to provide desired cyclic shift properties.
This results in several m’s in Table 5.1 providing more than 128 bits of security;
we ignore the excess in the benchmarks. Due to the larger depth of RESCUE circuit
for large field sizes, there is no benchmark for Fp where log p ≥ 16 as it induces
impractical Φ(m). This is because large m values require excessive amount of
memory besides tremendously increasing the latency. Note that the required num-
ber of rounds for each cipher is derived from the Sage code that generates VISION

and RESCUE instances [34].

Test Environment. We benchmarked the AES implementation, and our VISION

and RESCUE implementations in an environment that runs Ubuntu 18.04.5 LTS
with 32 GB RAM and AMD EPYC 7452 32-Core Processor @ 2.3 GHz, using the
g++ compiler version 7.5.0.
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5.1 Results

Table 5.1 shows that VISION and RESCUE fall behind AES in terms of latency.
AES performs 88% faster than the most efficient instance of VISION (F16

28), and
96% faster than RESCUE. The difference in the running times of AES and VIS-
ION/RESCUE instances is graphically depicted in Figure 5.1. The reason VISION

and RESCUE are slower than AES is that they require deeper circuits which in turn
require a larger φ(m) to evaluate. Therefore, apart from requiring more primitive
operations (i.e., multiplications, additions, and automorphisms), the running time
of each primitive operation is longer due to the larger Φ(m).

Table 5.1: Running times of AES, VISION, and RESCUE in minutes for 128-bit
state

AES

State m Security
(bits)

No. rounds
Running Time

(minutes)

F16
28 53261 141.924 10 1.4

VISION

State m Security
(bits)

No. rounds
Running Time

(minutes)

F16
28 116885 148.144 10 11.62

F8
216 124645 127.444 10 17.83

F4
232 164737 187.327 10 43.36

F2
264 164737 128.08 13 120.78

RESCUE

State m Security
(bits)

No. rounds
Running Time

(minutes)

F16
317 255219 124.582 10 37.14
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Figure 5.1: Running time comparison of AES, VISION, and RESCUE for 128-bit
state

5.2 Understanding the Results

At this point, it is important to determine which operations substantially increase
the latency. This investigation reveals some crucial findings that lead to a clearer
overview of the behavior of VISION and RESCUE, i.e., the first research question
of this thesis. To this end, individual running times of the operations for a 128-bit
state are isolated.

Table 5.2 summarizes these running times of each individual operation in a
VISION round for F16

28 ,F
8
216 ,F

4
232 and F2

264 . For each instance, the same m para-
meter is used in order to standardize the running times of the primitive operations.
Figure 5.2 depicts the running times of the individual round operations for VISION.
Similarly, Table 5.3 summarizes the running times of each individual operation in
a RESCUE round for F16

317 and F8
65777. Likewise Vision, in order to standardize the

running times of the FHE operations, the same m is used. Figure 5.3 depicts the
running times of the individual round operations for RESCUE.

Table 5.2: Running times in seconds for each operation in a VISION round for
variable state elements using toy parameters

VISION

State Inversion B−1 Matrix
Multiplica-

tion

Key
Addition

B Total
Round

F16
28 1.6754 1.0988 1.2851 0.0005 0.2442 7.0283

F8
216 2.6905 2.7774 0.8276 0.0005 0.2338 9.5705

F4
232 3.2286 4.7403 0.4171 0.0004 0.2338 12.0184

F2
264 3.6814 9.1155 0.1820 0.0005 0.2436 17.1853
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Figure 5.2: Running time comparison for each VISION round operation for
different VISION instances. We see that the running time of B−1 grows

exponentially, that of inversion linearly, and that of the matrix multiplication
decreases linearly.

Table 5.3: Running times in seconds for each operation in a RESCUE round for
variable state elements using toy parameters

RESCUE

State X1/3 Matrix
Multi-

plication

Key
Addition

X3 Total Round

F16
317 8.7470 2.9274 0.0006 1.5326 16.0093

F8
65777 16.4416 0.9803 0.000402 0.936324 19.2206

5.2.1 Discussion

Vision. As the dimension of the state decreases (i.e., the degree of the field exten-
sion increases), the running times of the inversion operation and the computation
of B−1 increase. Recall that the number of operations required to implement in-
version is proportional to log n (Algorithm 4). Therefore, the running time of the
inversion operation grows logarithmically as the degree of the field extension in-
creases. On the other hand, recall that the number of operations to implement B−1

is proportional to n. As a result, the running time of B−1 linearly increases as the
degree of the field extension increases. Conversely, the decrease in the dimension
of the state decreases the running time for the matrix multiplication. This is be-
cause a smaller state dimension requires fewer operations. The running times of
the key addition and B do not depend on the dimension of the state but on m, and
remain the same for all VISION instances.

Rescue. As the dimension of the state decreases (i.e., the order of the prime field
increases), the running time of computing X1/3 increases. Recall that this is equi-
valent to computing X(2p−1)/3 whose exponent is a function of p. Therefore, the
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Figure 5.3: Running time comparison for each RESCUE round operation for
different RESCUE instances. We see that the running time of X1/3 grows rapidly

and that of the matrix multiplication decreases.

Table 5.4: Running times in seconds for each operation in an AES round using
toy parameters

AES

State Inversion
Affine

Polyno-
mial

ShiftRows/
MixColumns

Key
Addi-
tion

Total Round

F16
28 1.71 0.303 0.592 0.0006 2.605

number of operations to implement the power map increases as well as the cir-
cuit depth as the order of the field increases. Similar to VISION, the decrease in
the dimension of the state decreases the running time of the matrix multiplication.
Even though computing X3 and the key addition consist of same operations for all
the RESCUE instances, their running times are different. This is due to the con-
sumed levels during the computation of X1/3. Recall that to keep the noise of the
FHE ciphertexts in check modulus-switching is applied. This results in a smaller
modulus. As the current modulus gets smaller, the running time of the primitive
operations gets shorter.

5.2.2 Intermediate Conclusion

As a conclusion, especially for the larger degrees of the field extension in VISION,
the inversion and the computation of B−1 are the most expensive operations in
terms of latency. Similarly, especially for large fields in RESCUE, the computa-
tion of X1/3 is the most expensive operation. If AES is compared to Marvellous
designs, individual running times of the operations are minimal except the inver-
sion. Still, since AES is operating on a fixed field, the running time of inversion is
reasonable.

Even though VISION and RESCUE achieve a compact algebraic description in
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ZK and MPC, they have a poor performance in FHE. This is because VISION and
RESCUE heavily depend on non-procedural computation. For instance, inversion
is efficiently computed in MPC by means of masking and offloading the heavy op-
erations to the offline phase. However, in FHE this being unavailable; the number
of operations required to compute inversion increases as the degree of the field ex-
tension increases. Therefore, different efficiency metrics are subject to FHE such
as number of Frobenius autormorphisms and the circuit depth.

5.3 Benchmarking With Larger State Sizes

We reproduced our benchmarks for state sizes larger than 128 bits using VISION

and RESCUE instances operating on the same fields as in Section 5.1. The mo-
tivation of this is that by increasing the number of state elements we can increase
the throughput while keeping the running times of the expensive operations con-
stant. There are two drawbacks in increasing the number of state elements. Firstly,
it complicates the parameter selection. Recall that there should be an element g
whose order is the number of elements in the state. Therefore, increasing the num-
ber of elements in the state might necessitate a change to m. This change will be
in favor of a larger φ(m) that will in turn increase the running time of the primitive
operations. Secondly, the running time of the matrix multiplication will increase.

However, we hypothesized that the fold increase in the running time for VIS-
ION would be significantly less than the fold increase in the state sizes, whereas
the running time of AES has the same fold increase as the state sizes. Table 5.5
presents the results of these benchmarks for 256, 512, 1024, and 2048 bit states.
Figure 5.4 illustrates the difference between running times and Figure 5.5 illus-
trates the fold increase in the running times of AES and VISION. The fierce drop
in the running time of the VISION instance for F2

264 is due to the decrease in its
number of rounds. Note that RESCUE is not included in this reproduced bench-
marking. This is because increasing the number of elements in the state compels
the parameter m to be increased in order to find the a suitable generator. Con-
sequently, the m candidates for the new benchmark require excessive amounts of
memory.

Hereby, as Figure 5.4 depicts, these benchmarks confirm our hypothesis that
the fold increase in the running times of VISION is indeed significantly less than
the fold increase in the state sizes.

To conclude, benchmarking VISION with AES for more than 128-bit through-
put yields more promising results in favor of VISION. However, as Figure 5.4
depicts VISION still falls behind AES, in spite of benefiting the flexible state size
property. AES performs 45% faster than VISION instance for F128

216 yielding 2048-
bit throughput.

1The relevant attacks (see Section 3.2) are carried out by Mohammad Mahzoun to determine the
maximum number of rounds covered by these attacks.
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Table 5.5: Running times of AES and VISION in minutes for variable state sizes

AES

State Throughput
(bits)

m
Security

(bits)
No.

rounds
Running Time

(minutes)

F16
28 128 53261 141.924 10 1.4

VISION

State Throughput
(bits)

m
Security

(bits)
No.

rounds 1
Running Time

(minutes)

F16
216 256 124645 121.681 10 20.9

F32
216 512 124645 121.681 10 24.17

F64
216 1024 124645 121.681 10 30.07

F128
216 2048 124645 121.681 10 41.08

F8
232 256 164737 187.327 10 44.92

F16
232 512 164737 187.327 10 48.35

F32
232 1024 164737 187.327 10 54.53

F64
232 2048 164737 183.266 10 66.43

F4
264 256 164737 200.128 8 54.81

F8
264 512 164737 200.128 8 57.30

F16
264 1024 164737 200.128 8 59.54

F32
264 2048 164737 200.128 8 65.60
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Figure 5.4: Comparison of the running times of AES and VISION for states that
are larger than 128 bits
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Chapter 6

Seljuk

Our findings in Chapter 5 convey that in order to reduce the performance difference
between AES and VISION, one can instantiate a novel Marvellous cipher optim-
izing for the number of operations and circuit depth. However, it is important to
ensure that the improvements do not jeopardize security. In this chapter I present
SELJUK. 1 This work was accepted to CFail [36].

In Section 6.1 I present the motivation underlying SELJUK. In Section 6.2 I
explain and motivate the design choices of SELJUK. Then, in Section 6.3 I describe
a working packed implementation of leveled homomorphic encryption that can
evaluate the SELJUK circuit. Similar to previous chapters, this implementation is
built on top of the HElib library. Finally, in Section 6.4 I present the performance
numbers and a discussion.

6.1 Motivation of Seljuk

According to Table 5.2, the increase in the degree of the field extension most not-
ably increases the running time of B−1. Therefore, in designing SELJUK, we fo-
cused on improving the affine polynomial B−1 used in even steps. Improving B−1

will not contribute to the circuit depth. However, we hypothesized that there would
be a significant improvement in the latency.

In an SP-network, the S-box must be invertible to ensure that it is possible
to decrypt the ciphertexts. This condition is fulfilled by designing the S-box as
a permutation, i.e., a bijective function from a set to itself. Recall that the goal
of a properly chosen F2-linearized affine polynomials is to increase the algebraic
complexity. Therefore, one way to keep the algebraic complexity of the S-box high
while improving the efficiency is to use a sparse F2-linearized affine polynomial.
Doing so, one must ensure that the modified F2-linearized affine polynomial is

1The warlord that gives the name of our cipher was the eponymous founder of the Seljuk dynasty.
Similary, the cipher SELJUK constitutes the Seljuk dynasty of algebraic ciphers. Seljuk was the son of
Tuqaq, also known as Iron Bow due to his skills. Seljuk provides the transition from the Marvellous
family (Iron Man) to Seljuk dynasty.
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still a permutation. The requirement for a polynomial to be a permutation was
described in Subsection 4.2.2.

6.2 Cipher Description

SELJUK operates on binary fields with its native field F2n . Most aspects of SELJUK

are directly derived from the Marvellous design strategy. For the sake of complete-
ness, the state is an element of F`2n . Unlike Vision, the two steps of a SELJUK

round are identical. To construct the S-box π, a sparse 8th degree affine polyno-
mial (B(X)) over F2n is chosen:

B(x) = x8 + x ∈ F2n [x].

Then,

π : F2n 7→ F2n : x 7→ B(x−1).

The linear layer follows the Marvellous rationale Section 3.2. Figure 6.1 depicts
a schematic description of the SELJUK round function. To generate the ciphertext
from a given plaintext, the round function is iterated N times. A key injection with
a subkey derived from the master key takes place before the first round, between
every two steps, and after the last round. Pseudo-code of SELJUK is listed in Al-
gorithm 9.

Figure 6.1: A SELJUK round function

Key Schedule. The key scheduling algorithm follows the Marvellous rationale.
In order to derive the subkeys, the SELJUK round function is applied iteratively.
The master key is fed through the plaintext interface, and the round constants are
injected as the subkeys. Then, the intermediate state after the round constant injec-
tion is provided as a subkey. Round constants are generated by the means of the
exact same method used in the Marvellous design.
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Algorithm 9 Seljuk
Input : Plaintext P, subkeys Ks for 0 ≤ s ≤ 2N
Output: Seljuk(K,P )

1: S0 = P +K0

2: for j ← 1 to N do
3: for i← 1 to ` do
4: Interj [i] = (Sj−1[i])

−1

5: Interj [i] = B(Interj [i])
6: end for
7: for i← 1 to ` do
8: Sj [i] =

∑`
k=1M [i, k]Interj [k] +K2j−1[i]

9: end for
10: for i← 1 to ` do
11: Interj [i] = (Sj [i])

−1

12: Interj [i] = B(Interj [i])
13: end for
14: for i← 1 to ` do
15: Sj [i] =

∑`
k=1M [i, k]Interj [k] +K2j [i]

16: end for
17: end for
18: return SN

6.3 Implementation Details

The implementation details of SELJUK follows the implementation of Vision ex-
cept the computation of the F2-linearized affine polynomial. To compute B(x) =
x8 + x, only a single Frobenius automorphism is required for obtaining x2

3
. This

computation does not apply a constant multiplication; the coefficients being one.
Therefore, it does not consume levels at all.

Expected Cost of a SELJUK Round Likewise Vision, the cost of the implement-
ation of the SELJUK round is a function in n and `. Table 6.1 presents the cost of
one SELJUK round in terms of different cost metrics for variable ` values.
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Table 6.1: The cost of a SELJUK round for variable ` values and cost metrics

`

Cost Metric Circuit
Depth

No. Multi-
plication

No. Frobenius
Automorphisms

No.
Rotations

2

2 log n+ 1 4 log n− 4 2 log n+ 2

2

4 4

8 8

16 12

32 20

6.4 Running Times

Table 6.2 summarizes that there is still a difference between SELJUK and AES. For
a 128-bit state, AES performs 89% faster than the most efficient SELJUK instance
(i.e., SELJUK-F8

216). Notice that SELJUK has a poorer performance than VISION

when compared to AES for 128-bit state. The reason is that due to the degree
of B(X), there is no SELJUK-F16

28 instance which would have been more efficient
than VISION-F16

28 . Figure 6.2 depicts the performance difference between AES and
SELJUK visually. However, as evident from Figure 7.2, SELJUK achieves a big
improvement especially for the higher degrees of the field extension. For example,
SELJUK performs 58% faster than Vision for F2

264 .

Table 6.2: Running times of AES and SELJUK in minutes for 128-bit state

AES

State m
Security

(bits)
No. rounds

Running Time
(minutes)

F16
28 53261 141.924 10 1.4

SELJUK

State m
Security

(bits)
No. rounds 2 Running Time

(minutes)
F8
216 116885 132.476 10 13.07

F4
232 164737 206.157 10 27.58

F2
264 164737 142.462 13 50.94

2The relevant attacks (see Section 3.2) are carried out by Mohammad Mahzoun to determine the
maximum number of rounds covered by these attacks.
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Figure 6.2: Running time comparison of AES and SELJUK for fixed state size of
128 bits
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Figure 6.3: Running time comparison of Vision and SELJUK for fixed state size of
128 bits
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6.5 Running Times with Larger State Sizes

Similar to VISION, we reproduced our benchmarks for state sizes larger than 128
bits using SELJUK instances operating on the same fields as in Section 6.4. Table 6.3
presents the results of these benchmarks for 256, 512, 1024, and 2048 bit states.
AES performs 31.6% faster than SELJUK for F32

264 yielding 2048-bit throughput.
Figure 6.4 illustrates the difference between running times and Figure 6.5 illus-
trates the fold increase in the running times of AES and SELJUK. It can be con-
cluded that SELJUK achieves a more efficient design than Vision. However, there
is still a significant difference between AES and SELJUK, in spite of benefiting the
flexible state size property. It is evident that the second efficiency barrier is due to
inversion (see Table 5.2).

Table 6.3: Running times of AES and SELJUK in minutes for variable state sizes

AES

State Throughput
(bits)

m
Security

(bits)
No.

Rounds
Running Time

(minutes)
Seconds
Per Bit

F16
28 128 53261 141.924 10 1.4 0.66

SELJUK

State Throughput
(bits)

m
Security

(bits)
No.

rounds 3
Running Time

(minutes)
Seconds
Per Bit

F16
216 256 116885 132.476 10 14.78 3.464

F32
216 512 124645 142.643 10 18.98 2.224

F64
216 1024 124645 142.643 10 24.28 1.422

F128
216 2048 124645 142.643 10 34.52 1.011

F8
232 256 164737 206.157 10 28.05 6.574

F16
232 512 164737 206.157 10 31.16 3.651

F32
232 1024 164737 206.157 10 37.57 2.201

F64
232 2048 164737 206.157 10 46.19 1.353

F4
264 256 164737 216.086 8 23.39 5.482

F8
264 512 164737 216.086 8 25.3 2.964

F16
264 1024 164737 216.086 8 27.72 1.624

F32
264 2048 164737 216.086 8 32.96 0.965

3The relevant attacks (see Section 3.2) are carried out by Mohammad Mahzoun to determine the
maximum number of rounds covered by these attacks.
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Figure 6.4: Comparison of the running times of AES and SELJUK for states that
are larger than 128 bits
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Chapter 7

Chaghri

Our findings in Chapter 6 convey that in spite of the well understood cryptanalytic
properties, the inversion is an efficiency barrier in FHE. In this chapter I present the
successor of SELJUK: CHAGHRI. 1 CHAGHRI is a novel algebraic cipher further
improving over VISION and SELJUK. This work is currently being prepared for
submission to IEEE Symposium on Security and Privacy (IEEE S&P; Oakland).

In Section 7.1 I explain and motivate the design choices of CHAGHRI. Then, in
Section 7.2 I describe a working packed implementation of leveled homomorphic
encryption that can evalue the CHAGHRI circuit. As before, this implementation is
built on top of the HElib library. Finally, in Section 7.3 I present the performance
numbers and a discussion.

7.1 Cipher Description

CHAGHRI is meant to operate over F2n . Its state consists of ` field elements and
is an element of the vector space F`2n . In essence, most aspects of CHAGHRI are
derived from VISION (and SELJUK) with the exception of the inversion.

A CHAGHRI round consists of two identical steps and each step employs three
layers: S-box, linear and subkey injection. Like a VISION round, the S-box of
a CHAGHRI round is a power map xα composed with an affine transformation.
To construct the S-box, the Gold exponent F (x) = x2

k+1 is used. Owing to
the seminal work of Nyberg [27], the cryptanalytic properties of the Gold expo-
nents are well understood. They are shown to be highly nonlinear and safe against
differential- and linear-cryptanalysis. Furthermore, the Gold exponents are very
close to the form 2i allowing to compute them via a Frobenius automorphism.
Nevertheless, they have a low algebraic degree which pose a weakness against al-
gebraic attacks. That being the case and similar to the cases of AES, VISION, and
SELJUK, we employ a carefully chosen F2-linearized affine polynomial to increase

1Chaghri giving the name of this algebraic cipher was the grandson of Seljuk. He was the co-ruler
of the early Seljuk Empire.
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the algebraic degree. Let s = gcd(k, n) where n is the degree of the field exten-
sion. Then, F (x) is a permutation if and only if n/s is odd. Moreover, if n is odd,
1 < k < n and gcd(n, k) = 1, the Gold exponent is a differentially 2-uniform per-
mutation which motivates our choice of n. Emphasizing that computing the Gold
exponents does not depend on n, choosing a maximal n increases the throughput
for a fixed number of elements. n = 64 does not satisfy that n/s is odd. There-
fore, in CHAGHRI n is set to 63, and we employed a Gold exponent (denoted by
F (X)) with k = 62 (i.e., F (x) = x2

62+1). To construct the S-box we first select
an F2-linearized polynomial B(x) of degree 8:

B(x) = b−1 +
3∑
i=0

bix
2i ∈ F263 [x].

The requirements on how to choose an F2-linearized affine polynomial were provided
in Chapter 6. Then, the S-box π is described as

S-box : F263 7→ F263 : x 7→ B(F (x)).

The linear and the subkey injection layers follow the Marvellous design strategy as
explained in Section 3.2.

To encrypt a plaintext, the CHAGHRI round function is iteratively applied N
times. A key injection takes place before the first round, between every two steps
and after the last round. Figure 7.1 depicts the round function of CHAGHRI. The
plaintext and the master key are the inputs to the first round function, and the
ciphertext is the output of the last round function. Pseudo-code of CHAGHRI is
listed in Algorithm 10. The key scheduling algorithm again follows the Marvellous
design strategy.

Figure 7.1: A CHAGHRI round function
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Algorithm 10 Chaghri
Input : Plaintext P, subkeys Ks for 0 ≤ s ≤ 2N
Output: Chaghri(K,P )

1: S0 = P +K0

2: for j ← 1 to N do
3: for i← 1 to ` do
4: Interj [i] = F (Sj−1[i])
5: Interj [i] = B(Interj [i])
6: end for
7: for i← 1 to ` do
8: Sj [i] =

∑`
k=1M [i, k]Interj [k] +K2j−1[i]

9: end for
10: for i← 1 to ` do
11: Interj [i] = F (Sj [i])
12: Interj [i] = B(Interj [i])
13: end for
14: for i← 1 to ` do
15: Sj [i] =

∑`
k=1M [i, k]Interj [k] +K2j [i]

16: end for
17: end for
18: return SN

7.2 Implementation Details

In the implementation of the CHAGHRI circuit we set ` = 3. The packed represent-
ation of CHAGHRI is the same as the packed representation of VISION with n = 63
and ` = 3:

[α1, α2, α3], where αi ∈ F263 .

The power map of the CHAGHRI S-Box requires one Frobenius automorphism
and one multiplication. The F2-linearized affine polynomial is likewise simple and
requires three Frobenius automorphisms and four constant multiplications. The
S-Box is implemented via a depth-1.5 circuit and listed in Algorithm 11. This
algorithm requires one multiplication and four Frobenius automorphisms in total.

The implementation of the linear layer resemble that of VISION for ` = 2 (i.e.,
Algorithm 8) and the pseudo-code is listed in Algorithm 12.

Subkey injection is simply an addition of the ciphertexts encrypting the state
and the subkey.

Expected Cost of a CHAGHRI Round. Similar to VISION and SELJUK, the cost
of the implementation of the CHAGHRI round is a function in n and `. Table 7.1
presents the cost of one CHAGHRI round in terms of different cost metrics for
variable ` values. We restricted this implementation to ` = 3. However, to give the
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Algorithm 11 Chaghri S-Box
Input : Chaghri state: x

1: y = x2
62

// Frobenius automorphism
2: x = yx // Multiplication (-1 level)
3: sum← b0 · x
4: for i← 1 to 3 do
5: // Frobenius automorphism + constant multiplication (-0.5 levels)
6: sum += bi · x2

i

7: end for
8: sum += b−1
9: return sum

Algorithm 12 Chaghri Matrix Multiplication
Input : Preprocessed MDS Matrix Rows: MDS, Chaghri state: x

1: x′ = MDS[1] · (x� 1) // Constant multiplication -0.5 levels
2: x′′ = MDS[2] · (x� 1)
3: x = MDS[0] · x
4: return x+ x′ + x′′

complete picture of the cost, I present the cost for variable ` values.

Table 7.1: The cost of a CHAGHRI round for variable ` values and cost metrics.
The circuit depth, number of multiplications and frobenius automorphisms are

constant being independent of `.

`

Cost Metric Circuit
Depth

No. Multi-
plication

No. Frobenius
Automorphisms

No.
Rotations

2

4 2 8

2

3 4

4 4

8 8

16 12

7.3 Performance

Table 7.2 presents the running times of AES and CHAGHRI. When their run-
ning times per bit are compared, CHAGHRI achieves a more efficient design than
SELJUK where CHAGHRI performs 71% faster. Moreover, with CHAGHRI we
achieve a compact algebraic description performing 57% faster than AES.
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Table 7.2: Running times of AES and CHAGHRI in seconds

AES

State Throughput
(bits)

m
Security

(bits)
No.

Rounds
Running Time

(minutes)
Seconds
Per Bit

F16
28 128 53261 141.924 10 84.5 0.66

CHAGHRI

State Throughput
(bits)

m
Security

(bits)
No.

rounds 2
Running Time

(minutes)
Seconds
Per Bit

F3
263 189 48133 150.525 10 53.738 0.28
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Figure 7.2: Running time comparison of AES, SELJUK, and CHAGHRI (seconds
per bit)

2The relevant attacks (see Section 3.2) are carried out by Mohammad Mahzoun to determine the
maximum number of rounds covered by these attacks.



Chapter 8

Conclusions

The object of this thesis was achieving a noteworthy contribution to the research
area designing FHE-optimized algebraic ciphers. This object was motivated by
the lack of attention on designing such ciphers. The existing algebraic ciphers are
shown to be remarkably more efficient than their traditional counterparts when em-
ployed in ZK and MPC applications. Yet, I showed that they have a poor perform-
ance when employed by an FHE application. The reason is that FHE applications
call for different efficiency metrics. In the cause of this object, I answered the
following two research questions in this thesis:

• How do the algebraic ciphers behave in FHE when compared to their tradi-
tional counterparts?

• What are the specific efficiency metrics that make algebraic ciphers efficient
in FHE?

Then, I presented two novel FHE-optimized algebraic ciphers designed in the light
of the answers to these questions.

In Chapter 1 I introduced the algebraic ciphers, and the current situation of the
research focused on FHE-optimized algebraic ciphers to the reader. In Chapter 2 I
presented the required background on mathematical foundation of this work, AES,
and FHE to fully understand the rest of the thesis. Then in Chapter 3 I focused
on algebraic ciphers and introduced the Marvellous design strategy, and its two
families VISION and RESCUE. My contribution starts with Chapter 4. In Chapter
4, I presented the details of the FHE implementations evaluating AES, VISION,
and RESCUE circuits. Then, in Chapter 5 I evaluated the behaviour of algebraic
ciphers when implemented as a circuit in an FHE protocol. To this end, I provided
a state-of-the-art comparison of AES as a traditional block cipher, and VISION and
RESCUE as algebraic ciphers. This comparative study stands as a pillar upon which
future FHE-optimized algebraic ciphers can be built. Following this, in Chapter 6
I discussed the design considerations of algebraic ciphers in FHE. This discussion
led us to focus on algebraic ciphers operating on binary fields. Motivated by the
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identified design considerations, we designed two novel algebraic ciphers: SELJUK

and CHAGHRI. In Chapter 6 I presented SELJUK and its performance numbers. I
showed that with SELJUK, we achieve a more efficient Marvellous design than its
Marvellous counterparts. Finally, in Chapter 7 I presented CHAGHRI and its per-
formance numbers. I showed that with CHAGHRI, we achieve a compact algebraic
description optimized to FHE and by far it is more efficient than any other cipher,
including the next best candidate, AES.

In this work, we focused on FHE-optimized algebraic ciphers operating on bin-
ary fields. A possible future work would focus on FHE-optimized algebraic ciphers
operating on prime fields and exploring the possibility of achieving a compact al-
gebraic description that is more efficient than its counterparts.
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