2,117 research outputs found

    SQL Injection Vulnerability Detection Using Deep Learning: A Feature-based Approach

    Get PDF
    SQL injection (SQLi), a well-known exploitation technique, is a serious risk factor for database-driven web applications that are used to manage the core business functions of organizations. SQLi enables an unauthorized user to get access to sensitive information of the database, and subsequently, to the application’s administrative privileges. Therefore, the detection of SQLi is crucial for businesses to prevent financial losses. There are different rules and learning-based solutions to help with detection, and pattern recognition through support vector machines (SVMs) and random forest (RF) have recently become popular in detecting SQLi. However, these classifiers ensure 97.33% accuracy with our dataset. In this paper, we propose a deep learning-based solution for detecting SQLi in web applications. The solution employs both correlation and chi-squared methods to rank the features from the dataset. Feed-forward network approach has been applied not only in feature selection but also in the detection process. Our solution provides 98.04% accuracy over 1,850+ recorded datasets, where it proves its superior efficiency among other existing machine learning solutions

    An intrusion detection system for packet and flow based networks using deep neural network approach

    Get PDF
    Study on deep neural networks and big data is merging now by several aspects to enhance the capabilities of intrusion detection system (IDS). Many IDS models has been introduced to provide security over big data. This study focuses on the intrusion detection in computer networks using big datasets. The advent of big data has agitated the comprehensive assistance in cyber security by forwarding a brunch of affluent algorithms to classify and analysis patterns and making a better prediction more efficiently. In this study, to detect intrusion a detection model has been propounded applying deep neural networks. We applied the suggested model on the latest data set available at online, formatted with packet based, flow based data and some additional metadata. The data set is labeled and imbalanced with 79 attributes and some classes having much less training samples compared to other classes. The proposed model is build using Keras and Google Tensorflow deep learning environment. Experimental result shows that intrusions are detected with the accuracy over 99% for both binary and multi-class classification with selected best features. Receiver operating characteristics (ROC) and precision-recall curve average score is also 1. The outcome implies that Deep Neural Networks offers a novel research model with great accuracy for intrusion detection model, better than some models presented in the literature

    WAF-A-MoLE: An adversarial tool for assessing ML-based WAFs

    Get PDF
    Abstract Web Application Firewalls (WAFs) are plug-and-play security gateways that promise to enhance the security of a (potentially vulnerable) system with minimal cost and configuration. In recent years, machine learning-based WAFs are catching up with traditional, signature-based ones. They are competitive because they do not require predefined rules; instead, they infer their rules through a learning process. In this paper, we present WAF-A-MoLE, a WAF breaching tool. It uses guided mutational-based fuzzing to generate adversarial examples. The main applications include WAF ( i ) penetration testing, ( i i ) benchmarking and ( i i i ) hardening

    Impacts and Risk of Generative AI Technology on Cyber Defense

    Full text link
    Generative Artificial Intelligence (GenAI) has emerged as a powerful technology capable of autonomously producing highly realistic content in various domains, such as text, images, audio, and videos. With its potential for positive applications in creative arts, content generation, virtual assistants, and data synthesis, GenAI has garnered significant attention and adoption. However, the increasing adoption of GenAI raises concerns about its potential misuse for crafting convincing phishing emails, generating disinformation through deepfake videos, and spreading misinformation via authentic-looking social media posts, posing a new set of challenges and risks in the realm of cybersecurity. To combat the threats posed by GenAI, we propose leveraging the Cyber Kill Chain (CKC) to understand the lifecycle of cyberattacks, as a foundational model for cyber defense. This paper aims to provide a comprehensive analysis of the risk areas introduced by the offensive use of GenAI techniques in each phase of the CKC framework. We also analyze the strategies employed by threat actors and examine their utilization throughout different phases of the CKC, highlighting the implications for cyber defense. Additionally, we propose GenAI-enabled defense strategies that are both attack-aware and adaptive. These strategies encompass various techniques such as detection, deception, and adversarial training, among others, aiming to effectively mitigate the risks posed by GenAI-induced cyber threats

    Intrusion Detection in Critical Infrastructures: A literature review

    Get PDF
    open access articlever the years, the digitization of all aspects of life in modern societies is considered an acquired advantage. However, like the terrestrial world, the digital world is not perfect and many dangers and threats are present. In the present work, we conduct a systematic review of the methods of network detection and cyber attacks that can take place in critical infrastructure. As it is shown, the implementation of a system that learns from the system behavior (machine learning), on multiple levels and spots any diversity, is one of the most effective solutions

    19th SC@RUG 2022 proceedings 2021-2022

    Get PDF
    • …
    corecore