
 

 

 University of Groningen

19th SC@RUG 2022 proceedings 2021-2022
Smedinga, Rein; Biehl, Michael

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smedinga, R., & Biehl, M. (Eds.) (2022). 19th SC@RUG 2022 proceedings 2021-2022. Rijksuniversiteit
Groningen.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 01-02-2024

https://research.rug.nl/en/publications/007656aa-deff-4ae0-81a4-0417162fd9a1


faculty of science
and engineering

computing science

SC@RUG 2022 proceedings

Rein Smedinga, Michael Biehl (editors)

19th SC@RUG 
2021-2022

17th S
C

@
R

U
G

 2019-2020

rug.nl/research/bernoulli

faculty of science
and engineering

computing science

R20170190_omslag_SC_RUG2018_.indd   3 01-05-18   13:11

1





SC@RUG 2022 proceedings

Rein Smedinga
Michael Biehl

editors

2022
Groningen



ISBN (e-pub): 978-94-034-2971-7
Publisher: University of Groningen

Title: 19th SC@RUG proceedings 2021-2022
Computing Science, University of Groningen

NUR-code: 980



SC@RUG 2022 proceedings

About SC@RUG 2022

Introduction
SC@RUG (or student colloquium in full) is a course

that master students in computing science follow in the first
year of their master study at the University of Groningen.

SC@RUG was organized as a conference for the 19th
time in the academic year 2021-2022. Students wrote a
paper, participated in the review process and gave a presen-
tation.

SC@RUG is organized by Rein Smedinga and Michael
Biehl, both from the Bernoulli institute. Renée Lutke
(School of Science and Engineering) helped with improv-
ing the presentaiton skills of the students.

Organizational matters
SC@RUG 2022 was organized as follows:

Students were expected to work in teams of two. The stu-
dent teams could choose between different sets of papers,
that were made available through the digital learning envi-
ronment of the university, Nestor. Each set of papers con-
sisted of about three papers about the same subject (within
Computing Science). Some sets of papers contained con-
flicting opinions. Students were instructed to write a sur-
vey paper about the given subject including the different
approaches discussed in the papers. They should compare
the theory in each of the papers in the set and draw their
own conclusions, potentially based on additional research
of their own.

After submission of the papers, each student was as-
signed one paper to review using a standard review form.
The staff member who had provided the set of papers was
also asked to fill in such a form. Thus, each paper was re-
viewed three times (twice by peer reviewers and once by
the expert reviewer). Each review form was made available
to the authors through Nestor.

All papers could be rewritten and resubmitted, also tak-
ing into account the comments and suggestions from the
reviews. After resubmission each reviewer was asked to re-
review the same paper and to conclude whether the paper
had improved. Re-reviewers could accept or reject a paper.
All accepted papers1 can be found in these proceedings.

In his lecture about communication in science, Rein
Smedinga explained how researchers communicate their
findings during conferences by delivering a compelling sto-
ryline supported with cleverly designed graphics. Lectures
on how to write a paper, on scientific integrity and on the
review process were given by Michael Biehl

Renée Lutke gave tutorials about presentation tech-
niques and speech skills.

Students were asked to give a short presentation
halfway through the period. The aim of this so-called two-
minute madness was to advertise the full presentation and
at the same time offer the speakers the opportunity to prac-
tice speaking in front of an audience. Renée Lutke and Rein
Smedinga were present during these presentations.

Renée Lutke gave tutorials in small groups to further
practice presentation skills.

The final online conference was organized by the stu-
dents themselves (from each author-pair, one was selected
to be part of the organization and the other doing the chair-
ing of one of the presentations). Students organized the
conference by setting up the final program, find a spon-
sor for the breaks, etc. They also found a keynote speaker,
Jeroen Brandsma and Ana Roman from Belsimpel who
spoke about Scaling under load. The organizing students
also created a website for this years conference, to be found
on https://www.studentcolloquium.nl/2022/

The overall coordination and administration was taken
care of by Rein Smedinga, who also served as the main
manager of Nestor.

Students were graded on the writing process, the review
process and the 2 minute madness presentation, the presen-
tation during the conference and on their contribution in the
organization of this conference.

For the grading of the 2 minute mandess presentations
we used the assessments of the audience using the applica-
tion Poll Everywhere and also used this application to find
the best presentation of the day according to the audience.
For the presentations during the conference we also used
Poll Everywhere for the assessments of the audiencee
(for 50%) and the assessments of Renée Lutke and Rein
Smedinga (also for 50%). Poll Everywhere again was used
to find the best presentation of the day and to ask the audi-
ence about their general finding of the symposium, result-
ing in the following outcome:

1this year, all papers were accepted
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The gradings of the draft and final paper were weighted
marks of the review of the corresponding staff member
(50%) and the two students reviews (25% each).

The complete conference was also recorded and this
recording was published on Nestor for self reflection.

The best 2 miniute madness presentation, the best con-
ference proesentation and the best paper were awarded with
a voucher and mentioned in the hall of fame.

Website
Since 2013, there is a website for the conference, see

www.studentcolloquium.nl.

Thanks
We could not have achieved the ambitious goals of this

course without the invaluable help of the following expert
reviewers:

• Andrés Tello
• Asad Shahbahrami
• Bochra Boughzala
• Boris Koldehofe
• Fadi Mohsen
• George Azzopardi
• Heerko Groefsema
• Jiapan Guo
• Kerstin Bunte
• Majid Lotfian Delouee
• Michael Biehl
• Michael Wilkinson
• Michiel Medema
• Mirela Riveni
• Mostafa Hadadian
• Saad Saleh
• Vasilios Adrikopoulos

and all other staff members who provided topics and sets of
papers.
. Also, the organizers would like to thank Renée Lutke
for helping with the presentation skills and the Graduate
school of Science and Engineering for making it possible
to publish these proceedings and sponsoring the awards
for best presentations and best paper for this conference
and our symposium sponsor Belsimpel for providing our
keynote presentation and the lunch during lunch break.

Rein Smedinga
Michael Biehl
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Since the tenth SC@RUG in 2013 we added a new
element: the awards for best presentation, best paper and

best 2 minute madness.

Best 2 minute madness presentation awards

2022
David Visscher and Erwin de Haan

A review of networking the cloud datacentre
2021

Niels Bügel and Albert Dijkstra
Mining User Reviews to Determine App Security

2020
Andris Jakubovskis and Hindrik Stegenga
Comparing Reference Architectures for IoT

and
Filipe R. Capela and Antil P. Mathew

An Analysis on Code Smell Detection Tools and Technical
Debt
2019

Kareem Al-Saudi and Frank te Nijenhuis
Deep learning for fracture detection in the cervical spine

2018
Marc Babtist and Sebastian Wehkamp

Face Recognition from Low Resolution Images: A
Comparative Study

2017
Stephanie Arevalo Arboleda and Ankita Dewan

Unveiling storytelling and visualization of data
2016

Michel Medema and Thomas Hoeksema
Implementing Human-Centered Design in Resource

Management Systems
2015

Diederik Greveling and Michael LeKander
Comparing adaptive gradient descent learning rate

methods
2014

Arjen Zijlstra and Marc Holterman
Tracking communities in dynamic social networks

2013
Robert Witte and Christiaan Arnoldus

Heterogeneous CPU-GPU task scheduling

Best presentation awards

2022
Luc Pol and Jeroen Lammers

A High-Level Overview of Minimum Graph-Triangulation
Approaches

2021
Niels Bügel and Albert Dijkstra

Mining User Reviews to Determine App Security
2020

none, because of corona virus measures no
presentations were given

2019
Sjors Mallon and Niels Meima

Dynamic Updates in Distributed Data Pipelines
2018

Tinco Boekestijn and Roel Visser
A comparison of vision-based biometric analysis methods

2017
Siebert Looije and Jos van de Wolfshaar

Stochastic Gradient Optimization: Adam and Eve
2016

Sebastiaan van Loon and Jelle van Wezel
A Comparison of Two Methods for Accumulating Distance

Metrics Used in Distance Based Classifiers
and

Michel Medema and Thomas Hoeksema
Providing Guidelines for Human-Centred Design in

Resource Management Systems
2015

Diederik Greveling and Michael LeKander
Comparing adaptive gradient descent learning rate

methods
and

Johannes Kruiger and Maarten Terpstra
Hooking up forces to produce aesthetically pleasing graph

layouts
2014

Diederik Lemkes and Laurence de Jong
Pyschopathology network analysis

2013
Jelle Nauta and Sander Feringa

Image inpainting
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Best paper awards

2022
Erblin Ibrahimi and Sven Hofman

State of the Art: Performance Overview of Black-Box Web
Application Scanners

and
Willard Verschoore and Gerrit Sijberen Luimstra
Is it Not Yet Time to Swish? Comparing the ReLU and

Swish Activation Functions
2021

Ethan Waterink and Stefan Evanghelides
A Review of Image Vectorisation Techniques

2020
Anil P. Mathew and Filipe A.R. Capela

An Analysis on Code Smell Detection Tools
and

Thijs Havinga and Rishabh Sawhney
An Analysis of Neural Network Pruning in Relation to the

Lottery Ticket Hypothesis
2019

Wesley Seubring and Derrick Timmerman
A different approach to the selection of an optimal

hyperparameter optimisation method

2018
Erik Bijl and Emilio Oldenziel

A comparison of ensemble methods: AdaBoost and
random forests

2017
Michiel Straat and Jorrit Oosterhof

Segmentation of blood vessels in retinal fundus images
2016

Ynte Tijsma and Jeroen Brandsma
A Comparison of Context-Aware Power Management

Systems
2015

Jasper de Boer and Mathieu Kalksma
Choosing between optical flow algorithms for UAV

position change measurement
2014

Lukas de Boer and Jan Veldthuis
A review of seamless image cloning techniques

2013
Harm de Vries and Herbert Kruitbosch

Verification of SAX assumption: time series values are
distributed normally
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State of the Art: Performance Overview of Black-Box Web
Application Scanners

Sven J. Hofman, Erblin Ibrahimi

Abstract— Finding vulnerabilities in web applications has always been a challenging task. Humans have evidently not been able to
manually detect them all before deploying their code, and this has led to an increased interest in automated tools to aid in finding
these vulnerabilities. Black-box scanners are one of the more popular types of automation tools that do this. They crawl through a
web application and probe around in an attempt to find potential vulnerabilities. They do this without having any knowledge about the
architecture of the web applications and therefore treat them as black-boxes.
Throughout the years, we have seen several papers that compared the performance of these black-box scanners. Our paper provides
an overview of the results of some of these papers, which looked at the performance of several scanners in detecting the most
occurring vulnerabilities. We have considered 11 papers that have been published since 2010, which, in total, analysed over 20
black-box scanners. Since the technology behind most of the tested scanners is proprietary, it is difficult to provide recommendations
to improve their performances. We can, therefore, only look at their reported behaviours and summarise their findings.
Moreover, we take a more detailed look at the performance in detecting SQL injection vulnerabilities, since these kinds of vulnera-
bilities have historically been the most popular. We conclude that for first-order SQL injection vulnerabilities, the overall performance
of the considered scanners has improved slightly. On the other hand, the detection rate of second-order SQL injection vulnerabilities
has not improved at all and remains zero.

Index Terms—Black-box scanners; web application security; vulnerability detection; SQL injection.

1 INTRODUCTION

IBM estimated that the global average total cost of a data breach
in 2020 was $3.86m, with individual (mega) breaches costing up to
$392m [8]. In 2021, this increased to $4.24m, with individual (mega)
breaches costing up to $401m [9]. Many consider the Equifax 2017
data breach to be the most expensive data breach ever. In this attack,
records with private and sensitive information (such as social security
numbers, addresses, and sometimes even driver’s licenses) of 146.6
million Americans were stolen [30]. After it became public that these
records had been stolen, Equifax lost $4 billion dollars in stock market
value according to Wall Street [14]. Even though the data breach hap-
pened in 2017, Equifax still feels the effects to this day; in 2022, the
FTC reached a settlement regarding the data breach, which concluded
that Equifax has to pay $425 million to help people affected by the
breach [7].

The most common causes behind these breaches in 2021 were com-
promised credentials (20%, $4.37m) and phishing (17%, $4.65m).
The third and fourth most common causes, however, were cloud mis-
configuration (15%, $3.86m) and vulnerability in third-party software
(14%, $4.33m), respectively. Both of these are caused by vulner-
abilities and exposures in code, and combined they are the cause
for 29% of the data breaches [9]. In the case of the Equifax 2017
data breach, there was a vulnerability in a version of the third-party
software Apache Struts, which allowed remote code injection attacks
through crafted HTTP headers [16].

Detecting these vulnerabilities manually can be quite challenging,
as many new vulnerabilities are discovered on a daily basis. In 2021
alone, 18,439 new common vulnerabilities and exposures (CVEs)
were reported, which amounts to over 50 new CVEs logged every day
[27]. OWASP (Open Web Application Security Project) categorises
these CVEs and publishes the OWASP Top Ten every three to four
years, which is a report that ranks the most occurring CVE categories
[21]. Table 1 shows the top five occurring categories since its first
rankings, published in 2004.

• Sven J. Hofman is with the Faculty of Engineering, University of
Groningen, Email: s.j.hofman.1@student.rug.nl

• Erblin Ibrahimi is with the Faculty of Engineering, University of
Groningen, Email: e.ibrahimi@student.rug.nl

As we can see in this table, the same set of categories of CVEs has
persisted throughout the years: XSS, (SQL) Injection, Broken Access
Control, Broken Authentication & Session Management, and CSRF.
Even though OWASP defines 60 categories [23], this paper will
mostly focus on the aforementioned set of categories, as these seem to
consistently be at the top. Later in this paper, we will focus more on
injection (specifically first-order and second-order SQL injections),
since this category regularly occupies a spot in the top three, and is
often at number one.

Vulnerabilities are evidently becoming increasingly costly, and hu-
mans cannot detect them all by manually inspecting the system, which
is evident from the fact that so many CVEs are reported on a daily
basis. Researchers have, therefore, taken an interest in finding an au-
tomated approach to detecting vulnerabilities in systems. There are
several kinds of approaches to automating the process of finding vul-
nerabilities, of which white-box and black-box testing are common
ones [15].

In white-box testing, the tester has full access to the network and
the architecture. This allows the tester to more accurately scan the
web application for vulnerabilities, as they have more information at
their disposal.

Black-box testers, on the other hand, have limited structural infor-
mation about the web application. They treat the web applications as
black-boxes, and scan them for security vulnerabilities, with limited
knowledge about the internal workings of the application. This
closely resembles the point of view of attackers, who (presumably)
do not have access to structural information of the web applications
either. Black-box scanners are then defined as tools that perform
black-box testing for users.

Our contribution to the research on black-box scanners considers
of providing this paper, which will serve as an overview of the find-
ings of several papers that inspected and compared the performance
of various black-box scanners. Moreover, we aim to answer the fol-
lowing research question: Has the performance of black-box scanners
improved for detecting first- and second-order SQL injection vulnera-
bilities throughout the years?

9



1 2 3 4 5

2004 Unvalidated Input Broken Access Control
Broken Authentication

& Session Management
XSS Buffer Overflow

2007 XSS Injection Flaws Malicious File Execution
Insecure Direct

Object References
CSRF

2010 Injection XSS
Broken Authentication

& Session Management

Insecure Direct

Object References
CSRF

2013 Injection
Broken Authentication

& Session Management
XSS

Insecure Direct

Object References
Security Misconfiguration

2017 Injection Broken Authentication Sensitive Data Exposure XML External Entities Broken Access Control

2021 Broken Access Control Cryptographic Failures Injection Insecure Design Security Misconfiguration

Table 1. Overview of the top five most occurring web application vulnerabilities from several OWASP Top Ten reports [20].
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1. Request report of vulnerabilities

4. Report of vulnerabilities

Fig. 1. Abstraction of the workflow of black-box scanners. The scanner
sees the Web Application as a black-box and simply interacts with it by
sending requests and investigating the responses.

2 BACKGROUND

As we have previously seen in Table 1, injections are consistently at
the top of the most occurring vulnerabilities. OWASP calls them “In-
jections”, which is a collective name and not only includes SQL in-
jections, but also NoSQL, ORM, and LDAP injections, among others.
Note that the process of performing injections on the aforementioned
languages and protocols is similar to performing SQL injection [18].
We will, therefore, only look at the details of SQL injections, since
they are the focus of our paper.

2.1 Types of SQL Injections
SQL injections can generally be classified into three categories; first-
order injection, second-order injection and lateral injection [17]. The
papers that we consider in this overview only look at the first two cat-
egories, so these will be of relevance to us.

2.1.1 First-Order SQL Injection
First-order SQL injection is an attack that inserts a malicious query
into places where this is not expected, which allows you to craft cus-
tom queries and run them on the database. This commonly occurs
when an entry of a user-filled form contains such a malicious query.
As an example, let us consider the following PHP query string, which
uses PHP variables $username and $password that were retrieved

from a filled-in form to check whether these credentials exist in the
system:

SELECT *
FROM users
WHERE username = '$username' AND password = '$password';

In the case of a non-malicious form, where both $username and
$password are admin, the query would look as follows (and work
as expected):

SELECT *
FROM users
WHERE username = 'admin' AND password = 'admin';

Let us now consider the case where $username is ’ OR 1=1;
--, and $password can be anything (we will continue with admin
in this case). The query becomes

SELECT *
FROM users
WHERE username = '' OR 1=1; --' AND password = 'admin';

Running this query will give us all the entries in the users ta-
ble, since username = ’’ OR 1=1 always evaluates to true,
independent of the table entries. Note that because of the -- that
was appended to the input, everything that comes after this will be
commented out, and therefore disregarded. This means that AND
password = ’admin’; is, therefore, also ignored.

2.1.2 Second-Order SQL Injection
Second-order SQL injections, on the other hand, do not directly make
use of the malicious queries, but rather store them in the database first.
In contrast to first-order SQL injection attacks, the attacker simply
inserts the malicious query as a database entry and hopes that an ap-
plication later uses the database entries without filtering them, which
results in inadvertently running the malicious query. In these types of
attacks, the attacker usually does not know whether there are any ap-
plications that use the data in an unsafe manner, so second-order SQL
injections attacks are run blindly, in the hope that this is the case.

2.1.3 Lateral Injection
Lateral injections work specifically on Oracle’s PL/SQL. Simply put,
it is performed when a data type is transformed into another data type.
A common example is when a variable of type NLS Date Format
or NLS Numeric Characters are transformed into a string, using
To Char().

Performance Overview of Black-Box Web Application Scanners – Sven J. Hofman and Erblin Ibrahimi
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2.2 Black-Box Scanners
In Figure 1, a general schema is shown of how a black-box scanner can
be used to detect vulnerabilities in a web application. However, it does
not display the internal workings of a black-box scanner. Each black-
box scanner works differently, but they all share a similar approach.
This procedure can be described by the following stages:

0. Set-up: as an initialisation step, the user sets the configuration
of the particular scanner. In this step, the user can, for example,
select which particular vulnerabilities to scan for. This can be
useful, as it can save a significant amount of time since black-
box scanners take quite a lot of time to run. The exact settings
depend on the scanner.

1. Crawling: once the scanner has been set up properly, the user
starts the scanner. Black-box scanners can either be run locally
or through a server (or both). The scanner starts crawling through
the website and obtains the HTML source code of each accessi-
ble link. Note that this is not always a trivial task. As an example,
consider a page that can only be accessed after having filled in
a login form or captcha. This requires the scanner to restart the
crawling phase after having filled in this form.

2. Identifying forms and entry points: after the HTML code has
been parsed, the scanner tries to identify entry points into the
web application. There are several kinds of entry points; forms
are the most common ones. For example, if the scanner finds a
form, it could try to detect whether it is a login form. A typical
login form has two HTML elements of type text; one with a
description of username or login, and one with a descrip-
tion of password. Lastly, there should be a button of some
sort that sends a POST request. These kinds of vulnerable entry
points that are used to exploit a web application are called attack
vectors.

3. Constructing and submitting attack code: when an entry point
has been identified (such as the aforementioned login forms), the
scanner will produce data that will be used to fill in the form.
There are several ways of getting this data:

• Getting data that has been pre-defined in a database or dic-
tionary. A common example is trying to use SQL injec-
tion queries. Note that some scanners can also be set up
to always use a user-defined username whenever the scan-
ner detects an HTML element that requires a username.
A common test of scanners is to try the login credentials
admin / admin, but in those scanners, these credentials
can be customised.

• Generating data randomly from scratch. Fuzzers can be
very useful tools for this.

After the form has been filled, the scanner sends the request to
the server and awaits a response.

4. Analysing replies: once the scanner receives a response from
the server, it starts parsing it and determines whether it is a ‘valid’
response. This is also non-trivial. First of all, responses to entry
point requests are commonly given in a human-readable format.
This means that the scanners should be able to intelligently ex-
tract the relevant information from such a response. Next, if an
error is returned, the scanner should be able to determine whether
this is expected, which also depends on the type of error. Contin-
uing with the aforementioned example of the user creation form,
one should expect to get an error when providing a username or
password that is too short. If the server returns an SQL error, on
the other hand, this should be reported to the user as this implies
that an SQL injection vulnerability exists.

Paper Date Web Application Vulnerability Scanners

[5] 2010

Acunetix WVS 6.1, AppScan 7.8.0.0,
Burp 1.2, Grendel-Scan 1.0,

Hailstorm 5.7, MileScan 1.4, N-Stalker 2009,
NTOSpider 3.2.067, Paros 3.2.13,

w3af 1.0-rc2, Webinspect 7.7.769.0

[1] 2010

Acunetix WVS 6.5, HailStorm Pro 6.0,
WebInspect 8.0, Rational AppScan 7.9,

McAfee SECURE Web, N-Stalker 7.0.0,
QualysGuard PCI Web, NeXpose 4.8.0

[11] 2011 Acunetics WVS 7.0, Rational AppScan 8.0,
QualysGuard Express Suite 6.16.60-1

[2] 2012 Acunetics WVS 6.5, AppScan 7.9,
WebInspect 8.0, QualysGuard PCI 2009

[29] 2013
IronWASP 0.9.5.0, NetSparker 2.5,

N-Stalker 7.1.1.126, OWASP ZAP 2.0.0,
w3af 1.2-r6654, Vega 1.0 (beta)

[12] 2015 OWASP ZAP 2.3.1, skipfish 2.10b

[25] 2015 Acunetix WVS 8.0, Rational AppScan 9.0,
OWASP ZAP 2.3.1

[10] 2017

Acunetix WVS 10, AppSpider 6.0,
Arachni 2.2.1, BurpSuite 1.6.12,

IronWASP 0.9.7.1, NetSparker 2.3,
skipfish 2.10, Vega 1.0 (beta),

Wapiti 2.3.0, w3af 1.2,
OWASP ZAP 2.3.1

[26] 2018
Acunetix WVS 11.0, BurpSuite 1.7.30,
NetSparker 4.7.1, Nessus (cloud based),

OWASP ZAP 2.7.0
[13] 2018 Arachni 1.5.1, OWASP ZAP 2.7.0

[28] 2021
Arachni 1.5.1-0.5.12, IronWASP 0.9.8.6,

skipfish 2.10 (beta), Vega 1.0,
OWASP ZAP 2.7.0

Table 2. Web application vulnerability scanners and their versions used
in different papers. Open-source scanners are displayed in bold.

3 OVERVIEW

This section will provide an in-depth overview of the research con-
ducted on the evaluation of black-box scanners for web applications.
These black-box scanners are called web application vulnerability
scanners (WAVSs). We will consider most of the papers published
on this topic in the years 2010 up until now. There are three compo-
nents in the process of evaluating WAVSs that are most important: (i)
the WAVSs on which tests are performed, (ii) the vulnerable web ap-
plication(s) to run the WAVSs on, (iii) the measures used to quantify
the performance of the WAVSs. In total, 11 papers will be included in
this study. The three components mentioned above will be discussed
in the coming sections.

3.1 Web Application Vulnerability Scanners
The general concept behind black-box scanners has been explained in
Section 2.2. For both their mandatory (e.g. identify SQL injection) and
optional (e.g. typecasting) features, web application scanners have to
meet certain requirements specified in [3]. Even though the minority
of the WAVSs is open source [24], a significant amount of the research
papers on testing WAVSs consider open-source tools, as can be seen in
Table 2. This table gives an overview of the tables used by the research
papers. Open-source tools are considered due to the fact that they are
easily accessible for the public to be used and for the researchers to
be examined. The platforms on which the tested scanners can be used
differ and some of the scanners are only provided as a cloud-based
service.
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3.2 Vulnerable Web Applications
In addition to selecting the black-box scanners, users have to pick one
or more vulnerable web applications to evaluate the performance of
the scanners. The metrics used to classify the scanners’ qualities are
discussed in Section 3.3. In this section, we will provide the vulnerable
web applications used by the selected research papers. These web
applications are also known as test-beds.

One of the most widely used test-beds is called WackoPicko and
was designed by Doupé et al. [5]. It contains several of the vulner-
abilities mentioned in Table 1, such as stored cross-site scripting and
second-order SQL injection. Exploiting the latter requires the scanner
to first authenticate itself by providing login credentials, whereas this
is not required for the former. We will see later in Section 4.1 that this
affects the performance of the WAVS.

Paper Test-beds Language
[5] WackoPicko (16/2) PHP

[1]

Drupal 4.7.0 (23/2),
phpBB2 2.0.19 (13/1),

Wordpress 1.5strayhorn (42/8),
PCI (·/3)

PHP

[11] PCI (·/3), WackoPicko (16/2),
MatchIt (1/1)

PHP,
MySQL

[2] PCI (·/3),
27 web applications (·/·)

PHP, ASP,
Java, Python,

Ruby
[29] WackoPicko (16/2) PHP

[12] DVWA (8/2), WAVSEP (611/105) PHP, JS,
Java

[25] WackoPicko (16/2), Scan-bed (1/1) PHP
[10] WAVSEP (611/105) Java

[26] 7 web applications (·/·) C#, PHP,
ASP, HTML5

[13] OWASP Benchmark (2740/504) Java, HTML

[28] OWASP WebGoat (·/·), DVWA (8/2) PHP, JS,
Java, HTML

Table 3. Test-beds used by the different papers. The numbers within
the parenthesis are the total number of vulnerabilities and the number of
SQL injection vulnerabilities, respectively. These are obtained from the
papers in which they are used, except for OWASP Benchmark, which is
obtained from [19]. A dot indicates that the number is not known.

A paper from Bau et al. [1] from the same year used multiple
web applications to test the scanners. This included applications with
Drupa, phpBB and WordPress that were all known to contain vulner-
abilities. In addition to this, they too constructed their own custom
test-bed referred to as PCI. In the paper, it is mentioned that the num-
ber of vulnerabilities in their test-bed is “fairly proportional with the
vulnerability population in the wild”. The web application contains the
top vulnerabilities occurring in 2010, stated in Table 1. Later, in 2012,
Bau et al. [2] published another paper where several scanners were
tested against 27 early-stage web applications built by Silicon Valley
startups and freelancers, using five different programming languages.

Similarly, Khoury et al. [11] created their own custom test-bed
called “MatchIt”. It was designed to test a scanner’s ability to detect a
single second-order SQL injection vulnerability by eliminating factors
such as user registration or complicated crawling that could impede
the scanner’s exploitation of this vulnerability. This paper also used
PCI and WackoPicko in their evaluation of black-box scanners.

In addition to WackoPicko, Parvez et al. [25] used their own custom
test-bed called “Scan-bed”. This application was constructed for the
same reason as MatchIt.

Unlike the other papers, Qasaimeh et al. [26] used seven web ap-
plications created by several commercial companies such as IBM and

Paper Metrics
[5] TP, FP, FN, Running time, Reachability
[1] TP, FP, Scanner footprint, Running time

[11] Network traffic, Attack vectors
[2] TP, FP, FN

[29] TP, FN, Running time
[12] TP, FP, Precision
[25] Network traffic, Attack vectors
[10] TP, FP, FN, Precision, Recall, F-score
[26] TP, FP, Accuracy
[13] TP, FP, TN, FN
[28] TP, FP, TN, FN, Precision, Recall, Youden Index

Table 4. Evaluation metrics used by the different papers.

Hewlett-Packard. These web applications were written in different
languages like PHP and HTML5.

Lastly, The Web Application Vulnerability Scanner Evalua-
tion Project (WAVSEP) [4], Damn Vulnerable Web Application
(DVWA) [6], OWASP Benchmark [19] and OWASP WebGoat [22]
are all open-source applications that have also been used to test the
black-box scanners. An overview of the test-beds and their properties
can be found in Table 3.

3.3 Evaluation Metrics
The objective of evaluating WAVSs is to measure to what extent these
tools can discover and accurately diagnose web application problems.
Several measures have been used to accomplish this and test the per-
formance of WAVSs. These include well-defined indicators such as the
true positives (TP), false positives (FP), true negatives (TN) and false
negatives (FN). In the context of WAVSs, these metrics respectively
mean that the scanner identifies a real vulnerability, fails to identify a
real vulnerability, correctly disregards a ‘fake’ vulnerability, and fails
to disregard a ‘fake’ vulnerability. We will refer to the detection rate
as the true positive rate, that is

detection rate =
T P

T P+FN
.

Using these measures, additional commonly used metrics can be de-
fined like accuracy, precision, recall, F-score and Youden index. Other
performance measures that are considered are the running time and
scanner footprint (the number of bytes sent and received). Doupé et
al. [5] designed a “Reachability” score; a subjective measure of how
difficult it is for the WAVS to crawl to the page containing the vulner-
ability.

Research by Khoury et al. [11] and Parvez et al. [25] did not make
use of any of the metrics above. Instead, they monitored the network
traffic to store and execute attacks that exploit the vulnerabilities. Fur-
thermore, they counted the number of distinct and relevant attack vec-
tors implemented using the fields susceptible to second-order SQL in-
jection. An overview of the evaluation metrics used by different papers
is given in Table 4.

4 SQL INJECTION

As one can see from Table 1, (SQL) injection has been scoring very
high in the past decade as being one of the most common vulnerabili-
ties among web applications. It is therefore no surprise that the major-
ity of the papers published in the field of evaluating black-box web ap-
plication security scanners are primarily focused on this type of attack.
In this section, we will provide an analysis of the results discovered in
the research papers regarding both first- and second-order SQL injec-
tion, the theory of which has been explained in Section 2.1. Moreover,
we will answer our research question regarding the improvements in
performance of WAVSs throughout the years. We should note that
in most of the papers of this research field, the results of different
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scanners have been anonymised. Due to this, it is difficult to provide
a direct comparison between the performance of specific scanners in
different papers. However, a general conclusion can still be derived
from the findings of the papers that are considered. We will provide
the results below in chronological order.1

4.1 Results
In 2010, Doupé et al. [5] showed, using their WackoPicko test-bed,
that all the tested scanners were able to detect the first-order SQL
injection vulnerability. However, none of the scanners were able to
detect the second-order SQL injection vulnerability. Both they and
Khoury et al. [11] in 2011 mentioned that this is due to the valid reg-
istration that is required in WackoPicko to exploit the vulnerability;
scanners were not able to detect the fact that the fields “Password” and
“Password Again” required the same values.
Bau et al. [1] found in 2010 that considering the average of all scan-
ners, 21.4% of the first-order SQL injection vulnerabilities had been
detected, using the scanners provided in Table 2. Note that the results
mentioned in this paper were anonymous. However, using the more
recent paper of Bau et al. [2] from 2012, we can deduce that both We-
bInspect and AppScan had the lowest detection rate, namely 14.2%.
QualysGuard attained a detection rate of 29%, whereas the highest rate
was achieved by Acunetix WVS: 43%. Moreover, Bau et al. [2] did
not observe any changes in 2012 for the above four scanners for both
first- and second-order SQL injection vulnerabilities. They speculated
that this was due to the fact that this type of detection was outside the
scope for the scanners at that time. On the other hand, very few false
positives were found for SQL injections. This would make sense if the
scanners did not consider this type of vulnerability; one does not make
false detections if one does not make any detections at all.
Of the scanners tested in Suteva et al. [29] in 2013, none were able
to detect second-order SQL injection vulnerabilities. Four out of six
scanners were able to exploit first-order SQL injection vulnerabilities,
but none verified to the user that the vulnerabilities were found. N-
Stalker and w3af were not able to detect the possibility for first-order
SQL injection in any way.
In 2015, Makino and Klyuev [12] evaluated two scanners: OWASP
ZAP and skipfish. They used WAVSEP and DVWA as test-beds and
reported that these contained 105 and 2 SQL injection vulnerabilities,
respectively. According to their study, the precision of OWASP ZAP
on WAVSEP was 100%, meaning that OWASP ZAP did not register
any false positives. On the other hand, skipfish had a precision rate
of 9.5%. For all the false positives test cases that WAVSEP contains,
skipfish recorded all of them as real vulnerabilities, which therefore
resulted in a false positive rate of 100%. For the DVWA benchmark,
the paper provided the number of true positive vulnerabilities. Here,
OWASP ZAP and skipfish recorded 2 and 1 vulnerabilities, resulting
in a 100% and 50% detection rate for OWASP ZAP and skipfish, re-
spectively. So overall, OWASP ZAP performed better than skipfish.
Unfortunately, the paper did not provide separate results for first- and
second-order SQL injection vulnerabilities. Consequently, we do not
know if these scanners have made improvements with respect to pre-
vious scanners in terms of detecting second-order SQL injection vul-
nerabilities.
We mentioned in Section 3.3 that Khoury et al. [11] and Parvez et
al. [25] made use of network traffic to test the capabilities of black-
box scanners. As such, it is hard to compare these results to the
findings of the other papers. Not only this, both papers mostly used
different scanners and test-beds, and anonymised their findings. For
example, WackoPicko is used in both papers, but the network traffic
generated by these scanners is not given by Parvez et al. [25]. Simi-
larly, Acunetix WVS is tested in both papers, but we cannot juxtapose
the results of this scanner due to the omission of scanner names with
the results. The only thing that can be concluded after collating the
findings of these two papers is that none of the scanners were able

1Note that not all 11 papers are included in this section, since not all papers
provided specific information about the performance of black-box scanners on
SQL injection vulnerabilities.

to implement attack codes for the second-order SQL injection vulner-
abilities. Hence, in the context of second-order SQL injection, the
detection rate has not improved from 2011 to 2015 based on these pa-
pers.
Idrissi et al. [10] performed an extensive evaluation of several black-
box scanners in 2017. As can be seen from Table 2, they used many
scanners (both commercial and open source) and tested these on the
WAVSEP web application. At this time, WAVSEP contained 136 real
SQL injection vulnerabilities and 10 test-cases representing ‘fake’ vul-
nerabilities to measure how lenient the scanners were in recording
vulnerabilities. One thing that stands out is that skipfish obtained a
false positive rate of 0%, instead of 50% in 2015 [12]. Acunetix WVS
achieved a detection rate of 100%, although it should be noted that by
looking at the source code of WAVSEP [4], it appears that it does not
contain any second-order SQL injection vulnerabilities, whereas the
test-bed used by Bau et al. [2] (which also tested Acunetix WVS) does.
The average detection rate is 93.8%, with the lowest being 59.6% and
the highest being 100%. This is much better than the result published
by Bau et al. [2] in 2012, albeit on a different test-bed.
The most recent paper that specifically mentions results SQL injection
vulnerabilities is from 2018, by Mburano and Si [13]. OWASP ZAP
and Arachni were compared on the OWASP Benchmark. A detection
rate of 58.1% and 20% was reported for OWASP ZAP and Arachni,
respectively.

4.2 Discussion
We have seen that since 2010, many research papers have made an
attempt to evaluate black-box scanners. The most important obser-
vations that can be made from these results are the following: (i) an
increase in performance of detecting first-order SQL injection vulner-
abilities can be observed, (ii) the detection rates for first and second-
order SQL injection vulnerabilities still differ significantly, (iii) black-
box scanners remain unable to detect second-order SQL injection vul-
nerabilities. The first observation is discussed in Section 4.2.1 and the
second and third observations are discussed in Section 4.2.2.

4.2.1 First-Order SQL Injection Vulnerabilities
Using a large number of scanners, Bau et al. [1] concluded in 2010
that the average detection rate of detecting first-order SQL injection
vulnerabilities was 21.4%, with the range of detection rates being
[14.2,43]. In 2012, they showed that this had not changed. The next
extensive (i.e., including a large number of scanners) study on evalu-
ating black-box scanners was done in 2018 by Idrissi et al. [10]. Here,
the average detection rate equalled 93.8%, with a range of [59.6,100].
Based on these results, the performance of black-box scanners has in-
creased significantly in the context of first-order SQL injections. Ide-
ally, one should have more sources when drawing such a conclusion.
However, even if the results of Idrissi et al. [10] are exaggerated, it
is still very likely that the results are better than those of black-box
scanners in 2010.

4.2.2 Second-Order SQL Injection Vulnerabilities
In all papers where both first- and second-order SQL injection vul-
nerabilities were discussed, the latter had a worse detection rate than
the former. This is not surprising; finding second-order SQL injection
vulnerabilities using black-box scanners is significantly more difficult,
since black-box scanners are based on the idea of knowing little about
the internal workings of the application. For first-order injection, this
is less relevant since the scanner can directly verify if the attack has
worked. For second-order SQL injection, the scanner not only has to
implement the attack, but it also has to find a way to force the ap-
plication to trigger the attack without knowing the source code of the
application.
All the papers that investigated second-order SQL injection vulner-
abilities found that the detection rate of the black-box scanners for
this vulnerability is zero. A possible explanation for this result was
given by Bau et al. [1] in 2010. There, it was reported that “multi-
ple vendors confirmed their difficulty in designing tests which detect
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second-order vulnerabilities”. Moreover, in 2012, Bau et al. [2] sus-
pected that the industry does not put much effort in the development
of detecting second-order SQL injection vulnerabilities, due to the ex-
istence of a known solution, namely prepared statements. We believe
that this is the most likely reason for the non-existing improvement of
the performance on second-order SQL injection vulnerabilities. This
also provides a justification as to why no papers have been published
since 2015 that study the performance of black-box scanners on this
specific vulnerability.

5 CONCLUSION

Black-box scanners can be a useful aid in the search for vulnerabilities
in a web application. However, they are not able to detect all the exist-
ing vulnerabilities. Several papers have shown this to be the case when
they ran popular black-box scanners on various open-source test-beds,
testing for the most popular vulnerabilities at the time. This paper pre-
sented an overview of the findings of these papers. More specifically,
11 papers were considered that, in total, tested more than 20 black-box
scanners on over 40 test-beds.
In the second part of our paper, we looked at the performance of black-
box scanners in the context of SQL injection. This resulted in the fol-
lowing answer to our research question: the detection rate of first-order
SQL injection vulnerabilities has improved, but the detection rate for
second-order SQL injection vulnerabilities did not and remained zero.
This is worrying, since injection remains at the top of the most oc-
curring vulnerabilities, according to the OWASP Top Ten. It became
clear that the detection rate for SQL injection has partially improved
over time; first-order SQL injection vulnerabilities are detected more
often, whereas the detection of second-order SQL injection vulnera-
bilities has not improved in any manner.
Further research can be done on how the detection rate of SQL injec-
tion vulnerabilities can be improved. Since the majority of the scan-
ners are proprietary and we, therefore, do not have access to the source
code or methodology, it is hard to make a general recommendation on
how they can be improved. This is especially the case since there is
no standardised set of evaluation metrics for the performance of black-
box scanners, which also makes it difficult to properly compare the pa-
pers and their results. Finding a standardised set of evaluation metrics
could be beneficial in future research since it would allow researchers
to get a clearer overview of what aspects of the black-box scanners
have advanced, and which ones still need improvements.
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[5] A. Doupé, M. Cova, and G. Vigna. Why johnny can’t pentest: An analysis
of black-box web vulnerability scanners. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 111–131. Springer, 2010.

[6] DVWA. Damn Vulnerable Web Application (DVWA). https://
dvwa.co.uk/. Accessed: 2022-03-01.

[7] FTC. Equifax Data Breach Settlement. https://www.ftc.gov/
enforcement/cases- proceedings/refunds/equifax-
data-breach-settlement. Accessed: 2022-02-24.

[8] IBM. Cost of a Data Breach Report 2020. https://www.ibm.com/
downloads/cas/QMXVZX6R. Accessed: 2022-02-17.

[9] IBM. Cost of a Data Breach Report 2021. https://www.ibm.com/
downloads/cas/OJDVQGRY. Accessed: 2022-02-17.

[10] S. Idrissi, N. Berbiche, F. Guerouate, and M. Shibi. Performance evalu-
ation of web application security scanners for prevention and protection
against vulnerabilities. International Journal of Applied Engineering Re-
search, 12(21):11068–11076, 2017.

[11] N. Khoury, P. Zavarsky, D. Lindskog, and R. Ruhl. An analysis of black-
box web application security scanners against stored sql injection. In
2011 IEEE Third International Conference on Privacy, Security, Risk and
Trust and 2011 IEEE Third International Conference on Social Comput-
ing, pages 1095–1101. IEEE, 2011.

[12] Y. Makino and V. Klyuev. Evaluation of web vulnerability scanners.
In 2015 IEEE 8th International Conference on Intelligent Data Acqui-
sition and Advanced Computing Systems: Technology and Applications
(IDAACS), volume 1, pages 399–402. IEEE, 2015.

[13] B. Mburano and W. Si. Evaluation of web vulnerability scanners based
on owasp benchmark. In 2018 26th International Conference on Systems
Engineering (ICSEng), pages 1–6. IEEE, 2018.

[14] Money. Equifax Data Breach Settlement. https://money.com/
equifaxs - massive - data - breach - has - cost - the -
company-4-billion-so-far/. Accessed: 2022-02-24.

[15] S. Nidhra and J. Dondeti. Black box and white box testing techniques-a
literature review. International Journal of Embedded Systems and Appli-
cations (IJESA), 2(2):29–50, 2012.

[16] NVD. CVE-2017-5638 Detail. https://nvd.nist.gov/vuln/
detail/cve-2017-5638. Accessed: 2022-02-26.

[17] Oracle. Types of SQL Injection Attacks. https : / /
download.oracle.com / oll / tutorials / SQLInjection /
html/lesson1/les01 tm attacks.htm. Accessed: 2022-03-02.

[18] OWASP. A03 Injection. https://owasp.org/Top10/A03 2021-
Injection/Y. Accessed: 2022-02-24.

[19] OWASP. Owasp Benchmark. https://owasp.org/www-
project-benchmark/. Accessed: 2022-02-19.

[20] OWASP. Owasp Top 10 Document Repository. https://
github.com/OWASP/Top10. Accessed: 2022-02-24.

[21] OWASP. Owasp Top Ten. https://owasp.org/www-project-
top-ten/. Accessed: 2022-02-24.

[22] OWASP. Owasp WebGoat. https://owasp.org/www-project-
webgoat/. Accessed: 2022-03-01.

[23] OWASP. Vulnerabilities. https://owasp.org/www-community/
vulnerabilities/. Accessed: 2022-02-17.

[24] OWASP. Vulnerability Scanning Tools. https://owasp.org/
www- community/Vulnerability Scanning Tools. Ac-
cessed: 2022-02-19.

[25] M. Parvez, P. Zavarsky, and N. Khoury. Analysis of effectiveness of
black-box web application scanners in detection of stored sql injection
and stored xss vulnerabilities. In 2015 10th International Conference for
Internet Technology and Secured Transactions (ICITST), pages 186–191.
IEEE, 2015.

[26] M. Qasaimeh, A. Shamlawi, and T. Khairallah. Black box evaluation of
web application scanners: Standards mapping approach. Journal of The-
oretical and Applied Information Technology, 96(14):4584–4596, 2018.

[27] Redscan. Redscan analysis of NIST NVD reveals record number of vul-
nerabilities in 2021. https://www.redscan.com/news/nist-nvd-analysis-
2021-record-vulnerabilities/. Accessed: 2022-02-17.

[28] P. Sarpong, L. Larbi, D. Paa, I. Abdulai, R. Amankwah, and A. Ampon-
sah. Performance evaluation of open source web application vulnerability
scanners based on OWASP benchmark. International Journal of Com-
puter Applications, 174:15–22, 02 2021.

[29] N. Suteva, D. Zlatkovski, and A. Mileva. Evaluation and testing of several
free/open source web vulnerability scanners. In The 10th Conference
for Informatics and Information Technology (CIIT 2013), pages 221–224.
FCSE, 2013.

[30] U.S. Securities and Exchange Commission. Equifax’s statement for the
record regarding the extent of the cybersecurity incident announced on
september 7, 2017. https://www.sec.gov/Archives/edgar/
data/33185/000119312518154706/d583804dex991.htm.
Accessed: 2022-02-26.

Performance Overview of Black-Box Web Application Scanners – Sven J. Hofman and Erblin Ibrahimi

14



A Review of Feature Selection and Ranking Methods

Tom Maguire and Lennard Manuel

Abstract—Datasets are constantly increasing in size due to the ever-growing amount of data that is collected. However, the quality
of this data is not always of the highest standard, with datasets containing many irrelevant features. Feature selection and ranking
help to address this problem.
Feature selection is the process of identifying the most important or relevant features in a dataset. This process is essential because
by only looking at the relevant features, the speed of computation and the accuracy of classification can be improved. Feature
selection allows for irrelevant features to be discarded and ignored.
In this paper, we take a look at four different methods that are used for feature selection, namely XGBoost, FeatBoost, ReliefF and
Boruta. The goal of this paper is to provide an overview of what types of feature selection algorithms exist by conducting a literature
review, assessing what the algorithms’ strengths and weaknesses are, and how they compare to each other. This comparison is done
on their computation times and redundancy rates. The results showed that XGBoost had the fastest average computation time and
that FeatBoost was the best in reducing redundancy among the selected features.

Index Terms—Feature selection, feature ranking, boosting, XGBoost, Boruta, FeatBoost, ReliefF.

1 INTRODUCTION

The amount of data created worldwide has been increasing exponen-
tially over the last decade. In 2010, two zettabytes of data were created
and only ten years later this number has grown to 64.2 zettabytes [11].
This explosion of data has led to very large datasets, containing many
irrelevant features, which increases the challenges of creating useful
models to make accurate predictions on these databases, or of deriving
useful information from them.

The curse of dimensionality [2] explains the idea that as the number
of features in a dataset increases, the number of samples required to
create a predictive model with an arbitrary level of accuracy also grows
exponentially.

Feature selection is the process of identifying the most important or
relevant features in a dataset. As a result of the ever-increasing amount
of data, feature selection is now more important than ever before [10].
Feature selection is important for a few reasons. Firstly, it allows for
the accuracy of models to be improved as removing irrelevant features
helps to reduce the amount of overfitting[8]. Secondly, using feature
selection to identify and remove irrelevant features from the dataset
reduces the effect of the curse of dimensionality. Thirdly, even if fea-
ture selection is not directly helpful in increasing a model’s ability to
make predictions on a dataset, it is still beneficial as it reduces stor-
age cost for that dataset as well as reducing the cost of performing
computations. Lastly, there are disciplines where the primary goal of
analysing a dataset is to understand the relationship between features
and a certain outcome. This is common in biomedical applications
where the goal is to identify key indicators of specific diseases [1].
Feature selection is key here, as it shows the hidden relationships be-
tween combinations of features and the presence of diseases.

In this paper, the aim is to analyse and compare recent research in
the field of feature selection. The objective is to explore the potential
benefits and drawbacks of the different proposed ideas and to identify
areas of agreement or conflict in the recent research. First, a back-
ground of feature selection will be given in Section 2. Then, the three
main papers that make up the bulk of the discussion will be introduced
in Section 3. In Section 4, the feature selection algorithms that are
used for the experiments will be discussed, after which the experimen-
tal settings will be described in Section 5. After that, we will dive into
the results and discuss them in detail in Section 6 before finally con-
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(a) Filter method. (b) Wrapper method. (c) Embedded method.

Fig. 1: Three types of feature selection.

cluding the research in Section 7 and offering some potential future
work in Section 8.

2 BACKGROUND

Feature selection is a large field of research due to its importance. Pre-
vious literature has proposed many different methods for feature selec-
tion. These methods normally fall into one of three distinct categories:
filter, wrapper and embedded [4].

The first category of methods, filter methods, rank features indepen-
dently of the modelling algorithm used. The features are ranked using
a performance measure, such as information loss, similarity and other
statistical measures. Examples of filter methods include Chi-square
and gain ratio.

Wrapper methods differ from filter methods as they use the perfor-
mance of the modelling algorithm to evaluate the quality of a feature
or subset of features. Wrapper methods make use of various search
strategies to perform an exhaustive search of the space of possible fea-
ture sets. The aim of these search strategies is to identify candidate
subsets which are then evaluated using the wrapped modelling algo-
rithm.

Embedded methods are methods in which feature selection is per-
formed as an integral part of the modelling algorithm’s execution,
hence the name embedded. As the modelling algorithm is run, ir-
relevant features are identified and discarded. Examples of embedded
methods include random forests and linear classifiers, such as support
vector machines (SVM), used in combination with regularised cost
functions such as Lasso. These different categories of feature selec-
tion methods are shown in Figure 1.

Lasso regularization works by adding a penalty term which is the
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L1 regularization of the weight vector to the cost function [14]:

Cost =
N

∑
i=0

(yi− ŷi)+
M

∑
j=0
|W j|1 (1)

For this paper, the notation ŷ is used to indicate the predicted value
of feature y by an arbitrary modelling algorithm. L1 regularization
penalizes non-zero weight values and this leads to irrelevant features
being assigned a weight value of 0. Thus by using L1 regularization as
a penalty term in a cost function and using a classifier such as SVM,
feature selection is performed as only relevant features have non-zero
weight values. This also ranks the features as the remaining features’
importance is ranked by the magnitude of the associated weight value
for that feature.

The choice of which class of methods to use is dependent on the
objectives of feature selection. Filter methods are quick and can be
run independently of any modelling algorithm, meaning they can be
used as a pre-processing step without having to have identified a mod-
elling algorithm. However, empirical evidence has shown that wrapper
methods perform better on average than filter methods across an array
of datasets [12]. A common rebuff of wrapper methods is that they are
less general than filter algorithms, meaning that they only have good
performance when used with the modelling algorithm used to evaluate
features. However, there is evidence that a wrapper’s generalisation
to other modelling algorithms is dependent on the relative complexity
of the modelling algorithm used to evaluate features. Simple classi-
fication algorithms such as KNN used as the evaluation function for
wrapper methods lead to good generalisation to other classification al-
gorithms [12].

3 LITERATURE REVIEW

In this section, the three main papers looked at in this paper are intro-
duced.

3.1 A Practical Approach to Feature Selection
This paper is much older than the other two papers looked at in this
section, having been published in 1992. It introduces the nowadays
well-known relief algorithm as an approach to feature selection [6].
What set the relief algorithm apart from previous filter methods was
the changing of the key objective. Instead of the goal being to find the
smallest sufficient subset of features, which was the goal of the ma-
jority of algorithms that preceded relief, the algorithm took a different
approach by using statistical methods to identify relevant features to
find a subset of relevant features. The approach used by the relief al-
gorithm meant that it was not guaranteed to find the optimal subset of
features but it would normally find a good subset of features in linear
time O(pn), where p is the number of features and n is the number of
training instances.

The relief algorithm is a filter method, and at the time it was first
introduced it was impactful due to its ability to detect and understand
feature interaction. The performance of the relief algorithm was com-
pared to an exhaustive search and a heuristic search and the results
showed that the relief algorithm was a big improvement in terms of
its tolerance to noise and its ability to understand feature interaction.
However, relief does not help with redundant features. If most features
are relevant to the concept, it selects all the relevant features even if a
smaller subset of these features is sufficient for describing training in-
stances. The paper only introduced the relief algorithm for two-class
classification problems but it does state in its future work section that
the algorithm can easily be extended to solve multi-class classification
problems. To do this the multi-class classification problem has to be
reframed as a set of two-class classification problems.

3.2 Feature Selection with the Boruta Package
The paper begins by introducing the minimal-optimal problem and the
all-relevant problem [7]. The minimal-optimal problem is the problem
of finding the smallest possible subset of relevant features. The relief
algorithm from the previous section gives an approximate solution to
the minimal-optimal problem. The all-relevant problem is the problem

of identifying all features which are relevant to classification, no mat-
ter how little the importance of the feature. To solve this, all attributes
with a correlation with the class label higher than that of a randomly
generated feature need to be identified.

The choice of solving the minimal-optimal problem or all-relevant
problem depends on the overall goal. A minimal-optimal set of fea-
tures is sufficient to make black box predictions of a class label. To
understand the underlying mechanics the set of all relevant features
must be known.

Solving the all-relevant problem is harder than solving the minimal-
optimal problem because filter methods cannot be used as a feature
may be unimportant on their own, but important in combination with
other features.

The paper introduces a novel feature selection algorithm called
Boruta to solve the all-relevant problem. The algorithm is a wrapper
method that uses a random forest classification algorithm to evaluate
features. The key idea this paper uses to solve the all-relevant problem
is to determine the relevance of features by creating random features
and using the relevance of these random features as a baseline. The ac-
tual features are compared to this baseline and any feature which has
a higher relevance than the baseline in included in the set of relevant
features. The relevance of the random features is only non-zero due to
random fluctuations.

The performance of the new algorithm is only demonstrated on one
dataset and the performance is compared to random forest classifiers
using different sets of attributes. This paper differs from the other pa-
pers looked at in this section because it is the only paper that solves
the all-relevant problem instead of solving the minimal-optimal prob-
lem. This paper is also the only one that comes with a ready to go
implementation of the algorithm in the form of the Boruta package in
R.

3.3 A framework for feature selection though boosting
The paper begins by explaining the motivation for the work in the pa-
per [1]. This motivation is the increasing size of datasets as explained
in the introduction section of this paper. The paper gives the relevant
background information by explaining the use of boosting to modify
the feature space in wrapper feature selection methods. Then, it builds
on this idea and identifies three specific novelties it contributes to the
research field.

The first contribution it makes that builds on previous studies is
the use of a weighting strategy that assigns each sample a weight that
is inversely proportional to its prediction probability. This is an im-
provement on previous work, where every misclassified sample had
its weight adjusted by the same amount, as it means that the more in-
correctly a sample is classified, the greater weight it is given in the
next iteration.

To obtain the feature scores, a gradient boosting tree model, XG-
Boost, is used [3]. It has been shown to be more predictive in larger
datasets and gives feature scores that more accurately account for com-
plex interactions between features than individual trees.

The second contribution the paper claims to make is to decouple
feature selection from ranking. This is achieved by using a two-step
process to determine the best feature for each iteration. The first step
is consistent with previous research as a tree model is trained on all
features and the top-ranked features are then obtained from the em-
bedded scores. The second step, inspired by Iterative Input Selection
(IIS), is to use a classifier to evaluate the performance of all the high
ranking features obtained in the previous step. The benefits of this two-
step process are that it helps overcome inconsistencies in the original
feature rankings and improves robustness. Another advantage is that
it helps to nullify the negative effects of feature redundancy in large
datasets.

The final contribution the paper claims to make is a method to pre-
vent the premature stopping of the algorithm. Another idea taken from
IIS used in FeatBoost is that a feature is not removed from the list of
candidate features once it has been selected. This works as a stop-
ping condition because the algorithm terminates if the same feature is
selected twice.
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Fig. 2: Example of ReliefF algorithm selecting k = 2 nearest hits and
misses.

4 METHODOLOGY

In order to comprehend the results, there needs to be an understanding
of the feature selection methods that are used. So, in this section, the
used feature selection algorithms are described.

4.1 ReliefF
The ReliefF algorithm is a filter method, which computes a score for
each feature, allowing for the features to be ranked [6]. ReliefF is an
extension of the Relief feature selection algorithm, which computes a
feature score for all features and ranks them accordingly.

This original Relief algorithm does this by first initializing the
weights of all attributes to zero, after which a random target instance
Ri is selected. For this target instance Ri, both the nearest ’hit’ and
nearest ’miss’ are found. The nearest hit indicates the sample that is
closest to the target instance while having the same class. The nearest
miss indicates the sample closest to the target instance while having a
different class.

Once the nearest hit and miss are found, the weight vector is up-
dated. If the miss is closer to the target instance than the hit, the weight
vector is decreased. The opposite happens when the hit is closer to the
target instance than the miss. Relief does this by using the Euclidean
(L2) norm distance. Once this algorithm has iterated m times, the
weight vector is divided by m, turning it into a relevance vector. If the
value of a feature of the relevance vector is larger than a threshold τ ,
the feature is selected.

As opposed to only finding the nearest hit and miss in the Relief
algorithm, ReliefF finds the k-nearest hits and misses. An example of
this is shown in Figure 2. ReliefF then updates the weights of all the at-
tributes as it averages the contributions of the k-nearest hits and misses.
This way, the algorithm is more robust to noise. Furthermore, ReliefF
uses the Manhattan (L1) norm distance instead of the Euclidean (L2)
norm used by the Relief algorithm as experiments have shown there
is no practical difference based on the choice of norm [9]. ReliefF is
also compatible with multi-class problems and can handle incomplete
datasets quite well, as it also uses the prior probability P(C) of class C
to calculate the weight vector.

4.2 Boruta
The Boruta algorithm is a wrapper around the random forest algorithm,
which is an ensemble method that builds multiple decision trees on
different samples [7]. The output of the random forest is thus the class
that occurs most often in those decision trees. Boruta uses the Z-score
of the random forest algorithm.

Boruta uses shadow attributes, which shuffle the values of the orig-
inal features around randomly, to measure whether certain features are
relevant. In essence, Boruta adds extra randomness to the dataset and
then uses a majority vote to reduce the possible impact random fluctu-
ations can have on computing relevant features.

Once the shadow attributes are added to the dataset, a random for-
est is fitted on it. When this is done, the Z-scores are gathered, which
are calculated by dividing the average loss by the standard deviation.
The maximum Z-score among shadow attributes (MZSA) is found and

Fig. 3: Example of Z-scores of features calculated by Boruta on
Boston housing dataset.

used as a threshold. If the Z-score of a non-shadow feature is higher
than this threshold, it is deemed important. If it is not, it is deemed
unimportant, as it means that the feature is not able to perform better
than the best-randomized feature. This labelling is done for all fea-
tures, and when it is done, the shadow attributes are removed. A note
should be made that one run of Boruta is not enough to ensure reliable
results, as noise may influence the results, so more iterations are done.
Finally, we end up with only the features that are deemed important by
Boruta. An example is shown in Figure 3, where LSTAT, the percent-
age of lower status of the population, and RM, the average number of
rooms per dwelling, are shown to have the highest Z-score. The green
features are the important features, whereas the red ones are removed,
as they perform worse than the blue shadow features.

4.3 XGBoost
XGBoost belongs to the class of gradient boosting tree algorithms [3].
Since its inception, it quickly became the go-to method for solving
machine learning problems due to its efficiency and predictive power.

In gradient boosting tree algorithms, ensembles are constructed in
an iterative training process. Each iteration, one tree is added to the
ensemble. Each new tree is fit to correct the misclassifications made
by the prior models. The loss function is calculated using gradient
descent, and the tree that minimizes the loss function is then added to
the ensemble.

For XGBoost, each tree in the ensemble is a regression tree with
continuous scores on each leaf. For each example, the decision rules in
the trees are used to classify, which results in the leaves having scores.
To calculate the final prediction, the scores in the corresponding leaves
are summed. XGBoost uses the following cost function:

Cost = ∑
i

l(yi, ŷi)+∑
k

Ω( fk), (2)

where Ω( f ) is defined as:

Ω( f ) = γT +
1
2

λ ||w||2, (3)

where T is the number of leaves on each tree, and γ is the regulariza-
tion parameter. Furthermore, each fk corresponds to an independent
tree structure q and leaf weights w.

The first term is a loss function that measures the distance between
the predicted and correct value. The second term is a regularization
term that punishes the complexity of the model. This term helps to
avoid problems with overfitting.

The model is trained in an additive manner. For each iteration, the ft
that most improves the model according to the loss function previously
defined is added to minimize the following objective:
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Cost = ∑
i

l(yi, ŷi
(t−1)+ ft(xi))+∑

k
Ω( ft), (4)

where ŷi
(t−1) is the prediction of the i-th instance at the t-th itera-

tion.
The tree which best minimizes the objective is found using gradient

descent.
The best split needs to be found at iteration. XGBoost can use either

an exact greedy algorithm that looks at every possible split on every
possible feature or an approximate algorithm that is much quicker but
does not explore the whole search space.

4.4 FeatBoost
FeatBoost expands on boosting algorithms [1]. It uses tree ensemble
models and ranks candidate features based on the embedded feature
relevance scores of these tree models.

FeatBoost can use any tree-based classifier, but in the paper that in-
troduced the algorithm, the tree-based classifier is XGBoost. The ini-
tial weights are set to 1

n . This tree-based classifier, H1 is then trained
on all the examples in the training set, which produces an initial rank-
ing of all the features.

The top m features are evaluated and compared as single-input tree-
based classifiers, H2. The best performing feature is then added to the
subset of selected features. For any iteration after this initial one, H2
is used to evaluate each of the m features.

Lastly, H1 is trained on all the selected features. Then the sample
weights for misclassified samples are updated inversely proportional
to their predicted probability.

The training iterations continue until either the increase in accuracy
between two iterations is below the user-defined threshold or until the
same feature is picked twice. In this case, the weights are set to their
initial values, and the iteration is repeated. If this leads to an improve-
ment, the iterations continue, and if it does not, the algorithm stops.

5 EXPERIMENTAL SETTINGS AND EVALUATION

In this section, the datasets used are described, after which the valida-
tion process is detailed. Finally, the settings used for the experiments
conducted by Alsahaf et al. are described [1].

5.1 Datasets
For the experiments, 8 real datasets are used, as well as a synthetic one
called Madelon [5]. The datasets’ details and dimensions are described
in Table 1.

Table 1: Datasets used in comparison. Obtained from ASU feature
selection repository [1].

Name #Features #Samples #Classes Domain

Madelon 500 2600 2 Synthetic
Isolet 617 2560 2 Speech

Recognition
PCMAC 3289 1943 2 Text
Relathe 4322 1427 2 Text
Basehock 4862 1993 2 Text
Coil20 1024 1440 20 Face Image
ORL 1024 400 40 Face Image
WarpPIE10P 2420 210 10 Face Image
Pixar10P 10000 100 10 Face Image

5.2 Validation Process
To compare the performances of the feature selection methods, we
take a look at their average computation times and the redundancy
rate (RED) of the subsets of features. This is measured through the
following formula, which was designed and used by both Yamada et
al. and Zhao et al. [13] [15]:

RED(X ) =
1

p(p−1) ∑
fi f j∈X ,i> j

|p( fi, f j)|, (5)

where p( fi, f j) is the Pearson correlation coefficient between fea-
tures fi and f j. A smaller value of RED(X ) is best, as it means that
the subset of X has low redundancy, suggesting that the subset of
features are correctly selected.

To evaluate the different feature selection algorithms, a table is
made for each method of the average computation time, as well as
the average redundancy rates for up to the top 10 and top 100 features
for each method. The analysis is done on the resulting tables.

5.3 Settings
The settings for the algorithms are as follows:

1. XGBoost: Most of XGBoosts parameters are set to default, ex-
cept for a value of 100 trees, combined with a maximum tree
depth of 20.

2. FeatBoost: FeatBoost is used twice for the comparison: one with
an XGBoost classifier, with the same settings as the algorithm
itself, as well as one with a Nearest Neighbour classifier. The
parameters of this NN classifier are set to: k = 3, m = 50, p′ =
100, and e = 10−18

3. Boruta: Boruta uses XGBoost as the base ranking algorithm
instead of random forest. The parameters of the XGBoost al-
gorithm within Boruta are the same as the XGBoost algorithm
itself, with default values in the remaining parameters.

4. ReliefF: ReliefF has the number of neighbours (hits/misses) set
to 10.

The specifics of the machine on which the experiments are run, are
not mentioned in the paper by Alsahaf et al [1].

6 RESULTS AND DISCUSSION

Table 2 shows the average computation times in minutes for each fea-
ture selection algorithm, tested on all datasets. XGBoost is shown
to perform the quickest for all datasets, which makes sense as it only
needs one fitting. ReliefF is the second-fastest as it can choose features
in linear time, no matter the type of data. It is, followed by FeatBoost
with a NN classifier, which is faster than FeatBoost with an XGBoost
classifier. This result is also expected, as a NN classifier is a less com-
plex, quicker algorithm than XGBoost. Finally, we see that FeatBoost
with an XGBoost classifier is only slightly faster than Boruta on some
datasets. Boruta is relatively slow, as computing the importance of
all features can take a long time. This depends on the base ranking
algorithm, in this case XGBoost, which is a more complex algorithm
than NN for example. Choosing random forest as the base ranking
algorithm could speed up the process as it builds the trees in parallel.

Table 3 shows the mean and standard deviation of the redundancy
rate of up to the top 10 selected features. The FeatBoost algorithm
performs the best overall, either with XGBoost or NN as the classifier.
Boruta manages to achieve the best performance on one dataset only:
WarpPIE10P.

Table 4 shows the redundancy rate of up to the top 100 selected fea-
tures. FeatBoost with NN as wrapped classifier performs the best but
is closely followed by XGBoost. Boruta and FeatBoost with XGBoost
as classifier only achieve the best performance in one dataset each.

It is interesting to note that FeatBoost performs equally as well with
NN as classifier as it does with XGBoost as classifier. Because Feat-
Boost with NN is significantly faster than FeatBoost with XGBoost, it
might be advisable to use FeatBoost with NN if you were to choose
between the two. Choosing a somewhat simpler classifier does not
impact the performance negatively.

Another thing to note is that while XGBoost does not perform the
best when it comes to the mean redundancy rate of up to the top 10
selected features, it does perform quite well when more features are
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Table 2: Mean and standard deviation of computation time (in minutes) of each feature selection algorithm [1].

FeatBoost (H2 = XGB) FeatBoost (H2 = NN) XGBoost ReliefF Boruta

Madelon (p = 500, n = 2600) 58.71 (11.89) 3.56 (0.36) 0.25 (0.01) 1.02 (0.02) 20.81 (3.01)
Isolet (p = 617, n = 1560) 168.45 (31.62) 52.53 (21.78) 1.04 (0.02) 0.72 (0.01) 154.91 (3.23)
PCMAC (p = 3289, n = 1943) 186.07 (57.88) 45.07 (12.04) 1.11 (0.03) 2.81 (0.08) 105.67 (4.79)
Relathe (p = 3289, n = 1943) 163.38 (32.6) 60.92 (21.09) 1.08 (0.01) 2.77 (0.03) 91.73 (3.06)
Basehock (p = 4862, n = 1993) 217.52 (40.95) 73.33 (24.3) 1.54 (0.07) 4.34 (0.1) 131.14 (4.76)
Coil20 (p = 1024, n = 1440) 333.85 (60.68) 36.67 (9.27) 1.18 (0.04) 2.19 (0.06) 241.23 (17.47)
ORL (p = 1024, n = 400) 168.38 (48.91) 18.18 (4.65) 0.56 (0.03) 0.57 (0.03) 102.35 (12.82)
WarpPIE10P (p = 2420, n = 210) 22.91 (4.88) 5.27 (1.45) 0.25 (0) 3.28 (0.05) 24.12 (1.06)
Pixraw10P (p = 10000, n = 100) 6.91 (1.51) 3.4 (0.49) 0.37 (0.01) 5.87 (0.08) 41.15 (0.7)

involved. It does, however, perform worse when the number of fea-
tures is significantly greater than the number of samples, for example
in the ORL, WarpPIE10P and Pixraw10P datasets. This is because
there is simply less to learn from for every feature for XGBoost.

All in all, FeatBoost and XGBoost are capable of reducing redun-
dancy quite effectively. Furthermore, XGBoost is also quite efficient
when it comes to average computation time.

7 CONCLUSION

The importance of feature selection and ranking cannot be understated
with the increasing sizes of datasets nowadays. That is why, in this
paper, we examined different methods of feature selection and rank-
ing algorithms, selected four different feature selection algorithms in
FeatBoost, XGBoost, ReliefF and Boruta, and compared their perfor-
mances based on their computation times and redundancy rates.

By comparing these algorithms, we found that XGBoost had the
fastest average computation times over all the datasets. Moreover,
FeatBoost performed the best when it came to reducing redundancy
in the features, either with NN as classifier of with XGBoost as classi-
fier. However, FeatBoost with NN as classifier performed just as good
as FeatBoost with XGBoost as classifier, while also being quicker. Re-
liefF showed to have one of the fastest average computation times, but
was not the best in reducing the redundancy in any of the datasets.
Boruta was one of the slowest feature selection algorithms, and only
managed to impress in reducing the redundancy in one dataset.

8 FUTURE WORKS

In future research, a few things could be done differently when mak-
ing a review of feature selection and ranking methods. First of all,
in this review, a few different feature selection methods were picked
and compared. Although the methods differ significantly from one
another, more methods exist and might be better than the methods
compared in this paper. Secondly, FeatBoost used XGBoost and Near-
est Neighbours as a classifier but can be tried out and compared once
again with other algorithms as the classifier. This might give different
results. Thirdly, the parameters used for the feature selection methods
used in this paper can also be changed and cause differences in the re-
sults. Finally, more datasets with more variety, such as more features,
more classes, or even more samples, can be used and tried out.

ACKNOWLEDGEMENTS

The authors wish to thank our expert reviewer Dr. G. Azzopardi for
providing us with the source material, as well as giving us valuable
feedback. The authors also wish to thank Arjan Dekker and Anthonin
Thioux for reviewing our paper and providing us with valuable feed-
back.

REFERENCES

[1] A. Alsahaf, N. Petkov, V. Shenoy, and G. Azzopardi. A framework for
feature selection through boosting. Expert Systems with Applications,
187, Jan. 2022.

[2] R. Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[3] T. Chen and C. Guestrin. Xgboost. Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, Aug 2016.

[4] I. Guyon and A. Elisseeff. An introduction to variable and feature selec-
tion. J. Mach. Learn. Res., 3(null):1157–1182, mar 2003.

[5] I. Guyon, J. Li, T. Mader, P. Pletscher, G. Schneider, and M. Uhr. Feature
selection with the clop package. 01 2006.

[6] K. Kira and L. A. Rendell. A practical approach to feature selection.
In D. Sleeman and P. Edwards, editors, Machine Learning Proceedings
1992, pages 249–256. Morgan Kaufmann, San Francisco (CA), 1992.

[7] M. B. Kursa and W. R. Rudnicki. Feature selection with the boruta pack-
age. Journal of Statistical Software, 36:1–13, 2010.

[8] A. Y. Ng. Feature selection, l1 vs. l2 regularization and rotational invari-
ance. 2004.

[9] R. J. Urbanowicz, M. Meeker, W. L. Cava, R. S. Olson, and J. H.
Moore. Relief-based feature selection: Introduction and review. Jour-
nal of Biomedical Informatics, 85(1):189–203, 2018.

[10] M. M. Usman, O. Owolabi, and A. Ajibola. Feature selection: It impor-
tance in performance prediction. 2020.

[11] A. von See. Amount of data created, consumed, stored 2010-2025, Jun
2021.

[12] B. Xue, M. Zhang, and W. Browne. A comprehensive comparison on
evolutionary feature selection approaches to classification. International
Journal of Computational Intelligence and Applications, 14(02), 2015.

[13] M. Yamada, W. Jitkrittum, L. Sigal, E. P. Xing, and M. Sugiyama. High-
dimensional feature selection by feature-wise kernelized lasso. Neural
Computation, 26(1):185–207, Jan 2014.

[14] H. Zare, G. Haffari, A. Gupta, and R. Brinkman. Scoring relevancy of
features based on combinatorial analysis of lasso with application to lym-
phoma diagnosis. BMC Genomics, 14, 01 2013.

[15] Z. Zhao, L. Wang, and H. Liu. Efficient spectral feature selection with
minimum redundancy. In AAAI, 2010.

SC@RUG 2022 proceedings

19



Table 3: Mean and standard deviation of redundancy rate of up to the top 10 selected features of each algorithm [1].

FeatBoost (H2 = XGB) FeatBoost (H2 = NN) XGBoost ReliefF Boruta

Madelon (p = 500, n = 2600) 0.125 (0.023) 0.144 (0.029) 0.139 (0.0022) 0.172 (0.005) 0.145 (0.028)
Isolet (p = 617, n = 1560) 0.074 (0.009) 0.058 (0.012) 0.067 (0.007) 0.59 (0.005) 0.066 (0.003)
PCMAC (p = 3289, n = 1943) 0.016 (0.008) 0.007 (0.004) 0.021 (0.006) 0.17 (0.003) 0.021 (0.006)
Relathe (p = 3289, n = 1943) 0.017 (0.006) 0.018 (0.005) 0.019 (0.004) 0.024 (0.002) 0.017 (0.005)
Basehock (p = 4862, n = 1993) 0.008 (0.002) 0.006 (0.003) 0.007 (0.002) 0.008 (0.002) 0.007 (0.001)
Coil20 (p = 1024, n = 1440) 0.118 (0.021) 0.139 (0.031) 0.122 (0.014) 0.176 (0.018) 0.127 (0.021)
ORL (p = 1024, n = 400) 0.162 (0.022) 0.14 (0.022) 0.148 (0.009) 0.166 (0.008) 0.142 (0.006)
WarpPIE10P (p = 2420, n = 210) 0.32 (0.029) 0.287 (0.019) 0.281 (0.007) 0.286 (0.006) 0.274 (0.016)
Pixraw10P (p = 10000, n = 100) 0.431 (0.033) 0.444 (0.03) 0.466 (0.016) 0.474 (0.004) 0.47 (0.001)

Table 4: Mean and standard deviation of redundancy rate of up to the top 100 selected features of each algorithm [1].

FeatBoost (H2 = XGB) FeatBoost (H2 = NN) XGBoost ReliefF Boruta

Madelon (p = 500, n = 2600) 0.12 (0.027) 0.144 (0.029) 0.013 (0) 0.014 (0) 0.137 (0.024)
Isolet (p = 617, n = 1560) 0.076 (0.005) 0.058 (0.012) 0.104 (0.003) 0.093 (0) 0.066 (0.005)
PCMAC (p = 3289, n = 1943) 0.015 (0.008) 0.007 (0.004) 0.012 (0.002) 0.011 (0.001) 0.02 (0.005)
Relathe (p = 3289, n = 1943) 0.016 (0.005) 0.018 (0.005) 0.013 (0.001) 0.014 (0.001) 0.017 (0.005)
Basehock (p = 4862, n = 1993) 0.008 (0.002) 0.006 (0.003) 0.011 (0.001) 0.012 (0.001) 0.008 (0.002)
Coil20 (p = 1024, n = 1440) 0.118 (0.021) 0.139 (0.031) 0.113 (0.004) 0.122 (0.004) 0.124 (0.017)
ORL (p = 1024, n = 400) 0.16 (0.022) 0.14 (0.022) 0.154 (0.006) 0.158 (0.005) 0.142 (0.009)
WarpPIE10P (p = 2420, n = 210) 0.32 (0.026) 0.287 (0.019) 0.31 (0.008) 0.319 (0.004) 0.275 (0.018)
Pixraw10P (p = 10000, n = 100) 0.433 (0.03) 0.444 (0.03) 0.44 (0.011) 0.44 (0.006) 0.471 (0.001)
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Comparing Parallel Algorithms for Topological Watershed

Abel Nissen (s3724786), Christopher Worthington (s3715086)

Abstract— The watershed transform is a common technique used to segment images based on grey values. The topological
watershed is a variant which utilizes the grey level contrast of the original image. In this paper, we look at two implementations of
parallel algorithms available today for the topological watershed. First, we explain the topological watershed and discuss related
work in the field of the regular watershed algorithm. Second, we consider general steps taken towards parallelisation. Finally, we
quantitatively and qualitatively compare the two implementations. This comparison lead us to conclude that the two implementations
at their respective ideal speed-up perform remarkably similar, with the older implementation coming out on top because it allows for
scaling when adding more threads.

Index Terms— Watershed transform, topological watershed, parallelisation, image segmentation.

1 INTRODUCTION

1.1 Watershed Algorithms
The watershed transform, proposed originally by Digabel and Lantue-
joul [1], is a popular tool used to segment grey-scale images into
regions with similar grey values. An extension of this algorithm is the
topological watershed, which additionally preserves more information
about the contrast of the original image [2], for example, some of the
grey-scale information from the original image is preserved, which
may be useful in reconnecting corrupted contours.

Watershed algorithms use the concept of watershed basins where
land is split based on areas in which water will all flow to the same
point, then the points where these catchment basins meet make the
watershed lines. See Figure 1 for a visualisation.

Fig. 1. Visualisation of the watershed principle, showing minima, basins
and watershed lines [3]

This is represented in the watershed transform by a binary image
with zeros being the basins and ones being the watershed lines. This
can be sequentially calculated using a queue and iterating over grey
levels to continually label the basins, in a way that is like filling the
basins with water. Then at any point that two basins meet, a watershed
line can be placed.

A simple visual example of the application of the watershed algo-
rithm can be seen in Figure 2. Here, all of the different coins in the dig-
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ital image are uniquely identified and separated in the output. While
only being a simple example, this conveys the main idea of the water-
shed algorithm, in partitioning a digital image into multiple segments.

Fig. 2. Visual application of the watershed algorithm on a digital image
of coins [4]

In the topological watershed, the original grey levels of each pixel
in the digital image are used for the resulting output. Basins are
labelled by the grey level of their lowest point (or, pixel), rather than
simply zero. Furthermore, each point on the watershed lines have
the value of the lowest path between the two minima it separates,
preserving a contrast between the basins.

1.2 Example Transformation
In order to properly illustrate the functions of both the regular water-
shed transform, and the topological watershed transform, we will give
an example on a simple grey-scale image. See Figure 3 for the grey
image as it is before any transformations have been applied.

Fig. 3. Original grey-scale pixel values of a digital image [5]

The watershed transform, as described before, is a binary image
that we can see in Figure 4. Here the image has been segmented into
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7 basins, varying in size. It is also clear that the watershed lines often
appear on the higher grey levels in the image, but can appear on lower
grey levels when there are minima near to each other.

Fig. 4. Watershed transform of Figure 3 [5]

Finally, the topological watershed of the image is not just binary and
instead keeps more grey level information, as can be seen in Figure 5.
It can be observed that the basins are not only zero, with three of the
basins having the value one and one having the value two. Then the
values on the watershed lines give some information on the contrast
between the basins.

Fig. 5. Topological watershed of Figure 3 [5]

1.3 Parallelisation
Due to the constantly increasing image sizes, multiple parallel
algorithms have been designed for different watershed transform
implementations [5]. However, in stark contrast, very few parallel
algorithms have been designed for the topological watershed. Of the
few implementations that have been made, we will be comparing the
designs introduced in two papers. One paper from 2011 [5]. And the
other from 2017 [6]. These papers describe parallel algorithms for the
topological watershed by parallelising certain stages of the sequential
algorithm. We are interested to see how the two algorithms compare.

Thus, the aim of this paper is to provide a review analysis of
these techniques, to find whether both implementations are actually
different, and if one is more effective than the other overall. We will
discuss and judge the two algorithms based on their complexity, cost
of computing resources, and efficiency. To do this we will break down
each algorithm into its individual components, to be able to compare
them side by side in separate parts. This will provide a guideline
between the two implementations, which in the field of image
segmentation could assist in choosing the most suitable approach for
the needs of a professional, as they can be context dependent.

This paper is structured as follows: Section 2 addresses work that
is related to parallelisation of watershed and other image processing
algorithms. Section 3 describes the preliminary information required
for parallelisation of sequential algorithms. Then, Section 4 provides
an overview of two state-of-the-art techniques. Section 5 presents a
detailed comparison and discussion of the two approaches, where we

will be looking at the comparative speed-up. Finally, Section 6 offers
the conclusions of our investigation, and Section 7 suggests possible
extensions for the research conducted in this paper.

2 RELATED WORK

This paper focuses on the parallelisation of the topological watershed,
however, it is useful to discuss some related parallelisation strategies.
The nearest related algorithm here is simply the standard watershed
transform. Several parallelisation strategies for this algorithm are out-
lined in [7]. The paper discusses both distributed and shared memory
parallel implementations of the watershed transform. It was found that
the immersion strategy, as briefly described in Section , for the water-
shed transform, an implementation of which can be found in [8], is not
easy to parallelise due to its use of a FIFO queue. Alternatively, us-
ing structures containing topological distances and modified UNION-
FIND algorithms [9] allowed for multiple parallel implementations.
The paper finds that, in the end, due to a global operator always being
required in any watershed implementation, a moderate speed-up is al-
ways to be expected. This is especially apparent with spiral structures
such as in Figure 6, where many basins must be joined together when
compiling the separate watersheds that have been produced across a
parallel system. This is something we can expect to persist for the
topological watersheds due to it also needing a global operator and
having the same joining of basins .

Fig. 6. Grey-scale image with a spiralling plateau [5]

In addition, [10] gives a good general solution for this issue of non-
separable and global morphological attribute filters. The paper uses
Min and Max-Tree algorithms to achieve efficient parallelism for many
different attribute filters. This is pivotal to the parallelisation of the
topological watershed implementation given in [5], which makes use
of a Min-Tree algorithm.

3 PRELIMINARIES

Going back to the early years of personal computers, processors had
only a singular core. At the time, development was quick, with
Moore’s law holding up, or over achieving it for many years [11]. See
Figure 7 from Intel that illustrates this development. This meant that
for a long time, to make a program run faster, research went into de-
signing a chip with faster single core performance.

Comparing Parallel Algorithms for Topological Watershed – Abel Nissen and Christopher Worthington
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Fig. 7. Moore’s law being upheld, showing the number of transistors per
package, per year [12]

Parallelism did not exist on ordinary computers, the first require-
ment for any parallel implementation is access to a computer with
multiple processor cores, i.e. a multiprocessing system, which were
unavailable to the general public. However, in recent years, we have
seen a major shift from high clock-speed single core processors, to
somewhat lower, but still ever increasing, clock-speed multi-core pro-
cessors. See Figure 8 and Figure 9.

Fig. 8. Average stock clock speed of processors throughout the years
[13]

Fig. 9. Available number of CPU cores on processors throughout the
years [13]

With this shift towards multiple cores per processor came a massive
increase in the available cache in a processor, which ensures more
optimal access speeds across the multiple cores. This change made
parallelisation on smaller systems feasible. In [6, 14] gives 5 clear
steps for the process of parallelising a sequential algorithm. These 5
steps also aim for the parallel algorithm running on multiple cores to
have better performance than that of the sequential algorithm running
on a single core. The steps are as follows:

1. Finding concurrency design space. The first step towards par-
allelising an algorithm is to understand different aspects of the
sequential implementation. Think of discovering the concur-
rency of tasks, or groups of tasks, and the allocation of data (is it
shared, or task-local).

2. Algorithm design space. With the extracted concurrency of the
sequential algorithm, algorithm designs and design parameters
need to be set. In many cases, the algorithms can be decom-
posed to a finite set of tasks, which can then be grouped accord-
ing to several criteria, often applying the well-known patterns of
divide-and-conquer.

3. Architecture design space. Before moving to coding, it is im-
portant to find the applicable design architecture for the algo-
rithm. This design represents a standard classification of paral-
lel computer systems. There are four different classifications:
SISD (Single Instruction, Single Data), SIMD (Single Instruc-
tion, Multiple Data), MISD (Multiple Instruction, Single Data)
and MIMD (Multiple Instruction, Multiple Data). Depending on
the classification of the algorithm, different techniques provides
the most effective parallelisation.

4. Parallel implementation mechanisms. When writing the par-
allel version of the algorithm, several tools can be used to aid
the programmer. These tools can manage threads or processes
of the algorithm, and guarantee the internal synchronization and
communication.

5. Performance metrics of parallel programs. Once the parallel
version of the algorithm is complete, several metrics need to be
considered to measure its effectiveness, or speed-up. Therefore
a set of measurements that quantifies the parallel code such as
efficiency, scalability and portability need to be considered.

4 TOPOLOGICAL WATERSHED PARALLELISATION TECH-
NIQUES

As previously introduced, the topological watershed was introduced
as a version of the regular watershed algorithm. It includes grey level
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information in the end result in such a way that the significance of
each watershed line is preserved. When the grey level of a pixel
is related to a height value on a map, significance is defined as
the difference in height between the watershed pixel and the basin
pixel. Both papers [5, 6] introduce a parallel implementation of the
topological watershed, albeit using different techniques. Specifically,
[5] makes use of a Min-tree:

A Min-tree is equivalent to the Max-tree of an inverted image.
Using the parallel algorithm described in [10], the authors create a
Min-tree of a grey-scale image. This Min-tree easily allows one to
check if two pixels are separated. Specifically, the authors mention
that the separation is related to the altitude of the Lowest Common
Ancestor. Using the Min-tree, after prepocessing, this Lowest
Common Ancestor can be found in constant time. The key element of
the algorithm is represented in Figure 10.

Fig. 10. Topological watershed abstraction: (a) initial height map of pix-
els; (b) identified watershed lines and basins; (c) topological watershed
image

Using the Min-tree, the algorithm is able to identify the pixel of the
watershed line between two basin pixels (Fig. 10.b). It does this using
a Lowest Common Ancestor (LCA) algorithm that finds the shortest
path between two basin minima. All the pixels in between are marked
as W-Destructible and consequently have their height (or grey value)
lowered to the height of the corresponding basin (Fig. 10.c). Because
the function that lowers the W-Destructible pixels is a local function,
the authors are able to parallelise the topological watershed algorithm
for n threads, simply by dividing the image into n tiles and assigning
one tile to each thread.

On the other hand, in [6] the parallel implementation makes use of
a Split, Distribute, and Merge (SD&M) strategy. The splitting is dif-
ferent to the usual by pixel or block division, the source selection is
instead completely random. The notion of streams, from [15], is used
to calculate the watershed. First, the flow between bottoms and tops
are identified, and complementary flows are grouped in so called flow
families [6]. These can be arranged in different ways to aid with the
partitioning of their vertex representations. By picking the unique min-
imum of a flow family, the set of vertices not related to this minimum
can be considered as a flow-cut, which is equivalent to a watershed-cut,
or simply watershed lines. The computation of streams across sources
is fully parallel, then the merging step allows the computation of the
full watershed with two by two streams fusion. The method is appli-
cable in general to watershed algorithms, however, the paper gives a
specific analysis of the method implemented for the parallel topolog-
ical watershed. A general illustration of the flow-cut, or watershed
calculation, is given in Figure 11.

Fig. 11. Flow-cut abstraction: (a) partition of the input image into flows;
(b) parallel stream computation of the flow-cut [6]

5 COMPARISON AND DISCUSSION

Now that the differences in implementation between the two parallel
topological watershed algorithms are clear, it is important to see how
these compare using real world tests. While the authors of the two
papers did not use the same testing techniques, their results contain
enough data, and similarities in that data, to be able to equivocally
compare them.

5.1 Testing Framework
Let us start with the testing framework used in both papers. Despite
the difference in publication date of six years between the two papers,
[5] from 2011 uses a more powerful testing setup: a 4-socket, 6-core
per sockets, AMD Opteron based machine with 128GB of memory,
using 1 to 24 threads in various combinations. Figure 12 is retrieved
from the paper and shows the the achieved speed-up per each processor
thread used.

Fig. 12. Behaviour of the parallel algorithm in total speed-ups per
threads in the performed tests, relative to the wall-clock time for a single
thread with the same input [5]

But where Figure 12 shows the achieved overall speed-up, addi-
tionally, the paper provides another figure which shows the speed-up
of the algorithm in four stages. This can be seen in Figure 13.

Fig. 13. Speed-ups per utilised threads in the four stages of the parallel
algorithm, where each grey area represents a different stage [5]

Here, each grey area represents a stage of the algorithm. Similar
to Figure 12, the diagonal line shows the ideal speed-up, where
the speed-up is equal to the number of threads. Starting in the left
side of Figure 13, going from top to bottom and doing the same
for the right side, the four stages are: min-tree construction, tree
compression, topological watershed computation, Lowest Common

Comparing Parallel Algorithms for Topological Watershed – Abel Nissen and Christopher Worthington

24



Ancestor pre-processing.

In [6], 2017, the setup consists of four different processors: Intel
P4-660, Intel Dual C. E8400, Intel C2 Quad E5335 and an Intel Xeon
E5405. Respectively, they have 1, 2, 4 and 2 by 4 processor cores. In
this way, the researchers were able to compare their algorithm at thread
intervals at multiples of 2. Figure 14 shows the achieved speed-up per
utilized processor thread in their version of the parallel algorithm.

Fig. 14. Performance improvement per thread utilisation [6]

5.2 Achievements
Henceforth, when referencing the papers [5, 6], for ease of readability
we will be calling them the 2011 and the 2017 implementation,
respectively.

We can see that the optimal speed-up in the 2017 implementation
is achieved at 8 CPUs, using 8 threads. Here, adding more threads
does not increase the speed-up, but rather the addition of more cores
seems to be the contribution to speed-up. In contrast, in the 2011
implementation the speed-up increases with the addition of more
threads, albeit with diminishing returns.

We can see that at the same thread count, in the ideal performance
of the 2017 implementation with 8 threads, the two implementations
perform differently. The 2017 implementation achieves a speed-up
of 6.11, whereas the 2011 implementation achieves a speed-up of
roughly 8, when utilizing the same 8 threads. However, Figure 12
does not show the full picture. When looking at Figure 13, we
can see that the optimal speed-up of the 2011 implementation is
achieved when using 6 threads. The min-tree construction stage of the
algorithm even matches the ideal speed-up up to these 6 threads. At
these 6 threads, the achieved speed-up equates to roughly 6.

Thus, when comparing the two implementations at their respective
ideal performances, they perform nearly identical. Given the fact that
the 2011 implementation continues to scale when adding more threads,
this would give it a slight edge over the 2017 implementation when
looking at raw speed-up performance. With the algorithm allowing
for scaling above 24 threads. However, a very important detail would
then be forgotten. In the 2017 implementation, the researchers used
per CPU only 2GB of memory, with a maximum of 8GB for the 2 by
4 model. In terms of resource availability, this is exceeded enormously
in the 2011 implementation, which has 16 times as much memory to
its disposal. Communication with one of the authors of [5] specified
however, that this total 128GB of memory was simply available for
the system. The algorithm does not, in fact, require this entire mem-
ory. No more than 20 to 30 times the image size in memory would be
required.

6 CONCLUSION

After an analysis of the parallelisation strategies and resulting
performances of the algorithms in [5, 6] we have found that the first
paper achieves similar, if not better results when compared with the
newer paper. The 2017 implementation seems to achieve its best

speed up at one thread per CPU, achieving an optimal speed-up at 8
threads, whereas the 2011 implementation still gains speed-up at 24
threads, with the promise of getting even faster computation the more
resources are allocated to it.

Therefore, we can conclude that the 2017 algorithm is better for
experimenting on personal computers with restricted resources. And
that the 2011 implementation should be used in situations where
hardware resources are not a constraint, and where time or speed are
of the utmost importance. An example of such a situation could be
where a natural disaster has taken place, and image segmentation of a
huge area is needed to derive the best approach for rescue teams and
medical personnel.

7 FUTURE WORK

Although the aim of this paper was to provide a complete overview
of the two implementations of [5, 6], there might be room for
improvement. Specifically in the parallelisation of the topological
watershed implementation. The paper [7] describes multiple different
implementations of the (regular) watershed algorithm, including
parallel versions. With the watershed and topological watershed being
so similar in their general idea, and even in their implementations,
it stands to reason that parallel implementations of the watershed
algorithm might give valuable insight in possible new or improved
parallelisation implementations of the topological watershed. There-
fore, a thorough dive into [7], analysing and quantifying the different
approaches, advantages or potential improvements might be very
valuable to the continuation of research into the parallelisation of the
topological watershed.
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Preserving the privacy of data in autonomous cars IoT using Intel
SGX

Ties Pol, Andrei Badescu

Abstract— The IoT environment is spreading to new fields and it has become more and more dependent on cloud computing
services for computation. This created many new functionalities and applications but also has created potential security risks,
especially when it comes to private data. For that reason, there is a global need to preserve data privacy in an IoT environment and
to find new and innovative ways to keep sensitive data safe. Several methods have discussed privacy preservation, but they do not
solve this problem. However, Intel Software Guard Extensions (SGX) technology is a promising candidate in this space that can
ensure confidentiality in IoT environments.

This paper discusses some various methods that are used to keep the data of IoT systems private. There are many different
methods to ensure data privacy, different types of encryption( e.g., anonymization, noise injection), but this paper focuses
on Intel SGX. This popular technology can also be used in combination with blockchain, edge computing, and many other
technologies depending on the use case. An overview and some background information about all relevant privacy ensuring meth-
ods are provided with their advantages and disadvantages. These will be compared for their security impact, scalability, and feasibility.

After the literature review about Intel SGX and IoT, we provide a system model that introduces security problems in autonomous
cars. To solve these problems we introduce a system design that applies an SGX framework to autonomous cars, called Internet of
Autonomous Car Things (IoACT). This framework uses Intel SGX in combination with edge computing and blockchain. The system
design is based on a framework that is introduced in this paper [7], where it is applied to the Internet of Medical Things (IoMT).
Finally, the design is evaluated by using experiments of several related papers that have done a simulation on SGX. This evaluation
has shown that using SGX in IoACT gives an acceptable extra computing time. We could unfortunately not give an explicit answer if
the system design holds or not. However, we strongly believe that this framework can be applied to autonomous cars.

Index Terms—Intel software guard extensions (SGX), Data privacy, IoT, Blockchain, Edge computing, Internet of Autonomous Cars
(IoACT).

1 INTRODUCTION

In recent years, the number of Internet of Things (IoT) devices has had
a strong increase in many different fields. IoT are physical objects that
are equipped with for example sensors, processing ability, software,
and other technologies. These objects can be placed in groups of de-
vices and are all connected to the internet, this way they can exchange
and communicate with other devices [14]. A thing can be a person
with a heart monitor implant, an animal with a chip transponder, a
fridge that has built-in sensors to alert the owner that it needs servic-
ing or any other object that can be assigned an Internet Protocol (IP)
address and can transfer data over a network. Advances in memory
and processing resources and the urge to reduce data transmission la-
tency have led to a rapid rise in the deployment of various Deep Neural
Networks (DNNs) on constrained edge devices (e.g., wearable, smart-
phones, and consumer IoT devices) [16].

Many advancements in other fields such as cloud computing, ma-
chine learning, and embedded systems paved the way for IoT devices
to become cheaper and more reliable. The main fields where IoT has
become widespread in recent years are smart home applications, trans-
portation, smart agriculture, medical, and healthcare applications [12].

The significant growth of IoT devices can involve critical security
issues, which can lead to data privacy problems. Therefore, there is a
need to preserve these problems. A solution for these privacy issues
can be a trusted execution environment on the edge of an IoT environ-
ment. This can be realized by using Intel software guard extensions
(SGX) technology. In addition, this technology can be combined with
edge computing and blockchain too.

Intel SGX is a promising technology, developed by Intel, that could
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potentially solve these problems in IoT environments by providing a
unique application isolation technology. While typical security mea-
sures may assist data at rest and in transit, they often fall short of pro-
tecting data while it is actively used in memory. Intel SGX helps pro-
tect data in use via application isolation technology. This creates a
Trusted Execution Environment (TEE) which encapsulates the code
in private regions of memory called enclaves which provides an ex-
ecution space that offers a much higher level of security for trusted
applications running on the device compared to classical methods. By
protecting selected code and data from modification, developers can
partition their application into hardened enclaves or trusted execution
modules to help increase application security. The next section will
go more in dept about Intel SGX and the combination of the before-
mentioned technologies. In addition to that background information
about SGX, we discuss the vulnerabilities and threats of an IoT envi-
ronment and which can be solved by using Intel SGX.

However, besides the rise of IoT devices in the above-mentioned
fields, there is also the upcoming rise of IoT environments on wheels,
called autonomous cars. It can have multiple IoT devices that all come
with its implementation software. That means that these IoT privacy
problems can happen in autonomous cars as well. So, how can we im-
prove the security of autonomous cars, keep sensitive data away from
bad actors and create a safer environment for drivers and pedestrians?

Autonomous cars have been a dream for decades, and engineers
have worked towards achieving them, but only recently with advance-
ments made in hardware, computer vision, and machine learning it’s
starting to become a reality [5]. Still, the average consumer doesn’t
account that most cars use software that might have vulnerabilities.
These cars use processors or communication devices that have flaws
as well in the case of autonomous cars, an attack could have tragic
consequences.

Therefore, there is a growing concern regarding the security of
many devices after security flaws were made public by researchers.
They made clear that medical devices such as insulin pumps and pace-
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makers have their vulnerabilities too. These devices are using the same
chips that are used in autonomous vehicles. These advanced devices
have the power to improve our lives, but at the moment some of them
pose serious threats to the life of their owners, which is why there
needs to be much more research conducted into making such devices
as secure as possible.

These critical security problems in autonomous cars will be dis-
cussed moreover in the system model section. Thereafter, we provide
a system design that explains how this problem can be solved by us-
ing a framework [7] that combines Intel SGX with edge computing
and blockchain. Finally, the design will be evaluated based on related
evaluations in other papers to see if the system design holds.

2 BACKGROUND

This section gives a literature review of the different technologies used
in this paper. First, Intel SGX will be explained with the technologies
it can be combined with. Thereafter, it gives an overview of possi-
ble IoT threats and vulnerabilities including which one can be solved
using Intel SGX.

2.1 Intel SGX

Intel Software Guard Extensions (SGX) is an expansion of the instruc-
tion set provided by Intel that aims to provide integrity and confiden-
tiality guarantees to security-sensitive computing performed on a com-
puter where all the privileged software is potentially malicious. Se-
cure remote computation is the issue related to executing software on
a computer that is remotely accessed and owned and maintained by an
untrusted party. Therefore, Intel introduced SGX, the latest invention
of trusted computing designs, to secure the remote computation diffi-
culty by using trusted hardware. Then the trusted hardware generates
a secure container and the computation that has to be executed can be
uploaded to this container remotely [16].

SGX makes a reserve in the memory region, called the Processor
Reserved Memory (PRM) [16]. In this region, SGX creates an en-
crypted trusted execution area, what is called an enclave in memory,
which offers confidentiality and integrity guarantees to programs run-
ning inside them [21]. This enclave is created in a hardware-protected
memory, where the data in this enclave is generated by a memory en-
cryption engine (MEE). The CPU protects the PRM from all possible
non-enclave access points [4]. Moreover, SGX relies on the security
properties the processor’s hardware offers, to be more precise, SGX re-
moves all other components from the Trusted Computing Base (TCB).
For example, the memory hardware, firmware, and operating system
[8]. In particular, SGX ensures that the memory states and processors
belonging to an enclave are only accessible to the software that is run-
ning inside the enclave and cannot be used by any other enclave and
software running in a separate level [21].

Also, Intel SGX provides Intra-attestation, by providing the instruc-
tion that helps another enclave to attest to another enclave within the
same platform. Remote attestation is also possible where SGX pro-
vides a certificate for an enclave to prove to a remote platform that
the content loaded in the enclave and the enclave are running in SGX-
enabled platform. Trusted functions are also a really useful tool for
maintaining security and supporting more complicated solutions.

As shown in figure 1, the enclave is on the right side under the cap-
tion ”Trusted Code”. This SGX visual also makes clear that the priv-
ileged system code cannot access the enclave. Besides, the untrusted
code can only call the function in the enclave. The enclave will return
its outcome but will remain its private data.

Intel SGX can be used in combination with multiple other technolo-
gies to ensure privacy in IoT. In the following sections, we explain
how Intel SGX can be used with such a technology. The two methods
that, in combination with SGX, are discussed below are Blockchain
and Edge Computing. These technologies were chosen based on the
relevant methods that go in combination with SGX to preserve data
privacy for IoT devices. To explain more about the functionalities and
privacy-preserving methods these technologies have, we provide more
details on each of them below.

Fig. 1. Core operating principles of Intel SGX

As seen below, the enclave environment cannot be entered through
classic function calls the only way is through an instruction that per-
forms several protection checks.

2.2 Edge computing
To ensure confidentiality in IoT, SGX can be introduced into edge
computing. This computation on the edge extends the cloud center
and performs the computing process closer to the IoT device. This
approach can reduce load interaction of the network and avoid a large
amount of IoT data from entering the Internet. Therefore, edge com-
puting has attracted a lot of attention in recent years. However, edge
computing brings some security issues. Therefore, we can use SGX in
edge computing to ensure more security protection.

The edge computing layer connects the IoT environment and cloud
services to provide data preprocessing and storage services. In particu-
lar, edge computing integrates SGX-based trusted computing services
to ensure the integrity and confidentiality of IoT data and protect the
privacy of data owners [7].

2.3 Blockchain
Blockchain technology has received a lot of attention in the last years
and the adoption has been growing into a myriad of fields such as
Healthcare, Music, Real Estate, Banking, Education, Energy, and
Insurance. It has the potential to revolutionize and create a lot of
possibilities for a lot of fields. A blockchain is a growing list of
records, called blocks, that are linked together using cryptography
[17]. Blockchains are resistant to modification of their data because
once recorded, the data in any given block cannot be altered retroac-
tively without altering all subsequent blocks. Still, it is not impervious
to malicious attacks such as the selfish miner attack [6] or an eclipse
attack [8]. Therefore, mass adoption is still not as widespread as it
could have been due to the lack of security that could potentially en-
danger really sensitive information that would be present in healthcare
or finance. This is why trusted computing technologies such as SGX
could come into play and provide another layer of security on top of
the 6 layers that comprise the blockchain.

SGX can serve as an extra layer of security and can be implemented
in a few layers of the blockchain. The Application Layer includes the
extended techniques and the industrial applications of the blockchain.
Implementing the technology on this layer could facilitate transactions
of different cryptocurrencies while avoiding possible risks, could make
distributed cloud computing a possibility through smart contracts.

2.4 Vulnerabilities
Whereas SGX offers some good advantages and protection in an IoT
environment by promising an isolated execution environment, pro-
tected from other software running on the same device. Recent pa-
pers show that there are some flaws in the SGX instruction set [21]
[2]. They show that SGX has a significant limitation of protection
against side-channel attacks. Moreover, the paper mentioned that
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recent works have shown that there are arbitrary data leaks due to
transient-execution attacks.

• CacheOut: This attack can retrieve the contents of an enclave.
Such a scenario should not be possible as advertised by Intel.
However, the side-channel attacks are acknowledged by Intel.
They say that the developer is responsible for the side-channel
attacks. Intel released several patches, CPU microcode up-
dates, and even new architectures designed to mitigate SGX side-
channel leakage via transient execution. However, these fixes
were insufficient. For example, the CacheOut attack shows that
to obtain SGX data, you first evict the data from the cache and
then use TSX Asynchronous Abort (TAA) to recover it. They
conclude by warning the SGX-based projects from claiming that
they guarantee security even in the presence of information leak-
age, while there is a clear danger in deploying SGX-based pro-
tocols [21].

• Limited memory: Currently, SGX only supports secure mem-
ory that is smaller than 12MB. Although SGX offers instructions
to allow system software to oversubscribe the secure memory
by evicting and loading enclave pages securely, it requires ad-
ditional operations to protect data privacy, which will result in
significant overhead. Thus, the abuse of the enclave will incur
the poor performance of the SGX-based schemes [2].

• Availability failures: The SGX-based platform is fully controlled
by the platform owner. Thus, it is easy for the platform owner to
terminate enclaves. Alternatively, although the secure channel
can encrypt the inputs of an enclave, the platform owner can in-
tercept the partial inputs of the enclave, which may impact the
security of schemes. For example, the platform owner can trans-
fer the old inputs to the enclave for a favorable consequence,
which is called the replay attack. Thus, an SGX-based scheme
must tolerate such platform failures [2].

• Side-channel attacks: SGX is implemented on the Intel CPU ar-
chitecture, and it shares some computing resources (e.g., page ta-
ble, cache) with normal programs. Therefore, SGX suffers from
side-channel attacks, in which the attacker observes the shared
resources to obtain the control flow and the data access mode of
the enclave program to infer the sensitive information in the en-
clave. Although most of the side-channel attacks are relatively
difficult to be exploited, sufficient profit may drive attackers to
attack the SGX-based platforms [2].

• Single-point attacks: If an SGX-based solution relies on the cred-
ibility of a single SGX entirely, one compromised SGX will
cause the solution to crash. Meanwhile, the SGX-based role
in some schemes can maintain massive benefits, which stimu-
lates the attacker to try to impose full control of the SGX, even
exploiting the physical means. Therefore, a well-designed mul-
tiparty scheme should be able to tolerate the failures of one or
more SGX machines [2].

2.5 Threats
As more big players in the hardware industry are producing smart
home devices the average consumer started to adopt this technology.
Most US households had access to 10 connected devices on average
and with the emergence of the 5G networks that will speed up the pro-
cess, it is becoming extremely difficult to manage an interconnected
system of this scale as one vulnerability in one part could potentially
jeopardize the whole network. One of the main security flaws is the
broad range of connections used in IoT applications, such as Cellular,
Wireless LANs, Wired Ethernet, Near Field Communication (NFC),
Long Range Networks (LoRA) Bluetooth, each with their utility, stan-
dards, protocols, encryptions, etc. That makes it difficult to have a
standardized security protocol. This also allows the possibility of ex-
ploitation of different vulnerabilities that could be available to attack-
ers due to the devices not running the latest firmware. The IoT secu-
rity requires IoT devices, protocols, and infrastructures to must have

mechanisms to ensure confidentiality, availability, and security (CIA)
services. Any IoT application should provide services based on the
following requirements on securing sensitive information.

• A) Authenticity: only the authorized nodes can be involved in
the communication between any two nodes.

• B) Confidentiality: leakage of sensitive information to any unau-
thorized user shall be avoided.

• C) Integrity: while transferring the information to IoT devices,
data integrity ensures the originality of information that it is not
fabricated, rewritten, copied, or replaced by the attacker.

• D) Privacy: the identity of an individual user should be protected
by the secure IoT system to maintain privacy.

• E) Availability: an authorized user can use various services pro-
vided by IoT network protocols that can support the availability
of the services here [1].

The IoT network is structured in a 3-layer architecture, each respon-
sible for the communication with different nodes in the web. There is
the perception layer, responsible for gathering data about the environ-
ment using the sensors. The Network Layer is in charge of delivering
data between hosts in a network and finally, the Application Layers
delivers data from users to the network. All of these layers are making
use of different types of protocols depending on the particular use-
case, each having its vulnerabilities as well.

1. The perception layer is responsible for gathering data about the
surrounding environment and the communication here is mostly
made between sensors in the IoT network. The most frequent
protocols of communication for this layer are NFC, Wi-Fi, RFID,
and ZigBee, each being implemented according to the needs,
such as range, frequency, power consumption, scalability, etc.
[23]

The perception layer is often subject to attacks such as:

• Hardware tempering: an attack that physically damages
the nodes which are compromised and opens access for
the sensitive information

• Fake node injection: a new fake node is inserted and is
designated to modify the original data and would share the
wrong information [18]

2. The network layer is divided into two sublayers: the routing
layer which handles the transfer of packets from source to
destination, and an encapsulation layer that forms the packets.
The protocols used in the network layer are 6LowPAN, 6TiSCH,
RPL, CORPL, and CARP [23].

This layer is mostly attacked using methods such as:

• Man in the middle attacks: where an attacker secretly an-
alyzes the information in between the two parties and tries
to get access to the private information or alter the infor-
mation.

• Traffic analysis attacks: where an attacker would attack
the network based on the analysis and prediction of the
network information

• Sinkhole attacks: in which attacker advertising the fake
routing information which intent to attack the network traf-
fic. It will cause other attacks like drops or alter the routing
information, and selective forwarding.
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3. The application layer is the interface between the IoT device
and the network with which it will communicate. It handles data
formatting and presentation and serves as the bridge between
what the IoT device is doing and the network handoff of the
data it produces [24]. The most commonly used protocols are
AMQP, MQTT, COAP, XMPP, and DDS.

The application layer is mostly subject to attacks such as:

• Phishing attacks: aim to access sensitive information like
credit card numbers and authentication login credentials in
a banking application by masquerading as trusted parties
in the electronic communication.

• Denial-of-service (DoS) attacks: occur when a node floods
the bandwidth or resources with multiple requests for a
particular period. In addition to the above specified IoT
layered protocols, attacks on the IoT layer and challenges
on routing the information in the IoT network have to be
addressed.

2.5.1 Implications

From the information provided in the previous sections, we can say
that Intel SGX has some advantages and disadvantages in an IoT en-
vironment. To start with the advantages. It can be said that the biggest
advantage of SGX is preventing software attacks, even when the ap-
plication, Operating System, and Bios are compromised. Figure ??
shows that privileged system code cannot access the trusted code. That
means that the privacy-sensitive data is protected even when the at-
tacker has full control.

An application that uses SGX can execute its code securely inside
its safe execution environment. What gives developers a great benefit
to control over their application security. However, this brings us to
a disadvantage. Intel added a launch control function to SGX. There-
fore, each computer’s owner must ask for approval from a third party.
So, software developers have to enter a business agreement with Intel
to be able to author software that takes advantage of SGX protections
[20].

3 SYSTEM MODEL

As we now have a understanding about which security issues can hap-
pen in an IoT environment. We will now highlight the security prob-
lems that can occur in autonomous vehicles.

A self-driving car can be seen as a complex IoT environment on
wheels. It can have multiple IoT devices that all come with their cor-
responding software. This means that it can be the case that different
third-party sources of software are running on the main computer of
the car. Most of the time an autonomous vehicle has one main com-
puter to which all features come together and are connected. As men-
tioned by this article [13], connected cars are highly complex systems,
not quite like but not dissimilar to aircraft. The vast majority of the
components found in connected cars are designed and made by com-
panies other than car manufacturers. This represents an integration
challenge since history has shown us that highly integrated IT systems
are prone to failure, which is something that cannot be tolerated in cars
[13]. Therefore, it can be the case that if one software distributor has
a data leakage, the other connected software can also be damaged and
therefore create a security breach. It therefore can happen that data
becomes malicious fast.

The most notable cybersecurity challenges associated with physi-
cal components that could potentially apply to such type of vehicle
include:

• Sensor jamming, blinding, spoofing, or saturation: Attackers
could blind or jam sensors to gain access to autonomous vehi-
cles. This allows malicious actors to feed AV with artificial in-
telligence models with wrong or incomplete data to undermine
model training [11].

• DDoS attacks: hackers could execute distributed denial of ser-
vice attacks blinding the vehicle to the outside world. DDoS at-
tacks would interfere with autonomous driving leading to stalling
or malfunction.

• Manipulation of autonomous vehicle’s communication equip-
ment: attackers could hijack communication channels and ma-
nipulate sensor readings or wrongly interpret road messages and
signs.

• Information disclosure: Autonomous vehicles store large
amounts of sensitive personal and AI data. Attackers could cause
data breaches on AVs to access sensitive information.

Autonomous cars are equipped with numerous devices to pro-
vide entertainment and functionalities never before present in a car.
But these can act as attack vectors, as demonstrated in 2019 at the
PWN2OWN event in Vancouver, where a Tesla Model 3 was easily
hacked through the browser in the ”infotainment” system. To make
matters worse, even old technologies like Bluetooth and cellular radio
can still pose a security risk as demonstrated by [3]. Therefore, we
can confidently state that physical access is a thing of the past when it
comes to hijacking cars and that there is a need for a fresh approach
when it comes to security for future generations of highly digitized
vehicles.

4 SYSTEM DESIGN

As shown in the previous section, preserving the privacy of data in au-
tonomous cars is extremely important. Therefore, our system design
introduces SGX-based edge computing and consortium blockchain
technology on the IoT of self-driving cars. This framework is based
on the work shown in this paper [7], but instead of Internet of Medi-
cal Things(IoMT), we apply it to Internet of Autonomous Car Things
(IoACT).

The framework is divided into four layers as shown in figure 2.
The layers that are included are described below. It gives a brief de-
scription of how the layers are communicating with each other. This
communication is illustrated in the system design figure 2.

• Cloud layer: This layer is responsible for the more extensive pro-
cessing of the IoACT data. This data is already preprocessed by
the edge computing layer.

• Edge computing layer: This layer generates the connection be-
tween the IoACT environment and the cloud services that will be
responsible for the storage and data preprocessing. Again, this
framework combines edge computing with SGX-based trusted
computing services to ensure the privacy of IoACT data.

• IoACT layer: The IoACT environment acts as the data source
in the framework. The data is generated by all the devices that
a self-driving car has to offer. As shown by this article [13],
companies such as Google, Apple, and BMW forge ahead with
driverless cars and apply IoT in transport, it’s easy to get carried
away by the relentless advances in connected devices.

• Blockchain layer: The CA in the blockchain network is respon-
sible for the authentication of IoACT devices, and the smart con-
tract in the blockchain manages the data generated by the IoACT
devices, including metadata and access policies [7]. There is a
CA in the consortium blockchain that will give certificates and
private keys (PK) to the users including the IoACT devices. So,
every IoT device in the car needs a private key and certificate
that represents its identity and therefore has its account in the
blockchain. The public key makes sure the account is unique.

Intel SGX can resolve the security issue of placing code from dif-
ferent software distributors on the same machine. It can give every
part of code its own private and secure enclave. Hence, code parts can
run completely on their own.
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Fig. 2. System design: IoACT environment that includes SGX in combi-
nation with edge computing and blockchain technology [7]

To establish a secure communication channel in an enclave we can
use a key exchange protocol. We assume that the enclave has ob-
tained a Diffie Hellman shared key with remote attestation [7]. Hence,
enclaves can setup secure communication with their IoACT data re-
quester using their shared key. In the key exchange process, the IoACT
data will never leave its enclave. If there is an analysis program, it can
verify its correctness through SGX. This means that the entire process
has met its data security and confidentiality.

This design approach must ensure the privacy of data that is gener-
ated by an IoACT. The following section will give an overview of why
this system design can hold for autonomous cars.

5 EVALUATION

The system design introduced in the previous section will be evaluated
in this section. The evaluation will be done by investigating various
experiments from related papers to see if the system design can hold.
As previously introduced, the IoMT framework [7] can ensure data
privacy. As this framework is not IoT-field specific, we think that it can
also hold for IoACT environments. However, there is a need to check
if the main functionalities of an autonomous car continue working by
applying this framework. Therefore, we looked at some experiments
that measure performance. The experiments are enumerated below.

1. Performance comparison of data computation [7]

This experiment shows the difference in data processing
performance between edge computing variants. One version
uses an SGX-enabled edge node and the other one uses a
conventional edge node. The experiment shows the results in
figure 3. The x-axis shows the increasing datasets to the right.
It can be seen that the data processing time increases when the
dataset increases. As the amount of data becomes larger, the
processing time of an SGX environment takes exponentially
more time. This extra time can be seen in the histogram as
’Extra’.

So, using Intel SGX in combination with the edge layer has some
extra time compared to an ordinary environment. However, it is
in a reasonable and acceptable range. We can imagine that some
IoT devices in an autonomous car need fast computation in the
edge node for safety reasons. If we look at the extra computation
time shown in figure 3, we can see that there are only added some
milliseconds on small datasets. If we assume that the data that

has to be computed is not in large amounts, we can say that it is
acceptable to use it in autonomous cars.

Fig. 3. Performance comparison between convention and SGX-enabled
machine [7]

2. Computational overhead time [9]

This experiment shows a measurement of the computa-
tional overhead time based on a framework that is introduced in
this paper [9]. It is based on 1000 devices and uses a ruleset of
100, 400, 1000, 5000, and 10000.

There is a need to discover how the integration of Intel SGX and
the cryptographic techniques alter the time overhead of the pro-
cess. There are considered three cases: no SGX, SGX without
encryption, and with SGX.

Needless to say, the execution time of the experiment with SGX
takes longer than the operation when we do not include SGX.
Fortunately, the time execution overhead is not that significant.

In comparison with the previous experiment, the same conclu-
sion applies to this experiment. Because there is not that much
extra computation time, we can say that it is reasonable to apply
SGX in an IoACT environment.

Fig. 4. Average execution time of SGX [9].

To keep in mind is that the IoACT is moving around and is pro-
vided by a cellular network, it can have some connectivity fluctuations.
This would of course have an impact on the data transfer performance.
Therefore, this can result in longer upload time to the cloud layer.
However, because edge computing does its computations already on
the edge side, it does not have to send that large amount of data to the
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cloud layer. Hence, there should be almost no connectivity problems
with this framework.

Unfortunately, we cannot give an explicit answer if this framework
holds for IoACT. The experiments that are retrieved from related pa-
pers cannot give a direct answer if the system design can be applied to
autonomous cars. Therefore, the gap cannot be closed based on this
evaluation. As mentioned in the future work this can be researched by
doing an actual simulation on the introduced system design.

6 DISCUSSION

Throughout the evaluation, we found out that doing a simulation on
the system design is not feasible in a certain time frame. Applying this
technology requires special hardware and access to the source code.
Moreover, expertise is needed into the intricacies of the current state
of security in on-board computer systems, communication devices and
protocols, server-side security, etc., therefore it is unattainable for us to
simulate and explicitly present the added benefits of introducing TEE’s
into the current security technology stack used by car manufacturers.

However, we wanted to prove it in some way, so we did research
into other experiments of other related papers. Based on this we have
done an evaluation where we use these experiments and have a de-
tailed look at their advantages and disadvantages regarding the IoACT
framework.

7 FUTURE WORK

As mentioned in the discussion a simulation can be done in the future
of this research subject. Intel has some documentation about running
software guard extensions in simulation mode. The software develop-
ment kit (SDK) can be downloaded from their website. In addition,
there are some Github repositories available that provide code for the
simulation, e.g. [19]. This repository provides a list with all papers
that use Intel SGX simulation [22].

With this, it is possible to create a simulation in SGX enhanced
application. If there is even more time and resources available, it can
be checked whether an autonomous car is available to use for research
purposes. It would be great to solve the gap that is discussed in the
system model. This requires then more time and resources such as
dedicated servers and software to create the experimental setup and
test the efficacy of the proposed implementation.

8 CONCLUSION

The main goal of this paper was to contribute to the current IoT state-
of-the-art that uses Intel SGX. Moreover, we analyzed the role and
efficacy of Intel SGX in combination with two other technologies,
blockchain and edge computing. These were investigated in recent re-
search and proposed by scholars as promising applications alongside
Intel SGX for increasing the security of IoT systems and explained
their security issues, vulnerabilities, technologies, implementations,
and results.

After, the literature review it came to our mind that autonomous
cars are complex IoT environments on wheels. Thus, these environ-
ments also have their threats and vulnerabilities, because they can run
different third-party software.

This paper introduces a solution for this gap by applying a frame-
work, that is used in an IoMT environment, to the Internet of Au-
tonomous Car Things. This framework has four layers and combines
the before mentioned technologies to provide performance and se-
curity enhancements. Edge Computing advancements could be im-
plemented to provide faster communication between the vehicles and
cloud networks and provide added security through end-to-end secu-
rity from the vehicle to the cloud and real-time threat detection at the
edge of the network. The blockchain layer can ensure authentication
of the IoACT devices by giving certificates and private keys.

We evaluated the system design by investigating different experi-
ments on Intel SGX. These experiments show that the edge layer has
some acceptable additional computing time when it uses SGX. How-
ever, it is within a reasonable range. We strongly believe that the
IoMT approach can be integrated into the security infrastructure of
autonomous cars.
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A survey of algorithms for minimal triangulations, the fill-in problem
and the treewidth problem

Jeroen Lammers and Luc Pol

Abstract— A supergraph of a graph is a triangulation if it is chordal. It can be obtained from the original graph by adding edges to
this original graph. This triangulation is considered a minimum triangulation if there exist no other triangulations with fewer added
edges. The problem of finding such a minimum triangulation is often referred to as the minimum fill-in problem. A relaxation of
the fill-in problem is the problem of finding a minimal triangulation. This is a triangulation of which we can not remove any added
edges without the supergraph losing its triangulated property. A closely related problem is determining the treewidth of a graph. For
this we are interested in finding the triangulation with the smallest maximum clique size. Multiple methods have been developed
in order to construct minimal triangulations and solve the minimum fill-in problem and the treewidth problem. In this survey we will
summarise and condense the main contributions and evolutions in algorithms solving these problems. This will be done by looking
at exact, parameterized and approximative methods. We will be looking at both general algorithms that work on any graph as well as
algorithms that are restricted to specific graph classes. With this paper we give an overview of the milestones in algorithm design for
minimal triangulations, the fill-in problem and the treewidth problem.

Index Terms—Chordal graphs; Minimal separators; Potential maximal cliques; Minimal triangulation; Minimum fill-in; Treewidth.

1 INTRODUCTION

Several important and widely studied problems on graphs are con-
cerned with computing a chordal triangulation of the original graph.
A chordal triangulation of a graph is a supergraph in which each cycle
of length greater than three contains a chord. In this paper we will be
considering simple, finite, connected and undirected graphs and their
triangulations. We will be focusing on three types of triangulations.
Starting with a minimal triangulation. We call a triangulation mini-
mal if the set of added edges cannot be reduced further without the
supergraph becoming non-triangulated. Second, minimum triangula-
tion, also known as the solution to the (minimal) fill-in problem. A
minimum triangulation is a triangulation where the number of addi-
tional edges is minimum. Lastly, solutions to the treewidth problem.
The treewidth problem is concerned with finding a triangulation with
the smallest possible maximal clique size.

Treewidth was introduced by Robertson and Seymour in [36] and
plays a major role in graph algorithm design. This is because many
NP-hard problems have polynomial time solutions if we restrict our-
selves to graphs with small treewidth. Examples of such prob-
lems are independent sets, dominating sets, graph colouring, Hamil-
tonian circuits, network reliability and logic [2, 3]. The solution
of the fill-in problem has use cases in sparse matrix multiplication,
database management, knowledge based systems and computer vision
[4, 16, 29, 37, 40]. However, finding the minimal triangulation is NP-
hard [42]. Because of this we, will also focus on minimal triangula-
tions, which are a less restrictive version of minimum triangulations
and can be computed in polynomial time. They are especially useful
since they are closely related to both minimum triangulations and the
solution to the treewidth problem.

The goal of this paper is to provide an overview of the differ-
ent methods that are currently available for each type of triangula-
tion listed before. This will be accomplished by providing an exten-
sive list of the state of the art algorithms that are available. In the
case of the fill-in problem and treewidth problem we will also pro-
vide an overview of the techniques that are available. We will pro-
vide an overview of algorithms that provide exact solutions and algo-
rithms which provide an approximation for arbitrary graphs. Lastly,
we will also consider algorithms that are restricted to specific classes
of graphs.

• Jeroen Lammers with RUG, E-mail: j.lammers@student.rug.nl.
• Luc Pol with RUG, E-mail: l.j.w.pol@student.rug.nl.

In Section 2 we will provide some preliminaries on graph theory
and give a more detailed definition of the previously mentioned tri-
angulations and their corresponding problems. In Section 3 we will
provide an overview and corresponding background for algorithms
used to compute minimal triangulations. In Section 4 we will give
an overview of the evolution of minimum triangulation algorithms. In
Section 5 we will provide a similar overview for the treewidth prob-
lem. In Section 6 we will give an overview of the class specific meth-
ods that were developed, as well as some more recent developments.
Lastly, Section 7 provides the conclusion of the paper.

2 PRELIMINARIES

We will be considering simple, finite, connected and undirected graphs
denoted by G(V,E). The set of vertices V has n elements and the set of
edges E has m elements. Let W be a subset of V . A subgraph of G in-
duced by W is denoted by G(W ) and is defined as G(W ) = Ḡ(W,{uv∈
E : u,v∈W}). We define a supergraph of a graph G(V,E) by the graph
G′(V,E ′) in which E ⊆ E ′. A clique is a vertex set W ⊆ V such that
G(W ) is fully connected. The process of adding edges to a graph until
a graph is fully connected is called saturating a graph. The neighbour-
hood of a vertex v in a graph G(V,E) is the set of adjacent vertices
given by NG(v) = {u : uv ∈ E}. The closed neighbourhood of a vertex
v is given by the union of the vertex with its neighbourhood and is de-
noted by NG[v] = NG(v)∪{v}. The neighbourhood of a set of vertices
K is defined as NG(K) = {u : v ∈ K ∧u ̸∈ K ∧uv ∈ E}. Similarly, the
closed neighbourhood of a vertex set is defined as NG[K] =NG(K)∪K.

Let S be a subset of the set V . We denote the difference between set
S and V as V\S= {v∈V : v ̸∈ S}. We define the connected components
of G to be the subgraphs which are connected. A set of vertices S is
called a u,v-separator if u and v are in different connected components
of G(V\S). In Figure 1(a) the set S = {b,c,d, f} is an a,e-separator.
We call a u,v-separator a minimal u,v-separator if there is no subset
S′ ⊂ S such that S′ is a u,v-separator. The separator S = {b,c,d, f} is
not minimal. However, it does contain two minimal separators S1 =
{b, f} and S2 = {b,d}. The set of minimal separators of G is defined
as the union of all minimal u,v-separators of G. We call two separators
S and T crossing if S is a u,v-separator with u,v ∈ T . If two separators
do not cross, then we call them parallel.

We define path in a graph G(V,E) to be an ordered sequence of
vertices v1,v2, . . .vl ∈ V such that vivi+1 ∈ E for i ∈ {1,2, . . . , l− 1}.
We call a path a cycle when it starts and ends at the same vertex, i.e.
v1 = vl . A chord of a cycle is an edge connecting two non-consecutive
vertices of the cycle. A chordal graph is a graph in which all cycles
of at least four vertices have a chord. We can see in Figure 1(a) that
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Fig. 1. An input graph (a) with minimal triangulations (b) and (c) of which (c) is also a minimum triangulation.

none of the cycles abe f d, abcd and bcd f e have a chord. Hence, the
graph is not chordal. If we were to add an additional edge between
ce then the cycle bcd f e would become chordal. However, the newly
created cycle cd f e would not have a chord. Hence, by recursively
adding chords we can find the chordal graph in Figure 1(b). We call a
graph triangulated if it is chordal. We call a graph H a triangulation
of G if H is a supergraph of G and H is triangulated. A triangulation
Ḡ(V, Ē) is a minimal triangulation of the graph G(V,E) if there does
not exist a set of edges E ′ such that E ⊆ E ′ ⊂ Ē and G′(V,E ′) is a
triangulation. If we consider the triangulation in Figure 1(b) we can
see that it is a minimal triangulation. Since if we would remove any
of the added edges, the graph would have a cycle of length 4 without
a chord. Thus the graph in (b) is a minimal triangulation of the graph
(a).

Next we will introduce the problem of (minimum) fill-in or finding
the minimum triangulation for which we need to find the triangula-
tion such that the number of added edges is minimal. More precisely,
let H be an arbitrary triangulation of G. Then we are interested in
finding the triangulations such that the difference between the number
of edges in H and G is as small as possible. Note that the minimum
triangulation is also a minimal triangulation. However, the inverse is
not necessarily true. If we consider the triangulations in Figure 1(b)
and (c) then we can clearly see that (c) has fewer added edges. Hence
both are a minimal triangulation of the graph (a) but only (c) is a mini-
mum triangulation. Lastly we will introduce the problem of treewidth.
For this we would like to find the triangulation which has the smallest
maximum clique size. In our example Figure 1 we can see that both
triangulations have a maximal clique size of 3, which is the small-
est possible for this input graph. Note that if we would consider the
complete graph with 6 vertices, then that would also be a valid trian-
gulation of the input graph and would have a maximal clique size of
6. It has been shown that the solution to the treewidth problem is also
contained in the set of minimal triangulations.

3 MINIMAL TRIANGULATION ALGORITHMS

In this section we will provide an overview of minimal triangulation
algorithms that have been developed over the years. We will only look
at a specific subset of the algorithms. Namely the algorithms that are
based on the minimal separators and the potential maximal cliques of
a graph. Theorem 1 is at the core of the algorithms presented here. It
shows that when you have a set of minimal separators of a graph G,
then you can find minimal triangulations in polynomial time. We will
present various algorithms and their properties that find those minimal
triangulations. If applicable, we will present how these algorithms are
linked to each other.

Theorem 1 (Parra and Scheffler [34])

1. Let S be a maximal set of pairwise parallel minimal separators
of G. Then the supergraph H of G, generated by the saturation
of the minimal separators in S, is a minimal triangulation of G.
Moreover, the separators S are the only minimal separators of
H.

2. Let H be a minimal triangulation of G. Then the minimal sepa-
rators of H is a maximal set of pairwise parallel minimal sepa-
rators of G. Moreover H is obtained from saturating S in G.

3.1 Saturate minimal separators

The first algorithm we will treat is the Saturate Minimal Separators-
algorithm (SMS). It was given by [21], which they deduced from the
characterisation of a chordal graph from [17].

Theorem 2 (Dirac [17]) A graph G is chordal if and only if every
minimal separator of G is a clique.

Let S be the set of minimal separators of our graph G(V,E). The al-
gorithm is shown in Algorithm 1. It works by enumerating all minimal
separators in S and then checking if that minimal separator is a clique.
If it is not, then the algorithm adds the fill edges to the output graph
as to saturate the current minimal separator, i.e. make the minimal
separator a clique. The resulting graph H is a minimal triangulation.

Algorithm 1 Saturate minimal separators (Heggernes [21])
Input: G(V,E) and S
Output: A triangulation H(V,E ′) of G(V,E).
H(V,E) := G(V,E)
for S ∈S do

if S is not a clique then
Add fill edges to H to saturate S

In [21] the connection between minimal separators and minimal tri-
angulation is presented by a combination of multiple results. When
a minimal separator S is saturated, all of the minimal separators that
cross S disappear. This is because the vertices of S cannot be separated
from each other anymore. Hence, the solution of the SMS algorithm
gives a triangulation.

The time complexity of the SMS algorithm is O(n), as we only it-
erate over the set of minimal separators once, while potentially adding
edges along the way. However, the SMS algorithm needs that set
of minimal separators to work. While the algorithm itself is quite
straightforward, the difficulty arises in generating that set of minimal
separators. This is an NP-hard problem. In the next section an im-
proved algorithm is provided that does not need the set of minimal
separators.

3.2 LB-Triang

The problem with the SMS algorithm (Algorithm 1) is that it is not al-
ways straightforward to construct the set of minimal separators. Thus
a new algorithm was developed based on the characterisation of a tri-
angulation given by Lekkerkerker and Boland.

Theorem 3 (Lekkerkerker and Boland [30]) A graph G is a triangu-
lation if and only if for every vertex v in G, each minimal separator
S⊆ NG(v) of G is a clique.
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The LB-Triang algorithm was originally developed in [5] and sum-
marized in [21]. It works by enumerating all vertices in a pre-defined
or random order α . For each vertex the minimal separators in its neigh-
bourhood in the graph H are saturated. Those new edges are added to
the graph H.

Algorithm 2 LB-Triang (Berry et al. [5])
Input: G(V,E)
Output: A minimal triangulation H(V,E ′) of G(V,E).
α := arbitrary ordering of V
H(V,E) := G(V,E)
for v in α do

Saturate minimal separators contained in NH(v)
Add these new edges to H

The algorithm is able to generate all minimal triangulation of the
input graph. This can be done by picking an appropriate ordering α in
which the vertices will be processed. The correctness of the algorithm
follows from theorem 3.

Due to only considering the neighbours at each node, the time to
find the minimal separators is reduced dramatically. Note that it has
been shown that the search for the connected components and minimal
separators can be done in O(m) time in each of the n steps. To achieve
this the search of NH(v) is reduced from the graph H to the graph
G. This does have the problem that we can only achieve time bound
O(nm) if we do not explicitly compute and store the edges of H, due
to the risk of adding the same edge multiple times.

3.3 Vertex incremental minimal triangulation
Next we will be looking at the Vertex Incremental Minimal Triangula-
tion algorithm. This algorithm is based on the necessary and sufficient
condition for each edge provided by Theorem 4.

Theorem 4 (Berry et al. [6]) A graph G is a triangulation if and only
if every edge uv in G has the following property: NG(u)∩NG(v) is a
minimal u,v-separator in the graph (V,E\{uv}).

Other than solving the minimal triangulation problem, it also pro-
vides answers to the following questions. Given a triangulated graph
G = (V,E), a new vertex u ̸∈V and a set of edges D = {ux : x ∈V};

• Is it possible to determine if the new graph G′ = (V ∪{u},E∪D)
is a triangulation as well?

• If we are unable to answer the previous question, can we find a
set of additional edges F = {ux : x ∈V and ux ̸∈D} such that the
resulting graph G′ = (V ∪{u},E ∪D∪F) is a triangulation?

• If D generates a new triangulation, can we reduce D ⊃ D̄ such
that G′ = (V ∪{u},E ∪ D̄) is a triangulation?

From Theorem 4 it can be shown that an edge uv can be added to a
triangulated graph G if and only if for all edges ux such that x ∈ Su,v
are either present, or also added to G. The algorithm will start with an
empty set U which will denote the processed vertices. Then we will
check if G(U) is a triangulation. If this is not the case than we will
add edges based on the previous condition in order to make the graph
a triangulation.

Algorithm 3 Vertex incremental minimal triangulation (Berry et al.
[6])

Input: G(V,E)
Output: A minimal triangulation H(V,E ′) of G(V,E).
U ←{}
for v in V do

U+= v
Add edges based on the condition mentioned in the text.

Similar to the LB-Triang algorithm, there is no specific order in
which the vertices need to be processed. Another similarity is that
the vertex incremental minimal triangulation algorithm also has time
bound O(nm).

3.4 Fast minimal triangulation
The next method we will be considering was derived from the follow-
ing characterisation of a minimal triangulation in terms of potential
maximal cliques. A potential maximal clique of a graph is a set of
vertices which form a maximal clique in some minimal triangulation
of the graph.

Theorem 5 (Bouchitté and Todinca [11]) Let K be a potential maxi-
mal clique of G= (V,E), and let G′= (V,E ′) be a graph obtained from
G by saturating K. Let further C1,C2, . . . ,Ck be the connected compo-
nents of G(V\K) and Si = NG(Ci) for 1 ≤ i ≤ k. H = (V,E ′ ∪F) is a
minimal triangulation of G if and only if F =

⋃k
i=1 Fi, where Fi is the

set of fill edges of a minimal triangulation of G′(S∪Ci).

From theorem 5, the fast minimal triangulation algorithm was de-
rived. The algorithm defines a recursive procedure. We start by con-
sidering any connected vertex subset K ⊆V . Let us define A = NG[K]
to be the closed neighbour set of K. Then we can use this to compute
the connected components C1,C2, . . . ,Ck of the graph G(V\A). We
can saturate each of the neighbour sets of the connected components
NG(Ci) in order to saturate a set of non-crossing minimal separators
of G(V,E) and its triangulation. We call the graph with the saturated
minimal separators G′(V,E ′). After this is done we can recursively
apply the same procedure to the subgraphs defined by G′(NG[Ci]) and
G′(A) which only overlap at the saturated minimal separators. It has
been shown in [11] that if A is a potential maximal clique, then the
whole of A is automatically saturated when applying the algorithm.
This results in fewer sub-problems in the recursion.

Algorithm 4 Fast minimal triangulation (Heggernes et al. [22])
Input: G(V,E)
Output: A minimal triangulation H(V,E ′) of G(V,E).
Pick any connected subset K of V
A := N[K]
Compute the connected components C1, . . . ,Ck of G(V\A)
Saturate each set N(Ci) with 1≤ i≤ k
The resulting graph is G′
Recursively compute a minimal triangulation of each subgraph
FMT (G′(N[Ci])) and FMT (G′(A)) independently in the same way

It has been shown that the work required at each level in the recur-
sion tree can be bounded by the time required to multiply two n× n
matrices. Hence the efficiency of the algorithm is primarily dependent
on the time complexity of matrix multiplication. According to [21] the
current best running time of the FMT algorithm is O(n2.376).

4 MINIMUM TRIANGULATION ALGORITHMS

The fill-in problem finds the triangulation with the minimum number
of edges added to make a graph a triangulation. The fill-in problem is
also referred to as the minimum triangulation problem. It is applicable
in various different fields as mentioned before.

A wide variety of papers have been devoted to this problem, ranging
from exact methods to those that work under certain parameterizations
of the problem at hand and others that merely give approximations.
Some of them we will mention next.

We will start by providing a definition of the minimum fill-in prob-
lem.

Definition 1 (Bouchitté and Todinca [11]) The minimum fill-in of a
graph G is the smallest value of |EH | − |EG|, where the minimum is
taken over all triangulations H of G and where |EF | is the size of the
edge set of a graph F.
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4.1 Exact methods
An algorithm for finding the minimum fill-in of a graph was given in
[34]. The basis for their algorithm lies in the proof that every inclusion
minimal triangulation of a graph corresponds to a maximal clique of
its separator graph. Moreover, they again make use of Theorem 1
mentioned in the minimal triangulations section.

In [11] it is shown that if the potential maximal cliques can be enu-
merated in polynomial time, then the minimum fill-in (and also the
treewidth) can be found in polynomial time as well.

Broersma et al. ([12]) provide another algorithm to find a solution to
the minimum fill-in problem. They started from a class-specific algo-
rithm on at-free graphs, which they then generalized so the algorithm
can be applied on all graphs.

Later, [20] reformulates the findings from [11] in such a way that
it allows to compute other graph parameters – on top of fill-in and
treewidth – as well. These were the fill-in distance and treelength.

4.2 Parameterized methods
Instead of considering a general solution, one might also look for re-
stricted solutions. Instead of attempting to find the minimum triangu-
lation we could also restrict our problem to checking if a minimum
triangulation exists with k or fewer added edges. Algorithms that find
such solutions will from here be referred to as parameterized algo-
rithms.

One of the first parameterized algorithms that solves the fill-in prob-
lem was given in [23]. They showed that if a graph can be triangulated
by adding at most k edges then the fill-in problem can be solved in
O(k2mn+ f (k)), where n and m represent the number of vertices and
edges, respectively. The first term – O(k2mn) – comes from a three-
step partitioning process (exact details can be found in [23]), where the
graph G is partitioned in two subsets A and B, such that the size of A is
O(k3) and there are no chordless cycles in G containing vertices in B.
The second term – f (k) – results from obtaining a (k−a)-triangulation
of A for some a≥ 0. The function f is defined as f (k) = k624k.

Later, [19] improved on the algorithm shown above. Their algo-
rithm solves the fill-in problem in time O(2O(

√
k logk)+k2nm). It is the

first algorithm to solve the fill-in problem in subexponential time. The
approach is based on the theory given in [11] regarding the minimal
triangulations and potential maximal cliques.

4.3 Approximative methods
An example of an approximation to the fill-in problem is given in [18].
The author presents an algorithm that can find k-triangulations of size
O(k logk) which they claim is within a factor O(logk) of the optimal
solution. This finding was a byproduct of them developing kernel-
ization algorithms for the minimum fill-in problem. As explained in
their paper, a kernelization is a systematic research of preprocessing
heuristics within the framework of parametrized complexity.

5 TREEWIDTH ALGORITHMS

In this section we will provide algorithms that solve the treewidth
problem. As explained in [10], the treewidth problem of a graph G
means finding a triangulation with smallest maximum clique size. The
treewidth itself is then given by the smallest maximum clique size over
all triangulations of G, minus 1.

Similar to the previous section about fill-in problem we will pro-
vide treewidth algorithms that can be categorized as exact methods,
parameterized methods and approximative methods.

5.1 Exact methods
The result from [34] was already mentioned in the section of minimum
fill-in above. However, the algorithm is able to find the treewidth of a
graph as well.

In 2006 [41] showed that the number of potential maximal cliques
for an arbitrary graph G with n vertices is bounded by O(1.8135n), and
that those potential maximal cliques can be listen in time O(1.8899n).
Hence, as a consequence, the treewidth can be computed in the same
time bound as well.

5.2 Parameterized methods
A parameterized method for determining the treewidth is given by [7].
It says that for some constant k, a linear time algorithm determines
whether the treewidth of a graph G is at most k. If it did find that it
was true, a tree decomposition of G with a treewidth of at most k can
be found.

5.3 Approximative methods
In 1993, [8] found an algorithm that can compute an approximation of
the treewidth problem that is at most O(logn) times the optimal solu-
tion. This works by computing a tree decomposition of the graph. The
tree decomposition itself then has a treewidth of at most O(k logn),
where k is the treewidth of the original graph.

In [1] multiple algorithms for finding the treewidth of a graph are
presented. One algorithm approximates the solution by a factor O(k),
where k is the treewidth. It was the first algorithm able to solve the
problem in time independent of the number of vertices in the graph.

6 GRAPH CLASS SPECIFIC ALGORITHMS

In this section we will provide an overview of algorithms designed
for specific classes of graphs. We will mainly be discussing the infor-
mation depicted in Table 1. This section is meant as an overview and
hence we will not be going into the definitions of each of the classes of
graphs discussed. In general, these algorithms will have a much bet-
ter time complexity due to exploiting properties of the more restric-
tive graph classes. The main reason why this is possible is because
most of these graph classes have a polynomially bounded number of
minimal separators [10, 11, 28]. We would like to note that the d-
trapezoid(1) algorithm also requires additional information as an input.
More specifically, it needs a d-trapezoid diagram of which it has been
shown that constructing such a diagram is NP-complete [43]. Because
of this, the d-trapezoid(1) algorithm is limited in use. In the case of the
asteroidal triple-free graphs (AT-free) we can see that the complexity
of the algorithm is dependent on the number of minimal separators R
of the graph. Hence, this algorithm will only provide polynomial time
results in case we have a polynomial bound on the number of min-
imal separators, similar to the general algorithms. Due to the class
of d-trapezoids being a subclass of the AT-free graphs with a polyno-
mial bound number of minimal separators, we can apply the AT-free
algorithm in order to obtain a solution to the fill-in problem and the
treewidth problem without explicitly computing the d-trapezoid dia-
gram. This results in the d-trapezoid(2) algorithm.

Graph class O(m f i()) O(tw())
AT-free n5R+n3R [27] n5R+n3R [27]
Biconvex bipartite n [35] n [35]
Bipartite permutation n5 [38] -
Chordal bipartite n5 [25] p(n) [26]
Circle n3 [28] n3 [24]
Circular-arc n3 [28] n3 [39]
Cograph n [14] n [14]
d-trapezoid(1) nd [9] n∗ tw(G)d−1 [9]
d-trapezoid(2) n3d+3 [27] n3d+3 [27]
Distance hereditary n [14] n [14]
HHD-free n6 [13] n6 [13]
Multitolerance n5 [33] -
Permutation n [32] n [32]
Weakly triangulated n2m̄2 [10] n2m̄2 [10]

Table 1. The time complexities of each of the class specific algorithms
designed to solve the fill-in problem or the treewidth problem.

Other research focused on more robust methods for solving the fill-
in problem and treewidth problem. More specifically, Mancini [31]
looks at split graphs, which are a subclass of chordal graphs. Since the
problem of fill-in and treewidth are well defined on split graphs, due
to them being chordal, the author looks at the possibility of finding
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Graph class O(m f i()) O(tw())
Split + 1v NP-hard n
Split + ke (2k)! * nm (2k)! * nm
Split + kv NP-hard NP-hard

Table 2. The complexity results of from [31]

algorithms for graphs which are almost split graphs. Their results are
summarized in Table 2. More precisely, the class of split graphs with k
additional edges called split + ke and the class of graphs which become
split graphs after removing k vertices called split + kv. This concept of
extending graph classes was originally introduced by Cai in [15] where
it was used to find solutions to the graph colouring problem on the
extended split and bipartite classes. Mancini shows that the minimum
fill-in and treewidth can be computed in O((2k)! ∗ nm). They also
show that in general, finding a solution for the fill-in problem and the
treewidth problem is NP-hard for split + kv graphs. However, they find
that for k = 1 the class of split + 1v has an NP-hard solution for the
fill-in problem, but a linear time solution for the treewidth problem.
This is one of the first results in which there is a significant difference
in the complexities in the computation of the fill-in problem and the
treewidth problem.

7 CONCLUSION

In this paper we provided an overview of the different methods for
finding minimal triangulation, minimum triangulation and treewidth.
We presented how the minimal triangulation methods evolved over
time with their respective complexities. Multiple approaches were
considered to solve the minimum fill-in problem. We looked at exact
methods as well as parameterized methods and approximative meth-
ods. Similar approaches were treated related to the treewidth prob-
lem. Finally, we provided an overview of class-specific algorithms
that where developed over the years. Moreover, we looked at an ex-
tension of class specific methods in which one looks at graphs which
are ’almost’ part of the graph class.

We have seen that we can find a minimal triangulation in case we
have a maximal set of parallel minimal separators. It might be inter-
esting to see if it is possible to generate such a set of parallel minimal
separators from a smaller set of minimal separators that could act as
a generating set for the maximal set of parallel minimal separators. If
this is the case we might be able to characterise each minimal triangu-
lation based on these generating minimal separators, which may give
a tighter bound on the number of possible minimal triangulations as
well as methods that could expedite the process of finding the minimal
separators of a graph.

REFERENCES

[1] E. Amir. Approximation algorithms for treewidth. Algorithmica,
56(4):448–479, 2010.

[2] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-
decomposable graphs. Journal of Algorithms, 12(2):308–340, 1991.

[3] S. Arnborg and A. Proskurowski. Linear time algorithms for np-hard
problems restricted to partial k-trees. Discrete applied mathematics,
23(1):11–24, 1989.

[4] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of
acyclic database schemes. Journal of the ACM (JACM), 30(3):479–513,
1983.

[5] A. Berry, J.-P. Bordat, P. Heggernes, G. Simonet, and Y. Villanger. A
wide-range algorithm for minimal triangulation from an arbitrary order-
ing. Journal of Algorithms, 58(1):33–66, 2006.

[6] A. Berry, P. Heggernes, and Y. Villanger. A vertex incremental approach
for dynamically maintaining chordal graphs. In International Symposium
on Algorithms and Computation, pages 47–57. Springer, 2003.

[7] H. L. Bodlaender. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM Journal on computing,
25(6):1305–1317, 1996.

[8] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Ap-
proximating treewidth, pathwidth, frontsize, and shortest elimination tree.
Journal of Algorithms, 18(2):238–255, 1995.

[9] H. L. Bodlaender, T. Kloks, D. Kratsch, and H. Müller. Treewidth and
minimum fill-in on d-trapezoid graphs. In Graph Algorithms And Appli-
cations I, pages 139–161. World Scientific, 2002.
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Welcome to Cloud City:
An Overview of Networking Techniques within the Cloud Data Center

David Visscher, Erwin de Haan
Abstract— The problems faced by large cloud data-centre networks are different than those faced by smaller-scale networks, like
those run by single organisations. This review paper will create an overview over modern technologies within the context, in order
to bolster understanding by a broader group, by doing a literature review and highlighting important concepts in an understandable
manner.
The topics covered by the paper are Topologies, Routing, Virtual Network Functions and Quality of Service. The topology of the
network describes the broad shape of the network. Routing concerns figuring out the paths data packets should take between
two endpoints, keeping the route as efficient as possible. Virtual Network Functions are virtualized versions of traditionally physical
network devices. Virtualizing network functions has the advantage of flexibility and maintainability, just like with virtualization of
machines. However, even when a network is optimally laid out, the issue of sharing and dividing resources still remains, which is
where quality of service comes in.
For each of these topics, the issues at hand are made plain and possible approaches to the problems are highlighted in this paper. An
important pattern that is observed is that, the more is known about the traffic, the more the network can be optimised for that traffic’s
performance.

Index Terms—Software defined networking, Cloud, Quality of Service, Routing.

1 INTRODUCTION

Public cloud infrastructure is quickly becoming the backbone of mod-
ern information systems, and with that, scaling challenges grow. Ever
more organisations are building their systems around cloud infrastruc-
ture, whether public or private, putting pressures on cloud providers
to keep expanding and diversifying. With that, networking becomes
more and more complex. This review covers recent developments in
networking within the cloud data centre, and what unique challenges
are faced within that space.

The problems faced by large cloud data-centre networks are different
than those faced by smaller-scale networks, like those run by single
organisations. The amount of traffic can be enormous, with many dif-
ferent organisations deploying their infrastructures in as little space as
possible. The providers of cloud services also cannot know the na-
ture of the traffic beforehand, as anyone can deploy anything at any
time. Because of this, the networks in the cloud data centre need to
be intelligently designed, dynamic, and adaptable to many different
situations.

Software Defined Networking (SDN) is a range of technologies that
allow the dynamic reprogramming of networks. This review paper
will cover many different techniques that make use of SDN, and the
considerations that go into its use.

1.1 Goals

This review paper will create an overview over modern technologies
within the context of cloud data centres, in order to bolster understand-
ing by a broader group. By doing so, it is hoped that the reader will
come away with new insights that may even be useful in other situa-
tions.

We will attempt to create such understanding by doing a literature re-
view and highlighting important concepts in an understandable man-
ner, supported by research questions. We have formulated one main re-
search question, and subdivided that question into four sub-questions.
For each section in this paper, we will evaluate how this relates to the
questions. The conclusion at the end will then take all this knowledge
into account, and formulate answers to the questions.

• David Visscher, E-Mail: d.j.visscher@student.rug.nl.

• Erwin de Haan, E-Mail: e.w.de.haan@student.rug.nl.

The questions are formulated as such:

Main Question: Which novel technologies are being developed to
underpin the massive scaling of public cloud infrastructure?

Sub-Question 1: How do recent developments handle the field of ten-
sion between achieving maximum throughput vs. minimising la-
tency, what are the trade-offs?

Sub-Question 2: How is the allocation of networking resources kept
fair and efficient?

Sub-Question 3: How have topologies developed to fit the problems
faced by cloud data centres, what are the trade-offs made?

Sub-Question 4: What methodologies have been developed to (dy-
namically) adapt to changing demands?

1.2 Overview
In this paper we will go through relevant technologies and the papers
in which they are proposed, ordered by topic, in order of scale. We
will each time, going from section to section, zoom in and look at a
more specific level.

The first and most broad topic covered, is that of Topologies (sec-
tion 2). This is followed by Routing, a look into the behaviour within
such a topology (section 3. After this, follows the topic of Virtual Net-
work Functions (VNFs), a topic closely related to SDN (section 4).
The fourth and final topic will be that of Quality of Service (section 5).

1.3 Prior Knowledge
While the paper’s goal is to explain the topics as clearly as possible,
we must assume some familiarity with networking and network virtu-
alisation techniques. This is to keep the paper concise and readable.

2 TOPOLOGIES

When starting to design a system, we begin with a high-level overview
before having to think about the details. Therefore, the first topic we
will discuss is topologies, since this is on one of the higher levels of
abstraction in a data centre network.

The topology of a network describes the broad shape and architecture
of the network. We will discuss a few examples later in this section,
but for now it may be good to think about the topology as a schematic
map of the network. Since topologies are a high-level overview of the
network, it impacts the performance and behaviour of the network.
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Fig. 1. The Clos topology consists of multiple layers of parallel switches.
The number of switches in each layer can be calculated by using formu-
lae from Clos’ paper [5]. Each switch in a layer connects to each other
switch from the neighboring layers.

2.1 Regions
Before we dive further into the topic of topologies itself, we must first
establish some context and terms, one of those being regions. Re-
gions are multiple data centres, in close proximity, operating as though
they are a single massive data centre. This has influence on the possi-
ble choices and trade-offs in the used topologies, as not every layout
would be favourable when clusters of machines are moved away from
each other.

The demand for cloud infrastructure keeps growing, but the difficulty
of constructing very large data centres – especially in high density
areas – is also increasing [6]. Data centres are usually not an attractive
sight, but businesses renting services might want the service providers
– the data centres – to be close to the businesses themselves, usually
in urban areas. Apart from the space considerations, other reasons to
move towards regions are that they are more failure-resilient: in the
case of a catastrophe; there is less of a single-point-of-failure.

2.2 Optical networking
This rise in demand also comes with a rise in supply in the form of
data carriers. Fibre cables have more capacity and are more efficient
on longer runs, but there is overhead of translating between the op-
tical and electrical domain[6]. As nearly all machines operate using
electrical signals, this poses some overhead problems, but there are
some developments to minimise these problems, which we cover in
this subsection.

The move to optical networking – with its lower latency over larger
distances – changes how networks can be laid out, which in turn en-
ables the creation of regions. The reduction of the latency penalty
allows larger distances between core components of the same net-
work, and the enormous potential capacity of fibre cables allow high-
throughput interconnects between the regions.

Recent developments mainly concern optical switching or routing
methods. As said before, a big part of the overhead – both in time and
energy – is translating between optical and electrical signals, which
motivates the development of techniques to keep data in the optical
domain for longer. The goal here is to minimise the amount of trans-
lations needed. There are multiple techniques for this, but there is a
trade-off between faster fine-grained switching and cost [6].

2.3 Overview of topologies
Modern-day topologies can be broadly categorised into two families:
Clos-based topologies and alternatives to Clos, according to Namyar
et al. [11].

The range of Clos-based topologies are founded upon a foundational
principle that each endpoint should be able to communicate with all
other endpoints in a non-blocking manner. The original architecture

•

• E1 A1

• E2 A2 C1

• C2

• C3

• E3 A3 C4

• E4 A4

•

Fig. 2. A small example of the Fat-Tree topology [1]. Note that the
aggregation switches are connected to half of the core switches, but
each edge switch is in this way connected to all core switches. Under
each pair of edge switches is a pod of four network devices.

was developed by Charles Clos in 1953 as a layout for a telephone net-
work system [5] and consisted of an input stage, an output stage, and
one or multiple intermediary stages, all comprised of multiple smaller
switches, shown in Figure 1. These stages can still be distinguished in
modern-day descendants, as can be seen in Figure 2.

The depicted older example of a Clos-based topology is the Fat-Tree
topology, introduced in 2008 by Al-Fares et al. [1]. In this topology
another layer is added to the basic Clos structure, the aggregation layer.
It solves a problem in other Clos-based topologies, in which the band-
width supported by the whole network is lower than the bandwidth
supported by the edge switches.

In recent years more economical topologies have been developed [11].
The Jellyfish topology [13] is an example of such a topology. When
looking at the connections made between the top-of-rack switches, the
network topology is essentially a random graph, with a certain mini-
mum degree for each of the nodes, meaning that each switch connects
to a minimum amount of other switches. This topology has been de-
veloped to be able to incrementally adjust to changing situations, but
also provides 25% more supported servers with the same hardware in
contrast to the Fat-Tree topology, and also a lower amount of hops
between servers[15].

Other recent examples that utilise graph theory, include the Xpander
topology created by Valadarsky et al. [14] focusing on optimal perfor-
mance of a network, and the FatClique topology created by Zhang et
al. which focuses on management complexity, while keeping perfor-
mance equal [10].

Traditional Clos-based topologies are still widedly used, but other
types of layouts can be used in situations where economic concerns
are valued higher than management complexity. There is no one-
topology-fits-all solution.

2.4 Summary
We have given an overview of the various topologies that exist, the
context in which they were developed, and the trade-offs that must
be considered. As we have shown, the topic of topologies relates to
the first question on throughput vs. latency, and the third question on
topological innovations that power cloud data centres.

3 ROUTING

Routing concerns figuring out the paths that data packets should take
between two endpoints. Here we have the goal of keeping the route as
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efficient as possible. Efficiently routing traffic in cloud data centres is
constantly becoming more and more difficult.

Routing becomes more complex when the number of endpoints be-
comes higher, making this a challenging topic working on the scale of
a cloud data centre. On top of this, modern data centres often have
to scale to a very large number of servers, virtual machines (VMs)
are becoming more and more ephemeral, VMs can be migrated from
hypervisor to hypervisor or even across data centres in a region, and
entire architectures are redeployed many times per day. This leads
to quite a difficult situation for keeping the way we route our traffic
optimal.

The concept of routing is tightly related to that of topologies, as the
way the network is layed out determines how information can be
routed through it. It is intuitive that the routes our information can
take is determined by the way the topology is designed.

A brief aside on switching vs. routing (clarifying terms)

Switching relates to forwarding packets connected to a certain
switch, while routing concerns the delivery of packets through a
whole network. Switches forward frames within a specific OSI
layer-2 network. Routers route traffic across networks, using the
internet protocol on OSI layer 3. While the lines have certainly
blurred with the advent of SDN – because these are often not
identifiable physical boxes anymore – it is worthwhile to note
the difference.

3.1 Problems specific to the cloud data centre
Ports, firewalls, routers and other virtual network functions migrate
across the data centre or region, so the most efficient paths can change
quickly, which need fast network response. When virtual machines
migrate, placing IP forwarding entries in switches correctly is a main
challenge, as a directory of VMs needs to be somehow maintained.
The traditional approach to this would be some form of broadcasting
or flooding, or to require the querying of a centralised system which
maintains the directory. These approaches are relatively not very effi-
cient.

3.2 PARIS
PARIS, proposed by Arora et al. [2], is a proactive system which
pre-positions IP forwarding entries in switches. Proactive in this
case means that the rules for forwarding traffic are already present in
switches before traffic first arrives. This reduces the latency for traf-
fic and prevents having to actively learn the correct forwarding last-
minute.

PARIS mitigates the issues posed by the traditional approach, no
longer requiring broadcasting, flooring or a centralised directory,
which expands upon earlier ideas by Changhoon et al. [4]. Forward-
ing rules are proactively placed in the switch by a logically-centralised
controller; this method is chosen to prevent very large forwarding ta-
bles.

3.2.1 Topologies
The No-Stretch Topology (as illustrated in Figure 3) variant opti-
mises for low-latency, sacrificing some throughput between endpoints
to achieve such latency. In this case, the aggregation switches store
reachability information about all the VMs in their pod. Each aggrega-
tion switch is then connected to each core switch, this is a requirement
and keeps paths short. The topology inside the aggregation and edge
layer is not restricted.

The High-Throughput Topology variant (see Figure 4) organises the
core switches to form a full mesh, enabling a high throughput at the
cost of some extra latency. The aggregation switches no longer have
to store all virtual prefix reachability information as in the previous
topology. Traffic is intelligently balanced over this mesh, enabling
high throughput at the cost of some extra latency.

Considering the two topological options for PARIS, we can formulate
a table of pros and cons (see Table 1).

No-Stretch High Throughput
- Lowest Latency - Maximum Throughput
- Switches store all reachability
information

- Switches store information for
only their pod.

- Many connections between
core and aggregation layers

- Full mesh in the core layer, al-
lowing less connections.

Table 1. Comparison of PARIS topological options.

Multi-tenancy is not yet supported, though the authors have indicated
the intention to implement this in the future. This would be an impor-
tant requirement for many service providers, especially in the cloud
data centre.

3.3 In summary..
We have elaborated on the problem of routing, and the shortcomings
of the traditional approach with solutions by a novel approach. The
topic of routing is connected to our first question, where we need to
consider our workload to make the tradeoff between low latency and
high throughput. The topic is also very relevant to the fourth question
we pose, on how we can dynamically adapt to changing demands.

4 VIRTUAL NETWORK FUNCTIONS

Now that we have covered routing, we move on to the topic of Virtual
Network Function (VNF) placement.

Virtual Network Functions are virtualised versions of traditionally spe-
cialised physical network devices. This process of virtualisation is
also called Network Function Virtualisation (NFV). Examples of these
network functions are firewalls, gateways, proxies, intrusion detection
systems, compression, encryption, and load balancing. These func-
tions provide a service for the network infrastructure, just like their
physical counterparts normally would.

Virtualising these network functions has the advantage of increas-
ing flexibility and maintainability, just like with virtualisation of ma-
chines. This means it combines very well hand-in-hand with Soft-
ware Defined Networking principles [9]. VNFs are ubiquitous in
cloud data centres, being sold as a service to customers as part of an
Infrastructure-as-a-Service offering [16].

4.1 Placement problem
The flexibility and freedom provided by this virtualisation does pose
a new problem or opportunity: with so many options, where do you
place the VNFs? Knowing the best place where to place VNFs is an
NP complete problem, depending on the constraints [9].

The placement of these functions plays a role in the performance of
the network. There is a strong connection between how we place our
VNFs and how data is routed through the network. This is because
traffic still must reach the physical device on which the function is
being virtualised.

This problem can become more important if there is a series of VNFs
that data must be routed through before it gets to the destination. Data
centres can have various policies in place, determining that certain
chains of VNFs are mandatory in certain situations [7]. Therefore we
need some way to mitigate these issues and figure out a way to discover
where to place the VNFs.

4.2 Mitigation strategies
An NP complete problem has no clear solution in a reasonable amount
of time, so either the amount of input parameters must be limited to
narrow the problem space, and/or an optimisation strategy must be
used to find a local optimum. Lots of approaches just place a set of
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Edge Layer e . . . e . . . e . . . e . . . e . . . e . . . e . . . e . . .

Fig. 3. No-Stretch Topology for PARIS [2]. Note that all aggregation layer switches are connected to all core layer switches. Here, A0 & A1 and their
edge-nodes form a pod, and A2 & A3 and their edge nodes are another pod.

Core Layer C0 C3

C1 C2

Aggregation Layer A0 A1 A2 A3

Edge Layer e . . . e . . . e . . . e . . . e . . . e . . . e . . . e . . .

Fig. 4. High-Throughput Topology for PARIS [2]. Note the full mesh in the core layer. Here, pods are configured as in Figure 3.

VNFs and consider those a given when calculating the optimal rout-
ing paths [3]. These approaches are called placement-led, but we are
interested in other solutions.

As said previously, the routing in a network is related to the placement
of VNFs. This means both routing and this placement can be consid-
ered at the same time. Luizelli et al. apply a strategy of fixing-and-
optimising which considers this whole problem space, and iteratively
try to get to an optimal solution [9]. This approach scales to hundreds
of VNFs, but is not yet fit for fast adaptation to fluctuation in demand
or changing situations.

Another approach is the narrowing of the problem space. Billingsley
et al. propose a method for routing-led placement, considering how
data should be routed as an immutable constraint; the ideal placement
of VNFs is then calculated bearing that in mind [3]. This approach
provides better calculation performance in the case of very large net-
works as compared to placement-led routing.

Keeping even more constraints fixed, quite like placement-led ap-
proaches, migrating Virtual Machines is an alternative to migrating the
VNFs: keeping paths optimal, not by moving the VNFs, but moving
the VMs. Flores et al. apply this approach in a data centre policy aware
manner [7]. This approach reduces communication cost of VM pairs,
however, considering the placement of VMs simultaneously with the
placement of VNFs has not yet been achieved.

4.3 Summary
We have attempted to make plain the issues at hand, and shown possi-
ble approaches to optimise the placement of network functions. VNFs
and the problem of their placement touch on the sub-questions of
Topological Innovations and Adapting Dynamically.

5 QUALITY OF SERVICE

Even when a network is optimally laid out, the issue of sharing and
dividing resources still remains. An optimised network is of little use
to a tenant when a noisy neighbour can still disrupt their service, just
by hogging all of the available resources.

Tenants demand to be able to count on a guarantee of quality aspects of
the service, known as a level of service. While the demands can vary,
common ones are: minimum downtime, a reserved bandwidth being
available, consistency in the service provided. To be able to guaran-
tee this as a service provider, we must make sure that the network is
optimised to achieve the level of service for the tenant.

Optimising the flow of traffic, generally, requires us to have knowledge
of the nature of that traffic. We can use this knowledge to determine
in which ways to best optimise the the flow. This is possible using a
number of methods, examples include:

- We can set quotas to limit the bandwidth usage of a certain virtual
machine. That way, we can make sure that there is no excessive
use. These can be hard quotas: you can’t use more than x Mb/s.
They can be soft quotas: you can’t use more than x Mb/s over a
period of t seconds.

- We can set traffic priorities. If we –for example– know a certain
type is time-sensitive and another is not, we can let the time-
sensitive one go first.

We will now go into several different approaches to quality of service.

5.1 Quality of experience in video streaming
As also explored earlier, insight into the workload can be used to im-
prove the perceived performance of a system.

We can imagine, for example, a Software-as-a-Service offering that
provides streaming video. In their paper [12], Shimokawa et al. study
such a case, and propose a method for estimating the quality of expe-
rience - and not just plain throughput - in the case of streaming video.
They then show how such an estimation can be used to optimise per-
formance using Openflow programmable systems.

They propose a system that works in a two-stage approach:

Stage One. A rough estimate is made of the quality of experience
(QoE). This is not necessarily optimal, but generating it is fast.
That way, the arriving flow can be forwarded onto an appropriate
route quickly, avoiding any unnecessary delays.

This can be difficult though, as nothing is known about the flow
when it first arrives. The flow is quickly placed along the route
with the largest residual bandwidth. Measurements of the flow
can then start.

With initial measurements of the flow, an estimation can be made
using the bitrate of the video( which is a result of the resolution
and frame rate of the video). That way, there is a theoretical
number of packets that can be regularly transmitted to achieve
optimal flow (disregarding the first few moments, because there’s
generally some buffering ahead). This info is then used to place
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the flow along a more sensible route, until the QoE can be more
precisely estimated in the second stage.

Stage Two. Based on long-duration measurements (the authors use
the most recently recorded eight seconds) of the ongoing flow,
it’s possible to get a more accurate picture of nature of the traffic.
Using those measurements, more precise quality of experience
estimations can be made. That information can then be used to
optimise in such a way that the QoE for all flows is maximised.
These estimations can even be adjusted in real-time. Measure-
ment errors and packet loss does need to be taken into account
for this second stage, and the authors’ methods allow for estima-
tion, even despite these occurring.

5.2 Dynamic network scheduler
In [8], Hauser et al. propose a solution for the fairer division of band-
width in situation where multiple virtual machines must share it, and
a best-effort approach is not sufficient. An example of what might
go wrong with a traditional, best-effort, approach is that one machine
might start using a lot of bandwidth, keeping it reserved, another ma-
chine then has difficulties getting its traffic through. This is a situation
which, of course, can happen all the time in cloud data centres.

Their proposed solution is their dynamic network scheduler, which is
enabled by software defined networking: This system identifies the
requirements, in terms of bandwidth, for individual virtual machines.
It then assigns each virtual machine a bandwidth limitation based on
two factors:

- Firstly, It should provide fairness. Ensuring the machines do not
need to compete for bandwidth.

- Secondly, It should be fully efficient, meaning that there should
be no left-over bandwidth (the available capacity is used up as
much as possible).

The algorithm used to attain this selects two ports where this schedul-
ing is applied: a recipient port and a donor port. It then requires the
donor port to lower its quota to make sure that the recipient gets its
deserved rate, of course making sure the donor also has sufficient re-
sources to give.

It does this periodically, thus ensuring that no one virtual machine can
hold onto all the network resources, starving others.

5.3 In Summary
We have shown that the level of service in a data centre is a concern
for the service provider, and that careful consideration of the specific
problem is required. However, using knowledge about the traffic in-
volved, a lot can be done to mitigate the issues faced.

The topic of Quality of Service is strongly related to the second sub-
question regarding fairness, and the fourth subquestion about dynamic
adaptation to changing demands.

6 DISCUSSION

All topics were discussed in a level of depth that should not discour-
age novice readers to read this paper. We have tried to give a good
overview of the topics and a starting point for further research.

The topic of topologies is a bit of an abstract one. Although many more
topologies exist or may exist which we are not able to cover, we have
highlighted some interesting cases, and tried to give an understanding
of the considerations behind them.

We have outlined the problem setting – and considerations one needs
to make – when talking about routing on a cloud data centre scale,
but many more undertakings have been done attempting the problem,
which were are not able to cover.

Virtual Network Functions and their usage have been explained, and
some viable strategies to the sketched problem related to them have
been highlighted, but research into this topic is still active.

The topic of Quality of Service is optimisation at a detailed level, and
highly situational, but we have tried to cover some of these situations
to demonstrate the breadth of the issue at hand.

As stated in earlier sections, we have attempted to focus on the consid-
erations that surround the topics covered. We’ve paid special attention
to the state of the art, but this can come at a cost of breadth.

This paper is not an in-depth overview of all possible topics, that would
simply not be feasible because of the breadth of information available.
Each of the topics that have been covered are interesting and buzzing
with new developments, and would therefore merit their own review
paper, for which this paper could serve as an entry-point.

7 CONCLUSION

We will now answer all the questions posed in the introduction to get
a final conclusion to the main question, and show our contributions for
each topic.

Sub-Question 1: How do recent developments handle the field of tension
between achieving maximum throughput vs. minimising latency, what are
the trade-offs?

We have discussed topologies, and the trade-offs between latency vs.
throughput, in section 2. We have also covered this question within
the context of routing, looking at the decisions to be made there, in
section 3.

Taking these sections into account we can safely conclude the answer:
It depends on the type of traffic you are dealing with. However, in
a public cloud data centre we cannot usually make such assumptions
about the traffic type since this is at the behest of the tenants.

Sub-Question 2: How is the allocation of networking resources kept fair and
efficient?

We’ve seen, in section 5, that there are many different approaches to
dividing network resources fairly.

The more specific information one has about the nature of the traf-
fic, the fairer and more efficient the allocation can be. If not much
is known beforehand, then the best approach is to divide as evenly as
possible in a best-effort approach.

Sub-Question 3: How have topologies developed to fit the problems faced
by cloud data centres, what are the trade-offs made?

This question has – of course – been extensively covered in section 2,
where topologies of networks are discussed. We have also seen this
topic come up in section 4, where the placement of VNFs is concerned.

In the recent years, there is a move towards regions and optical net-
working techniques, for which the topologies have to be adapted.
There have been multiple possible approaches proposed, each choos-
ing different priorities.

Sub-Question 4: What methodologies have been developed to (dynamically)
adapt to changing demands?

The methodologies covered in this paper show the ability to leverage
the advantages of SDN in order to dynamically adapt to changing cir-
cumstances, we’ve seen this particularly in section 4. The challenge
here has been to keep the layout of the components as efficient as pos-
sible, while constantly changing. Virtual Network Functions can be
re-placed or scaled in order to better suit specific traffic requirements.
Traffic quotas can be dynamically adapted to ensure all parties get a
fair share, while maximally utilising available resources, as described
in section 5.

Main Question: Which novel technologies are being developed to underpin
the massive scaling of public cloud infrastructure?

We highlighted interesting and novel technologies in this paper that
have been developed and allow new levels of optimisation in the cloud
data-centre. These new techniques can empower the cloud data centre
to be utilised even more optimally, supporting cloud providers as they
face scaling challenges.
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An important pattern we have seen is that, the more is known about
the traffic, the more the network can be optimised for that traffic’s
performance.
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Deep Contrastive Learning For Object Detection– A Review

Rohit Yadav and Chrysoula-Maria Nampouri

Abstract—Over the past few years, contrastive self-supervised learning has shown remarkable results in many vision tasks including
object detection in-the-wild. The establishment of many pre-trained models and datasets has encouraged researchers to modify and
fine-tune existing methods and propose novel solutions on diverse downstream tasks without relying on explicit external annotation.
In fact, learning efficient visual representations from unlabeled data is a topic of continual research in computer vision, considering the
cost of annotation and the sensitivity of models to its quality. Till now, most architectures utilize convolutional neural networks at the
patch level of images even for pixel-level labeling problems. However, there is a recent trend of developing self-supervised learning
methods that directly work at the level of pixels and incorporate local features representations. This has been shown to bridge the
gap between pre-training and pixel-level prediction, achieving state-of-the-art results on target dense prediction tasks. Inspired by
recent advances in local feature contrastive learning, we frame our investigation to some of the most prominent deep self-supervised
models available today for object detection. Specifically, we will focus on architectures that are pre-trained on benchmark datasets
and optimized by a contrastive loss function. The aim is to provide a literature review of the current state-of-the-art, to compare
and contrast the performance of models specifically designed for dense prediction and to assess their suitability according to their
strengths and weaknesses. During our analysis, we will quantitatively and qualitatively consider methods in terms of accuracy, time
efficiency, and complexity.

Index Terms— Object detection, self-supervised learning, dense contrastive learning, contrastive loss, global features representation,
local features representation.

1 INTRODUCTION

Object detection has been a key area of research for decades due to its
potential applications in various fields including face recognition, ac-
tivity recognition, object tracking, and video object co-segmentation.
The straightforward solution relies on fully-supervised learning on la-
beled target dense datasets. However, annotating images is an im-
mensely time-consuming and expensive process, and in some do-
mains, is still even infeasible due to the absence of relative informa-
tion. To circumvent the need for explicit supervision, self-supervised
approach has aroused extensive attention from researchers in recent
years. Specifically, unsupervised pre-training on ImageNet [3] is the
dominant choice, where models are pre-trained to acquire global fea-
ture representations that can be then transferred to downstream tasks.
Nonetheless, the gap between image classification pre-training and tar-
get dense prediction tasks (e.g., object detection) is substantial. Con-
trastive learning showcase a promising alternative by learning proper
visual representations directly at the level of pixels (or local features).

This study aims to provide a review analysis of the deep contrastive
learning techniques for object detection. Since the field is still emerg-
ing, we focus on three out of the most prominent methods up to
now, namely DenseCL [22], DetCo [24], and deep contrast learning
(DCL) [12]. The reason for choosing these specific algorithms is that
DetCo and DenseCL rely on the same experimental setup, allowing
fair comparisons, while all three operate in the pixel space and achieve
state-of-the-art results at certain detection objectives. Our goal is to
provide answers to the following questions: (1) Do these dense meth-
ods outperform the earlier global contrastive approaches in object de-
tection? (2) Do they perform better than their supervised counterparts?
(3) Are they adaptable to other end-tasks?

During our analysis, the proposed methods are considered quanti-
tatively, by providing a clear view of the accuracy improvements and
efficiency, as well as qualitatively with respect to visualization results
and model’s complexity. In order to ensure consistency of our study’s
contribution, the results obtained from these methods are judged tak-
ing into account their experimental setup and baseline counterparts.

• Rohit Yadav is with University of Groningen, E-mail:
r.yadav.2@student.rug.nl.

• Chrysoula-Maria Nampouri is with University of Groningen, E-mail:
c.m.nampouri@student.rug.nl .

The rest of this paper is structured as follows: Section 2 presents the
related work on contrastive learning. Section 3 introduces the common
contrastive learning pipeline for global representation learning. Sec-
tion 4 provides an overview of the state-of-the-art techniques for dense
prediction tasks. This is followed by their visual results in Section 5
and a detailed comparative analysis in Section 6. Finally, Section 7
summarizes the key aspects of our work and concludes the paper.

2 RELATED WORK

In the last decade, self-supervised learning has witnessed remarkable
progress in learning representations from unlabeled data in two direc-
tions: generative modeling and contrastive learning. The former aim
at learning representations through modeling density and is typically
relying on either auto-encoding of images or adversarial learning [6].

In contrast, contrastive learning is a discriminative approach that
produces impressive transferable visual representations by learning to
be invariant to different augmentation compositions. Specifically, the
main idea is to pull representations of different views of the same im-
age (positive pairs) close and push representations of views of dif-
ferent images (negative pairs) apart. The breakthrough approach is
SimCLR [1] which is trained to maximize the agreement between dif-
ferently augmented views of the same image while introducing a non-
linear projection of representations to the space where contrastive loss
is applied. One severe drawback of this method is that it requires large
batch sizes to guarantee a sufficient number of negative pairs during
training. Following that, He et al. (2020) and Chen et al. (2020)
proposed Momentum Contrast (MoCo) [7] and MoCo-v2 [2] respec-
tively that restrain computational requirements by using a large mem-
ory bank of samples for computing the contrastive loss.

Earlier methods rely on many sorts of pretext tasks to learn visual
representations and eventually transfer them to downstream tasks [19,
25, 17, 10, 5]. Nonetheless, most of them are specifically designed for
learning global features for images, thus neglecting pixel-wise tasks
like object detection. Recent studies address this issue and propose
methods that directly work at the level of pixels achieving state-of-
the-art results in dense prediction tasks [22, 24].

Even further, saliency detection has recently attracted great inter-
est due to its powerful ability to highlight the most noticeable ob-
ject regions in an image. The multi-context deep learning framework
(MC) [26] is one of the first methods that incorporate both global and
local features. Inspired by that, Li et al. (2015) proposed MDF [11]
that adopts a refinement model for the better spatial coherence of the
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Fig. 1. DenseCL architecture. (Left) The global contrastive loss is computed between the global feature vectors outputted by the global projection
head. (Right) The dense contrastive loss is computed between the dense feature vectors outputted by the dense projection head, at the level of
local features. Two augmented views xq and xk can be encoded by the same encoder or different ones. Image taken from [22].

extracted multi-scale features. The same authors in 2016 presented an
improved version of MDF called DCL [12] that discovers high-level
visual contrast in an end-to-end mode.

3 CONTRASTIVE LEARNING PIPELINE

The state-of-the-art (SOTA) contrastive learning pipeline relies on
learning global representations of features and consists of four major
components: data augmentation, backbone network, projection head
and contrastive loss.
Pre-training pipeline. Given an unlabeled set of images, different
views for each image are generated by applying data augmentations
techniques. Two augmented views of the same image are called pos-
itive pairs, while views of different images are negative pairs. Each
pair of views is initially fed into a backbone network, e.g., ResNet [9]
or any other convolutional neural network, to create global vector rep-
resentations for the whole views. These representations are then for-
warded to a set of dense layers called projection head and transformed
into a non-linear space. The final goal is to generate similar repre-
sentations for the positive pairs by optimizing a pairwise contrastive
(dis)similarity loss at the level of global features. The overall pipeline
from images to global representations is illustrated in Figure 1 (Left).
Global contrastive loss. Following the principle of MoCo-v2, con-
trastive learning can be considered as a matching queries to keys pro-
cess. To be more precise, for each encoded query q, a set of key rep-
resentations {k0,k1, ...} are encoded by a (different) moving average
network (momentum encoder) that maintains their consistency on ev-
ery training update. Among these keys, there is one positive key k+
that matches query q and encodes different views of the same image.
The rest keys are treated as negative and encode views of different im-
ages. Then, InfoNCE [18] contrastive loss, with a temperature hyper-
parameter τ as in [23], is employed to pull q close to k+ while pushing
it away from the rest negative keys k−:

Lq =− log
exp(q · k+/τ)

∑k− exp(q · k−/τ)
(1)

Fine-tuning pipeline. Once the pre-training process is complete, the
encoded feature representations are used as input to the so-called end-
task network. End-task networks take the input embedding and convert
it into the desired target task output. In this study, we focus on object
detection, and thus, detector networks [20, 8, 14] are assumed.

4 METHODS

The paradigm for learning global features has been discussed in Sec-
tion 3. This section presents the three cutting-edge architectures tai-
lored for dense prediction tasks: DenseCL, DetCo and DCL.

4.1 DenseCL Framework
DenseCL is a novel self-supervised contrastive learning framework
customized for dense prediction tasks [22]. It follows the general
pipeline presented in Section 3, with the core differences lying in the
encoder and loss function.

4.1.1 DenseCL Encoder Pipeline

Features extracted by backbone networks are forwarded to a sophisti-
cated projection head scheme consisting of two complementary sub-
heads; one global projection head and one dense projection head. The
global projection head can be instantiated as any of the existing pro-
jection heads that generate global feature representations of views.

To generate dense feature vectors as well, Wang et al. (2021) pro-
posed an additional projection head that takes the same input with the
global but outputs a dense format instead —Figure 1 (Right). Specifi-
cally, the global pooling layer is removed from the backbone network,
while the multi-layer perceptron is replaced by the identical 1×1 con-
volution layers with ReLu activation function in between. The number
of parameters in both projection heads is the same.

The second main contribution of this method concerns the learning
process. In fact, the backbone and the two parallel projection heads are
end-to-end trained by optimizing a pairwise contrastive (dis)similarity
loss not only at the level of global features but also of the local features.

4.1.2 Dense Contrastive Learning

Dense contrastive learning extends the conventional InfoNCE loss de-
scribed in Section 3 by incorporating the loss of both global and local
representations. Global contrastive loss term derives from the output
of global projection head and is given by Equation 1.

Regarding the local contrastive learning term, a set of encoded keys
{t0, t1, ...} is defined for each encoded query r. However, in this case,
each query represents a local part of the view generated by the dense
projection head. Then, each negative key t− is the pooled feature vec-
tor of a view from a different image. The positive key t+ is another
view of the same image and is assigned by taking into account its vi-
sual correspondence across views (described in Section 4.1.3). Even-
tually, the dense contrastive loss is derived as follows:

Lr =
1
S2 ∑

s
− log

exp(rs · ts
+/τ)

exp(rs · ts
+)+∑ts

− exp(rs · ts
−/τ)

, (2)

where rs denotes the sth out of the S2 feature vectors generated by
the dense projection head and corresponds to a local part of a view.
Overall, the total loss of DenseCL is given by:

L = (1−λ )Lq +λLr, (3)

where λ is a hyper-parameter tuned to balance the contribution of
global and local loss. Note that λ = 0 corresponds to MoCo-v2.

4.1.3 Dense Correspondence across Views

To find the positive key t+ of an encoded query q, the correspondence
across views is extracted. Specifically, a matching is built between
the dense feature vectors of two views, i.e., Θ1 and Θ2, using the cor-
responding backbone feature maps F1 and F2; From F1 and F2, the
cosine similarity matrix is calculated. Then, for all the feature vectors
of Θ1, the correspondence with Θ2 is obtained by applying an argmax
operator that indicates the maximum similarity.
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4.2 DetCo Framework

Up to now, most self-supervised contrastive learning algorithms were
end-task oriented. In contrast, DetCo [24] is a more universal con-
trastive learning framework that demonstrates superior performance
on dense prediction tasks while maintaining competitive image clas-
sification transfer accuracy. This is achieved by designing (1) multi-
level supervision that keeps features at multiple stages of the back-
bone network discriminative, (2) global and local contrastive learning
to mutually enhance global and local representations. The core ar-
chitecture of DetCo is mainly based on MoCo-v2 meaning that the
different augmented views of an input image are trained by different
encoders, namely encoderq and its momentum-updated encoderk. The
overall pipeline is depicted in Figure 2.

Fig. 2. DetCo architecture. Besides the global views, DetCo adds two
additional local-patch sets for input, building contrastive loss across both
the global and local views. Representation learning is ultimately de-
ployed through multi-level supervision. Image taken from [24].

4.2.1 Multi-level Supervision

The first main modification of this method relies on the way features
are extracted; while most models reach the final level of a backbone
network to learn a proper visual representation, DetCo yields features
from four intermediate stages.

To be more precise, given an input image I ∈ RH×W×3 and
two augmented views Iq and Ik of this image, a standard back-
bone network is fed with each of the views and extracts features
{ f2, f3, f4, f5}, where fi is the feature vector from the ith stage. The
obtained multi-level backbone features are then forwarded to four
projection heads respectively, from which four global representations
{q/kg

2,q/kg
3,q/kg

4,q/kg
5} = encoderq/k(Iq/k) derive. Then, the con-

trastive loss function of DetCo extends the conventional InfoNCE to
multi-level contrastive losses for multi-stage features, formulated as:

Lg↔g(Iq, Ik) =
4

∑
i=1

wi ·L i
g↔g, (4)

where w is the loss weight and L i
g↔g indicates the global↔global

contrastive loss at the ith stage as derived from Equation 1.

4.2.2 Global and Local Contrastive Learning

The idea of employing multi-level feature representations for global
features, as described in Section 4.2.1, can also be adopted in local
features representation learning.

Specifically, given an input image I ∈ RH×W×3, nine local patches
{p1, p2, ..., p9} are generated from each of the two different views Pq
and Pk and pass through a backbone network. At each stage, nine
feature vectors Fp = { fp1, fp2, ..., fp9} are extracted and concatenated
to be fed into a projection head. The output is the final representation
q/kl at a certain stage. Then, the local contrastive loss is evaluated in
terms of both global↔local and local↔local losses as follows:

Lg↔l(Ik,Pq) =− log
exp(ql · kg

+/τ)
∑K

i=0 exp(ql · kg
i /τ)

(5)

Ll↔l(Pq,Pk) =− log
exp(ql · kl

+/τ)
∑K

i=0 exp(ql · kl
i/τ)

(6)

Eventually, the complete loss function of DetCo derives from:

L (Iq, Ik,Pq,Pk) =
4

∑
i=1

wi · (L i
g↔g +L i

l↔l +L i
g↔l) (7)

4.3 Deep Contrast Learning
DCL is an end-to-end deep network tailored for salient object detec-
tion [12]. It consists of two parallel streams, which are a multi-scale
fully convolution network (MS-FCN) and a segment-level saliency
stream, as shown in Figure 3.

Fig. 3. Streams of the DCL network. Image taken from [12].

4.3.1 Multi-Scale Fully Convolution Network
The fully-convolution stream aims to create a mapping from an in-
put image to a pixel-level saliency map. Li et al. (2016) employ the
VGG16 network [21] as the pre-trained model, since after certain mod-
ifications it proves to be (1) deep enough to produce multi-level fea-
tures, and (2) able to infer semantic properties of the objects as well as
capture subtle visual contrast.

To be more precise, the first main modification relies on replac-
ing all the fully-connected layers of VGG16 into 1× 1 convolution
ones. However, this yields a very sparse prediction map with a 32-
pixel stride. To overcome this issue, sub-sampling is skipped in the
last two pooling layers, thus maintaining an 8-pixel stride.

The second contribution concerns the generation of multi-scale
saliency maps. Specifically, after each pooling layer (four), the cor-
responding extracted feature map is forwarded to three external con-
volution layers. The four feature maps derived from these layers are
then stacked along with the last true output map of VGG16 (5 chan-
nels) and fed into a final convolution layer with 1×1 kernel and single
channel. The generated output is called resized saliency map S1. The
entire architecture of the modified VGG16 is presented in Figure 4.

4.3.2 Segment-Level Saliency
In most cases, salient objects have a rather irregular shape. The
saliency map based only on MS-FCN possesses discontinuities and
thus, may fail to cover their fine boundaries. To overcome this issue,
DCL employs an additional segment-wise pooling stream that models
visual contrast between regions. In this case, the input image is ini-
tially divided into segments. For each segment, the output generated
from the true convolution layer (Conv5 3) of MS-FCN is masked to
either ’1’ or ’0’ labels depending on whether the pixels are within the
segment or not. Since segments of Conv5 3 have variable size, spa-
tial pooling is then applied within a number of sub-cells of the general
bounding box of each segment. Finally, to obtain segment-level visual
contrast, three spatially accumulated feature vectors are deployed, i.e.,
boundary box of current segment, boundary box of neighbouring seg-
ment, and the saliency map from Conv5 3. These three feature vectors
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Fig. 4. The architecture of MS-FCN. Image taken from [12].

are further fed to three layers, as shown in Figure 3, with the first two
being fully connected and the last being the output layer that produces
the saliency map S2.

4.3.3 Spatial Coherence
Given the two output saliency maps S1 and S2 from MS-FCN and
segment-level respectively, one option is to merely combine them
which results in DCL. However, in this way, we miss to check if the
saliency score for the current segment is consistent with its neighbors
or not. Since both streams S1 and S2 give saliency scores without con-
sidering spatial coherence, this needs to be refined for better contour
localization. Thus, a fully connected conditional random field (CRF)
is applied to minimize the energy function E(L):

E(L) =−∑
i

logP(li)+∑
i, j

θi j(li, l j), (8)

where L represents a binary label (salient – non-salient), P(li) is the
probability of a pixel xi having the label li, and θi j is the pairwise po-
tential. The advantage of CRF output (DCL+) is that it not only pro-
duces smooth results with pairwise accuracy but also preserves salient
object contours, which up to now were a trade-off configuration.

5 RESULTS

Deep self-supervised contrastive learning algorithms for object detec-
tion have been presented in Section 4. Table 1 gives the summary of
this review study.

DenseCL framework is used mainly for dense prediction tasks. The
pre-training experiments were conducted on two large-scale datasets,
designed for different end-tasks: ImageNet [3], which is the bench-
mark for image recognition tasks, and MS COCO [15] which is for
object detection. In the fine-tuning stage, PASCAL-VOC [4] and MS
COCO were employed to fine-tune popular detectors. Several deci-
sions influence the quality of the result, i.e., selection of augmentation
techniques, encoder configuration, detector configuration (e.g., Faster
R-CNN, Mask R-CNN), dataset configuration, training process, and
hyper-parameters (e.g., weight factor λ , temperature τ). The paper
proposed certain settings and used the average precision (AP) as an
evaluation metric, summarizing the precision-recall curve. In fact,
DenseCL-200ep (200 epochs pre-training on ImageNet) managed to
achieve 58.7 and 40.3 AP on the VOC and COCO datasets respec-
tively, outperforming MoCo-v2. The result of visual correspondence
achieved by DenseCL-200ep is shown in Figure 5 against MoCo-v2.

DetCo framework was pre-trained on ImageNet and evaluated on
PASCAL VOC and COCO datasets using the AP metric. Again,

Fig. 5. Visualization of dense correspondence across two views of the
same image. DenseCL-200ep extracts more high-similarity matches
(≥ 0.9) than MoCo-v2. Image taken from [22].

Xie et al. (2021) experimented with various detectors (e.g., Faster
R-CNN detector, Mask R-CNN, RetinaNet) and parameter settings.
DetCo-800ep (800 epochs pre-training on ImageNet) established a
new SOTA, achieving 58.2 and 46.5 AP on VOC and COCO respec-
tively. The result of this method is demonstrated in Figure 6 using
once again MoCo-v2 as the baseline model.

Fig. 6. Attention maps generated by DetCo and MoCo-v2. DetCo has a
wider localization spectrum than MoCo-v2. Image taken from [24].

DCL evaluates the performance on the basis of datasets tailored for
salient object detection task: MSRA-B [16], PASCAL-S [13], HKU-
IS [11]. The MSRA-B is a pixel-accurate dataset of 5,000 images
with mainly single salient objects, while HKU-IS consists of 4,447
images of either low contrast or multiple salient objects. PASCAL-S is
a subset of PASCAL VOC containing 850 natural images. To evaluate
the performance of DCL, the maximum F-measure (maxF) is used that
corresponds to the harmonic mean of precision and recall. Figure 7
illustrates some indicative results of DCL against SOTA methods.

Fig. 7. Visual comparison of saliency maps generated from DCL and
DCL+ over SOTA methods. Image taken from [12].
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Paper Framework Pre-training Datasets Fine-tuning Datasets Evaluation Outcome

Wand et al., 2020 DenseCL ImageNet / COCO PASCAL VOC / COCO / ImageNet AP
New SOTA in

object detection

Xie et al., 2021 DetCo ImageNet PASCAL VOC / COCO / ImageNet AP
Golden mean btw.

image cls. &
object detection

Li et al., 2016 DCL ImageNet MSRA-B / HKU-IS / PASCAL-S maxF / MAE
New SOTA in

salient detection

Table 1. Summary. DenseCL outperforms SOTA methods (i.e., both self-supervised and supervised pre-training) in object detection; DetCo is
designed for object detection, but is also robust and competitive on image classification; DCL established a new SOTA in salient object detection.

6 COMPARISON AND DISCUSSION

In this section, we discuss the methods presented in Section 4 from
a quantitatively and qualitatively point of view using their respective
results. These methods are compared with respect to their accuracy
performance, time efficiency, visualization results, and complexity.

6.1 Quantitative comparison
Initially, we quantitatively compare the aforementioned deep con-
trastive learning methods in terms of accuracy and time efficiency.

6.1.1 Accuracy
The performance of DenseCL is evaluated in terms of AP improve-
ment over the baseline MoCo-v2 and supervised counterpart. Specif-
ically in Table 2, we notice that DenseCL outperforms MoCo-v2 in
object detection regardless of the nature of the pre-trained dataset.
However, the increase in AP is higher when the pre-training dataset is
similar to the downstream’s one, which confirms that DenseCL adapts
better to dense datasets, like COCO, than MoCo-v2. In addition, the
performance between DenseCL and supervised pre-training on Ima-
geNet is compared, proving that a self-supervised model might be in-
deed a better solution in many scenarios. Finally, when dealing with
image-level end-tasks, i.e., image classification, MoCo-v2 outper-
forms DenseCL for 3.9% AP on ImageNet, indicating that DenseCL
is not that adaptable to other end-tasks beyond detection.

Pre-training
model

MoCo-v2 Super. IN
VOC COCO IN Cls. VOC COCO

DenseCL IN +1.7% +0.5% −3.9% +4.5% +0.6%
DenseCL CC +2.0% +1.1% N/A +2.5% -0.1%

Table 2. DenseCL AP-change over MoCo-v2 and supervised coun-
terpart. ’IN’ and ’CC’ indicate the pre-training datasets ImageNet and
COCO respectively. Both methods are pre-trained either on ImageNet
for 200 training epochs or on COCO for 800 epochs. Faster R-CNN de-
tector is utilized. ’IN Cls.’ stands for ImageNet classification end-task.

Likewise, the performance of DetCo-800ep is evaluated in terms
of AP improvement over the baseline MoCo-v2 and supervised coun-
terpart. The results after fine-tuning and testing on PASCAL VOC
dataset are presented in Table 3 (3rdcolumn). In fact, DetCo-800ep
outperforms both MoCo-v2 and supervised pre-training but lags in
performance over DenseCL-200ep. Moreover, in the 4th column of
this table, we compare the performance of DetCo-800ep with the best
performance achieved on COCO by the same methods, while in the
5th, the performance of DetCo on ImageNet classification is shown.

Overall, DenseCL may perform better on object detection, but to
do so sacrifices classification performance. In contrast, DetCo is more
adaptable to different end-tasks and seems to have achieved the golden
mean between them. Surprisingly, both self-supervised methods im-
prove by far the final detection accuracy over supervised pre-training,
indicating that working on unlabeled data can prove valuable.

DCL and DCL+ results are also compared with their SOTA meth-
ods on salience detection, but in this study, only the two methods that

Method Epochs PASCAL VOC COCO IN Cls.
super. IN 90 +4.7% N/A –
super. IN 200 +4.0% +1.5% –

MoCo-v2 IN 200 +1.2% +6.7% +1.1%
MoCo-v2 IN 800 +0.8% N/A N/A
DenseCL IN 200 −0.5% +6.2% 5.0%

Table 3. DetCo-800ep AP-change over MoCo-v2, supervised pre-
training, and DenseCL-200ep. For the PASCAL VOC all methods are
pre-trained on ImageNet and tested on VOC07+12 using Faster R-CNN
detector. For COCO object detection, different settings were chosen for
each method. ’IN Cls.’ stands for ImageNet classification end-task.

leverage deep learning are considered: MC [26] and MDF [11]. Ta-
ble 4 illustrates the percentage increase of the maxF measure when
DCL and DCL+ are compared with these methods. It can be clearly
seen that DCL itself improves the SOTA especially in datasets like
PASCAL-S. In addition, using the CRF component in the DCL+ vari-
ation improves even further the results.

Fine-tuning datasets
DCL DCL+

MC MDF MC MDF
MSR-B +1.2% +2.2% +2.5% +3.5%
HKU-IS +10.5% +3.6% +13.3% +5.0%

PASCAL-S +10.1% +6.7% +11.1% +7.6%

Table 4. DCL and DCL+ percentage change of maxF over MC and MDF.

6.1.2 Efficiency

Next, we consider the efficiency of the deep contrastive learning meth-
ods with respect to their training time.

For DenseCL, each pre-training model is optimized on 8 NVIDIA
TESLA V100 GPUs. A model pre-trained on ImageNet for 200
epochs needs approximately 55 hours, whereas on COCO for 800 iter-
ations around 20 hours. According to Wang et al. (2021), the overhead
compared to MoCo-v2 is less than 1% in both cases. Therefore, con-
sidering that the former works on the level of local features, whereas
the latter on the level of global features, DenseCL is negligible slower
taking into account its superior transfer performance.

DetCo utilizes 8 NVIDIA TESLA V100 GPUs as well. Although
training time is not mentioned for this method, it is noted that with
only 100 pre-training epochs, DetCo achieves almost the same perfor-
mance as MoCo-v2 at 800 epochs, proving its high learning capability.
However, due to its complex architecture, discussed in Section 6.2.2,
we certainly expect more training time per epoch.

Lastly, DCL takes 25 hours to train on the MSRA-B dataset us-
ing a single NVIDIA Titan Black GPU and a 3.4GHz Intel processor.
Then, the trained model needs 1.5 seconds to detect salient objects in
a testing image of 400× 300 pixels, while DCL+ only 2.3 seconds.
In contrast, MC with its unified multi-context model takes 31 hours to
train and 1.6 seconds to generate the output salient map under similar
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computing power, while MDF needs 20 hours of training and 8 sec-
onds for detection. In fact, DCL is significantly more efficient than
the SOTA methods and this can be easily perceived considering that
earlier methods process overlapped patches for the same image.

6.2 Qualitative comparison
Next, we qualitatively compare the presented deep contrastive learning
methods in terms of visualization results and models complexity.

6.2.1 Visualization Results
In Figure 5, the high-similarity matches between two views of the
same image are visualized. It can be clearly seen that DenseCL is a
highly confident method that gives strong responses and extracts more
matches than its baseline MoCo-v2 even under a high threshold value.
Although the final visual detection of this method is not provided, we
can safely conclude that this framework is capable of realizing more
objects compared to the baseline model.

In addition, Figure 6 demonstrates the attention map of DetCo
and MoCo-v2. In fact, DetCo can activate larger object regions than
MoCo-v2, and its attention map seems to be more accurate in objects
boundaries, thus proving its stronger localization capability.

Finally, Figure 7 demonstrates through different input images how
DCL outperforms MC and MDF in terms of incomplete (first two
rows), disconnected (middle two rows), and low contrast (last two
rows) salient objects. DCL+ improves even further the result, bringing
it close to the ground truth.

6.2.2 Complexity
As we already discussed, common contrastive learning methods ac-
quire global feature representations by processing whole images
through one projection head and optimizing one global loss function.

DenseCL aims at incorporating both global and local representa-
tions by using two projection heads. The dense projection head has
the same number of parameters as the global head, resulting in dou-
ble learnable parameters. Moreover, the output from these heads is
not only a global feature vector for each view but also dense feature
vectors, thus increasing significantly the complexity of the model. All
these vectors are finally, used in pairwise cosine similarity operations.
However, according to Wang et al. (2021), by using efficient matrix
operations, the introduced latency overhead tends to be negligible.

The complexity of the DCL method can be attributed to two key de-
sign parts of the architecture: (1) The modification of VGG16, which
results in multi-level feature maps fed again into additional layers of
convolution to attain multi-scale saliency maps —instead of one; (2)
The segment-level saliency stream, where the generated segment-level
visual contrast map requires three feature maps for each segment.

The most complex method is DetCo. As described in Section 4.2,
DetCo pipeline consists of several computations, considering two
views at the global level, 18 sub-views at the local level, multi-scale
feature vectors (i.e., four) for each (sub)-view in both global and local
representations, and three contrastive loss functions.

7 CONCLUSION

In this work, we presented three deep contrastive learning methods de-
signed for object detection and saliency detection: DenseCL, DetCo,
and DCL. DenseCL outperforms both self-supervised baseline and su-
pervised pre-training on object detection but it is not adaptable to other
end-tasks. DetCo manages to find the golden mean between image-
level and dense prediction tasks by learning more universal represen-
tations. Finally, experimental results on DCL demonstrated that it can
significantly improve the SOTA methods in salient object detection.

All in all, self-supervised learning seems to break new ground in
computer vision by learning efficient representations without relying
on explicit annotation and by incorporating local features as well.
Even further, we firmly believe that learning universal representations
able to adapt well to various tasks is now a laudable goal. One pos-
sible extension to this study would be to provide an analysis of these
methods in respect to various end-tasks and quantify the exact level of
sensitivity and adaptability of the contrastive learning approach.
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Why You Should Use A Multi-GPU Platform

Marios Souroulla, Anton Bredenbals, MSc, FSE

Abstract— In the last couple of decades, sophisticated algorithms have been developed to solve various problems, like optimization
tasks, machine learning, and object detection. However, most of these algorithms were developed to run sequentially on a CPU, and
despite their impressive performance, they take a long time to execute. A method to achieve a boost in the performance would make
them suitable for real-time applications, or in other cases getting results in reasonable times.
This is where the papers we are reviewing come in. They propose multi-GPU (Graphic Processing Unit) parallelizations of differ-
ent algorithms, namely k -NN, the Viola-Jones algorithm, and a linear equation solver for topology optimization. We introduce the
methodologies of the papers, their respective optimization tricks and their impact. Further, we will work out the different speed-ups
that are achieved and set them into perspective of each other with regards to the different experimental setups. Finally we asses,
whether multi-GPU computing is a viable option to deal with the aforementioned problems. We come to the conclusion that multi-GPU
computing is a great option in situations, where time is of importance. Compared to CPU implementations, speed-ups are claimed to
be between 4x and 800x, and the scaling from one to multiple GPUs also works efficiently in most cases. Although one need to keep
the more complex implementation and optimization with its associated costs in mind.

Index Terms—Parallelization, GPU, Multi-GPU, Optimization, Time-sensitivity.

1 INTRODUCTION

Many parts of modern human life, like driving, shopping or even most
tasks we do at our workplaces, especially in science, cannot be imag-
ined without the support of various computational systems that make
our lives easier. These systems are backed by strong algorithms that
get increasingly complex and thus require longer computation times.
But many of the applications are time-sensitive, because end-users are
waiting to access the results, or even because real-time applications,
like autonomous driving rely on them. Further, the volume of data that
needs to be processed increases at high rates, for example the data-
sets for scientific studies or the data that is taken into account when
modifying algorithms behind your favorite online shop.

The engineering of faster CPUs cannot keep up with this, so it is
critical to find other ways to increase the algorithms’ performance. A
promising approach has been to parallelize the algorithms when pos-
sible. This allows multiple cores to make simultaneous computations
and thus allows for multi-threading on the CPU or even GPU.

Multi-threading on a CPU, often referred to as multi-core, is re-
stricted to using a few (usually 4-16) computing cores. These cores
are quite powerful on their own and versatile, as they stay efficient
even when ”working” on completely different threads. A GPU is a
many-core architecture, consisting of a couple of hundred to a couple
of thousand computing cores. An individual core is not as powerful,
but the sheer number of cores makes up for that. Many-core architec-
tures are more suited to computations that need to be performed on a
huge number of individual elements, i.e. pixels in an image (for exam-
ple in real-time graphics) or in general big data sets of different sorts.
A common disadvantage of GPU-implementations is the higher im-
plementation and optimization overhead that is inevitably associated
with them.

Now that these possibilities are well known and widely used, the
world has adapted these possibilities. But what is the next step? Data-
sets will not stop growing, real-time applications will get more com-
plex or more data-hungry. So what can we do if even the CPU or GPU
parallelized algorithms are too slow for our problem and we don’t have
one of these handy super-computers available? We say the answer is
probably multi-GPU computing.

• Marios Souroulla, E-mail: m.souroulla@student.rug.nl.
• Anton Bredenbals, E-mail: a.bredenbals@student.rug.nl.

This paper focuses on discussing multiple approaches on Multi-
GPU implementations for widely used algorithms. We will discuss if
the speed-ups that can be achieved by using multiple GPUs is signif-
icant enough to warrant the increased implementational overhead, the
costs associated with it and the additional required hardware. In the
process, we will also introduce the optimization tricks used. We are
also going to compare the different speed-ups achieved in the vastly
different experimental setups. In the following section, we will briefly
introduce each one of them. After that, the remainder of the paper
is organized as follows: Section 3 introduces the relevant papers in
more detail, by giving an overview over their respective methods, opti-
mization tricks and experimental setups, Section 4 provides the results
found by each of the researches. In Section 5, we will discuss the re-
sults of the different papers and point out their differences, and lastly,
Section 6 summarizes our comparison and suggests future research.

2 RELATED WORK

In 2015, Masek et al. [4] proposed a multi-GPU implementation of
the well-known k-Nearest Neighbor (k-NN) algorithm. According to
them, k-NN is a widely used and influential algorithm for classifi-
cation, especially in the field of data mining. The data used is of-
tentimes high dimensional and consists of many data points; these
properties make it well suited for many-core parallelization (in the
algorithm the data samples are parallelized). The main contribution
of the paper was a Java-based Multi-GPU implementation using the
OpenCL library, which achieves very substantial speed-ups on mod-
erate hardware when compared to a sequential CPU implementation.
In 2016, Masek et al. [5] added an implementation using the CUDA
API, which performs slightly better than the OpenCL implementation
in most tests.

In 2017, Trompouki et al. [6] proposed a hybrid multi-CPU and
multi-GPU implementation of the Viola-Jones algorithm [7] meant to
be used for real-time pedestrian detection for Advanced Driving As-
sistance Systems (ADAS). They focused on providing an open-source
Java implementation using the CUDA API, which meets the necessary
ISO safety standard ASIL-D and runs fast enough to meet the strict
requirements of volatile real-time situations.
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In 2021, Herrero-Pérez et al. [3] proposed a multi-GPU based ac-
celeration for Solid Isotropic Material Penalization (SIMP), a popular
iterative density-based topology optimization method. For these meth-
ods, a fine mesh resolution is indispensable for reaching an accurate
result. This leads to large linear systems of equations which make up
for the vast majority of the computation time. Exploiting the data lo-
cality of this method, the authors tried to tackle two problems at once:
the long computation times of these methods, which can reach well
into multiple days using an optimized CPU implementation, as well
as the limited available memory space on single systems and GPUs in
particular.

This paper will provide an overview of the mentioned papers and
compare these applications with respect to their corresponding speed-
ups and discuss the different optimization tricks they use. To do this,
we will also take the experimental setups into account and discuss their
impact on the speed-ups.

3 OVERVIEW OF METHODS

In this section, we describe the various methods proposed in the liter-
ature, as well as the tricks they used.

3.1 Multi–GPU Implementation of k -Nearest Neighbor Al-
gorithm

The first set of papers by Masek et al. [4],[5] focuses on an OpenCL
and CUDA implementation of the k-NN clustering algorithm. In short,
using k-NN, the label of a new point is the label of the majority of its
k nearest points. Figure 1 shows the principle of the k-NN algorithm
with an example. In that example, the star represents the new point
we want to classify, if we choose the parameter k to be 3, then the
new point is classified as ’red’ (because the majority of the 3 neigh-
bors is red), but if we choose k=7, it is classified as ’blue’. In the
naive brute-force implementation, the first step is to calculate all the
distances between the new point and all the other points. The second
step is to sort those distances, and the last step is to find the label of
the majority of the k points that have the lowest distance.

Fig. 1. The principle of the k-NN algorithm [5].

The algorithm is parallelized with respect to the training samples.
The main change of this implementation is that the distances are mutu-
ally compared during their computation, and the k lowest distances are
kept as the nearest neighbors. This change offers better memory usage
as we do not need to store the whole list, but instead store only the cur-
rent k nearest neighbors. Another trick the authors used to boost the
performance is the use of the float4 vector format to save every train-
ing and testing example. This vector format contains four float values
that are processed in one step. They also optimized the kernel by using
local memory. These modifications aim to reduce the run-time.

3.2 Multi-GPU Implementation of Viola-Jones Algorithm
The second paper by Trompouki et al. [6] introduces a Multi-GPU
and Multi-CPU implementation of real-time pedestrian detection that
is based on the Viola-Jones algorithm [7]. An efficient implementa-
tion of the Viola-Jones algorithm is of great importance, because this
will allow the use of it as a pedestrian-detection software in real-time
applications, such as car navigation systems.

The algorithm uses so-called Haar features in order to detect certain
patterns. The way these features are used is simple, each feature has
two types of regions, a black one and a white one, the output of a
feature is the sum of the pixels in the white region minus the sum
of the pixels in the black region. This value is then compared to a
(learned) threshold to get the final output of this feature.

Another important aspect of this algorithm is the classifier cascade,
where the features (or weighted sums of features) are put into a cas-
cade. The idea is to evaluate the next feature only if the previous fea-
tures indicated the pattern. Figure 2 shows an example of a classifier
cascade with K classifiers. Moreover, the algorithm transforms the im-
age to an intermediate representation called Integral Image in which
every pixel is replaced by the sum of pixels above and to the left. This
representation allows for a more efficient evaluation of the features.

Fig. 2. Classifier cascade example with K classifiers.

The basic steps of this algorithm are to first read the image, com-
pute the intermediate representation of different scales of the image
(integral images), and then for each scale to go through all the sub-
regions and apply the classifier cascade to detect the patterns you are
looking for. The multiple scales are essential because the object we
want to detect, pedestrians in this case, can be found in many different
sizes. Taking this into account, we need to examine various scales.
The corresponding Haar features need to be scaled as well.

The aforementioned paper [6] deploys a number of tricks to achieve
a performance boost. The first modification has to do with the classi-
fier cascade data structure. This structure is an array of stage classi-
fiers, each stage classifier consists of an array of classifiers, and each
classifier holds the set of features used for the detection. This structure
leads to numerous problems like dynamic memory allocation on GPU,
many small Direct-Memory-Access (DMA) transfers etc. The main
modification regarding this was to allocate a single memory chunk
and partition it internally, making sure that the smaller data structures
representing the classifier are in contiguous memory locations. As
a result, the entire classifier structure can be transferred to the GPU
memory in one transfer. For this to be possible, the pointers need to
be adjusted in order to be valid.

The next trick refers to the kernels. The image is scanned at var-
ious scales and each thread (all threads are launched in parallel) is
assigned a sub-window and calculates all the features regardless of a
fail in an earlier stage. This is done in order to avoid divergence among
the threads; further, all threads are synchronised before proceeding to
process detections.
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Moreover, the authors propose yet another trick that deals with the
sequence of the algorithm. In the sequential version of the algorithm,
each sub-region is evaluated for each scale, so in pseudocode this
translates into two nested loops, the outer loop goes through all the
scales, and the inner loop through all the sub-regions of the corre-
sponding scale. The modification the authors propose is to swap those
two loops to increase the level of parallelism, since the sub-regions are
much more than the scales and the algorithm is parallelized along its
outermost loop. Moreover, with this modification, neighboring threads
belonging in the same warp process sub-regions of the same size, be-
cause now they correspond to the same scale. This results in a more
efficient use of cache, providing a speed-up this way.

Apart from these tricks, the authors perform some optimizations to
better exploit a multi-CPU, multi-GPU architecture. The first such op-
timization is overlapping CPU and GPU operations. This is critical
because in the CUDA programming model the jobs are launched syn-
chronously, which means that the CPU waits for the GPU to finish its
task before continuing with the execution of the program. However, if
the jobs are instead launched asynchronously (which is also provided
by CUDA), the CPU is able to perform other time-consuming tasks
(e.g. read the next image) while it waits for the GPU to finish its task.

The next such optimization is overlapping GPU transfers and GPU
computations. Even though asynchronous jobs allow us to overlap
CPU and GPU operations as discussed above, the GPU computations
are still serialized. The optimization in this case is to overlap GPU
memory transfers and GPU computations. This is possible because
the CUDA device that the authors use is equipped with a DMA (Direct
Memory Access) controller. A CUDA stream represents a set of GPU
operations that are to be executed in the given order. Such operations
are executions of kernel functions or memory transfers from and to
GPU memory. The idea here is to use two different streams in the same
GPU device. While one stream is interacting with memory, the other
stream can execute the kernel function, and vice-versa. This way, the
authors achieved overlapping memory transfers and computation in a
single GPU unit.

Furthermore, the authors propose yet another optimization trick to
improve the CPU and GPU overlapping. The bottleneck currently is
the reading and writing of the image as we will see in the next sec-
tion. This is limiting the performance, since these operations are very
slow and also blocking. This means that the process has to wait for the
reading and writing to be done, in order to proceed. For the reading
of the image not much can be done, but the writing phase can cer-
tainly be addressed. The authors use asynchronous writing operations
which allow the process to make the I/O request and continue the ex-
ecution without needing to actually wait for the write to be complete.
A different approach would be to eliminate writes completely and not
save the image at all, just display the image to the user. This is more
efficient, however this is strictly application-dependent, since some
applications might require saving the images for legal purposes. Nev-
ertheless, by making the I/O requests asynchronous, a performance
boost is achieved.

The last optimization performed is getting to use two GPUs with
Message Passing Interface (MPI). For this to be possible, a second
CPU is needed which will be controlling the other GPU. The way this
was implemented, was to use MPI to create two separate processes
running on each of the GPUs, and assigning each process to a different
CPU, such that the CPU is the closest to the corresponding GPU. This
was done to make the memory transfers as efficient as possible. This
allows us to use multiple GPUs if they exist in the given architecture
(two, for the case of the authors), boosting the performance even more.

Figure 3 shows two GPUs working in parallel, each of them having
two streams that overlap memory operations and kernel computations.

Fig. 3. Two GPUs, each of them having two streams, working in parallel.

3.3 Multi-GPU Acceleration of Large-Scale Density-Based
Topology Optimization

The third paper examined by Herrero-Perez et al. [3] deals with
density-based topology optimization. Topology optimization is per-
formed to find the optimal distribution of material over a domain. This
is done by solving a binary programming problem in such a way that a
cost function is minimized while satisfying a number of constraints. A
specific category of topology optimization is density-based topology
optimization, which relaxes the integer-based problem with an interpo-
lation scheme that penalizes a continuous density variable. This paper
focuses on density-based topology optimization.

The main challenges in this area are the adaptation of proper algo-
rithms to exploit the computing power and limited device memory of
GPUs. In order to tackle these problems, the authors propose some
optimizations. The basic idea is to split the problem into smaller and
more easily manageable sub-problems which can be solved by differ-
ent computing units, GPUs in our case. The main aspect is to balance
the workload of each sub-problem and to minimize the communication
and data transfers between processes handling different sub-problems.

The first optimization refers to domain partitioning, which is essen-
tially the splitting of the whole domain into multiple non-overlapping
sub-domains. This splitting is carried out once during the initializa-
tion phase and is kept throughout the optimization process. It is done
by following some optimization criteria, more specifically the min-
imization of the number of surface elements in order to reduce the
communication between processes.

The second optimization deals with distributed solving of the op-
timization problem. Let us consider the following linear system of
equations:

Ax = b

where A is the coefficient matrix, x is the solution vector, and b is
the right-hand side. A parallel strategy would require splitting the co-
efficient matrix A along p processes dealing with its corresponding
sub-matrix of A. However, some parts of A need to be global and that
requires some level of communication between the processes. Taking
this into account, each process has an Aloc to store the local part of
A, and Arem to store the remote part of A which needs to be commu-
nicated with other processes. Moreover, each process calculates the
global columns required for itself and the other processes. This results
in the fact that each process knows where to send, and from where
to receive data, so the communication is performed directly between
processes. This also scales well and reduces the computational com-
plexity and memory requirements because the number of neighbors
and the amount of data exchanged is independent of the number p of
processes.
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The third optimization is the parallel computation of the objec-
tive function, the sensitivities, and the update of the solution vector
x. These are trivial, due to the fact that they only require data that
are stored locally. Hence, the computational unit responsible for a
sub-domain can perform those computations independently and in a
parallel fashion.

4 RESULTS

In this section, we provide the results and experimental setups as they
were presented in the corresponding papers.

For the first set of papers by Masek et al. [4], [5] which were about
a multi-GPU implementation of the k-NN algorithm, the author per-
formed their experiments using a CPU - Intel Core i7 3770@4.1GHz,
L3 cache - 8192kB, 4 GPU - 2x3072 cores, mem. 2x4096MB@6 GHz,
GPU - 1019 Mhz. The results they provide are shown in Tables 1 and
2. More specifically, Tables 1 and 2 show the speed-up obtained from
the OpenCL and CUDA implementation respectively, compared to the
single CPU approach. To put that into context, for the 4 million ele-
ments each having 10 attributes, it took the single core CPU over 31
hours to compute the result. Figure 4 shows the comparisons between
the speed-ups achieved by using the CUDA and OpenCL implemen-
tations using up to 4 GPUs for various numbers of input vectors and
number of attributes.

Table 1. Speed-ups vs single core CPU for k=5 neighbors, OpenCL.
1 GPU 2 GPU 3 GPU 4 GPU

0.4 million inputs, 1000 attr. 75 146 215 278
2 million inputs, 100 attr. 89 178 266 353
1 million inputs, 10 attr. 172 318 454 600
4 million inputs, 10 attr. 176 341 508 671
1 million inputs, 4 attr. 206 389 576 745

Table 2. Speed-ups vs single core CPU for k=5 neighbors, CUDA.

1 GPU 2 GPU 3 GPU 4 GPU
0.4 million inputs, 1000 attr. 77 151 221 290
2 million inputs, 100 attr. 92 184 275 359
1 million inputs, 10 attr. 146 289 434 548
4 million inputs, 10 attr. 150 301 450 578
1 million inputs, 4 attr. 240 465 675 882

Fig. 4. Comparisons between the speed-ups achieved by CUDA and
OpenCL for the k -NN algorithm

For the second paper, which is dealing with an efficient implemen-
tation of the Viola-Jones algorithm, all the experiments have been con-
ducted on a Quad Core AMD with 2 Dual-Core AMD Opteron Pro-
cessors 2222 @3GHz, with 1MB cache. The host is equipped with
two NVIDIA Tesla C2050 graphic cards. The results are provided in
Table 3 which shows the execution times for each of the different ver-
sions of the benchmark for 100 images. To put those numbers into
context, the 2 GPUs 2 CPUs, no write version achieves processing of
21.2 frames-per-second (fps). This is easily calculated by dividing the
given number by 100 (since it is for 100 images/frames) and then di-
viding 1 second with that. For example, if it takes 4.708 seconds for
100 images, then each image needs 0.04708 seconds, so each second
we can process 21.2 frames. The resolution of the tested images was
640x480, and they have been selected from well-established datasets
(Caltech [2] and INRIA [1]).

Table 3. Execution times of different versions for 100 images.

Setting Time(sec)
1 CPU, no write 6m 56.626s
1 GPU 1 CPU, no overlap, no write 10.335
1 GPU 1 CPU, no write 8.331
2 GPUs 2 CPUs, no write 4.708

1 CPU, write 7m 8.314s
1 GPU 1 CPU, no overlap, write 19.771
1 GPU 1 CPU, asynchronous, write 15.863
1 GPU 1 CPU, write 16.164
2 GPUs 2 CPUs, write 13.125

Regarding the third paper [3], which examined performance boosts
for density-based topology optimization, the authors used four com-
pute nodes with an Intel Xeon W 2145 CPU @ 3.70GHz and 96GB
of RAM. Also, two of the compute nodes use four low-cost AMD
Radeon VII graphics cards.

Moreover, the authors did not provide any details of the perfor-
mance of a ’naive’ implementation. However, they did provide the
execution time for the Finite Element Analysis (FEA) solving stage
which is the most time-consuming stage, since it takes 91%-99% of
the total time spent.

Fig. 5. Average Wall clock Time for 1 iteration, with 2 million elements
and a tolerance of 10−8.
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Figure 5 shows the average wall clock time for one iteration of the
topology optimization for one of their experiments (cantilever). The
authors used two million hexahedral finite elements with tolerance of
10−8.

Figure 6 shows the average wall clock time for one iteration of the
topology optimization for one of their experiments (cantilever). The
authors used one million hexahedral finite elements per GPU, with
tolerance of 10−6 and reusing the solution of the last iteration.

Fig. 6. Average Wall clock Time for 1 iteration and a tolerance of 10−6.

Furthermore, the authors reported a speed-up of a factor of around
3.9 when using a multi-core with 32 cores in four computing nodes,
versus many-core that uses 8 GPUs in two computing nodes. These
numbers are regarding the Cantilever experiment, using eight million
finite elements, with tolerance 10−8.

4.1 Hardware Specifications Overview
Table 4 shows the hardware specifications for all the papers included
in analysis.

Table 4. Hardware Specifications for all the papers.

Setup
Paper CPU GPU
K-NN [4],[5] Intel Core i7 3770 NVIDIA GeForce GTX 690

4 Cores 3072 Cores
4.1 GHz 1019 Mhz
8MB L3 Cache 1 MB L2 Cache
32 GB Memory 4GB Memory

Viola-Jones[6] AMD Opteron 2222 NVIDIA Tesla C2050
2 Cores 448 Cores
3.0 GHz 574 MHz
1 MB L3 Cache 768 L2 Cache
- 3 GB Memory

Topology Intel Xeon W 2145 AMD Radeon VII
Optimization[3] 8 Cores 3840 Cores

3.70 GHz 1750 MHz
11 MB L3 Cache 4 MB L2 Cache
96 GB Memory 16 GB Memory

5 DISCUSSION

In this section, we will compare and discuss the results and improve-
ments each of the previously introduced papers had to offer. This is
not going to be a straightforward comparison because the experimental
setups are immensely different. First of all, the papers by Masek et al.
[4], [5] are the only ones who provide a reference given by sequential
single core CPU computation. The other papers compare their find-
ings to a parallelized single or even multi-CPU version. The latter is
probably the most fitting comparison, as we want to discuss the im-
pact of multi-GPU implementations in particular and not the impact of
parallelization in the first place, as parallelization has been a staple for
a while now and proven to be essential in many tasks. We began this
chapter with these remarks, as they are essential to understanding the
rather large gaps in the achieved speed-ups between the papers.

Looking at Tables 1 and 2, we were able to see that for all the given
setups the use of multiple GPUs scaled almost linearly in efficiency,
just dropping barely below a relative speed-up of 3.5 for four GPUs
compared to one GPU in some cases of the OpenCL implementation.
That is over 83% effective speed-up per GPU. What is interesting to
note is that the factor of the speed-up mainly depends on the number
of attributes the data has. Comparing 1 and 4 million inputs, both
for OpenCL and CUDA, does not dramatically change the speed-up,
although the speed-ups consistently increase with more inputs. The
most probable cause for this is that the extra overhead for using GPUs
decreases, comparatively to the computing time. Different numbers of
attributes have a bigger impact, as we can see for both OpenCL and
CUDA the speed-ups more than halve going from 4 to 100 attributes,
even though the number of inputs is doubled.

It was interesting to see that OpenCL performed slightly worse in
all cases but the ones with 10 attributes, where it had an edge compared
to CUDA. This phenomenon can be seen in Figure 4 and is similar, no
matter the number of GPUs. This can be attributed mainly to the use
of the float4 data structure. Both the CUDA and the OpenCL imple-
mentations use it, but we assume that the CUDA compiler deals with
empty fields in the data structure less efficiently, which results in com-
paratively slower computation times in the cases where the attributes
are not divisible by 4. Furthermore, we can see that CUDA has the
biggest performance lead over OpenCL in all cases with 4 attributes
and just a minor but consistent lead with high attribute counts (100
and 1000). As mentioned before, these values were comparisons to
a sequential CPU implementation, but nonetheless they show hugely
impressive performance and great scalability to multiple GPUs. The
authors optimized the algorithm and the GPU memory allocation but
did not provide intermediate results, so we are unable to comment on
their impact independently.

Comparing the results from Masek et al. [5] to the results of
Trompouki et al. [6] in the second paper, on first glance the speed-ups
for the Viola-Jones algorithm looked slightly less impressive. Disre-
garding the writing times, the speed-up from one CPU to 2 CPUs and
2 GPUs was around 104x, while the others were able to push it up to a
465x speed-up in one case (with two GPUs). Comparing the no write
timings of the setup with 1 optimized GPU and CPU to 2 GPUs and
CPUs we saw a decent performance increase of above 75%. This led
us to believe that this approach can be scaled to more than two GPUs
with a similar performance gain. Now, although not clearly stated in
their paper, we believe that a parallelized CPU version on four cores
was used to base their comparison on. Taking that into account, the
results of the two papers look very similar in the achieved speed-ups.

Looking at the hardware of the two experiments, we found that
Masek et al. [5] used a more powerful computing setup regarding the
CPU and GPU, but the exact differences can not be considered here. In
their paper, Trompouki et al. [6] mention that they achieved the min-
imum required fps for safe pedestrian detection in autonomous cars,
complying with the ISO standard ASIL-D. Our first intuition led us
to believe that these were unrealistic settings for autonomous cars, as
having a multi GPU setup for just this one task is not really suitable for
mass production of affordable cars. Looking into the used hardware
however, this might be different now in 2022, as the technology used
in the experiments was rather low-end, even in 2017.

SC@RUG 2022 proceedings

55



In the experiments of Herrero-Pérez et al. [3], the scaling to multi-
ple GPUs does not work as well as in the other cases, as we can see in
Figure 5, with the 8 GPU setup being about twice as fast as the single
GPU setup. Looking at the 4 and 8 GPU setups in Figure 6, we can
see a constant time. In this particular case, the computing is split onto
two separate compute nodes, connected via highspeed ethernet. This
seems to scale perfectly, at least to two nodes, as the number of ele-
ments and the number of GPUs get doubled and the computing time
stays constant. Looking at the similar setup in Figure 5, we can see
a mere 25% speed-up. This difference can be attributed mainly to the
different tolerance levels, while the smaller amount of elements could
have had an impact, too.

Further, when they compare the GPU versions utilizing two GPUs
to their multi-core (and multi-CPU) version, it achieves a large speed-
up, while certainly being the more economic choice as well. In detail,
they achieve speed-ups between 4x and 8x in different experiments,
when using between two and eight GPUs compared to four 8-core
CPUs (32 cores). Unfortunately, we cannot infer if the used CPU ver-
sion scales better to multiple CPUs from their experiments as we do
not have references with only one CPU. Seeing how much better the
GPU version performs in comparison, this is definitely the most eco-
nomic approach, even though it might not scale as well as the other
algorithms into multiple GPUs.

Our analytics could not take the different hardware that was used
into account to a satisfactory level. Comparing the technical details
of the hardware, we can say with confidence that the CPU and GPU
used for the topology optimization are the most modern and strongest,
followed by the hardware used for k-NN and while Viola-Jones im-
plementation was tested on the weakest hardware. However to get a
more accurate and comparable result, one would have to use the exact
same hardware (and software/drivers) for all three experiments. As
the hardware and the experiment go together, we had no way to infer
relative power between the components any further than this.

6 CONCLUSION

In this paper, we presented and discussed three different studies
about highly parallelized Multi-GPU implementations. All of which
were able to achieve significant speed-ups in their respective field
when compared to sequential or parallelized CPU implementations.
Nonetheless, the speed-ups range from 882x in the case of k-NN to
about 6x in some cases of topology optimization. These differences
can mainly be contributed to different experimental setups, as the k-
NN experiment compared single core (sequential) execution times to
the Multi-GPU version, while for the topology optimization, a 32 core
multi-threaded CPU version is compared to the Multi-GPU approach.

Our findings mean that parallelizing algorithms which work with a
large amount of data and/or very high dimensional data has a tremen-
dous effect on the execution time. Furthermore, we found that using
multiple GPUs over multiple CPUs is another huge step up in per-
formance, and that splitting the work onto multiple compute nodes
can be very valuable as well. If applicable, using both multiple CPUs
and multiple GPUs leads to promising results, too, and might be the
most economic option to get the maximum parallel computing power.
Moreover we found that in many cases, GPU-optimized algorithms
scale very well to multiple GPUs. We found an impressive effective
speed-up of over 83% for parallelizing to multiple GPUs in the first
paper (k-NN).

We think that in the future, we will see more and more algorithms
being parallelized and optimized to run on multiple GPUs. Especially
if the downsides of more implementation and optimization overhead
and the associated higher cost is accepted. In many fields the amount
of data that needs to be processed will steadily grow, while the avail-
able computing power of a single CPU or GPU will not be able to keep
up as Moore’s Law starts to slow down.
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GPU-Accelerated Frequent Itemset Mining:
An In-depth Evaluation of GMiner

Willem Meijer and Leon Visscher

Abstract— The most valuable asset for modern businesses and industries is information, making efficient information generation
methods invaluable. Frequent Itemset Mining is a form of data mining that is used to find non-trivial itemsets that frequently co-
occur in a transactional dataset. Although many algorithms have been created to perform this task, over the last decade the amount
of generated data has skyrocketed, making these algorithms no longer suitable. Multiple GPU-accelerated solutions have been
proposed for improving the execution time of frequent itemset mining. One of those solutions is GMiner, an Apriori-based algorithm
that uses the CPU for candidate generation and the GPU for support counting. The comparison performed in the original paper
shows that GMiner outperforms several alternative solutions, however, one limitation of the comparison is that only real datasets are
used. Therefore, it is unknown what the impact is of specific dataset features on the execution time of GMiner. The goal of this
work is to investigate the relationship between dataset features such as number of transactions, average transaction length, number
of unique items and data density, and the GMiner execution time. Additionally, the impact of the chosen minimum support value on
the GMiner execution time is investigated. An experiment is performed in which GMiner is executed using various different dataset
configurations. Our results show that the execution time of GMiner increases when the amount of input data increases and when the
minimum support threshold decreases. Contrary to existing literature, we did not find a significant relation between data density and
execution time.

Index Terms—Frequent itemset mining, GMiner, Data mining, GPU acceleration, CUDA.

1 INTRODUCTION

The most valuable asset for modern businesses and industries is in-
formation – data that is processed to be useful [1]. Information can
be used to make informed decisions to, for example, improve product
quality, increase revenue or decrease costs. Data mining is the process
of extracting previously unknown and hidden information from large
sets of data [2].

Frequent Itemset Mining (FIM) is a form of data mining in which
frequently co-occurring itemsets of a transactional dataset are identi-
fied. An itemset is any subset of distinct items from a dataset. FIM was
originally used for market basket analysis to identify what products of
a store are frequently bought together. However, over the years it has
been applied in a wide range of different areas such as bioinformatics,
education, and sociology [14].

An itemset in a transactional dataset is considered frequent if it
occurs in at least ξ percentage of transactions, where ξ is a user-
determined minimum support value. The problem of mining frequent
items has been shown to be computational intensive [5] because, in
order to find all frequent items of a dataset, each subset of items must
be scanned. This results in a time complexity of O(2n) where n is
the number of items in the dataset. Popular algorithms for improv-
ing the time complexity of FIM are Apriori [6], FP-Growth [11], and
Eclat [19]. Besides the number of items in a dataset, several other
features of a dataset can impact the execution time. The number of
transactions, the average length of the transactions, the density of the
data, and the specified minimum support value can all influence the ex-
ecution time of the algorithm. In a dataset with high density, items oc-
cur in a high number of transactions. Because of the impact of dataset
features, existing comparison studies of FIM solutions often do not an-
nounce a clear winner because which algorithm performs best depends
on the type of data.

In addition to the computational intensity of the frequent itemset
mining problem, the amount of data produced by the world in recent
decades has grown exponentially resulting in original algorithms such
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as Apriori, FP-Growth and Eclat no longer being suitable for pro-
cessing these large datasets in a realistic amount of time [16]. This
becomes clear when observing the results of Chee et al. [9], where
analysing a small dataset using these algorithms already costs 30 sec-
onds on average. Since the first appearances of Apriori, FP-Growth,
and Eclat, no algorithms have been proposed that have resulted in sig-
nificant performance improvement. Therefore, recent attempts for im-
proving the performance of FIM focus more on how the algorithm is
executed instead of on the algorithm itself.

One strategy for improving the performance of FIM is using hard-
ware acceleration. Three high-performance computing platforms that
can be used for hardware acceleration are Application-Specific In-
tegrated Circuits (ASIC), Field-Programmable Gate Arrays (FPGA),
and Graphical Processing Units (GPU), all of which can be used for
frequent itemset mining. However, ASICs and FPGAs require a high
degree of domain expertise, causing development processes to gener-
ally take longer compared to programming a GPU [8].

One promising solution for GPU-accelerated FIM algorithm is
GMiner [10]. GMiner is an Apriori-based algorithm that uses the
CPU for candidate generation and the GPU for support counting. In
their work, they show that GMiner outperforms several existing FIM
algorithms. However, one limitation of their comparison is that they
only use real datasets, resulting in them having little control over
the specific features of the datasets. The contribution of this study
is to evaluate GMiner by performing an experiment using datasets
generated with the IBM Almaden Frequent Itemset Generator [4]
using different configurations for the total number of transactions
(D), average transaction length (T ), number of unique items (I) and
(implicitly) data density which is calculated by T/I. Specifically:

The goal of this work is to investigate the relationship between
dataset features and GMiner execution time.

The rest of this document is organised as follows. First, necessary
background information and relevant related literature is presented and
discussed in Section 2. This is followed by Section 3 where we discuss
our methodology, research questions, and experimental setup. Sec-
tion 4 shows the acquired results, which are further discussed in Sec-
tion 5. After that, the threats to the validity of our work are considered
and described in Section 6. Section 7 describes our conclusions and
finally, in Section 8 we discuss what research directions could be ex-
plored in the future.

57



2 BACKGROUND

The frequent item/pattern mining problem addresses the challenge to
discover non-obvious patterns inside a large number of transactions.
Given a dataset containing transactions, FIM can be used to determine
what items frequently occur in the same transaction. This field has
over 20 years worth of literature attached to it. In this section, an
elaboration of the fundamental theory, a tertiary review of the FIM
sub-fields, as well as a description of the GPU-accelerated state-of-
the-art solutions are given.

2.1 Theoretical Basis
FIM uses a minimum support parameter that determines how fre-
quently itemsets must occur in order for them to be considered fre-
quent [5]. The naive solution to this problem is to simply generate
all possible itemsets, and then calculate their support. However, the
number of possible itemsets grows exponentially with the number of
unique items in the dataset. Therefore, this approach is unsustainable
for larger datasets. To resolve this problem, almost thirty years ago
algorithms such as Apriori [6], FP-Growth [11], and Eclat [19] were
proposed. Most modern state of the art solutions are in some shape
or form based on these traditional algorithms. Therefore, this section
briefly explains these algorithms. All three of these solutions are ex-
haustive, meaning that they are able to find all frequent itemsets.

2.1.1 Apriori
Agrawal and Srikant were the first to propose an algorithmic solution
for FIM, known as the Apriori algorithm [6]. Their solution improves
on the naive algorithm by excluding itemsets from computation that
cannot have sufficient support. This is done according to the Apriori
principle which states that an itemset can only be frequent if all its
non-empty subsets are frequent as well. The Apriori algorithm is a
breadth-first solution that consists of three steps: 1) candidate itemset
generation, 2) support calculation, and 3) itemset pruning. At each
stage of the algorithm, candidate itemsets of size k are generated by
intersecting all itemsets of stage k− 1. Next, all candidate itemsets
for which a subset of size k− 1 exists that does not have sufficient
support are excluded. The initial itemsets are sets containing singular
items. After the candidate itemset generation, the support is calculated
naively by iterating through the entire dataset. Finally, candidates that
have insufficient support are removed from the list of candidates, re-
ducing the number of itemsets that is used to generate new itemsets
for stage k+ 1. This sequence continues until no new candidates can
be generated.

2.1.2 FP-Growth
Han et al. presented an alternative to Apriori, the FP-Growth algo-
rithm [11] which uses an FP-tree data structure (an altered version of
a prefix-tree) that is used to condense critical information of a dataset.
It improves on Apriori by highly condensing the dataset, removing the
costly generation of candidate itemsets, and applying a divide-and-
conquer technique to reduce the search space. The algorithm consists
of two parts: 1) FP-tree generation, and 2) frequent pattern mining. To
generate an FP-tree, the entire dataset is traversed exactly twice, first,
to identify what individual items are non-frequent, and second, to re-
move all non-frequent items from transactions and order the transac-
tions. These transactions are inserted into the FP-tree, similar to how
this is done in a prefix-tree. For every node three values are stored:
the item it represents, a count, and a node-link that points to some
next node that represents the same item (so they form a linked list).
Every time a node is traversed in the insertion process, its count is
incremented. This process condenses the entire data by a significant
amount, as many transactions share the same prefix and they do not
have to be redundantly stored in the FP-tree.

To mine frequent patterns, an FP-tree header is used which points to
the first entry of the linked list for every individual itemset in the tree.
For every individual item α , a traversal through this linked list is made,
identifying all related potential patterns. All of these itemsets (minus
the currently evaluated item) are then used to generate a new FP-tree,
referred to as the conditional FP-tree of α . If this tree only has one

path, all possible combinations of items are generated (unified with
α). Their support is equal to the minimum support of an element in
the itemset. If this tree does not have one path, the same procedure as
described above is performed until a tree with only one path is reached.

2.1.3 Eclat
Zaki proposed another alternative to the Apriori algorithm, Eclat [19].
Eclat differs from Apriori and FP-Growth as its data is processed in
vertical format (itemset → transaction-ids; α → Tα ) rather than hor-
izontal (transaction-id → itemset); i.e. an item points to all of the
transactions it is contained in. The vertical data structure that Eclat
uses is fundamentally different from other FIM algorithms. There-
fore, Eclat-inspired solutions commonly copy this approach. Regular
datasets generally do not have this format. Therefore a translation step
must be performed prior to running the algorithm. The algorithm itself
repeatedly performs a number of steps that are very similar to Apriori:
1) support is calculated for each itemset, 2) itemsets are pruned, and
3) new candidate itemsets are generated. The support of an itemset is
equal to the number of transactions it is contained in, and therefore,
the cardinality of itemset α is equal to the cardinality of its respective
entry in the dataset. Itemsets with insufficient support are removed
from the considered candidate itemsets, and new candidates are gener-
ated by intersecting the resulting itemsets. Given two itemsets α and
β , the resulting itemset is defined as α ∪β and their respective set of
transactions as Tα ∩Tβ . After that, the algorithm continues at the first
step until no new itemsets can be generated.

2.2 Related Work
Improving the performance of FIM solutions is a popular problem that
many researchers have addressed. Because the number of solution
directions, and therefore the number of algorithms, is incredibly large,
describing the state-of-the-art for each of them is near-impossible. To
capture the essence of the FIM sub-fields, a tertiary literature review
is performed using various recent literature reviews [8, 9, 12, 14].
Additionally, two alternative state-of-the-art solutions [13, 18] are
introduced.

Bustio-Martinez et al. [8], performed a review on various GPU-
and FPGA-accelerated algorithms. These algorithms attempt to speed
up the FIM process by parallelising various components of the pro-
cess. GPU-accelerated solutions attempt to do so by using the GPU
of a machine that allows processes to be parallelised with over a thou-
sand threads. FPGA-accelerated solutions use the Field Programmable
Gate Array (FPGA) to parallelize tasks. FPGA implements pro-
grammable logical gates, allowing programmers to implement algo-
rithms at a closer-to-hardware level, making dedicated and more effi-
cient builds possible. In their review, Bustio-Martinez et al. do point
out that programming an FPGA solution requires more expertise than
building a GPU solution.

Chee et al. [9] created a list of multiple state-of-the-art sequential
algorithms. In their work, they categorise these algorithms into one of
the three categories defined by Aggarwal et al. [3]: join-based algo-
rithms, pattern growth algorithms, and tree-based algorithms; groups
that are similar to the three fundamental algorithms explained in sec-
tion 2.1. They conclude that the majority of modern algorithms extend
FP-Growth as it only needs to scan the complete dataset twice. How-
ever, new algorithms must still be continued to be developed as the
computation time needed to perform FIM still significantly increases
as the amount of data grows.

Kumar and Mohbey [12] present a literature review on parallel and
distributed solutions for FIM. They state that although distributed so-
lutions scale much easier in terms of computing power and memory
compared to parallel, single-machine solutions, these solutions intro-
duce a significantly larger amount of communication overhead and
introduce difficulties regarding fault handling, security, quality of ser-
vice, transparency etc., giving single-machines an advantage in sce-
narios where a smaller amount of data is handled.

Luna et al. [14] performed a literature review exploring the field of
FIM. FIM solutions are divided into sequential solutions, multi-thread
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solutions and distributed computing solutions. An elaborate overview
and explanation of existing algorithms is given. Based on the number
of citations for each paper they conclude that although there are
some non-exhaustive search solutions that do not necessarily find all
existing frequent itemsets, the FIM community is more focused on
exhaustive search solutions. Apriori, FP-Growth, Eclat, and dEclat
are identified as the most well-known solutions in the field. Other
existing solutions are adaptations of these algorithms. Additionally,
they emphasise that there is no clear winner in terms of performance
because no objective comparison has been performed.

The various literature reviews introduced a significant number of
sequential, hardware-accelerated, multi-threaded, and distributed FIM
solutions. Opposed to the exhaustive algorithms some heuristic-based
solutions have been proposed, which use heuristics to trade accuracy
for performance [17]. However, these remain relatively disregarded
as they cannot guarantee that the entire search space is explored [15].
Many studies that introduce new GPU-accelerated FIM solutions are
evaluated in isolation, for which it is unclear what their position is
within the literature. Because of this, only two other algorithms were
found that can are considered competitive state-of-the-art alternatives:
MCVG [13] and GFPG-LLMA [18].

Li et al. [13] introduce a closed FIM algorithm based on a vertical
data structure similar to the Eclat algorithm. In order to preserve mem-
ory space on the GPU, they introduce a Multi-Layer Vertical (MLV)
data structure. In this structure, each transaction id list is partitioned
into multiple sub-layers, each of which can be represented by a much
smaller object. This speeds up the support counting process signif-
icantly as heuristics can be used to accurately determine whether an
itemset is frequent or not.

Wu et al. [18] introduce an FP-Growth-based algorithm in which
memory access latency is reduced significantly. To achieve this, they
change the underlying data structure as well. They replace the FP-Tree
with an FP-Map that allows the algorithm to utilise coalescing memory
whilst representing the tree data structure in a GPU-friendly manner.
Additionally, they replace the recursion step that is used for support
counting by replacing it with an iterative solution that is distributed
across GPU blocks. In this solution, multiple sub-header tables are
used (instead of one global header) to generate candidate itemsets for
the next iteration.

2.3 GMiner
Chon et al. [10] proposed the Apriori-based GMiner algorithm which
uses the CPU for candidate generation and the GPU for support count-
ing. They introduce the Traversal from the First Level (TFL) algorithm
to parallelise the counting procedure of the Apriori algorithm. They in-
troduce two methods: nested loop streaming and transaction blocks to
achieve this behaviour. Chon et al. use a vertical bitmap layout to rep-
resent a dataset. In this layout, transactions are represented as a binary
number where the ith bit represents the ith item. As GPUs adopt a grid-
like architecture, they partition the dataset into smaller chunks and dis-
tribute these across GPU blocks, making each GPU block responsible
for counting the support of that partition, which is stored in a local
hash table. The partial results of each block are aggregated using sum-
mation reduction, generating a single global hash table containing all
candidate itemsets and their support. Because GMiner partitions the
dataset across GPU blocks it scales relatively well with the amount of
input data by distributing the additional transactions to nodes that were
not used before. To maximise computation time and minimise com-
munication overhead, they introduce nested loop streaming in which
data transfer between the CPU and GPU is done in parallel with GPU
computation.

One of the most common GPU bottlenecks is its limited memory
space, which poses a risk when using the Apriori algorithm. During
the candidate generation phase, the memory usage of Apriori increases
significantly due to the large number of candidate itemsets that can be
generated. To battle this problem, the GMiner algorithm exclusively
uses 1-itemsets instead of (k− 1)-itemsets to generate candidate k-
itemsets. On top of reducing the memory requirements, they argue

that this method speeds up the algorithm as well.
To account for datasets that have more items than there exist bits

in GPU registers, they introduce the HIL strategy which splits indi-
vidual transactions up into multiple fragment blocks that are handled
asynchronously on different GPU threads.

3 METHODOLOGY

As stated in section 1, the goal of this work is to evaluate the work
of Chon et al. [10] and gain deeper insights into the effect of dataset
parameters on its execution time. The efficiency of algorithms can de-
pend on a number of factors: the amount of data, the support threshold,
and dataset densities.

3.1 Research Questions

The following research questions are defined:

RQ1 How does the performance of GMiner change when the amount
of processed data changes?

RQ2 How does the performance of GMiner change when the support
threshold changes?

RQ3 How does the performance of GMiner change when the dataset
density changes?

To answer RQ1, GMiner is executed with a different number of
transactions and a different number of transaction lengths. To answer
RQ2, GMiner is executed with different minimum support values. To
answer RQ3, GMiner is executed with two types of different param-
eters, 1) using datasets that have different transaction lengths, and 2)
using datasets with different numbers of unique items. In each of these
cases, the time used to complete the FIM task is recorded. After each
run, the GMiner tool produces a report with information about the run,
including the execution time. We use this reported execution time in
our experiments.

3.2 Experimental Setup

The primary goal of this work is to measure the time performance
of the GMiner algorithm. To increase replicability of this work

# Items Avg. Trans. Dens.
Dataset # Trans. (I) Length (T ) (T/I)

D100KT10I1K 98K 976 10.1 1.03%
D100KT25I1K 100K 976 24.9 2.55%
D100KT40I1K 100K 977 39.9 4.08%
D100KT55I1K 100K 977 54.8 5.61%
D250KT10I1K 246K 977 10.1 1.03%
D250KT25I1K 250K 977 24.9 2.55%
D250KT40I1K 250K 977 39.9 4.08%
D250KT55I1K 250K 977 54.8 5.61%
D500KT10I1K 492K 977 10.1 1.03%
D500KT25I1K 500K 977 24.9 2.55%
D500KT40I1K 500K 977 39.9 4.08%
D500KT55I1K 500K 977 54.8 5.61%

D1000KT10I1K 984K 977 10.1 1.03%
D1000KT25I1K 1M 977 24.9 2.55%
D1000KT40I1K 1M 977 39.9 4.08%
D1000KT55I1K 1M 977 54.8 5.61%

D500KT10I2 492K 1890 10.1 0.53%
D500KT10I3 492K 2768 10.1 0.36%
D500KT10I4 492K 3593 10.1 0.28%
D500KT10I5 492K 4337 10.1 0.23%
D500KT10I6 492K 5077 10.1 0.20%

Table 1: Evaluated Datasets
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and to minimise background noise, the High-Performance Com-
puting (HPC) Peregrine Cluster1 is used, which is equipped with
different computing nodes. In this work, the V100 nodes are used,
which are equipped with 24 or 28 Intel Xeon 2.5 GHz cores or 64
AMD EPYC 7601 cores and a single virtual Nvidia V100 GPU.
Because background noise can never be completely eliminated,
especially on a shared computing cluster. As recommended by
Beiranvand et al. [7], to further increase the reliability of the
results, each individual experiment will be run multiple (3) times,
after which the mean and standard deviation is presented in the results.

GMiner uses CUDA (version 10.2.89-GCC-8.3.0), a general
GPU programming environment that extends C/C++ with several
GPU-related functionalities. The code used for GMiner is acquired
from their publically available repository2, and the experimental code
used in this work can be found in our repository3. Within the field
of FIM, a wide variety of datasets is used for evaluation, differ-
ing in transaction length, number of unique items, and data den-
sity. To ensure a greater amount of control over the various vari-
ables required to answer the posed research questions, the commonly
used IBM Almaden Frequent Itemset Generator [4] is used to gen-
erate a number of datasets (shown in Table 1). Datasets gener-
ated with this tool are created with several parameters. T is the
average length of a transaction, I is the number of different items,
and D is the number of transactions. The experiment is executed
with all datasets represented in Table 1, and executed with all ξ ∈
{0.02%,0.06%,0.1%,0.14%,0.18%,0.22%}.

4 RESULTS

As introduced in Section 3.2, a large number of experiments was per-
formed. For some configurations of dataset parameters, the exper-
iment could not finish because of the process running out of mem-
ory. This was the case for the experiments with (T,ξ ) combinations
(40,0.02%), (50,0.02%), (50,0.06%), and (50,0.1%). The number
of transactions in the dataset did not have an impact on whether the
experiment ran out of memory. The charts shown in Figures 1, 2, 3,
and 4 are an indication of the experiment results. All experiments have
been replicated 3 times, for which the average observed standard de-
viation is 0.003 seconds, indicating that the time performance of the
algorithm is stable.

Figure 1 shows the execution time of executing GMiner for four dif-
ferent values of average transaction length and number of transactions
ranging from 100K until 1000K. It can be observed that execution time
increases significantly with larger transaction lengths. Additionally,
linear growth can be observed when the number of transactions in the
dataset increases.

In Figure 2 the execution time is shown relative to the minimum
support value. An inverse exponential distribution can be observed,
indicating the high impact the minimum support value has on the ex-
ecution time of GMiner. With execution time values ranging from
12.89 until 27.36 seconds for a support threshold ξ = 0.00022, rapidly
declining to values all below 1 second for a support threshold ξ =
0.0018.

Figure 3 and 4 show the average transaction length and the unique
number of items in a dataset respectively, relative to the execution
time. Because there are two ways of altering the data density, 1) chang-
ing the transaction length and 2) changing the total number of unique
items these results can be consulted to investigate the impact of the
data density on the execution time.

5 DISCUSSION

RQ1: How does the performance of GMiner change when the amount
of processed data changes?

1Peregrine HPC Cluster: https://www.rug.nl/society-business/centre-for-
information-technology/research/services/hpc/facilities/peregrine-hpc-cluster

2GMiner [10] repository https://github.com/coderbond007/GMiner
3Experiment repository: https://github.com/wmeijer221/colloquium
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Fig. 1: Execution time of GMiner given datasets of different sizes
where support ξ = 0.14%.
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Fig. 2: Execution time of GMiner given different minimum support
where the average transaction length T = 25.
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Fig. 3: Execution time of GMiner given different transaction lengths
where support ξ = 0.14%.
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Fig. 4: Execution time of GMiner given different numbers of unique
items where the average transaction length T = 10.

For evaluating RQ1 we are specifically interested in two dataset
parameters. The amount of input data can increase by 1) increasing
the number of transactions in a dataset or 2) increasing the average
length of transactions.

As shown in Figure 1 the execution time of GMiner increases lin-
early with an increase in the number of transactions in the dataset. This
can be explained because the GMiner algorithm uses the TFL strategy
to distribute a larger number of transactions across a larger number of
GPU blocks. This increases the communication overhead, as well as
the hash table summation reduction overhead, giving a mild increase
in execution time.

The vertical distance between the lines in Figure 1 as well as the
results from Figure 3 clearly show an exponential increase in com-
putation time when the average transaction length increases. This is
expected because the amount of candidate itemsets increases expo-
nentially with an increasing average transaction length. The algorithm
battles memory access overhead during the candidate generation phase
by only considering 1-itemsets instead of (k−1)-itemsets to generate
k-itemsets. However, the overhead added during this phase is still sig-
nificant enough to notice this exponential growth.

There seem to be two different relationships between the dataset
size and execution time. The number of transactions causes the exe-
cution time to grow linearly while increasing the average transaction
length causes the execution time to grow exponentially.

RQ2: How does the performance of GMiner change when the
support threshold changes?

Figure 2 shows that GMiner has an exponentially larger execution
time when the support threshold decreases. This can be explained
according to the nature of the Apriori algorithm as it implements a
pruning step during which the minimum support is used. During this
step, all candidate itemsets with insufficient support are removed as
any superset of this itemset would never be able to generate enough
support due to the anti-monotone property. As the minimum support
decreases, more itemsets will acquire sufficient support, for which they
are not pruned.

As shown in Section 4 using a support threshold value of ξ ≤ 0.001
in combination with a transaction length T ≥ 40 introduces out of
memory errors. As the number of candidate itemsets increases, the
memory required to store these itemsets increases as well. In case
the support threshold is decreased significantly enough, the number of
candidate itemsets will outgrow the available memory.

In the gathered data, we, therefore, see an inverse exponential
increase in execution time when the minimum support value is
increased.

RQ3: How does the performance of GMiner change when the
dataset density changes?

A higher density means a higher average support for itemsets. The
density of a dataset is calculated by dividing the average length of a
transaction by the total number of unique items and can therefore be
increased in two ways: 1) the average transaction length is increased,
or 2) the number of unique items is decreased.

While answering RQ1, we discussed that an increase in the average
length of a transaction results in an exponential increase in execution
time. However, it is not clear whether this is because of the increased
size or the increased density. In Figure 4 it can be observed that as
the number of unique items increases, the execution time of the algo-
rithm also increases while the dataset density decreases significantly.
In this case, the number of transactions and average number of items
in a transaction stays the same, for which this difference can be fully
contributed to the change in density.

It stands out that although density is commonly used as a descriptive
parameter of a dataset, the results shown in this work cannot contribute
to its value. The results show that both increasing and decreasing the
dataset density can cause an increase in execution time. For this rea-
son, the density of the dataset should be interpreted with some level
of care as this value itself might not have a significant impact on the
mining process, whereas the factors it is computed with might have.

In the results shown here, there seems to be no direct relation be-
tween dataset density and the execution time of the GMiner algorithm.

6 THREATS TO VALIDITY

This section describes the threats to the validity of our research and
the steps we took to mitigate these threats.

6.1 Method Validity

One drawback of measuring the performance of a running piece of
software is that the actual measuring can have a direct impact on the
performance. However, because the same behaviour is evaluated mul-
tiple times, this measurement overhead affects all results in the same
manner. Additionally, the conclusions drawn do not consider absolute
time and instead emphasise the relative time growth (time complex-
ity) of the algorithm, making a minor overhead irrelevant to the drawn
conclusions. To mitigate any additional noise, the experiments have
been replicated a number of times.

The amount of FIM literature is very extensive, whereas the time
available for this research is relatively limited. Because of this, lit-
erature that might have been relevant to this work might have been
missed.

6.2 Conclusion Validity

Using standardised datasets allowed us to investigate the impact of
specific dataset properties. Additionally, it makes it easy to replicate
our study. However, a drawback is that the used datasets are synthetic
datasets that might not be representative of real data. Therefore, we
cannot conclude anything about how our results can impact real-life
FIM applications.

7 CONCLUSION

In this work, we performed an experiment with the goal of investigat-
ing the relationship between dataset features and GMiner execution
time.

To achieve this goal we have formulated three research questions:
1) How does the performance of GMiner change when the amount
of processed data changes? 2) How does the performance of GMiner
change when the support threshold changes?, and 3) How does the
performance of GMiner change when the dataset density changes?
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By answering research questions 1 and 2 we have shown that the
performance of GMiner behaves as expected when the amount of pro-
cessed data or the defined support threshold changes.

Answering RQ3 resulted in the interesting find that, opposed to as
expected by consulting existing literature, the data density has no sig-
nificant impact on the execution time of the GMiner algorithm.

The experiment performed in this study extends the work of Chon
et al. [10] by comparing their algorithm in a controlled environment
using synthetic datasets. The results found for RQ1 and RQ2 are rela-
tively unsurprising, whereas RQ3 yielded unexpected results. During
this research, we have laid a basis for a standardised evaluation envi-
ronment in which FIM algorithms can be compared. This framework
can be used in the future for further evaluation of state-of-the-art FIM
solutions.

8 FUTURE WORK

As mentioned in the previous section, because all datasets used in
the experiment are standardised and publicly available we believe this
work can serve as a framework for comparing other state of the art
FIM solutions.

Based on the literature we have identified three GPU-accelerated
FIM algorithms, GMiner [10], MVCG [13], and GFPG-LLMA [18]
that all have outperformed earlier methods. However, it is not clear
which of these methods has the best performance. Therefore, an objec-
tive comparison study would be invaluable. Unfortunately, the code/-
software for MVCG is not publicly available and the published version
of the prototype for GFPG-LLMA does not work flawlessly, making
executing and evaluating these solutions in a fair way impossible.

Additionally, by using the same datasets used in this experiment,
any newly proposed methods can directly compare their results with
the existing state of the art.
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Applications of Linux Extended Berkeley Packet Filter (eBPF)

Sina Rezagholipour and Iulia-Cristina Tomoescu

Abstract—For creating networking, security or observability features, the Linux kernel is the best choice. But there are a few issues
with it, most notably the difficulty of debugging when we have a complex infrastructure or many abstract layers. So this is why the
Extended Berkeley Packet Filter (eBPF) was developed. In our paper we will dive into the numerous application of Linux eBPF and
how its evolution impacted different fields in Computer Science, network security being the most important one. The main focus is
reviewing and classifying the four given papers by their use cases.

Index Terms—Extended Berkeley Packet Filter, eBPF, Network Security

1 INTRODUCTION

The eBPF (Extended Berkeley Packet Filter) is a technology used to
efficiently extend the capabilities of an operating system kernel with-
out the need of changing kernel source code. Some of the applications
will be discussed in further detail in the next sections of this paper. The
Berkeley Packet Filter has a wide range of applications, which may be
broadly classified into four categories: Networking, Security, Tracing
and Profiling, and Observability and Monitoring.

eBPF was introduced in 2014 with Linux 4.0. It was initially imple-
mented in kernel version 3.18 and essentially enables us to run appli-
cations at kernel level. It may be thought of as a sandbox (a software
testing environment that enables the independent execution of appli-
cations for the purpose of evaluating, monitoring, or testing them one
by one) virtual machine embedded within the Linux kernel. eBPF el-
evated BPF’s ideals to new heights by adapting the technique to be
more efficient while also taking use of newer hardware generations.
It is critical to emphasize that eBPF has applications beyond packet
filtering. Additionally, performance analysis, debugging, tracing, and
security are covered. Due to its features, eBPF is still regarded as an
intriguing technology in the Linux and cloud communities today.

We can add eBPF to several different kernel functions, giving them
access to the data that the function is currently processing and allowing
them to modify that data. eBPF was developed to improve the Linux
tracing tools and is available primarily on the BSD and Solaris OS,
with dynamic It was inspired by dtrace, a tracing tool; unlike dtrace,
Linux did not provide an overview of the running system. Instead,
it was limited to a specific frame of library calls, function calls, and
system calls.

We will review and classify a number of four papers, namely
Fingerprint-Based Automated Rule Generation for DDoS Mitigation
using the Berkeley Packet Filter[5], Combining System Visibility
and Security Using eBPF[3], Leveraging eBPF for programmable
network functions with IPv6 Segment Routing[10] and eBPF-based
Content and Computation-aware Communication for Real-time Edge
Computing[1].

In our paper we will answer two questions:
RQ1: What are some of the application of Linux eBPF and how its

evolution impacted different fields in Computer Science?
RQ2: In which category does each paper belongs based on their use

case?

• Iulia-Cristina Tomoescu is a student at University of Groningen.
E-mail: i.tomoescu@student.rug.nl
Student number: S4913531

• Sina Rezagholipour is a student at University of Groningen.
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Student number: S4589483

2 BACKGROUND

The Berkeley Packet Filter was eBPF’s forerunner, having been con-
structed for the first time in 1992 at Lawrence Berkeley National Lab-
oratory by Steven McCanne and Van Jacobson [8]. It was created to
aid in the monitoring and analysis of network traffic under Linux. It
enables the raw packets of the link layer to be accepted and delivered
by providing a raw access to the data link layers. This is accomplished
by generating device nodes that are not attached to a physical device,
which may be thought of as a ”virtual device” that is typically con-
nected to one of the system’s network interfaces. Two operations are
performed on the device: reading from it (reading the incoming pack-
ets) and writing to it (introducing the packets in the interface).

To begin, there are a few fundamental ideas that must be understood
in order to comprehend eBPF. On the one hand, the kernel space is re-
served for the exclusive purpose of executing the kernel, its extensions,
device modules, and drivers. The Linux kernel space enables complete
hardware access. On the other hand, all user mode applications run in
the user space, which can be swapped out if needed. User-space pro-
cesses usually run in their own virtual memory space and, in most of
the cases, they do not have access to the each other’s memory. We
illustrated the user space and the kernel space in Figure 1.

Fig. 1: User and kernel space.
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We now have the loadable kernel module (LKM), which dynam-
ically inserts or deletes code from the Linux kernel. It allows the
kernel to work with the hardware when the kernel does not need to
understand how the hardware functions. LKMs have many security
vulnerabilities and a potential risk of crashing the kernel. Additionally,
developing and maintaining kernel modules is a significant amount of
work. eBPF programs do not replace LKMs, but they allow us to make
use of the protected hardware resources whilst not being a hazard for
the kernel.

2.1 Components
eBPF programs need and event-driven environment, therefore they are
executed when a process reaches certain locations in the kernel, known
as kernel hooks. Preset hooks are available for a variety of events,
including entrance and exit functions, system calls and network events.
If there is no preset hook that meets our specific need, we can also
create a kernel probe (kprobe) or a user probe (uprobe) that allows the
incorporation of eBPF programs at nearly any location in applications.

A helper function might be called after the eBPF program is trig-
gered. It is worth mentioning that these functions have to be defined
by the kernel and they cannot have more than five arguments. This
list is still expanding and it can be easily found in the user manual of
Linux. These functions are able to carry out a broad range of tasks,
such as printing debugging messages, performing operations on data,
communicating with eBPF maps, redirecting packets and generating
random numbers. There is also possible to run another eBPF program
that will take over the current execution conditions. This process is
known as a tail and function call.

eBPF works with maps (key-value pairs) in order to manage data
storage and sharing between the application and the kernel/user space.
By using the helper functions mentioned before, programs can trans-
mit and receive data in maps using a wide variety of different data
structures, including hash table, stack trace, array, stack trace, ring
buffer, LPM (Longest Prefix match) and LRU (Least Recently Used).

2.2 Architecture
Now that we are familiar with eBPF’s components, in the following we
will describe how eBPF internally works. In Figure 2 the architecture
of eBPF is displayed.

Fig. 2: Architecture of eBPF.

Because the kernel only accepts eBPF programs if they are loaded
as bytecode. Therefore, we require a method of compiling higher level
languages and in order to develop this needed compiler, eBPF lever-
ages the LLVM back-end architecture, that can be used to construct a
front-end for any programming language. Clang is the front-end pro-
gramming language used for eBPF applications since they are written
in C.

However, the compiled bytecode must first pass a set of tests before
it can be put onto the hook point. An in-kernel Verifier can prevent
programs from looping, not having the proper permissions, or crash-
ing the kernel by simulating the program in a virtual machine-like ar-
chitecture. The program must pass all the tests.

Following the verification step, the eBPF bytecode is converted to
native machine code by the Just-In-Time (JIT) compiler. eBPF’s de-
sign features 64-bit encoding and a total of eleven registers. This
makes eBPF very similar to x86 64, ARM, and arm64 hardware ar-
chitectures.

2.3 Use cases
This section offers an overview of the four main categories of eBPF’s
use cases mentioned in Introduction.

Security: Extending the fundamental capabilities of viewing and
understanding all system calls, as well as giving packet and socket-
level views of all networking processes, allows the creation of ground-
breaking approaches to system security. Historically, completely au-
tonomous systems handled various components of system call filter-
ing, process context tracking, and network-level filtering. But eBPF
makes possible the simultaneous management and visualization of all
aspects and this gives us the possibility to design security solutions
that function with a higher degree of context and control.

Networking: Because eBPF is both efficient and programmable, it
is an excellent choice for all packet processing needs in networking
systems. Therefore, insertion of protocol parsers and modifications in
the packets forwarding are possible because of the programmability,
whilst performance comparable to that of in-kernel code is given by
the effectiveness of the JIT compiler.

Tracing and Profiling: With eBPF programs we are not only able
to discover the kernel/user probe points, but also additional (custom)
points. Hence eBPF provides significant insight into both application
and system runtime activity and allows us to easily find system perfor-
mance difficulties.

Observability and Monitoring: eBPF significantly increases the
depth of visibility whilst also notably decreasing the general process-
ing time required by the system software. This is achieved by collect-
ing only the needed visibility data and by generating data structures at
the source of the event, such as histograms, rather than being depen-
dent on sample export.

2.4 Advantages
In this section we will address the most significant benefits of eBPF:

• Speed and performance: eBPF enables the kernel-space to dele-
gate the packet processing to the user-space. The eBPF program
is called after the compilation of the bytecode, rather than a new
interpretation of the bytecode for each method.

• Unintrusive: eBPF can be used as a debugger and when this is the
case, we do not have to stop the application in order to examine
its activity or status.

• Security: The kernel source code is unaltered and the verifier
guarantees that programs will not execute indefinitely.

• Visibility: Additionally, eBPF provides a centralized, robust, and
easily accessible platform for process tracing. It not only leads
to an increase in security, but in visibility as well.

• Convenience: Building and maintaining kernel modules is
rather difficult and it requires low-level programming languages.
Hence, writing code for the hooks or helper functions is easier.
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• Power: eBPF is able to execute functions that are often reserved
for high-level programming languages. It can trace everything in
a system.

2.5 Disadvantages
Even though eBPF is a powerful tool, it has certain limitations such
as:

• Portability: eBPF is only accessible on Linux kernels.

• Infrastructure requirements: The kernel version must be quite
recent, newer than 4.13 which was released in 2017.

• Functionality: Limiting the resources and components of the op-
erating system that a program can access improves security, but
at the cost of functionality.

3 LITERATURE

This section summarizes the four papers that make the subject of our
study and mention a few applications of eBPF that we found intrigu-
ing.

3.1 Paper 1: Fingerprint-Based Automated Rule Genera-
tion for DDoS Mitigation

DDoS or Distributed Denial of Service attacks and threats have be-
come more prevalent in society in recent times. It is worth noting
that in these attacks, targets are specifically flooded and bombarded
with excessive internet traffic. At the same time, the maximum band-
width’s intensity has also increased. For contributing to the efforts
of mitigating these attacks, DDoSDB was launched by Jair Santanna
from Twente University. This platform is accountable for storing fin-
gerprints that tend to contain an evaluation of different aspects and
features of DDoS attacks and threats. In addition, users are enabled by
the platform to download the traffic of the attack that can be utilized
for replay attacks. The use of these fingerprints enables the generation
of mitigation rules for different DDoS attacks.

There is no doubt that in the past few years, a number of technolo-
gies such as Web Application Filters, Intrusion Detection Systems,
Flowspec, and even Border Gateway Protocol have emerged. It is,
however, important to note that these technologies specifically tend to
target routers and often function or work on top of different operating
systems. It leaves low-level functionality that is unused for the mitiga-
tion of DDoS attacks. Therefore, for filling this gap, the author have
carried out this study.

It is indicated by Koelewijn that the current study focuses on the uti-
lization of eBPF’s extended version. Actually, it is a technology that
generally enables the filtering of packets in even the lowest operating
system layer, which is the kernel. In the kernel, filtering packets are
capable of having different performance advantages. The author has,
therefore, designed a method or technique for the automated genera-
tion of eBPF for the mitigation of DDoS on the basis of attack finger-
prints that are acquired from DDoSDB.

It is determined by the author that the existing studies tend to focus
only on the eBPF performance or capability in packet filtering rather
than focusing on accuracy. When it comes to DDoS mitigation, eBPF
is highly promising. There is little to no information in attack finger-
prints about the value probability and it tends to simplify the conver-
sion of different fingerprints to different rules and to one individual
threshold that can be configured. When there is a use of probability
theory, it results in the reduction of fingerprints which helps in obtain-
ing optimal configuration.

In addition, it has been indicated by the author that the proposed
method influences or increases the accuracy to a significant extent,
approximately more than 95 percent. In some other cases, the accu-
racy for the proposed method or technique has actually been above 90
percent as well. It indicates that the proposed method or technique for
comprehensive automated eBPF generation on the basis of fingerprints
acquired from DDoSDB tends to satisfy all the requirements that have
been identified and determined in the previous studies and researches.

Future studies need to further explain and describe the eBPF possibil-
ities for the mitigation and prevention of DDoS attacks. Furthermore,
there is a need for further investigating the use of eBPF for different
attack protocols [5].

3.2 Paper 2: Combining System Visibility and Security
Typically, IDSes or Intrusion Detection Systems on the basis of net-
works such as Bro, Suricata, and Snort tend to passively monitor the
network traffic that is acquired from a variety of Terminal Access
Points or mirror ports. In a similar manner to antiviruses, it should
be noted that most of the IDSes are based on signatures. It means that
they generally determine problems and exhibit different types of alerts
through the extraction of patterns from the traffic that is captured by
them. Then, it is compared against different patterns of predetermined
attacks and threats within the database.

For performing these activities and tasks, different network pack-
ets are required to be reassembled and defragmented in streams, and
then, their content has to be compared against the recognized signa-
tures. Actually, Intrusion Prevention Systems (IPSes) are fundamen-
tally based on IDSes with the capability of bridging the traffic across
two different interfaces of the network. In recent years, the rise in the
speed of the network together with the encryption of data has led to a
number of challenges to not only IPSes but also IDSes. These chal-
lenges are associated with not only performance but also with visibility
because the signatures are unable to be identified with the encryption
of the traffic. Some further challenges have been created by the use of
virtualization at the level of operating systems.

The lack of visibility tends to limit the utilization of different se-
curity tools that are based on packets. Therefore, in this study, Deri,
Sabella, Mainardi, Degano, Zunino have leveraged eBPF for precisely
combining system introspection with an effective security policer at
the level of the system which allows the development of different valid
security policies that are customized for specific users, containers, and
processes. It serves as a major advancement for different network se-
curity applications that are capable of being benefitted from system in-
trospection for enriching the information that is specifically extracted
from different network packets while paving the way for the applica-
tion of network and systemaware security policies that tend to com-
bine the security and visibility at a fraction of the existing solutions’
computational costs.

In this research, the designed solution can actually be logically seg-
regated into two major components. First, a library that is accountable
for the development of eBPF events related to the network. Second, an
application, which is responsible for the description of the implemen-
tation and architecture of ntopng and libebpfflow. It has been identified
by the authors that the proposed scheme or framework has indicated
that the integration of system and network information is actually a
step ahead with respect to different approaches that are purely based
on packets. It is shown by the authors that the capability of going be-
yond ports, protocols, and IP addresses, actually enables the develop-
ment of a new generation of different security protocols and tools that
consider the metadata at the system level including containers, pro-
cesses, and users. While the framework is effective, a major limitation
is concerned with the inability of developing loops in the scheme of
eBPF. In the future, there is a need to resolve this issue [3].

3.3 Paper 3: Leveraging eBPF for programmable network
functions with IPv6 segment routing

In general, Xhonneux, Duchene and Bonaventure [10] determine that
with the advent of SDN or Software Defined Networks, SFC or Ser-
vice Function Changing and NFC or Network Function Virtualization
operators generally expect and suppose networks to support different
flexible services beyond just forwarding different packets. It is impor-
tant to note that the network programmability framework that is being
created with the IETF through the leveraging of Segment Routing of
IPv6 allows the realization of different in-network functions and oper-
ations.

It is further determined that segment routine was initially developed
as a simplification of MPLS or Multiprotocol Label Switching for dif-
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ferent ISP networks and it has eventually evolved into a specifically
more generic solution. It is worth noting that segment routing is quite
an effective and modern version of the fundamental source routing. It
allows routers to actually forward different packets along a succession
of different shorter paths and each of them is identified or determined
by a specific segment. Meanwhile, when it comes to SRv6, it gen-
erally leverages the flexibility of the packet format of IPv6 and even
the large addressing space of IPv6. It should be noted that with this
format, each and every format is encoded as an address of IPv6 that is
advertised through the protocol of intradomain routing.

In this research, the authors have focused on demonstrating this
in-network protocols’ vision can be realized in an effective manner.
Through the leveraging of eBPF support in the kernel of Linux, a flex-
ible framework has been implemented by the authors that enable net-
work encoders to precisely encode their own different network func-
tions and operations in the form of an eBPF code. This code is actually
executed automatically while processing different packets. It is indi-
cated and determined by the authors that the overhead of using and
calling these types of eBPF functions is acceptable. With the use of
Extended Berkley Packet Filter, it becomes possible for the operators
to implement different network functions. In addition to it, the Linux
kernel is utilized by the authors for the description of their architec-
tures and Linux 4.18 has been used for the release of the extension.

In addition to it, three different use cases are considered by the au-
thors for the demonstration of the flexibility of their approach. These
use cases include network discovery, hybrid networks, and delay mea-
surements. It is also indicated by the authors that upon running eBPF
network operations on the routers of Linux, the performance penalty
does not really experience or incur a large overhead. Instead of it, the
results are substantial and even acceptable to a significant extent. In
fact, it has been indicated by the authors that the functions of eBPF
generally have a minimal overhead as compared to the one that is de-
veloped by their different static variants. Their key benefit is con-
cerned with the fact that they are quite generic. New ways have been
opened by the proposed framework for researchers and network oper-
ators to implement a variety of in-network functions.

3.4 Paper 4: eBPF-based content and computation-aware
communication for real-time edge computing

Generally, interconnected sensors, based on IoT or the Internet of
Things tend to transmit and collect data for precise analysis and eval-
uation to different remote servers. The delivery of authentic data,
however, might incur loss or even delay because of the limited re-
sources of the network. There is no doubt that network congestion
might influence the capability of the system to enable and support
different real-time services including virtual reality, smart transporta-
tion, traffic monitoring, or even video surveillance. It is worth noting
that for such applications, different paradigms of edge computing and
cloudlets generally address the problem of latency by actually plac-
ing different computation-capable devices and products in a single-
hop wireless topology. In various network scenarios, however, the
coexistence of these intensive streams with several other services over
limited networks requires effective and new solutions to a significant
extent.

It is worth noting that recent frameworks on the basis of SDN or
Software Defined Networks have exhibited the capability of improv-
ing the management of network resources with the use of NFV or Net-
work Function Virtualization and dynamic flow control. At the level of
communication, SDR or Software Defined Radios have been utilized
for adapting the different parameters and aspects of wireless transmis-
sion. The main challenge and issue of properly using the available
bandwidth for performing different real-time applications, however, is
concerned with managing the traffic stands that are produced by these
services and applications.

The bandwidth consumption in order to stream a video at time
T , using N video sensors {S1, ...,SN}, to M computational processes

{C1, ...,CM} at maximum quality Q f ull :

Btotal = M
N

∑
i=0

Si(Q
f ull
i ) (1)

Therefore, the QoC or Quality of Computing framework has been
proposed for relaxing and addressing the constraints of interference
on different IoT streams while facilitating their proper use. Therefore,
in this research, Baidya, Chen, Levorato [1] have proposed a com-
munication control framework that is computation-aware for different
real-time IoT applications and functions that generally result in high-
volume traffic data that is processed and managed at the network edge.
On the basis of QoC requirements, it should be noted that the frame-
work generally offers real-time forwarding and replication of packets
controlled by the user within the in-kernel VM or Virtual Machines
with the use of Extended Berkeley Packet Filter. Actually, the imple-
mentation relies on the use of NFV and SDN for the achievement of
dynamic and highly programmable replication of packets. It is indi-
cated by the authors that the use of eBPF effectively improves the per-
formance of the framework through the introduction of 10 registers of
64-bits while using the JIT or just-in-time compiler. At the same time,
the programs of eBPF are capable of being invoked from a number of
network stack layers including drivers, qdisc, and socket.

It should be noted that the proposed framework is specifically in-
stantiated for addressing a scenario based on a case study where differ-
ent video streams from a number of cameras are actually transmitted
and transferred to the edge processor for precise and real-time analysis
or evaluation. It is indicated by the numerical results that the proposed
framework is better than other possible alternatives and frameworks in
terms of system resource-saving, network bandwidth, and programma-
bility. It is further determined that the proposed framework has the
capability of adapting to different data streams that support remote
processes of computation.

3.5 Related work
While doing research on this topic we discovered some noteworthy
applications:

• ViperProbe is a framework based on eBPF. It is used for both
collecting microservices that enables dynamic sampling, as well
as collecting deep, diversified, and accurate system metrics. [6]

• BPFbox is a precise process confinement application that makes
enforcing the principle of the last privilege possible at the user
and kernel space functions. [4]

• eBPF allows the monitoring and tracing of software processes,
therefore leading to discovering malware or abnormalities at the
kernel-level. [2]

• Express Data Path (XDP) is a kernel network layer that processes
packets closer to the network interface card in order to speed up
packet processing [9].

4 DISCUSSION

In this section we will classify the papers discussed in the last section
by their use cases.

4.1 Paper 1: Security
The goal of the paper ”Fingerprint-based automated rule generation
for DDOS mitigation using the Berkeley Packet Filter” [5] is to de-
velop a method to automatically create an eBPF to mitigate DDoS
attacks based on DDoSDB fingerprints and evaluate its accuracy. In
most distributed denial-of-service attack strategies, several distributed
agents attack the target system simultaneously so that the resources of
the target system are completely consumed: if the domain name of the
Command and Control (C&C) server or download site is known, the
zombified PC accesses the C&C server. This is a method to control
responses to DNS queries from the zombie PC, so that when it tries
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to do so, it bypasses the DNS dump server and intercepts the attack
command.

A protocol is a set of rules and instructions that allow devices on
a network to communicate with each other. Network devices cannot
transmit data without using the protocol. The operating system then
uses the Just-In-Time (JIT) compiler and checking mechanism to en-
sure security and operability as if it had been originally compiled. This
has resulted in a number of eBPF-based designs that can be used for
a wide range of usage scenarios, including next-generation networks,
observability and security features. Enabling high-performance net-
working and load balancing in modern data centers and cloud envi-
ronments, extracting low-cost, fine-grained security observability data,
and helping application developers track applications and troubleshoot
performance issues.

The possibilities are endless, and the innovation that eBPF brings
has only just begun. The author points out that existing research tends
to focus only on the performance and filtering capability of eBPF pack-
ets, and not on accuracy. eBPFs hold great promise in the fight against
DDoS.

Attack traces contain little information about the probability of the
values, which makes it easy to convert different traces into different in-
dividual rules and thresholds that can be set. When probability theory
is used, this leads to a reduction of fingerprints, resulting in an optimal
configuration.

4.2 Paper 2: Observability and Monitoring
In ”Combining system visibility and security using eBPF” [3] we dive
into how eBPF makes a system both transparent and secure. The eBPF
events were reduced only under high load and the average latency was
acceptable for our network and system monitoring use cases. This has
led to a series of eBPF-based designs that cover a wide range of use
cases, including next-generation networks, observability, and security
functions. Network administrators use network monitoring systems
to quickly detect problems such as device and link failures and traffic
bottlenecks that impede data flow. These systems can alert adminis-
trators to problems via e-mail or text messages and generate network
analysis reports.

Network monitoring solutions monitor network equipment and traf-
fic and alert users to performance anomalies. By analyzing network
traffic and monitoring overall performance metrics, companies can
gain a complete picture of network performance. Network monitor-
ing tools are moving beyond focusing on network performance and
adding network security capabilities. Most network monitoring tools
are designed not only to monitor network performance, but also to dis-
play performance metrics and generate insightful reports.

Sometimes the greatest degradation in network performance can be
attributed to staff using too many valuable network resources. Users
may also use the network for other purposes, such as streaming video
or VoIP calls. At some point, network devices will need to be recon-
figured to improve network performance, upgrade old devices or fix
faulty hardware. The successful implementation of a network moni-
toring solution begins with identifying the specific situations in which
the solution will be used. This allows users to clearly define the func-
tionality required for the solution. It also helps the vendor’s network
monitoring and implementation team understand the expected results
of the implementation.

4.3 Paper 3: Networking
In ”Leveraging ebpf for programmable network functions with IPv6
segment routing” [10] three different use cases have been developed
by the authors, namely network discovery, hybrid networks, and delay
measurements. They also point out that there is no performance degra-
dation or significant overhead in the network through the eBPF Linux
router. On the contrary, the results are significant and even nearly ac-
ceptable.

The authors note that eBPF functions tend to have the lowest over-
head compared to functions developed from its various static variants.
The most important feature of the eBPF is that it is relatively versatile.
The proposed framework opens new possibilities for researchers and

network operators to implement various functions in their networks.
In the near future, hybrid networks will be the infrastructure model
that defines most multi-site enterprises. Today, Cloud/Analytics-as-a-
Service is used on a wide variety of devices, including PCs, smart-
phones, tablets, and IoT devices, and its use cases are becoming more
diverse. This diversity is increasing overall traffic, causing network
congestion and negatively impacting business.

Advanced use cases explore data from primary data sources (out-
side ONAP) to improve data quality - data quality - information com-
plexity. Objective is to provide building blocks to enable data discov-
ery from primary data sources (outside ONAP) - Network sources -
Overlay between core and data centers SDC can be used to discover
specific network sources using self-service input models.

4.4 Paper 4: Tracing and Profiling

In the paper ”eBPF-based Content and Computation-aware” [1] we
find how we can use content and process arranged correspondence
for constant edge calculation, in light of eBPF. At the correspon-
dence level, Software Defined Radio (SDR) is utilized to apply various
boundaries and parts of radio transmission.

The network could be used to get the tracing facility in the Android
tool as it is helpful to save the device activity and store it in a trace file.
At the time of running device, the files are saved in Perfetto format. It
use systematic format that could be accessed. The profiling is helpful
to present the summary of statistics information and its required to
perform the data that is equally important to trace in the organization.
The both operations are commonly used by the organizations to get the
high performance computing. The system performs different functions
related to store the data.

Notwithstanding, a significant test and issue in appropriately using
the accessible transfer speed for different constant applications is deal-
ing with the traffic produced by these administrations and applications.
The fundamental commitment of this examination is the plan, execu-
tion, and testing of an open source programmable structure for over-
seeing constant edge processing correspondences utilizing an installed
eBPF bit. Network function virtualization infrastructure is an impor-
tant starting point for the development of distributed cloud computing.
Today, businesses often have independent virtualization environments
in multiple locations. The ability to manage resources and sites in a
coordinated manner is a step forward. This allows us to establish poli-
cies and restrictions on virtual network functions deployment.

5 CONCLUSION

To put everything into perspective, our paper explained the use of
eBPF in different situations and classified the papers referenced. By
extending the basic capabilities to see and interpret all system calls
and provide packet-level and socket-level visibility into all network
operations, an innovative approach to system security can be devel-
oped. eBPF is a Linux kernel feature that allows virtual machines to
run within the kernel. This virtual machine can be used to securely
load programs into the kernel and customize their behavior.

Traditionally, it has been difficult to make changes to the kernel;
we would have to call APIs to get data, but we could not affect the
contents of the kernel or execute code. Instead, we had to submit
our modifications to the Linux community and wait for them to be
approved. eBPF allows us to load a program into the kernel and ask the
kernel to execute the program when some event occurs, for example,
when we see a certain package.

Not only did eBPF solve these problems, it is also available indi-
rectly through projects such as bpftrace and Cilium [7]. These projects
provide an abstraction of eBPF, so there is no need to write programs
directly. We can specify an intent-based definition and the eBPF will
implement it. Instead of virtual IP, eBPF can use programs in the
kernel to load balances at the source. Since there is no need for Desti-
nation Network Address Translation (DNAT) in the packet processing
path, all Network Address Translation (NAT) overhead on service con-
nections can be eliminated.
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Is it not yet Time to Swish?
Comparing the ReLU and Swish Activation Functions

Gerrit Luimstra and Willard Verschoore

Abstract—The choice of an activation function in a neural network has a significant effect on the training dynamics and the task
performance. For this reason, many activation functions have been introduced with the goal of finding an activation function that
works well across learning tasks. Currently, the most versatile and performant activation function is the widely-used Rectified Linear
Unit (ReLU). Recently, however, a new activation function called Swish has been introduced that has shown improved performance
over a variety of tasks.
In this paper we compare the ReLU and Swish-β activation functions by means of a literature study as well as our own experiments
with a shallow neural network on three small datasets. We find that the literature is inconclusive and the choice of activation functions
heavily depends on factors such as the data, the model, and hyperparameters. Our own experiments on the three datasets are in line
with the inconclusivity of the literature. We show that there is no discernible difference of performance and convergence between the
ReLU and Swish activation functions for a shallow neural network architecture on the datasets in question.

Index Terms—Swish, Swish-β , ReLU, activation function, machine learning, neural networks.

1 INTRODUCTION

The choice of an activation function in a neural network is said to
have a significant effect on the training dynamics and the task per-
formance [19]. For this reason, many activation functions have been
introduced with the goal of finding an activation function that works
well across learning tasks. According to the literature, one of the most
versatile and performant activation functions is the widely used Rec-
tified Linear Unit (ReLU). Recently, however, a new activation func-
tion called Swish has been introduced that has shown improved per-
formance over a variety of tasks [20].

However, by studying other experiments in the literature we have
found that the right choice of an activation function is rather task de-
pendent. For example, in [6] the authors compare activation functions
across a set of diverse natural language processing (NLP) tasks in-
cluding sentence classification, document classification and sequence
tagging. The findings indicate that there is no clear winner that works
well across all tasks. In fact, the largest difference between the worst
and best performing activation function is usually only one or two per-
centage points of the accuracy, suggesting that if a sensible activation
function is used, the performance differences are minute.

The experiments from the literature conducted so far only fea-
ture large scale datasets, which means that the performance for small
datasets is not yet known. Small datasets also allow for the use of shal-
lower networks with fewer hyperparameters. Compared to the compli-
cated deep networks required for large datasets, this greatly simplifies
the experiments and enables more detailed analysis.

Aside from empirical evaluations, activation functions are often
also compared based on their mathematical properties. For many of
these properties there are convincing intuitive arguments for their im-
portance. However, in all but a few cases there is a significant lack of
any mathematically rigorous justifications. Aside from this, some of
the commonly valued properties are contradictory and do not consis-
tently lead to improved results.

The insignificant differences in experimental results and inconsis-
tencies in the common mathematical properties allow us to suggest
that the best choice of activation functions is highly situational. Some
mathematical properties can be desirable and some activation func-
tion can outperform others, but which properties and activation func-
tions depends on factors such as the network architecture, dataset, and

• Gerrit Luimstra is with University of Groningen, E-mail:
g.s.luimstra@student.rug.nl.

• Willard Verschoore is with University of Groningen, E-mail:
w.a.verschoore.de.la.houssaije@student.rug.nl.

choice of hyperparameters.
In Section 2 we start with a short discussion of activation func-

tions, focusing on ReLU and Swish. We then discuss some of the
mathematical properties of activation functions that are considered to
be important. We conclude Section 2 with an overview of instances
from the literature where ReLU and Swish are compared experimen-
tally. In Section 3 we describe our own experiments and datasets used
to determine if the Swish activation function is preferred over ReLU.
These experiments are focused on a shallow neural network and small
datasets. In Section 4 the results of these experiments are presented
and discussed. Finally, in Section 5 we present our conclusions.

2 BACKGROUND

Activation functions are a crucial component of a neural network be-
cause they allow the network to learn non-linear mappings instead of
being restricted to linear ones. Concretely, an activation function of a
node defines the output of that node given an input or set of inputs.

Historically, the choice of activation function was inspired by the
activation pattern of biological neurons. This led to the widespread use
of the sigmoid and tanh activation functions (see Figure 1). Recently,
these functions have fallen out use due to their poor achieved accuracy
and convergence behaviour.

In modern applications the most widely used activation function is
likely the Rectified Linear Unit (ReLU) [9, 16]. ReLU is defined by
the simple mapping x 7→ max(0,x). Recent years have seen a large
number of new activation functions introduced, many of them based
in some way on ReLU.

One recent activation function that has seen some success is
Swish [20]. Swish was found using an automated search and is de-
fined by x 7→ x ·σ(βx), where σ is the sigmoid function

σ(x) =
1

1+ e−x .

The default setting of β = 1 recovers the preexisting SiLU activa-
tion function [7]. When β = 0, Swish becomes the linear function
f (x) = x/2, and as β →∞ Swish approaches ReLU. For this reason, it
can be said that Swish smoothly interpolates between a linear function
and ReLU. Figure 2 shows a graph of both ReLU and Swish.

2.1 Mathematical Properties
Recent years have seen an explosion in the number of activation func-
tions proposed. The inventors tend to base their new activation func-
tion on a preexisting activation function that they modify to have cer-
tain desirable mathematical properties. There are quite a few such
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Fig. 1: The sigmoid and tanh activation functions.
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Fig. 2: The ReLU and Swish activation functions.

properties that are commonly believed to be beneficial, yet these be-
liefs are rarely backed up by mathematical proof. In the following
section we cover some of the most important of these mathematical
properties. We will discuss the reasoning behind them and see that
some properties may not be as important as previously thought.

2.1.1 Non-linearity
Arguably the most important property is non-linearity. This property
is required to allow the neural network to learn non-linear mappings of
the input. If non-linearity is not present in the activation functions of a
neural network, the whole neural network can be collapsed into a sin-
gle matrix, i.e., a linear mapping. Since datasets are rarely generated
from a purely linear process, this is an important property.

Beyond simple non-linearity, some non-linear activation functions
such as sigmoid, tanh, and ReLU have been proven to allow for the
construction of universal function approximators [3, 11, 21]. This
means that a network with these activation functions can, given the
right network architecture, approximate any function to arbitrary pre-
cision.

2.1.2 Differentiability
Another important property of activation functions is that they must
be differentiable. Neural networks are generally trained using gradi-
ent based techniques, which means that it must be possible to find
the gradient of an activation function for each input value. Interest-
ingly, ReLU breaks this requirement by being non-differentiable at the
origin. Theoretically this may seem problematic, but in practice this
issue does not noticeably affect performance since the chance of an
input being exactly equal to zero is sufficiently low.

A stronger version of differentiability is smoothness. A function is
smooth if it is continuous and any number of repeated differentiations
also result in a continuous function. Swish is an example of a smooth
activation function. In their paper [20], the inventors of Swish argue
that this smoothness leads to a smooth loss-landscape and thus easier
optimization using gradient descent.

2.1.3 Unboundedness
One of the main reasons that researchers have moved away from the
sigmoid and tanh functions is because they are bounded. Both func-
tions approach a lower and upper limit where they level out. This

saturation of the activation function means that the gradient vanishes
for low and high inputs. A small gradient causes slow convergence
and is especially problematic in deep networks where backpropaga-
tion exacerbates the problem.

The reason sigmoid and tanh are bounded is because they are based
on the activations of biological neurons and these are known to satu-
rate. Interestingly, in an early paper discussing ReLU [9], Glorot et
al. justify the unboundedness of ReLU not only on the basis of the
performance gained by avoiding the vanishing gradients problem, but
also because it is more biologically accurate. The reason they give
for this is that “The neuroscience literature indicates that cortical neu-
rons are rarely in their maximum saturation regime”. This means that,
due to its unbounded nature, ReLU could be considered a more accu-
rate biological analogue than saturating functions such as sigmoid and
tanh.

The astute reader will have noticed that while ReLU is indeed un-
bounded from above, it is still bounded from below. Many other popu-
lar activation functions such as Swish and Softplus are also unbounded
from above, but bounded from below. More specifically, the output of
these activation functions approaches zero as the input gets lower. The
reason for this is that disabling the output of an activation on some
range of input values is a form of regularization that promotes spar-
sity. This means that activation functions like ReLU naturally give rise
sparse networks, which is both mathematically desirable and a known
property of biological neural networks.

While being bounded from below indeed has the advantage of spar-
sity, that does not mean that the problem of vanishing gradients is
entirely avoided. For this reason, activation functions such as leaky
ReLU (LReLU), which has a small positive derivative left of the ori-
gin, were introduced as an alternative to ReLU. While the paper in-
troducing LReLU found no significant improvement over ReLU [14],
other papers since have found that some variants consistently outper-
form ReLU [2, 23]. In a survey by Eger et al., the authors find that
saturating functions perform more stably across a variety of hyperpa-
rameter settings, but unbounded functions have better best case per-
formance [6].

2.1.4 Monotonicity

A seemingly reasonable requirement for an activation function is that
it must be monotonically increasing. This means simply that if we
have two input values where the first is smaller than the second, then
the output of the activation function for the first input will be smaller
than or equal to the output for the second input. This matches the
intuition obtained from biological neurons and by far the majority of
activation functions satisfy this property.

However, in Figure 2b we clearly see that Swish has a “dip”. The
creators of Swish believe that this non-monotonicity is part of the rea-
son for Swish’s success. They claim that it “increases expressivity and
improves gradient flow” [20].

Swish increases expressivity in the sense that it does not crush all
negative inputs like ReLU does. The “dip” allows for the preservation
of small negative inputs. Ramachandran et al. show in their experi-
ments that such inputs occur frequently, so the behaviour of Swish in
this region is likely to be an important factor in its success [20]. In
order for an activation function to still have the regularization proper-
ties discussed in Section 2.1.3, the activation should approach zero for
large negative inputs. Combining this property with the preservation
of small negative inputs naturally leads to a non-monotonic function.

2.1.5 Zero-centring

The final property we will discuss is that of zero-centring. An activa-
tion function is zero-centred if its average activation is approximately
zero. When this is not the case, activation functions impose a bias
shift away from zero. If the units in a layer are correlated, this shift
increases for each hidden layer. By centring an activation function at
zero this bias is avoided, which leads to faster learning. This is de-
scribed in detail in the paper introducing the zero-centred Exponential
Linear Unit (ELU) [2].
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The authors of [13], in which the Scaled Exponential Unit (SELU)
is introduced, describe a stronger variant of this property which they
call “self-normalization”. An activation function is self-normalizing
if it has zero mean and unit variance. When an activation function
has this property it leads to automatically normalized outputs, obviat-
ing the need for regularization procedures such as batch normalization.
Notably, the unit variance property requires activation functions to sat-
urate in some regions in order to dampen the variance. The authors of
the SELU paper argue that, despite the saturation, vanishing gradients
are not a large problem because self-normalizing functions are more
robust to perturbations caused by stochastic training procedures.

2.2 Comparing Activation Functions

In their papers introducing Swish [19, 20], Ramachandran et al. com-
pare Swish against other activation functions in a number of image
classification and machine translation tasks. The most notable discov-
ery is that Swish outperforms ReLU in all experiments. The difference
in accuracy can be as high as 2.2%, but tends to be anywhere from
0.5% to 1%. They note that Swish outperformed ReLU by a large mar-
gin in very deep networks. This is especially interesting since Swish
has a non-unit derivative around the origin, which would convention-
ally be considered problematic in deep networks due to vanishing gra-
dients. It is important to note that in the experiments the authors used
models and hyperparameters designed for ReLU; Swish was simply
substituted in its place. The authors speculate that if Swish is widely
adopted and models are constructed with it in mind, then the improve-
ments over ReLU may be even greater.

While these results seem to clearly indicate that Swish is the su-
perior activation function, they should be interpreted with care. This
is demonstrated by Eger et al. who obtain more nuanced results in
their comparison of 21 different activation functions across a variety
of NLP tasks [6]. Their experiments show that Swish and ReLU per-
form very similarly with the difference in accuracy often being less
than 0.5%. They note that both Swish and ReLU have good best case
performance, but may need more hyperparameter tweaking than other,
more stable activation functions.

Other comparisons find similarly ambiguous results. For exam-
ple, Xu et al. find no significant difference between popular activa-
tion functions in their experiments [24]. Dubey et al. show that ReLU
outperforms Swish for most models on the same image classification
datasets as used by Ramachandran et al. [5]. The differences in ac-
curacy were often more than one standard deviation and training for
Swish was also significantly slower. Interestingly, for a machine trans-
lation experiment the same paper shows Swish outperforming ReLU.
A study on activation functions in generalized learning vector quanti-
zation found that Swish achieved slightly better accuracy and signifi-
cantly faster convergence when compared to ReLU [22].

These examples clearly demonstrate that the literature is inconclu-
sive when it comes to the choice of activation function. One issue
is that the differences in accuracy that are found tend to be no more
than 1%. In their papers introducing Swish [19, 20], Ramachandran et
al. argue that these differences are significant since one year of archi-
tectural improvements going from Inception V3 to Inception-ResNet-
v2 led to a similar increase in accuracy. However, as discussed above,
other experiments showed similar differences in accuracy in ReLU’s
favour.

In our opinion, the main issue with comparing activation functions
is that performance is highly dependent on a wide variety of factors.
The choice of model and hyperparameters significantly affect perfor-
mance and the best choice differs per activation function. In the case
of Swish, there is the additional parameter β which can also be opti-
mized. All of this means that, while activation functions may have a
noticeable effect on a network’s performance, they should be chosen as
part of a broader model selection procedure where they are compared
against others for each separate task. There is sadly no universally su-
perior activation function, but both ReLU and Swish are good options
in many situations.

3 METHODOLOGY

In order to avoid complications of hyperparameter selection we ob-
served in previous experiments, we chose to use a simple neural net-
works architecture in our experiments. The choice of a simple archi-
tecture naturally leads to the use of small datasets. Hence, to empiri-
cally compare the performance of both the ReLU and the Swish acti-
vation function, we train a simple neural network on three small mul-
tivariate regression datasets from the UCI Machine Learning Repos-
itory [4]. This should allow us to isolate the effect of the choice of
activation function as much as possible.

All experiments have been conducted in the Python program-
ming language in combination with the open source machine learning
framework PyTorch.

3.1 Datasets
In this section we outline the three small datasets used in our experi-
ments.

3.1.1 YearPredictionMSD
The first dataset is the YearPredictionMSD dataset [1] in which the
goal is to predict the release year of a song based on its audio features.
The songs are mostly western and commercial tracks released in the
years 1922 to 2011. The dataset has a total of 515,345 samples with
90 attributes. The attributes contain 12 timbre averages and 78 timbre
covariances, where timbre is the perceived sound quality of a musical
note, sound or tone. For a more detailed explanation of the features
we refer to [1].

3.1.2 Abalone
Abalones are a group of marine snails. The age of abalone can be
found by cutting the abalone shell through the cone, staining it, and
counting the number of rings through a microscope. In general, this is
a laborious and monotonous task. Instead, a machine learning based
method can be designed that uses easily measureable properties of the
shell to predict the age and thereby preventing the cutting of the shell.
With the Abalone dataset [17] the goal is to predict the age of abalone
shells based on a set of measurements including the diameter, height,
weight and the number of rings on the shell. The dataset has 4,177
samples and 8 dimensions.

3.1.3 Bike Sharing Dataset
The goal of the Bike Sharing dataset [8] is to predict the number of
bikes that will be rented daily based on the environmental and sea-
sonal circumstances of that day. After the removal of some superfluous
columns, the modified dataset contains 731 samples with 11 dimen-
sions. The features (dimensions) in the dataset consists of date/time
information, such as the season, year, month and whether the day is
a weekend or working day and environmental information such as the
weather situation, temperature, windspeed and humidity. Using these
features, the total number of bikes rented is to be predicted. The scale
of the output variable is in the thousands.

3.2 Data Preprocessing
To aid with the convergence speed of the neural network, all the input
data is scaled to have a mean of 0 and a standard deviation of 1. To do
this, we perform for each feature j the transformation:

zi j =
xi j−µ j

σ j
,

where xi j denotes the jth feature of the ith sample and µ j and σ j are
the mean and standard deviations of feature j over the training data.
The inputs xi j are then replaced with the z−scores zi j.

3.3 Network Architecture
Since the experiments focus on the use of small datasets, the neural
network architecture need not be complex. Hence, we opted for an el-
ementary feed-forward architecture with a single hidden layer with K
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Fig. 3: The neural network architecture used in the conducted experi-
ments. It consists of a single hidden layer with K units with as the ac-
tivation function one of the considered activation functions as outlined
in the experiments. The single output layer has the identity function
as the activation function. All the weights and biases are adaptable.

units (with bias) and a single output with the identity activation func-
tion as displayed in Figure 3.

For the activation function on the hidden layer, the ReLU function
or the Swish-β function will be used with β = 0 for a linear function,
β = 1 for the standard Swish function, and β = 0.5 as an interesting
value which can be interpreted as an interpolation between a linear
activation function and Swish. Depending on the performance of the
different activation functions, we can empirically conclude which acti-
vation is best. All the weights and biases in the network are adaptable,
including the hidden to output weights.

3.4 Training and Evaluation

The neural network weights and biases are initialized using He initial-
ization [10], since this works well for rectifier type activation func-
tions. Furthermore, the trained weights are obtained using the adap-
tive moment estimation (ADAM) optimizer [12]. In contrast to vanilla
gradient descent, ADAM maintains a per-parameter learning rate that
improves performance on problems with sparse gradients. On the
YearPredictionMSD dataset an initial learning rate of 0.1 is used, for
the Abalone dataset the initial learning rate is set to 0.002, and for the
Bike Sharing dataset the learning rate is set to 0.1. For each dataset, the
model is trained for 2000 epochs. These settings were experimentally
found to be suitable.

The cost function that is optimized is the mean-squared-error loss:

MSE =
1
n

n

∑
i=1

(yi− ŷi)
2,

where yi and ŷi are the actual and predicted outputs respectively. In
this work we will however report the square root of this loss function,
called the root-mean-square error (RMSE) since this is on the scale of
the predictor itself and allows for a more intuitive interpretation.

To obtain the performance of the different parameter settings, 5-fold
cross validation is used on the whole dataset, where the performance
of an iteration is set to the final loss of the model on the hold-out set.

4 RESULTS & DISCUSSION

In this section we present and discuss the results of our experiments.

4.1 Performance Reports for Different K and Activation
Functions

The RMSE scores of different K and activation functions on our se-
lected datasets are displayed in Figure 4.

In Figure 4a, the performance on the YearPredictionMSD dataset
is displayed. For the case of K = 1, the data points for β = 0.5 and
β = 1 are excluded, as the RMSE for these data points were 357 and
684 respectively. From the plot it is clear that there are no clear differ-
ences between the performance of the activation functions when using
more than one hidden unit, however in some cases (K = 9) the linear
activation function is slightly worse. Interestingly, a model with just 2
hidden units (K = 2) obtains a decent RMSE already.

The performance on the Abalone dataset is displayed in Figure 4b.
From the plot it is clear that for a good RMSE at least 6 hidden units
are required. For K ≥ 6, the difference in activation function perfor-
mance is negligible. For the cases of K < 6, the network is too con-
strained and is not able to obtain a proper solution. Interestingly, in this
region the Swish-like activation functions perform significantly worse
than the linear activation function. The reason for this is not clear to us,
but it could be explained by the derivative being present everywhere
for the activation function. In Figure 4c, the performance plots of the
Bike Rental dataset are displayed. We see behaviour similar to that in
Figure 4b, where for K ≥ 4 the model is again too constrained. For
K < 4 the linear activation function is yet again the best performing.
It should be noted that even the best performance on the Bike Rental
dataset is not spectacular however. The obtained RMSE of about a 800
indicates that the model can predict the amount of bikes rented with
on average an error of about 800 bikes. Hence, these results should
not be over-interpreted.

In general there does not appear to be a clear winner when it comes
to the activation functions considered. The differences between all the
activation functions are small for a suitable number of hidden units.

4.2 Convergence Behaviour of ReLU vs Swish

As described before, the authors of [20] believe that the use of the
Swish activation function leads to a smooth loss-landscape and thus
easier optimization using gradient descent. If this is true, the conver-
gence of the training RMSE should be faster for the Swish activation
function on the three datasets considered. To determine the conver-
gence behaviour on each dataset, the optimal K is fixed and the train-
ing loss curve as a function of epochs is obtained by training on the
whole dataset. From the previous experiments, the optimal number
of hidden units K can be determined and is found to be 2, 6 and 4
for the datasets respectively by picking the smallest K such that the
performance is close to minimal for all activation functions.

The plots of the training loss curves are displayed in Figure 5. From
the plots it can be seen that the convergence behaviour for the different
activation functions is very similar over the three datasets. In general,
while the identity activation function appears to work slightly better on
the first two datasets, there is no clear winner nor a clear loser when it
comes to convergence speed.

4.3 Discussion of the Experimental Setup

Because of the simplicity of our network architecture we can consider
our experiments to be quite thorough. There are not many other hy-
perparameter settings we could have used without extending the ar-
chitecture, which would contradict our aim to keep down complexity
in order to isolate the effects of the choice of activation function. It
would have been possible to use more choices of β for the Swish ac-
tivation function, but the results obtained show that it is unlikely this
would have made a significant difference. Furthermore, the choice of
the optimizer can have a non-trivial impact on the performance of the
models. We chose to use the ADAM optimizer over the simpler vanilla
gradient descent due to its popularity and its ability to use local gradi-
ents for different parameters which speed up the learning process.

While we have explained the reasons for performing experiments on
small datasets, it can also be argued that ReLU and Swish are mainly
intended for use in deep neural networks, and the comparisons in this
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Fig. 4: The RMSE performance plots for different K and β . The y-
axis denotes the RMSE and the x-axis displays the number of hidden
units K of our network architecture. Colors are used to differentiate
between the activation functions considered.
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Fig. 5: The RMSE performance as a function of the number of epochs.
The y-axis denotes the RMSE and the x-axis displays the number of
sweeps over the dataset. Colors are used to differentiate between the
activation functions considered.
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paper are thus somewhat irrelevant. Both activation functions miti-
gate the issue of vanishing gradients, which occurs with many layers,
but this is largely unnecessary in the single hidden layer architecture of
Figure 3. Because of this, our experiments cannot rule out the possibil-
ity that there is a significant difference between ReLU and Swish for
more complicated networks where their unique properties may have
more of an effect. However, we discussed in Section 2.2 how experi-
ments with deeper networks found no consistent differences either.

5 CONCLUSION

A survey of the literature has shown that there is no obvious optimal
choice of activation function. Between ReLU and Swish, neither has
a clear advantage over the other. Even when restricted to a particular
task or dataset, both functions can come out on top depending on fac-
tors such as the model architecture and the chosen hyperparameters.
When a difference in achieved performance is observed, it is rarely
discernible and arguments for the significance of such a difference are
not always convincing.

In our own experiments on the three small datasets, we measured
the performance and convergence behaviour of the ReLU and the
Swish activation function (and variants thereof). From the results of
these experiments, it is found that there is no clear winner or loser
when it comes to the choice of activation function.

Conclusively, since there is not yet a clear mathematical framework
present to study the complex learning behaviour of activation functions
on general datasets and architectures one should turn to approximate
and empirical results with concrete datasets and architectures. Our ex-
periments suggest that on the considered datasets and for our specific
architecture, there is no discernible difference between the ReLU and
Swish activation functions in terms of performance and convergence
speed.

6 FUTURE WORK

In future work, a few items may be investigated. There exists a body of
research surrounding trainable activation functions in which the activa-
tion functions themselves have parameters that the optimizer can adapt
and optimize. One such family of activation function is the P-Swish
activation function defined in [15]. Using such an adaptable activa-
tion function removes the issue of having to manually set the amount
of monoticity used in the activation function (through β ), since it can
be learned in a task agnostic way. By investigating the optimized pa-
rameters, a better conclusion can be obtained about the performance
improvements of Swish versus ReLU.

Finally, the inconclusive nature of our experiments and those of
others show that empirical evaluations are able to provide only lim-
ited insight into the differences between activation functions. For a
more complete understanding, mathematical analyses should be con-
ducted. Deep neural networks are hard to investigate in this way, but
for shallow networks like those used in our experiments it may be pos-
sible. This is demonstrated by Oostwal et al. who compare ReLU and
sigmoidal activation using statistical physics techniques [18]. Similar
comparisons involving Swish may provide valuable insights.
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Capsules vs. Convolutional Neural Networks

Merlijn Frikken and Sander Zeeman

Abstract— Convolutional Neural Networks have been a staple in image classification for a long time. However, CNNs have a few
well-known weak points. Specifically, these networks are fully position invariant. In extreme cases, this may lead to serious issues.
Capsule Networks were proposed as an alternative. These networks store parameters such as location, orientation and size, while
still being location invariant, in the sense that the location of an entity will not affect to probability of it being detected in the image.
A literature study was performed on both methods and the benefits and shortcomings of either approach were analysed. We found
that capsule networks achieve greater performance than conventional CNNs, while also allowing for large future improvements. For
complicated data sets, the capsule networks have been shown to fail.

Index Terms—CNN, Capsule, Neural Network, Analysis, MNIST, LUNA, CIFAR.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) are a type of Artificial Neu-
ral Network (ANN). LeCun et al. were one of the first to popularize
CNNs in [8]. CNNs were proposed in order to ensure shift and distor-
tion invariance in ANNs. These properties are extremely important, as
the absolute position of a feature should not matter for a neural net-
work. Relative position, the position of a feature with respect to other
features, is very important however.

In regular feed-forward networks, the topology of an input signal
is not taken into account. This means that the correlations between
features are entirely ignored. Naturally, this causes issues when pro-
cessing signals, as the neighborhood of a signal can contain a large
amount of information towards the nature of this signal. CNNs were
introduced to remedy this issue.

However, various issues were found within CNNs as well. This
will be described in detail, later in this paper. However, the main is-
sue that was found, was the exact fact that CNNs are position invari-
ant. As long as all features that describe some object are present in a
signal, the exact placement of these features becomes far less impor-
tant. This may lead to problems, such as the classification that can be
seen in Figure 1. In this figure, the CNN has been trained to perform
face recognition. Both faces are classified as a face, due to the fact
that CNNs are fully position invariant, as was mentioned before. All
required features are present in the image, though not in the correct
positions, relative to one another.

Fig. 1: Both images are classified as a face by a CNN [4]

Recently, an alternative was proposed by Hinton et al. in [13]. Hin-
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ton states that Capsule Networks attempt to replicate the human visual
cortex. Capsule Networks attempt to extract entities from a signal.
Unlike CNNs, the features that were extracted by a Capsule Network
describe various attributes of an entity. Capsule Networks addressed
the issue that was previously mentioned. Additionally, this alternative
improved upon multiple other factors. These improvements will be
described extensively in Section 4.

In this paper, we will compare state-of-the-art CNNs with the re-
cently introduced Capsule Networks. The strengths, limitations and
characteristics of both approaches will be analysed and compared
based on a literature study. We conclude with a suggestion regarding
the future use of Capsule Networks.

We will attempt to answer the following research question:

How do the newly introduced Capsule Networks compare to
conventional Convolutional Neural Networks?

From an initial literature study, we believe Capsule Networks have
the potential to become a powerful alternative to conventional CNNs.
However, we also believe that Capsule Networks are unlikely to fully
replace conventional CNNs in the near future.

In Section 2, the basic architecture of a CNN will be extensively
described. Each layer will be defined mathematically, then its impor-
tance will be outlined. Afterwards, in Section 3, the same will be done
for a Capsule Network. Furthermore, in Section 4, an outline will
be given of the strengths and weaknesses of either approach. Addi-
tionally, various attributes, such as accuracy, computational load and
training data requirements will be mentioned. This analysis will then
be used to compare the two approaches in Section 5. Then, we will
conclude this paper with Section 6, where we will once again outline
the main findings and formulate an answer to our research question.
Finally, we will mention some future work that could be done on the
topic in Section 7.

2 CONVOLUTIONAL NEURAL NETWORK

Neural networks are used to solve a large range of problems. Ex-
amples of common applications are: classification, regression, image
segmentation and many more. Before the introduction of CNNs, large
feed-forward networks were applied. While these networks were capa-
ble of producing adequate results, these networks would often repeat
groups of weights at various positions within the signal. Feed-forward
networks are not position invariant by nature after all. As a result,
Convolutional Neural Networks were introduced.

CNNs were defined with the specific goal of ensuring position in-
variance within a feed-forward network. A typical CNN architecture
is built from three types of layers: Convolutional layers, Pooling lay-
ers and Fully Connected layers. Here, the former two layers are used
for feature extraction, while the latter layer is used for classification.
A typical architecture is displayed in Figure 2. Many more layers have
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Fig. 2: A basic CNN architecture for a classification task [2]

been defined in the state of the art, however, these are beyond the pur-
pose of this paper. Therefore, we will limit ourselves to the aforemen-
tioned three layers.

2.1 Convolutional Layer
In the convolutional layer, filters will act as a sliding window over the
input image. A filter, in this context, is another name for a weight
matrix. Generally,

∑
w∈W

w = 1, where W is the filter (1)

holds, but this is not a strict requirement.
At every position, a convolution will be computed between the filter

and the section of the image it currently overlaps. The convolution of
some filter W and an input image I is defined as

(W ∗ I)(x,y) =
a

∑
s=−a

b

∑
t=−b

W (s, t)I(x− s,y− t). (2)

Feature maps are the intermediate representations within a CNN.
Generally, an activation function is applied to the result of the convo-
lution, to produce the feature map. Because of this, the feature map
is often referred to as an activation map as well. After all, this inter-
mediate representation denotes the activation of various areas within
the input. Many choices for the activation function can be found in the
literature, but the most common is the ReLU activation function [12],
which is defined as

f (x) = max{0,x}. (3)

Note that the convolution of two matrices is similar to the correla-
tion between the two matrices, with one of the matrices being mirrored
horizontally.

Additional parameters can be set to alter the size of the output.
Firstly, multiple filters can be used on a single image, which means
we have to set the number of filters: K. Next, we can set the stride:
S, which defines the number of pixels we slide over after every step.
Additionally, we can add a padding: P to our input. This will add P
rows/columns of zeros at the start and end of the input. Finally, a filter
will have size FxF . In this definition, the filters are assumed to be
square matrices, however, this is once again not a strict requirement.
When we want the output feature maps to have the same dimensions
as our input, the settings are generally S = 1,P = F−1

2 .

2.2 Pooling Layer

In the pooling layer, the goal is to make the feature maps smaller and
more manageable. Pooling is also referred to as down-sampling in
the literature. Two main types of pooling are used in CNNs, once
again, many more exist, yet this is beyond the scope of this paper [14].
Pooling works by dividing the feature map into smaller areas of size
SxS. For each of these areas, some statistic will be computed.

Fig. 3: An example of max/average pooling [1]

This statistic will be the new value that is entered into the output fea-
ture map. An example of max/average pooling is included in Figure 3,
in order to visualise the process. First, we discuss average pooling. As
the name suggests, this method of pooling computes the average of an
area. This can often be used to retain information about the general
area, while allowing the network to forget specific details. Alterna-
tively, max pooling can be applied. Max pooling, once again, acts
according to its name. This method takes the maximum value within
some area and assigns this value to this spot in the feature map. This
method will retain any sudden peaks in a feature map, which could
help us find critical areas within the image.
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Fig. 4: A basic Capsule Network architecture [13]

2.3 Fully Connected Layer
Finally, we discuss the fully connected layer. This layer contains a
number of neurons. Here, every pixel of every feature map is con-
nected to every neuron, hence the name ”Fully connected”. These lay-
ers are added to the end of a CNN in order to introduce non-linearity;
convolution and average/max pooling are linear operations. The prob-
lems that call for a machine learning solution are often non-linear in
nature. Therefore, it is very beneficial to allow for non-linearity within
a model. In the end, a linear solution could propose a viable approx-
imation of the non-linear solution. However, a non-linear solution is
magnitudes more likely to approach a correct solution.

Finally, these neurons will perform their activation functions and
return an output. This output generally consists of the probabilities
that the input contains each of the defined classes.

In conclusion, the convolutional layers are responsible for extract-
ing features from various locations in the input image. The pooling
layers are responsible for decreasing the size of our feature maps,
while retaining the important features that were extracted. Finally, the
fully connected layers are responsible for combining the previously
extracted features into a solution.

3 CAPSULE NETWORKS

As mentioned before, one of the main issues with CNNs is that the
information regarding the position of various segments is lost by the
end of the network. Instead, Hinton et al. [13] propose an alterna-
tive. Capsule Networks consist of a collection of capsules. Capsules
are a novel data structure, which will contain various neurons. These
neurons will store various parameters of the entity that it represents;
the instantiation parameters. Meanwhile, retaining the ability to deter-
mine the probability that an object appears in an image. This method
will define various capsules, which are later linked together in order to
represent objects.

First, we define the concept of a capsule, similarly to Hinton et
al. [13]. Simply put, a capsule is a collection of neurons, which will
represent some entity within a signal. Neurons take as input a list of
scalar values and outputs a scalar value. A capsule is simply a vector
of neurons. Therefore, a capsule will take as input a vector of vectors,
i.e. a matrix. Then, the output will become a vector containing the
instantiation parameters, as previously defined.

In Section 2, we described the output of a CNN as ”the probabilities
that the input contains each of the defined classes”. In Capsule Net-
works, the output of neurons will consist of a vector of instantiation
parameters, rather than a probability. For example, the first value in the
vector may encode the entity’s size, while the second and third encode
the location. Therefore, another method of determining the probability
of the existence of an entity is required. As the various values within
the vector encode properties of the entity, we can simply use the length
of this vector as the probability that the entity it represents exists in the
image. After all, whenever many parameters of an entity are strongly
noticeable in an image, it is very likely the entity is included in the
image.

Whenever some feature changes its position or size in an image, the
probability that this feature exists in the image should not change. The
instantiation parameters will change, as this is where these attributes
are stored. However, its contribution towards the length of the vector
should not change. After all, the aim of Capsule Networks was to ob-
tain absolute position invariance, while considering relative positions
of objects.

A typical architecture for a Capsule Network can be seen in Fig-
ure 4. We can see various layers in this architecture. First, we see a
convolution layer, as previously described in Section 2.1. Afterwards,
Primary Capsules are applied.

3.1 Primary Capsules

As written in [4], primary capsules act as a transition between the
scalar values that are produced by the prior convolution to an eight-
dimensional vector output. Thus, these capsules will perform an affine
transformation of an input vector uuui with some weight vector WWW . This
transformation can be described as

ûuu j|i =WWW i juuui. (4)

First, we group eight convolutional units from the previous layer
into one capsule. Then, we simply perform a convolution, as described
in Section 2.1. However, as we are using vectors, rather than scalar
values, we can no longer use the ReLU function. The ReLU function
is only defined for scalars after all. Instead, we will apply the novel
activation function by Hinton et al. [13]; the squashing function.

3.1.1 The squashing function

We mentioned previously that the length of an output vector will repre-
sent the probability that the entity it represents exists within an image.
However, currently there is no boundary on the length of an output.
To remedy this, Hinton et al. introduced the squash function, which is
defined as

f (sss) =
||sss||2

1+ ||sss||2
sss
||sss|| , where sss represents an output vector. (5)

In this equation, sss
||sss|| is the definition of the normalisation of sss. ||sss||

is the Ln norm of vector sss, where n is the length of sss. The first term,
let us call it the squash factor, transforms the result into a non-linear
function. Whenever the length of sss is very large, the squash factor will
approach 1. Conversely, whenever the length is very small, the squash
factor will approach 0. A plot of the squash factor as a function of the
length of sss can be seen in Figure 5.

As we can see, as the length continues to grow, the squash function
will continue to grow towards 1, which would denote a 100% proba-
bility of the entity that this capsule represents appearing in the input
image.
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Fig. 5: The squash factor

3.2 Digit Capsules
The vectors that were derived by the Primary Capsules are then passed
into Digit Capsules. The eight-dimensional outputs of the Primary
Capsules are fully connected with the Digit Capsules layer. This
layer will have some weight matrix bbb of size 8x16 associated with
it. Following basic linear algebra, the matrix multiplication of an
eight-dimensional vector and weight matrix bbb, will result in a sixteen-
dimensional output vector. This output vector will act as the input
vector to the Digit Capsules.

In a conventional CNN, a pooling method would be applied in-
between the two convolutional layers. Rather than pooling, Hinton et
al. have developed a novel routing technique. Routing algorithms will
be used to determine the weights in weight matrix bbb, such that related
concepts will be connected within each capsule. The initialization of bbb
can be done in various ways, with similar results. However, the most
common initialization is named tabula rasa, which means the entire
matrix is set to 0 at initialization. This technique will apply dynamic
routing, which means the routing happens at runtime, rather than it be-
ing a hyperparameter. The goal is to route the capsules’ outputs, such
that the inputs of the capsules in the new layer agree with one-another.
Dombetzki described this in the following simple terms in [4]: ”... this
can be compared to routing a detected nose to the face-capsule and not
the car capsule. A detected nose, eye and mouth agree together in the
face capsule, while the nose would not agree with a wheel and door in
the car capsule.”

Coincidence filtering [6] tells us that, in a high-dimensional space,
whenever a group of data points has similar values, these data points
are very likely to be related. We know the parameter space can grow to
large dimensions very quickly. Because of this, it is extremely unlikely
that a cluster of vectors are not related to each other.

Algorithm 1 The Routing algorithm used by Hinton et al. [13]

1: procedure ROUTING(ûuu j|i,r, l)
2: for all capsule i in layer l and capsule j in layer(l+1): bi j← 0.
3: for r iterations do
4: for all capsule i in layer l: ccci← softmax (bbbi)
5: for all capsule j in layer (l +1): sss j← ∑i ci j ûuu j|i
6: for all capsule j in layer (l +1): vvv j← squash (sss j)
7: for all capsule i in layer l and capsule j in layer (l + 1):

bi j← bi j + ûuu j|i · vvv j
8: end for
9: return vvv j

10: end procedure

Thus, Hinton et al.’s routing algorithm will be a simple clustering

algorithm on the input capsules. The chosen algorithm can be seen
in Algorithm 1. This is a general iterative clustering algorithm. No-
tice that a hyperparameter r is mentioned, which defines the number
of iterations of the clustering algorithm. After an empirical analysis,
Hinton et al. recommend to set r ≈ 4. Afterwards, the weight matrix
bbb, which links the previous capsules to the current capsules, will be
defined.

3.3 Predicting the Class
All that remains is to compute the probabilities of each class appear-
ing in the input image. Luckily, as mentioned before, the length of
a capsule vector determines the probability that some entity appears
in an image. Additionally, in the previous section, we described how
various capsules were routed to the matching capsules in the Digit
Capsules layer. Finally, we described how a capsule is a representa-
tion of an object, while individual neurons represent smaller segments
of that object.

From this, we conclude that all vectors in a capsule will relate to the
same object. Therefore, the lengths of the vectors in a capsule, are the
probabilities that each of these segments appeared in the image. The
capsule with the highest average vector length can be considered the
most likely solution to the task.

Thus, we can conclude that the final fully-connected layer is no
longer needed. A variation of this layer already appeared during the
routing after all.

4 ANALYSIS

Now that the concepts of a CNN and a Capsule Network have been
explained, we can focus on comparing the two structures. In our
comparison we take note of the strong points and the weak points for
both structures, and look at any differences in performance, execution
time and training efficiency.

4.1 Analysing CNNs
As has been mentioned in Section 1 and can be seen in Figure 1, a
major weak point of using CNNs is that they are position invariant:
as long as all features of an object are present in an image, the place-
ment of those features in the image is irrelevant, which can lead to
incorrect results in extreme cases. Another weak point is that since
the viewpoint is the largest source of variance in an image, a single
transformation on the image changes a lot of pixels making the CNN
exponentially increase in size. Another thing to consider is that pool-
ing involves the same neurons for the same activation. A translated
image will then involve a different set of neurons for handling the ac-
tivations. This is not intuitive as the human brain would recognise that
the same object is visible before and after its translation and would
activate the same neurons.

Another downside of CNNs is the fact that intermediate values in
the feature extraction are extremely hard, if not impossible, to inter-
pret. The final result is easily interpretable, it is the probability that
some class is detected in an image. However, the intermediate states
mean nothing to the researcher. This makes it difficult to track the
progress of an architecture. In general, the performance of CNNs is
satisfactory if only one kind of object is involved. For multiple objects
their information needs to be kept separate and the CNN struggles with
detection and segmentation [4].

4.2 Analysing capsules
As mentioned in Section 3, the main strong point of using capsules is
viewport invariance: the probability of a certain feature being in an im-
age is constant when the feature undergoes a translation. Since view-
points are represented as linear transformations the capsule networks
also have a better generalisation for new viewpoints [4]. Furthermore,
as the neuron groups are connected between layers instead of individ-
ual neurons, a connection requires fewer parameters. A drawback is
that the capsules look at everything in an image, so clutter in the image
needs to be handled properly by e.g. modelling the clutter. Capsules
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(a) MNIST (retrieved from
[11]

(b) LUNA16 (retrieved
from [3]

(c) CIFAR10 (retrieved
from [10]

Fig. 6: Examples of the images in the data sets we will be discussing.

also assume that each location in the image contains at most one in-
stance of an object. This can cause problems if an image is crowded
with multiple instances of the same object.

Additionally, in contrast to the aforementioned uninterpretable in-
termediate values of a CNN, Capsule Networks work with vectors that
carry important parameters regarding the entity it represents. There-
fore, Capsule networks allow for a certain understanding of the classi-
fication process. While this property may not directly affect the perfor-
mance of the classification, it does help the researcher in understand-
ing where an architecture fails and where it is accurate. This could be
considered equally important.

4.3 Theoretical comparison

When theoretically comparing the two structures it is evident that cap-
sules fix a lot of the shortcomings that CNN’s have: capsules are view-
port invariant while CNN’s are not; capsules require fewer parameters
than CNN’s due to the connections between groups of neurons. Fur-
thermore, as a network of capsules converges in fewer iterations than
a CNN, less amount of training data is needed. This can be important
for use cases where only a small amount of data is available.

4.4 Comparing Performance

In order to properly compare the performance of conventional CNNs
and the novel Capsule Networks, we have searched the literature for
implementations of both regular CNNs and Capsule Networks on three
data sets, which increase in complexity. Specifically, the three data sets
we will compare are:

• MNIST (CNN: LeNet-5 [9], Capsule Network: CapsNet [13])

• LUNA16 (CNN: U-Net [7], Capsule Network: SegCaps [7])

• CIFAR10 (CNN: ViT-H [5], Capsule Network: CapsNet [13])

In Figure 6, an example image of each of the data set can be viewed.
The MNIST dataset consists of images of handwritten numerical dig-
its, the LUNA16 dataset consists of images of lung nodules and the
CIFAR10 dataset consists of coloured images in 10 different classes.

In the papers referenced above both conventional CNNs as well
as Capsule Networks were built and applied to the three well-known
datasets mentioned above. The results can be seen in Table 1

CNN (error in %) Capsule Network (error in %)
MNIST 0.95 0.25

LUNA16 1.55 1.52
CIFAR10 0.50 10.60

Table 1: A comparison of various architectures on three well-known
data sets.

These results will be discussed in the following section, where con-
clusions will be drawn from the analysis.

5 DISCUSSION

In Section 4, we discussed the various positives and negatives of both
conventional CNNs and Capsule Networks. We will first discuss any
potential issues that should be kept in mind when interpreting the re-
sults we collected. Then, we will take this analysis and use it to answer
our research question. Afterwards, we will look back at our hypothesis
and modify it if necessary. Finally, we will state our final thoughts on
the topic.

Overall, we found that Capsule Networks offer some major im-
provements over conventional CNNs. These improvements include
viewport invariance, fewer hyperparameters and trainable parameters
and a shorter training phase. Viewport invariance allows for far more
accurate and complex architectures to be built, which could lead to
them being used by Computer Vision research groups, who often de-
velop very specific software to detect objects while prior knowledge
is abundant. Furthermore, less parameters (both hyperparameters and
training parameters) greatly decreases the required data and training
time, which will assist researchers in finding optimal hyperparameter
settings in acceptable time frames. Additionally, we noticed an in-
crease in performance for simpler data sets by Capsule Networks. This
can be seen in Table 1. Finally, Capsule Networks apply interpretable
intermediate states. Through these states, it becomes simpler to un-
derstand the process that a Capsule Network goes through to obtain a
final result. This may even add to Explainable AI research.

However, we must also consider the negatives we observed regard-
ing Capsule Networks. Specifically, whenever data sets grow complex,
current Capsule Networks are quickly overwhelmed in comparison to
conventional CNNs. Additionally, CNNs offer many more variations,
which are geared towards specific problem. This makes it very likely
that these specialised networks will have a better performance than
Capsule Networks.

Various reasons may exist for these shortcomings. The most prob-
able reason: CNNs have been around for far longer than Capsule Net-
works. It is possible that, as Capsule Networks continue to be ex-
plored, techniques will be discovered that assist Capsule Networks in
overcoming these limitations.

One reason for possible discrepancies in our data may be that, for
some of the data, large time periods exist in-between the CNN and
Capsule Network approaches. Improved architectures may have been
discovered in the present, however, the chosen architectures seem to
be the leading architectures for the specific data sets. Additionally,
we must take care when comparing the results in Figure 1. As men-
tioned in Section 4.4, the results were obtained by various researchers,
through multiple research papers ([5], [7], [9], [13]). This allows the
results to be mostly unbiased, however, it introduces the issue that
these results may not accurately represent the current optimal architec-
tures for either network. Nevertheless, significant differences in error
rates were discovered. This helps us answer the research question that
was posed at the beginning of the paper.

Let us first reiterate this question:

How do the newly introduced Capsule Networks compare to
conventional Convolutional Neural Networks?

We hypothesised the following: ”From an initial literature study,
we believe Capsule Networks have the potential to become a powerful
alternative to conventional CNNs. However, we also believe that Cap-
sule Networks are unlikely to fully replace conventional CNNs in the
near future.”

After an extensive study, we have found that Capsule Networks al-
ready have proven themselves to be an alternative to CNNs, for simpler
data sets. However, we, as authors, still hold the opinion that, given
more time, Capsule Networks will grow to match the performance of
conventional CNNs, even for more complex problems. Additionally,
Capsule Networks may become the preferred method, due to their ex-
plainable nature, as mentioned in the analysis.

6 CONCLUSION

In conclusion, we have analysed conventional CNNs and Capsule Net-
works. We then compared them in various criteria. We found that Cap-
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sule Networks offer great benefits over conventional CNNs. However,
at this time, researchers have not been able to apply Capsule Networks
to complex problems and achieve state of the art performance. They
have, however, managed to improve the state of the art on data sets
such as MNIST and LUNA.

Based on these results, we believe that, currently, the field should
not yet adopt Capsule Networks as its standard method for position
invariant neural networks. We do, however, believe that more research
should be performed on Capsule Networks, as they clearly have the
potential to be as effective as, if not more effective than, conventional
Convolutional Neural Networks.

7 FUTURE WORK

In the future, more research could be done in the following areas:

• In this paper, we did not take notice of alternative routing al-
gorithms. Comparing the effectiveness of various routing algo-
rithms could lead to interesting insight.

• The Capsule Network we mainly considered in this report is a
very simple, yet effective, example. More complex Capsule Net-
works may be analysed in detail. These networks may even have
the potential to solve more complex problems.

• If time allowed for this, we could have performed our own ex-
periments, rather than study the results of others. This would
have allowed us to compare training times, classification speeds.
Additionally, it would have allowed us to ensure that there were
no external circumstances affecting the obtained results.
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Misinformation in social networks: Spread and Susceptibility

Andrei Stoica
Cassandra Ann Fernandes

Abstract—
With the sudden growth of digital media, there is a surge in accessible information and with the rise of social media and networks,
they act as an agent in misinformation as well. This has become an increasingly worrying phenomenon, due to the risk of diffusing
public attention to irrelevant topics, thus diminishing the focus on important matters. Virtual means of communication enhance the
transmission of raw, unfiltered information to large communities. Large scale reactions happen within very short time spans, hence
creating chaos. Public security can be threatened and, more importantly, the public opinion can be misled. So, how does one
differentiate true and useful information from misinformation?
Current research suggest that misinformation thrives off the main social networks, such as Twitter, where like-minded individuals
interact and create circles. One common solution used in practice in order to address misinformation spread through social media
platforms and these circles is deploying interventions which falsify a piece of information by cross-checking with a correct source.
The relationship between the initiator of the correction and the owner of the target tweet accounts for the spread of rumours. Users
who promote misinformation acknowledge it with a higher rate when it comes from friends, i.e. users who follow each other, compared
to the situation where the correction is published by a stranger, i.e. a user with no formal connection on the network. The reaction to
corrections happening within ongoing conversations or ”out-of-the-blue” has been measured in terms of response time or frequency
of subsequent replies in defined time windows. Moreover, reactions to challenging and less challenging tweets, respectively, have
been tracked.
We analyzed the segregation of the network into groups of naive and hesitant and we reviewed the existing research on how one group
influences the other. They offer insights into the existence and behaviour of homophilies within communities where misinformation is
spread and we explore potential answers to the following question: can we identify tight-knit circles of users within these communities?
Additionally, we investigate which parameters, such as particular account attributes and network topology, influence the creation of a
homophily and how it is connected to the detection of communities and network segregation.

Index Terms—Misinformation, Fact-checking, Network segregation

1 INTRODUCTION

Social and digital media have been gaining popularity for a variety
of purposes, to interact with their social circles and to keep up with
the news and upcoming world affairs. People may use digital media
to express their opinions and ideas about an assortment of topics and
ongoing issues. But without any sort of fact-checking, this can create
an environment where an accelerated spread of misinformation occurs.
Without any sort of verification of facts, this can lead to disastrous
effects on the public.

Misinformation spread over social media causes the public focus
to be directed to peripheral topics. It is a mechanism frequently im-
plemented to manipulate opinions, as well. For instance, during the
2016 presidential election period in the United States of America, a
Russian manipulation campaign occurred on Reddit, a social network
[Roose, 2018]. This claim was made by a moderator who spotted sus-
picious activity on Reddit’s largest pro-Trump forum. Users submitted
links to a web address managed by Russian nationals and funded by
Russia’s Federal News Agency. At first sight, links appeared to be
from trusted websites, registered and hosted in America. However, af-
ter accessing them, readers got redirected to a Russian page. Reddit
decided to perform an investigation and, consequently, banned several
web addresses. The incident can be considered an attempt of propa-
ganda, using misinformation, leading to polarization and community
segregation in online network discussions on the aforementioned so-
cial platform.

In tense situations, another layer of physical distress is added
to people who absorb incorrect information. The authors in
[Yasmim Mendes Rocha, 2021] provided a systematic review which
analyses psychological and physical reactions to the pandemic gener-
ated by the COVID-19 virus. Due to effects such as economic reces-
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sion, home confinement, disruption in education or the shift to online
learning, research in the field needed to be intensified in order for sci-
entists to report the potential findings to the population. Subjects in
the aforementioned study suffered from mild disorders (fatigue, fear
or panic), as well as serious health issues, such as anxiety, stress, de-
pression or insomnia. Multiple other publications were included in the
analysis and the results showed there is a general acceptance of the
information (either true or misleading) which circulates through the
media channels. One additional observation mentioned by the same
authors, which emphasises the impact of misinformation, is the fol-
lowing: the rumour that the consumption of pure alcohol would di-
minish the effects of the virus and would eliminate the virus from the
body completely led to 800 people dying and another 5876 being hos-
pitalized for methanol poisoning.

While misinformation is an ever-present and ongoing phenomenon,
one solution to combat it is deploying a fact-checking intervention.
The authors [Hannak et al., 2014] present the following context: one
user who signals a potentially false statement posted by another user
on a social media platform verifies the information with the help
of a third-party specialised institution, such as government websites,
Wikipedia or other traditional or non-traditional source and posts a re-
ply, indicating the source of the information. The terms introduced by
the authors are ”snoper” and ”snopee”, which refer to the initiator of
the fact-check and the user whose initial post is questioned, respec-
tively.

Past publications concluded that individuals are resistant
to change their beliefs when they face an opposite opinion
[Ullrich K. H. Ecker, 2010]. However, factors such as the social
relationship between the snoper and the snopee, the structural position
or the temporal relationships are analysed and they do have an impact
in the reactions to fact-checking interventions.

Zubiaga et. al performed an analysis on rumour threads
posted on Twitter, annotating each tweet in terms of three dimen-
sions, namely support and response type, certainty and evidentiality
[Zubiaga et al., 2015]. The study observes the behaviour of users in
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two periods of the rumour cycle, i.e. prior to the resolution of its ve-
racity status and after it has been verified or debunked. The authors
concluded that true rumours tend to be accepted as correct faster than
false rumours get resolved. Moreover, well-known organisations, such
as news publishers, tend to support rumours, regardless of whether
they have been debunked or confirmed, tweet with certainty and offer
evidence within their tweets.

The structure of the present paper is the following: Section 2 of-
fers an overview of the fundamental concepts and states the research
questions to be extended throughout the following sections. This is
followed by the analysis of the existing literature in Section 3. Section
4 is dedicated to our ideas and approach and finally we conclude the
paper with our findings and discussion in Section 5.

2 BACKGROUND

While there is no doubt misinformation has a negative influence on
individuals in certain instances, we aim to retrieve and compare quan-
tified metrics with respect to the behaviours of individuals within net-
works, how subjective preferences influence the reaction to a false
piece of information or how the time aspect of a corrective reply influ-
ences the follow-up reaction in the following sections. In this section
we aim to introduce the existing literature in the main topics that will
be covered in our research.

2.1 Echo chambers
We investigate the idea of an echo chamber and how this concept re-
lates to homophily. Due to the growth of the internet and the access
to social media, the volume and variety of information have also in-
creased. This can give rise to varying opinions or ideologies depending
on what information people were exposed to [Barberá et al., 2015].

In an echo chamber with like-minded people, when a member
makes a claim, it usually gets mimicked by other members or repeated
without questioning or critical analysis. In other terms, they mimic
each other’s uncritical statements on the perspectives of a particular
source that is unverified without any debates [SourceWatch, 2022].
Essentially, an echo chamber is a condition in which an individual
only hears or sees information or opinions that mirror and reinforce
their ideas.

According to [Nguyen, 2020], echo chambers can use another epis-
temic safeguard mechanism which the authors mention to be the
”disagreement-reinforcement mechanism”. This mechanism can be
described as where members in an echo chamber are persuaded to
hold fast to a set of beliefs or ideas, with the presence and voicing of
conflicting opinions reinforcing the original set of beliefs and the dis-
crediting of the conflicting opinion - making it difficult to ”dislodge”
or change, since it is self-reinforcing, confined, and designed to ignore
any contradictory information.

2.2 Homophily
The idea of homophily comes from the Ancient Greek words of
(homós) meaning ’same, common’, and (philı́a) ’friendship, love’.
[Wikipedia contributors, 2022]. In this context, homophily in social
settings can be defined as the tendency of people to connect and en-
gage with similar individuals [Explained, 2022]. The existence of
homophily is common if not prevalent among those individuals us-
ing social networks to connect with others, which could manifest in
some way or another but nonetheless exists on these networks. The
homophily concept drives various sorts of network links, including
marriage, friendship, employment, counsel, cooperation, knowledge
transmission and other various types of ties.

As a result, people’s private social networks are homogeneous in
nature and have many socio-demographic, behavioral and interper-
sonal features [Mewa, 2020]. The authors stress the implications that
severe homophily can have. It restricts the individual’s world view
from what kind of information they acquire, the perspectives they de-
velop and the types of interactions they have with other individuals.
When homophily exists in the context of race and origins of people,
followed by age, religion, education, occupation and gender, it creates
the strongest distinctions within groups of people.

2.3 Network segregation
A closely related phenomenon to homophily is network segregation.
The authors [Henry et al., 2011] state that there is a widespread ten-
dency for network linkages to concentrate between actors who have
similar key characteristics. They form tightly-knit communities of ho-
mogeneous actors and reinforce division between disparate groups.
Cooperation and conflict on social networks have shaped group dy-
namics in the context of multiple issues, such as climate change or
economic development. Hence, this is a particularly important as-
pect to take into account when considering the spread of misinfor-
mation. The authors [Tambuscio et al., 2018] indicate that it is more
likely for misleading information to thrive in the social groups sep-
arated from the rest of the network, partly due to the purpose of the
algorithms which mediate the exposure to misinformation. It aims to
filter and recommend stories with a high potential for engagement.
Consequently, echo chambers are created, which favor confirmation
bias and repetition.

2.4 Research Questions
With the existing concepts, we aim to explore the following research
questions:

RQ1 How can we study network dynamics, given the misinformation
corrective actions, in the shape of Twitter replies?

RQ2 Does homophily influence the creation of echo-chambers and
how?

RQ3 Which are the peak times when misinformation is spread?

3 MISINFORMATION CONTEXTS

This section focuses on providing a detailed analysis of past publica-
tions regarding the factors which determine the spread of misinforma-
tion within networks, group behaviour following the spread of misin-
formation and the reaction time of other users in an attempt to debunk
or confirm statements.

3.1 Network Dynamics and Corrective Actions
The authors [Hannak et al., 2014] emphasize the social aspect of fact-
checking, i.e. the real-world conversations between users, as opposed
to the asocial phenomenon of professional media institutions deploy-
ing such interventions in order to attract wider audiences.

The authors proposed a methodology where the data acquired, i.e.
the fact-checking interventions, are replies to statements posted by
other users, which contain references to at least one of the following
dedicated websites: Snopes.com, PolitiFact.com and FactCheck.org.
The collected data is represented by a set of 3969 tweets posted be-
tween January 2012 and August 2013 on the Twitter ”gardenhose”
public stream. The authors mention that, although their study focuses
on tweets with certain restrictive characteristics, the fact-checking
phenomenon can be seen in other shapes too. For instance, tweets
containing no links or links to other websites could prove to be correc-
tions as well.

Existing literature, [R. Kelly Garrett, 2013], acknowledges that re-
vealing the correct information, i.e. successfully debunking non-valid
information, does not have a significant influence on the attitudes
and beliefs of the individuals, specifically if it is not aligned with
their beliefs. Cohesion of a group is often more important to indi-
viduals who are part of it than the actual truth value of the informa-
tion. [DiFonzo and Bordia, 2007] state that constituents of a group can
speculate novel or uncertain situations, by having unanimous views on
a certain topic.

The authors [Hannak et al., 2014] defined the term snope as an at-
tempt performed by an individual to get another individual to be aware
of the true facts on a given topic or within a conversation. Snopes gen-
erally yield better results, i.e. the snopee acknowledges the veracity of
his statement after the correction, if the snoper is the leader of a group.

The study aimed at discovering details about the relationship be-
tween the snoper and the snopee, in the shape of structural positions
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and temporal relationships. Snopes between users who have a mu-
tual connection on the network are only a fraction of 30% out of all
snopes, meaning most of the interactions happen between either to-
tal strangers or at least one of the parties is not aware of the other.
The structural position is the difference between absolute popularities.
Experiments demonstrated that within friend-to-friend snopes, both
participants have similarly-sized audiences that are usually relatively
small. In contrast, the social positions of a snopee, who is not aware of
the snoper, but at the same time is followed by him, are clearly differ-
ent. In this case, the user whose initial tweet was corrected has a larger
audience. A comparison between the numbers of followers of snopers
(red) and snopees (green), corresponding to each type of relationship
between users involved in such snopes, is illustrated in Figure 1.

Fig. 1. Comparison between the number of followers of snopers and
snopees [Hannak et al., 2014]

Another finding is that the snopers usually have smaller direct au-
diences, but these are more tightly connected and have larger indirect
audiences than snopees’ indirect audiences. An assumption made by
the authors is that, within well-connected communities, activists are
prone to call out celebrities, having the support of their communities.
Regarding temporal relationships, empirical results showed no pattern
between the snoper’s and the snopee’s ages.

Additionally, the paper of [Hannak et al., 2014] discussed whether
any behavioural consequences exist after launching fact-checking in-
terventions. Two types of snopes have been observed, namely ”within
ongoing conversation” or ”out-of-the-blue”, the latter being the most
frequent. Friends are roughly three times more likely to respond to
”out-of-the-blue” snopes from friends than they are from strangers.
This can be explained by the nature of the interventions, which, be-
tween friends, are less provoking/challenging than between strangers.
Also, friends are more likely to respond to challenges from friends.
Strangers, irrespective of their intended snope, are definitely more
likely to be ignored.

3.2 Echo chambers and Homophily

According to the authors [Jamieson and Cappella, 2010], the echo
chamber is a confined space in online media that has the potential to
amplify messages exchanged within it and insulates them from rebut-
tal. The authors [Amy Ross Arguedas and Nielsen, 2022] introduce
the term as well, mentioning that social scientists use it to define a
situation that exists due to a certain supply, demand and distribution.

It is mentioned that these echo chambers, in principle, could regard
any topic, and amplify any type of message regarding the respective
topic. This leads to any kind of message to be exchanged, either am-
biguous, backed by evidence or simply something completely false.
The authors also stress the fact that social scientists have studied echo
chambers that are politically one sided, where people get their infor-
mation exclusively from sources that are aligned with the respective
side.

Another incident the authors state is that Twitter data is often used
for analysis, since it is easier to analyse, though these echo chambers
are not restricted to one platform. They find a pattern of ”cross cutting
exposure” [Dahlgren, 2019] where people who are frequent visitors
of online news on one side of the spectrum also tend to frequent
news of the other side of the same spectrum. The paper notes that in
the study of [Bos et al., 2016] there is evidence in The Netherlands
that there is partisan ”selective exposure” to this news, but this was
undermined by the public service broadcasting services. This suggests
that even though most people use diversified media platforms, they
often focus on large sources with diversifying viewpoints and very
few rely entirely on partisanal sources. They mention that there are
studies which support the idea that exposure to like-minded biased
or partisanal media that are under certain experimental conditions
can reinforce the views of other like-minded partisan individuals
[Levendusky, 2013]. This indicates the existence of a homophily,
where individuals reinforce each other’s beliefs in an echo chamber.

We investigate this statement with the study of authors
[Boutyline and Willer, 2017] where people with multiple political
opinions can display varying degrees of homophily or the inclination
to associate with those that have similar political ideologies. They
elaborate that political groups or networks with stronger political ho-
mophily have better connections with their members, rather than those
people with views which do not align with theirs. This suggests that
higher levels of certain politically aligned homophily have a reduced
chance to encounter those with varied political beliefs. Those that
show stronger homophily strengthen and reinforce their beliefs as they
have higher rates of encounters and interactions. They mention the
study from prior work [Centola, 2010] that this political homophily
generates extensive clusters of ”within group ties” that reinforce be-
haviors and patterns. This paper emphasizes the statement that those
individuals with stronger inclinations look for assurance through so-
cial interaction, which can mimic echo chambers while affording them
the reassurance they require. In this paper, the authors analyse Twitter
network statistics within the range of 13% of US adult citizens us-
ing the platform [Smith and Brenner, 2012]. Their data looks at the
user’s ideologies and their ties between members of congress and pol-
icy non-profit organizations. Based on this data, the authors propose
the following hypotheses:

• Groups with politically right ideologies exhibit larger homophily
than the left politically aligned groups.

• Those groups that are politically extremes have greater political
homophily than those that are neither extreme, nor neutral.

To investigate these hypotheses, the authors’ method looks at different
Twitter networks of politically involved Americans. Broadly speak-
ing, these imply looking at 159 congress members and their ties with
33 policy non-profit organizations and used these as a benchmark to
analyse their followers’ orientations through the computation of some
homophily measures and the use of multivariate regression with ”clus-
ter adjusted” standard errors.

The parameters that they use to measure in their research is their
political orientation and homophily. They measure the political ori-
entation in terms of their ideology score that can measure the orien-
tations of the senators and representatives as proxies of their Twitter
followers. Their homophily measure works by modeling the ties that
are interpersonal and linking those that could be casual acquaintances
or friendships. They distinguish ties as those that are interpersonal as
user-to-user connections versus their audience where the ties are from
a hub of an organization or popular figure to users.

One of the drawbacks to the dataset, as mentioned by the authors,
is that it is a rather diverse and large study case, than a snapshot of
the data, with the tradeoff being that since the Twitter dataset contains
public data, it was easier to calculate the number of likely homophilous
partners per user to have a baseline of homophily rates.

The publicly available dataset is a snapshot of the Twitter network
from June 2009, as the authors mention that this archival data pre-
cedes the ”who to follow” feature on the platform. It supported users
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to follow the same accounts as their peers, which encouraged greater
homophily.

Their results show that the rates of homophily are higher amongst
the more conservative and politically extreme persons which may have
major implications for the emerging mechanisms of their particular
political networks.

3.3 Peak Timings
As the use of social networks can be used to obtain information about
current events and the news, it can cause a lot of people being misled
and even endanger lives. In this section, we also investigate how tim-
ing affects the spread of misinformation and rumors as well as how it
affects corrective actions.

The authors [Zubiaga et al., 2015] propose a methodology that
takes a look at the dataset comprising of 330 rumour threads (4,842
tweets) linked to 9 newsworthy events. By separating two levels of
standing in a rumour life cycle, i.e. before and after its veracity status
is resolved, they create an understanding of how people disseminate,
support, or refute rumours that are subsequently confirmed true or un-
true. Their dataset contains a further contains rumor stories that can
be one of three categories:

• true

• false

• or unverified

Each rumour story comprises a number of rumour threads, and a
timeline in which the threads are arranged by time. When determining
whether a story is genuine or untrue, one tweet was chosen as the
resolution tweet from the chronology of the tale.

These conversations in the dataset were annotated with the follow-
ing aims in mind:

• Categorize separate rumourous tweets (and related conversation
threads) as being part of the same tale,

• Annotate the source tweet to be either a rumor or not

The number of source tweets marked as rumours and non-rumours
for the events where each narrative corresponds to a collection of ru-
mourous tweets are mentioned in the Figure 2.

Fig. 2. Table showing the dataset used by [Zubiaga et al., 2015]

As Twitter implemented the feature where users can reply to one
another, the replies to the 2695 rumourous source tweets were also
recorded and analysed as part of the dataset.

With this dataset, the authors examine the timelines from the ru-
mors gathered and labelled for the nine events where the rumors were
colored according to their veracity, i.e. an unverified status (orange)
from where the rumors have their starting point after which can either
be determined to be true (green) or false (red) and some uncategorised
which are left to be colored as orange throughout the timeline estab-
lished in Figure 3.

From this study, they state that there is a delay from when a rumor is
posted for the first time and it being determined as either true or false.
The delay is greater in the case of debunking false rumors than when
confirming a true statement. This difference is significant in the case
of a false rumor, with the median delay being over 14 hours. This is
comparatively longer, as the median delay of a true rumor takes around
2 hours, as we see illustrated graphically in Figure 4.

Fig. 3. Timelines of the events as conversational threads according to
their veracity status [Zubiaga et al., 2015]

Fig. 4. Illustration of delays between false and true rumors.
[Zubiaga et al., 2015]

In order to draw a more in depth view of this analysis, the authors
[Zubiaga et al., 2015] look at the ”diffusion” of the rumors which are
in the form of retweets. These retweets also prove to be useful in
analyzing how the rumors were spread. They are classified as:

• accurate: either refute false rumors or accept true rumors.

• inaccurate: retweets of the original tweets that are false which
either refute the true rumors or accept the false rumors.

• unverified: retweets that are not verified.

They mainly showcase their research about how often each sort of
rumour gets retweeted, as well as the time-effect on the rumour diffu-
sion patterns, where some rumours are retweeted more frequently at
first and then decrease in number as time goes on, by using the av-
erage distribution of retweets for various rumorous events or stories.
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They look at the ratio of retweets that appear over 15 minute epochs.
They distinguish between tweets that come before and after resolving
tweets, (pre- and post-) tweets, that are part of a real or false rumour,
and tweets that support or reject a rumour.

They show that tweets sent before resolving tweets receive a lot of
retweets in the first few minutes, but this pattern goes away in less than
20 minutes. This is effect is demonstrated in the Figure 5.

Fig. 5. Figure from [Zubiaga et al., 2015] showing Retweet timelines
where the number of retweets at the beginning. This implies that there
is a lot of interested generated in the first 15 minutes; implying more
spread. [Zubiaga et al., 2015]

The retweets are more uniformly distributed over time after the oc-
currence of resolving tweets, indicating that post-tweets are retweeted
over a longer period of time. The conclusion they infer from this is
that the pre-supporting tweets support rumors that are unverified. Ad-
ditionally, the number of retweets supporting both false and true ru-
mors also drop drastically once the rumor has been determined to be
of either category, implying that the interest in the rumor drops after it
has been determined.

Ultimately, this proves that this research uncovers an intriguing
trend in user behavior: users tend to endorse unverified rumours (ex-
plicitly or implicitly), maybe due to the arousal that these early, un-
confirmed reports generate and their potential social influence.

4 OPEN QUESTIONS AND OUR APPROACH

Throughout this paper, we analysed three important aspects with re-
spect to misinformation and its spreading behaviour. We identified
several publications which propose reliable solutions to tackle it, as
well as analyse the phenomenon through the lens of different factors,
such as structural positions within the network, group behaviour and
peak reaction times. However, the effects of misinformation can be
quantified through other metrics, as well. Some still open questions
that we identified are:

• Does the network topology within communities change over
time, given it is exposed to both misinformation and corrective
actions?

• Is there any difference between the evolution of follow/unfollow
relationships within communities where a certain influential
node promotes misinformation and communities where the ho-
mologous node supports true facts?

In this section, we offer a thorough explanation of our approach to
the aforementioned questions.

As previously stated, there is typically a reaction to misleading
tweets within a certain time span. We consider the reference point
in time as t0 and the moment after n time units, noted as tn, with n
large enough to potentially spot changes. The data to be analysed
is a network formed of a ”central” influential node, i.e. a node/user
who has a large number of followers within a certain community,
who regularly promotes misinformation, and the subnetwork/cluster
of followers. We compare the topology of this network in both time
instances. We aim to find out whether the activities of the cluster
(tweets regarding the same events, identified via hashtags) differ
over time. Did they intensify in numbers or is the topic not relevant

anymore? Does the ”central” node have as many followers at time tn
or has this number decreased from time t0? Did the corrective actions
influence the opinions of some nodes within the subnetwork, such
that they even unfollowed the ”central” node in the community?

Provided we obtain numerical results as answers to the questions
above, we could draw some conclusions. Specifically, if the number
of nodes that unfollow the ”central” node is large, we observe a
change in the general opinion. This leads to the assumption that
misinformation is not believed anymore. This could indicate a pattern
of network susceptibility and, on top of that, the results could be
further used to identify how long misinformation survives within a
network.

As far as the second open question is concerned, we ought to com-
pare the evolution of the number of followers over time for both a
”central” node which supports false information and another ”central”
node, corresponding to a different community, which posts true state-
ments. This way, we could quantify the effects of misinformation on
the general public. If both values are constant in time, then misinfor-
mation is as powerful and as influential as true facts, which would be
a worrying sign. If the former value reduces over time, then corrective
actions have a positive impact on the general viewpoint regarding a
certain topic, i.e. people generally change their opinions.

5 CONCLUSION

Social media interactions have become a point of interest since the
emergence of digital platforms in the last decades. They enable quick
and efficient communication, regardless of the geographical location
of users. This is why they have attracted attention from numerous
users. Information of any kind is spread through this channel, so the
inevitable scenario of misleading facts being shared needed to be ad-
dressed. A solution which has been deployed in practice is the fact-
checking intervention. However, this may have limited impact on fu-
ture courses of actions and people’s actual beliefs, depending on cer-
tain factors which we aimed to comprehensively present, explain and
compare throughout our paper. We looked into individual relation-
ships between users involved in such interventions, as well as group
behaviours. We further analysed the relationship between echo cham-
bers and homophilies. These echo chambers exist mainly due to the
fact that like-minded people amplify and intensify beliefs of people
with similar key attributes, although this number can be small. In a po-
litical environment, however, we investigated how members of tight-
knit circles associate themselves with people showing similar politi-
cal views. By measuring their ideologies and the homophily rates of
the networks, it has been proven that individuals with more conserva-
tive or extreme ideologies have higher homophily in those respective
networks. When considering the timing of when misinformation is
spread, we can conclude from the current research that the beginning
of when a newsworthy event has been released has more weight, i.e. it
is considered peak time, when rumors are dispersed within networks
of people. A rumor that is deemed true takes significantly less time to
be resolved, when compared to a false rumor.
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Range-Only SLAM Algorithm: A Comparison

Maarten van Ittersum, Arjan Tilstra

Abstract— The SLAM (Simultaneous Localization And Mapping) problem is used in robotics to create a sense of vision for the agent.
The SLAM problem is known to be paradoxical, as localization requires to have an accurate understanding of the environment, such
as a map, while mapping requires sensor information about the current location. Many different approaches have been documented
in solving the SLAM problem, using statistical approximation to generate a map and a path. These approaches are in the form of
algorithms and each have their own requirements and performance.
Our paper gives a comparison between 5 SLAM algorithms, WiFi-SLAM, GraphSLAM plus an extended version, FastSLAM and
SAM. These SLAM algorithms are compared on performance (time complexity and accuracy) and requirements (input data). We
found that SAM and FastSLAM have a preferable time complexity, while SAM has the best accuracy. Furthermore, only the extended
GraphSLAM requires LIDAR data, making the usage of this algorithm more expensive.

Index Terms—SLAM, WiFi, mapping, localization, robot navigation.

1 INTRODUCTION

Finding your way in buildings can be difficult for robots, as visual
perception using light can be difficult and often very expensive, unlike
for humans. However, as the only visible waves are light for humans,
robots can make use of a much larger frequency bandwidth. Unfor-
tunately, being indoors means that GPS signals are not available or
unreliable. With WiFi being the norm nowadays indoors, robots can
make use of the signals sent by routers to localize and map the space.
In robotics, this is called Simultaneous Localization And Mapping
(SLAM). SLAM combines both the mapping of an area with keep-
ing track of the agent that is exploring the area. This is an important
area of robotics, as the problem is a paradox. In [19], the problem is
described as a paradox: “to move precisely, a mobile robot must have
an accurate environment map; however, to build an accurate map, the
mobile robot’s sensing locations must be known precisely.” Thus, in
this problem mapping is defined as interpreting sensor information to
estimate the locations of landmarks. Localization means finding the
location on the map by analysing the sensor information.

Over the last years, solutions by approximation have been found for
the SLAM problem. The different approaches use different statistical
or probability analysis methods to solve the problem, to give a solu-
tion in realistic timing. Approaches differ not only on their mathemat-
ical methods, but also on the sensor data required to work on. In this
paper, we look at Range-Only (RO) variants of the approach. These
approaches make use of sensor data that only contains the range of the
agent to a beacon. These approaches are easily accessible, as WiFi
beacons and receivers can be used, which are cheap and very com-
monly found nowadays. Additionally, we also look at one approach
that is extended by also using the sensor data of a LIDAR sensor. A
LIDAR sensor does not require external beams to detect and sends out
its own light beams. This provides much more information about the
surroundings, while also adding up to the total cost of the project, as
the sensor is heavy and expensive. Next to RO and LIDAR data, many
more SLAM approaches have been found, such as echo or acoustic
SLAM [15, 5, 6], visual SLAM [14, 13] and radar SLAM [10]. Our
paper only focuses on comparing RO-based SLAM approaches.

To compare the different approaches properly, we look at the dif-
ferent attributes of an approach. As the approaches are in the form of
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an algorithm, we look at what steps are required to perform in these
algorithms. Boolos & Jeffrey [2] describe an algorithm as explicit in-
structions for an input set, returning with an output. In our comparison,
we will be looking at the input, output and the instructions. For the in-
put, the types of sensors required are compared. The instructions are
compared by computational complexity. Specifically, the worst-case
time complexity is considered, which is the worst amount of time an
algorithm takes over a certain size of input. Finally, the accuracy of
the localization in SLAM is compared. Kümmerle et al. [18] describe
a method that calculates the error of the output, based on the ground
truth. We compare the calculated error, as the smallest error amount
means a more accurate result.

In our paper, we look at five different approaches towards the
SLAM problem. These approaches all make use of RO sensors, but
differ in their statistical approach of mapping and localization. We
look at WiFi-SLAM by Ferris et al. [7], GraphSLAM by Huang et
al. [11] and an extended version of GraphSLAM by Kudo et al. [17],
FastSLAM by Montemerlo et al. [20], and finally SAM by Dellaert &
Kaess [4].

In the next sections, we go more in-depth into the five SLAM ap-
proaches. In section 2, we describe the structure of the input data, as
well as the steps for each approach. In section 3, we describe the steps
that we take in the comparison. In section 4, we perform the previ-
ously explained steps and in section 5 we discuss the results of the
comparison. Finally, in section 6, we wrap up with a conclusion and
give a recommendation for the future.

2 THE SLAM ALGORITHMS

There has been quite a lot of research done into different approaches of
the SLAM problem. These approaches can be complex in their inner
workings, as statistical and probability analysis are used often to find
an approximation. Our first step in the comparison is to look into the
algorithms and describe what instructions and data structures are used.
Furthermore, we look at how exactly the input data is structured. In
this section, we first describe the sensor data in detail, following up
with the description of each algorithm.

2.1 The sensor data
In the studies that we compare, the authors used a dataset that was
recorded when walking around in a building. During the tour, a device
would pick up signals from Range-Only (RO) sensors, such as WiFi
beacons, and the signal’s strength. With this, we have three types of
data. We have the device’s state, xn, which is a time frame. We have
our landmarks, ln, being the sensors. We link the state and the land-
mark together with measurements of the strength of the signal, zn. The
structure is shown in figure 1. To avoid the data association problem
and keep the landmarks separated, the RO-sensors emit a unique iden-
tifier.
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Certain SLAM approaches require the input data to be already avail-
able in full or batch when running the algorithm. This means that the
algorithm cannot be used when real-time updates are required.

Fig. 1: The chain of data. xn is the state of the device at moment n. ln
is landmark n. zn is a measurement of a landmark at a state. Figure by
Delleart et al.

2.2 WiFi-SLAM

One method is described by Ferris et al. [7]. The authors call their
method WiFi-SLAM and it aims to apply the usage of WiFi signals
in order to work around one of the weaknesses of the more common
SLAM approaches [24]: the reliance on the calibration data for the
sensors used. This data is inherently flawed when using WiFi signals,
as the signal strength varies in unpredictable ways in different circum-
stances. Complications can include other moving objects, people pass-
ing by or even subtle changes in the atmosphere. In order to prevent
this, the authors make use of Gaussian process latent variable mod-
els (GP-LVM). This technique is used to map high-dimensional data
to a low-dimensional latent space. The high-dimensional data in the
problem’s context is the input data: the signal strengths of all the WiFi
access points in range of the mapping device. The low-dimensional
space used here consists of two dimensions, which are effectively in-
terpreted as the xy-coordinates of the mapping device.

The technique furthermore uses some constraints or assumptions:
locations that are near each other should perceive similar signal
strengths, similar perceived signal strengths indicate the two signals
where measured near each other and finally, location data is read se-
quentially and sequential locations should be near each other.

The first constraint is informed by a property of GP-LVM (as well
as other dimensionality reduction techniques): similar input data has
similar output data and vice versa, therefore in this problem, similar
locations must have similar signal strengths.

The second constraint can lead to problems in environments where
WiFi access points are sparse, as similar signal strengths may be ob-
served in different locations around the same access point. However,
the authors note that the approach is typically valid in office environ-
ments, where usually multiple access points are in range of the device.

The third constraint is dictated by the author’s goal of modeling the
movement of a person or device moving through a building, therefore
it does not make sense for sequential data points to be far from each
other in physical space.

2.3 GraphSLAM

Another approach is offered by Huang et al. [11]. This work aims
to improve upon the previous example by highlighting and correcting
two of its shortcomings: the reliance on specific, predefined shapes in
the mapped area (narrow and straight hallways, primarily) and the as-
sumption that WiFi fingerprints are unique in different locations. Do-
ing away with this second assumption would allow this approach to
work better in environments where access points are sparse. This work
makes use of the fact that SLAM using WiFi signal strength can be for-
mulated as a GraphSLAM problem. It also improves the GraphSLAM
algorithm to be more time-efficient: while the original algorithm has

a time complexity of O(N3), the adapted version has a time complex-
ity of O(N2), where N is the dimensionality of the state space, or the
number of poses being estimated.

One of the main appeals of any GraphSLAM-based approach is that
the algorithm itself reduces to a standard non-linear least squares prob-
lem, which means that it has access to many thoroughly studied op-
timization techniques. The author’s made use of the Gauss-Newton
algorithm to solve this part of the problem.

2.4 Extended GraphSLAM
A third approach is proposed by [17]. This method focuses on ex-
tending the GraphSLAM algorithm, making use of both WiFi signals,
LIDAR scans and odometry data from the mapping device. This ap-
proach has the advantage of being able to more easily solve the loop
closure problem, in other words, detecting when a place that has al-
ready been visited is revisited. Once the algorithm concludes that the
mapping device has arrived in a location that it has visited before, the
generated map is updated retroactively to include the loops found so
far. A major drawback is, of course, the large amount of data that this
approach needs in order to work. The other methods did not require
any other data than the WiFi signals.

2.5 FastSLAM
A fourth approach that we will be analysing is proposed in a paper by
Montemerlo et al. [20]. The FastSLAM algorithm is based on SLAM
using a particle filter, the extended Kalman filter (EKF) [19].

The extended Kalman filter uses two steps in the recursive state
estimation, the prediction and correction step. The state estimation
uses a state vector created from the current position of the device, as
well as the measured locations of the landmarks.

st = (xt ,yt ,θt ,m1,x,m1,y, · · · ,mN,x,mN,y)
T (1)

The SLAM approach loops over each state in the data. In the loop,
the first step is to use EKF predict to predict the next state. After, the
next state is read and new beacons are initialized if these are not yet
initialized. Finally, the EKF correction is done. EKF assumes that the
data set has a Gaussian distribution [23].

FastSLAM solves the complexity issue of using the extended
Kalman filter (EKF), which is updating the covariance matrix of
O(K2) elements if a single landmark is observed. The approach uses
an observation made in [21] that determining the landmark locations
can be decoupled in K problems. The algorithm uses a balanced bi-
nary tree to access each landmark per particle used in the resampling
step, reducing the complexity to O(M logK).

2.6 SAM
The final approach is the SAM algorithm proposed in [4]. This ap-
proach uses smoothing estimates, unlike the previously mentioned
FastSLAM and EKF SLAM, which are filtering approaches. SAM
uses the factor graph representation of the collected data. A factor
graph is a is a bipartite graph that expresses how a global function of
many variables factors into a product of local functions [16]. We can
express the measurements made into a factor graph. After generating
a factor graph of the measurements, the algorithm creates estimates
for each node in the graph. A matrix of Jacobian matrices and a RHS
vector are calculated, from which the least-squares can be found. As
node elimination introduces fill-ins, of which too many can cause slow
factorization, the order of elimination is approximated using Column
Approximate Minimum Degree Ordering (COLAMD).

This version of the square root SAM uses batching or requires all
data to be available at once. In newer work by the authors, incremental
SAM (iSAM) can work as soon as data is received [12].

3 COMPARISON METHOD

With better insights into the different SLAM approaches, we describe
a comparison method in this section. We focus on three methods, com-
paring computational complexity, input and output.

Range-Only SLAM Algorithm: A Comparison – Maarten van Ittersum and Arjan Tilstra

88



3.1 Computational time complexity
The first measure we are going to compare the algorithms with is their
time complexity. Time complexity is an expression of the time a com-
puter will take to run an algorithm. It is expressed as a factor of the
input data given to the algorithm. In many of the SLAM algorithms,
the time complexity is O(n2), meaning the time the computer takes,
scales with the size of the input data quadratically.

A lower time complexity is a big advantage for the compared algo-
rithms, for obvious reasons. Robots making use of these approaches
are often not very powerful in terms of computing speed, so efficient
algorithms are more viable to use in most situations.

3.2 Input sensed data
Several different types of input data can be used by SLAM Algorithms.
The mapping device needs a way of gathering this input data, so each
additional type needed, or more complex type needed, means more
sensors need to be attached. In addition, such sensors can be very ex-
pensive or difficult to attach to a robot due to their size. For instance,
WiFi signal strength sensors can be very small and are often already
built in to most simply computers. Opposed to this, LIDAR scan-
ners can be much more expensive, making it less easy to implement
a SLAM algorithm that makes uses of this technology. In general, an
algorithm that gets good results with fewer or simpler types of data is
preferable to one that needs more or more complicated input data. Of
course, if perfection is required, more input data could be the only way
to achieve that.

3.3 Localization accuracy
SLAM has two outputs, a map and the path that leads through the
map. In this comparison, we look at how the calculated path differs
from the ground truth. In an experimental setup, the ground truth can
be known by creating a map from real-life data, such as a blueprint.
The path in the measurement can be mapped out by exactly calculating
the position of each measurement in relation to the true map. After
running SLAM, the true map and the output map can be fitted towards
each other, such that the output path and the ground truth path can be
put in the same space. Plotting this shows both routes, such that a
visual representation of the accuracy can be made.

Kümmerle et al. [18] give the following equation to find the error
of the output:

ε(δ ) =
1
N ∑

i, j
trans(δi, j⊖δ ∗i, j)

2 + rot(δi, j⊖δ ∗i, j)
2 (2)

In this equation, δ is the distance and rotation relative to the previ-
ous measurement, and δ ∗ is the relative distance to the previous state
in the ground truth. The ⊖ operator is the inverse of the standard
motion composition operator (⊕). In this equation, the error of the ro-
tation and translation are separated, such that these can be compared
individually, while also not adding up the error multiple times.

In our comparison, we use the results from the authors of the papers.
The authors do not use the same datasets. Instead, different datasets
with different surfaces are used. To create a better understanding of
how these measurements are done, we divide the surface by the mean
error.

accuracy =
surface
error

(3)

4 COMPARISON RESULTS

In this section we will be comparing the different approaches to the
SLAM problem. We will be comparing the approaches on time com-
plexity, method, and accuracy. To do this, we look at the data from the
studies that describe the results.

4.1 Time complexity
The different approaches analyzed in this paper have varying degrees
of time complexity. Obviously, a lower time complexity will allow the
device using it to do so faster or with less computing power, making

the approach generally more viable, assuming the error rate remains
similar.

The WiFi-SLAM method described by Ferris et al. [7] has no stated
time complexity in the source work and no pseudo code of the algo-
rithms is present to derive this from. Nevertheless, we know that the
method makes use of the computation of a variance-covariance ma-
trix, which has a theoretical best-case time complexity of O(n2.373)
[1]. Therefore, we can conclude that the total algorithm will have this
as its theoretical best as well, likely being worse than this in practice.

The method proposed by Huang et al. [11] is based on the Graph-
SLAM algorithm, which enabled the authors to improve the time com-
plexity from O(n3) to O(n2).

The approach offered by Kudo et al. is also based in GraphSLAM
and boasts a similar time complexity to Huang et al.’s method, being
O(n2).

The FastSLAM algorithm contributed by Montemerlo et al. [20],
as mentioned above, has a time complexity of O(M logK), where M is
the number of particle filters the algorithm uses and K is the number
of landmarks the path comes across.

Finally, the SAM algorithm proposed by Dellaert et al. has no ex-
plicit mention of a time complexity. The method makes use of a lot
of matrix multiplication, but many of the matrices are sparse. There-
fore, the worst-case time complexity is less relevant than in most cases.
From experimental results, the SAM algorithm can be compared with
the FastSLAM in figure 2.

Fig. 2: The time complexity of EKF SLAM, FastSLAM and SAM
measured, ran against a certain amount of beacons. Figure by Herranz
et al.

4.2 Input data
All of the analyzed methods make use of RO-sensor signal strength,
such as the signals from WiFi beacons, but some need additional data
as well, which makes these algorithms less straightforward to use.

The WiFi-SLAM, FastSLAM, SAM and GraphSLAM algorithm all
make only use of landmarks, captured with RO-sensor data. These
sensors have to be kept separated by using a unique identifier, as oth-
erwise the problem of data association will arise, making the algorithm
more complex. The structure of this data is shown in figure 1.

The exceptions to only using RO-signals is Kudo et al.’s extended
GraphSLAM. In their experiments, they augment the SLAM algorithm
by using LIDAR scan-based 2D SLAM with a WiFi augmentation.
This means that the dataset used in the algorithm requires much more
data than the other algorithms.

4.3 Localization accuracy
For localization and mapping algorithms, accuracy of the resulting
data is important. Having less accurate paths can cause robots to make
mistakes in movement, with a risk of becoming stuck. To compare the
accuracy, we look at experiment results. These results compare the es-
timated path to the ground truth path, using Euclidean or Mahalanobis
distance between the estimated locations and truth. When data of the
ground truth path is not available, visual comparison can be done using
maps or blueprints.
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(a) The ground truth (b) The estimated path

Fig. 3: The mapped out ground truth in 3a and the estimated path in
3b, using the WiFi-SLAM algorithm by Ferris et al.

In [7], an experiment was run in a university building, with a surface
of around 30× 60 meters. The ground truth and estimated path plots
are shown in Figure 3. In these plots, a clear difference can be seen in
bottom left angle, as this data was lost. Furthermore, the localization
accuracy is measured using an approach shown in [3]. The authors
calculated a mean error of 3.97 meters.

In [11], the ground truth and estimated path are both plotted again
(Figure 4). This experiment was ran on a university floor with a surface
of 60× 10 meters. When comparing both plots, we can see a similar
structure of the graph. The estimated path is much wider and seems
to be translated and rotated slightly. Huang et at. did measure the
localization accuracy with the same method as Ferris et at., resulting
in a mean error of 2.23 meters.

The extended GraphSLAM algorithm in [17] ran two experiments,
one for mapping a large area and finding a loop and one for the local-
ization of a person. The mapped plot is shown in Figure 5.

For both the FastSLAM and SAM algorithm, we will be using the
results from [9]. In this study, the algorithms were ran against the two
UAH datasets [8]. UAH1 are measurements of a second floor with
some small corridors and a larger main corridor, with a total surface
of 60× 60 meters. UAH2 is a third floor with four large corridors
forming a square, with a total surface of 120×120 meters. In Figure 6,
the estimated paths are mapped in red together with the ground truth in
blue. The FastSLAM algorithm reported to have a mean error of 3.028
meters on UAH1 and 4.501 meters on UAH2. The SAM algorithm
algorithm reported both 2.672 meters and 1.505 meters as the mean
error, on UAH1 and UAH2 respectively.

In table 1, the accuracy statistics of the algorithms are compared.
We normalize the accuracy by dividing the total surface by the mean
error, as having a larger error on a smaller surface means that the algo-
rithm performs worse. The best performing algorithm has the highest
score, which is the SAM algorithm.

Algorithm Surface Mean error Normalised
WiFi-SLAM 1800m2 3.97m 453.400504
GraphSLAM 600m2 2.23m 269.058296
FastSLAM 3600m2 3.028m 1188.90357
SAM 3600m2 2.672m 1298.7013

Table 1: An overview of each algorithm with their mean error. For the
normalised value, we used surface

mean . The larger the value, the better the
algorithm performs.

5 DISCUSSION

In this paper, we compared the different types of SLAM algorithms
with each other. First, we described the main differences of each al-
gorithm. After that, we made the comparison of the algorithm on time
complexity, input data and accuracy. In this section, we will discuss
the differences that we found in each algorithm, as well as discuss the
approach that we used.

(a) The ground truth (b) The estimated path

Fig. 4: The mapped out ground truth in 4a and the estimated path in
4b, using the GraphSLAM algorithm by Huang et al.

Fig. 5: The path found by Kudo et al. overlaid on its ground truth.
Located at the second floor of a university in Taiwan.

(a) FastSLAM on UAH1 (b) SAM on UAH1

(c) FastSLAM on UAH2 (d) SAM on UAH2

Fig. 6: Both the FastSLAM and SAM algorithm estimations of the
UAH1 and UAH2 dataset plotted (red) together with the ground truth
(blue) on the blueprint of the true area. Results by Herranz et al.
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5.1 Results
For the time complexity of the algorithms, we found that most algo-
rithms are in the O(n2) range, with the exception of the FastSLAM
and SAM algorithm. The FastSLAM algorithm is known to be in
O(M logK). In the experiment results, the SAM algorithm shows to
be in the same range. This makes these algorithms have the best time
complexity, being the most time efficient while running on low-end
hardware.

The results of the input data comparison is very basic. As four of
the algorithms all make use of only the RO-sensor data, these make for
the most obvious choices in terms of ease to set up. However, in case
LIDAR scan data is available as well, or extra accuracy is required, the
extended GraphSLAM algorithm could be made useful, as mapping
with this algorithm seems more accurate, while having a lower time
complexity compared to other solutions using the LIDAR scan data.

With comparing the accuracy of the algorithms, the section has the
most comparable data. As shown in table 1, we see that the algorithm
that performs the best here is the SAM algorithm. This is confirmed
in figures 6b and 6d, as the estimated path seems to be overlapping
the ground truth path very accurately, without much of translation or
rotation. The GraphSLAM algorithm provides a smaller mean error
value however, but has a much smaller surface to make errors on. In
the end, it is questionable on how comparable the results are, as dif-
ferent layouts are used in the different kinds of study. To have more
accurate results, the algorithms should compete on the same dataset.
Unfortunately, we were not able to come in contact with the authors of
the UAH dataset [8].

5.2 Approach
In this paper, we analysed five different algorithms. The approach we
took was to find and describe the main steps in the algorithm. Out
of these main steps, we found the time complexity and type of input
data. We looked at the experimental results in the studies to find the
accuracy of the algorithm. All studies provided a mean error in the
localization aspect of the algorithm. We compared these values after
normalizing.

Our main focus with this approach was to structure results and to
be able to compare them. This approach is still quite concise, as we
are not able to compare different aspects of the algorithms. In [9], the
results are much more extensive, e.g. providing translation and rota-
tion error and showing a computational complexity analysis. However,
the other studies do not provide extensive results like these, making it
hard to find concrete data that can be compared. Our method primar-
ily focused on analysing data that was already produced and theoret-
ical data. The comparison of time complexity and the input data do
not require any practical information, while the localization accuracy
does.

5.3 Modern approaches
Our study majorly focused on the comparison of relatively older ap-
proaches towards the SLAM problem. As shown in a literature re-
view by Panigrahi & Bisoy in 2021 [22], newer papers that describe
a SLAM approach have come out. The approaches use similar ap-
proaches as our discussed approaches.

6 CONCLUSION

The aim of this paper was to compare multiple SLAM algorithms,
providing a clear overview on each statistic of the algorithm. In a
sense, our paper extends the paper by Herranz et al. [9], comparing
the FastSLAM and SAM algorithm to three more algorithms.

For the comparison, we found that the FastSLAM and SAM
algorithm both have the most optimal time complexity, being in
O(M logK). As for the input data types, we found that four of the
compared algorithms only use RO-sensor data, while one also uses
LIDAR scan data. To decide on what the best option is, we have to
look at the context of the problem, for example, whether LIDAR scan
data is available or feasible to implement for the problem at hand. Fi-
nally, we have the accuracy. In this comparison, the SAM algorithm
seems to be the best option, providing a low normalised mean error

value over the rest. As mentioned in the previous section, the results
are questionably comparable, as they have not competed against the
same dataset.

Our future recommendations for this comparison is to do a practi-
cal analysis of the different approaches. The different approaches can
be ran against the same dataset, thus generating much more compara-
ble results. Furthermore, while our focus was primarily on WiFi-based
approaches, modern robotics and hardware allow for much better mea-
surements using different signals. For example, if an experiment in-
volves modern day smartphones, LE-Bluetooth or sonar signals can be
used additionally. Also mentioned in the discussion, our main focused
was on older solutions towards the SLAM problem. Newer lesser-
known solutions can be compared towards these older solutions.
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A Framework for the Comparison of Cross Validation and Bootstrap
Techniques on Classification Problems

Lorenzo Rota and Aditya Ganesh

Abstract— In the domain of classification problems a key challenge is determining, and minimising, the prediction error rate [1] of a
model. This problem becomes more acute when the number of samples available for training is low. Two related sets of resampling
techniques namely Cross Validation and Bootstrapping aim arrive at an accurate estimation of the prediction error. The former
performs this through repeated experimentation on a training set by creating a number of test subsets within it, and the latter through
sampling with replacement of the samples within the data-set.

However, there is still significant ambiguity about the most appropriate technique to be applied to a given problem type. While Efron
and Tibshirani [3] found that their .632+ Bootstrap outperformed Cross Validation, Borra et al [1] and Kim [8] independently found
that the results were not as distinctive. Further, Kim noted that .632+ tends to have a downward bias while Cross Validation has an
upward bias, with neither technique ostensibly presenting a clear advantage over the other.

The goal of this paper is to assess the two sets of techniques through a structured evaluation process, treating the estimation of gen-
eralisation error as a problem of minimising the deviation between predicted and actual error. Through this framework, incorporating
a series of tests on a selection of commonly used classifiers and synthetic data-sets with controllable irreducible error, we propose a
guideline as to the optimal selection of validation technique for a given problem type.

Index Terms—Cross Validation, Bootstrapping, Machine Learning, Generalisation Error

1 INTRODUCTION

In the realm of statistical learning theory, it is understood that a suit-
able decision function can be selected from the hypothesis space when
its associated risk function is minimized. Since a risk function requires
knowledge of the probability distribution of a set of data values associ-
ated with a decision function, which is typically not known at hand, it
is necessary to estimate the risk function in an unbiased manner, such
as through a sample mean [6]. In machine learning literature, this is
more concretely understood as selecting a candidate prediction model
based on an estimation of its prediction error. The bottle-neck here, is
that the estimator for the prediction error can only provide an approxi-
mation of the true prediction error that is as good as the available data
that is used for the model selection. Another problem in estimating the
prediction error is that the data set, on which the model is trained, is
not necessarily the best model for predicting novel data. This fact is
justified by the bias-variance trade-off of a model, which suggests that
an optimal prediction error requires that the model is not completely
unbiased. A distinction should therefore be made between the test-
ing and the training error of a model, where the true prediction error
should be estimated by the former.

Over time, various estimators have been designed for accurately es-
timating the prediction error of a model, such as the Cross-validation
(CV) and bootstrap estimators, as well as modifications of the two
[5, 2]. The prediction error of both classes of estimators can be de-
scribed through their bias-variance decomposition, where the CV es-
timator is designed to be an unbiased estimator with the shortcom-
ing that the estimation error of its prediction error is vastly attributed
to high variance [8]. The bootstrap estimator could be viewed as an
extension of the CV estimator with the aim of minimizing the error
by reducing its variance [3]. The authors specifically proposed using
the .632 bootstrap estimator as well as the improved .632+ estima-
tor, which factors in bias-correction. In the studies done by Borra et
al. and Kim. [1, 8], the performance of the prediction error among
both classes of estimators were evaluated for different types of predic-
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tive models through different simulations, albeit with different goals
in mind; the focus of Kim [8] was to compare the prediction error
performance of adaptive boosting and pruned decision tree classifiers,
whereas Borra et al. [1] considered a suite of regressors, namely, re-
gression trees, projection pursuit regression and feed-forward neural
networks in Monte Carlo (MC) simulations. Similarly, Ounpraseuth
et al. [10] studied performance estimates of Quadratic Discriminant
Analysis (QDA) classifiers on MC simulations as well as real data
sets. In the three papers, the results seem to be mixed, however, Kim
[8] suggests that CV estimators tend to perform better over large data
sets, whereas the bootstrap estimators perform better when the data
sets are relatively small.

To better understand the utility of the CV and bootstrap estimators,
it is important to note that the performance of specific prediction error
estimator widely varies according to the type of the prediction model
[2]. The main research objective of this paper is to devise and test
a comparative framework that can be used for determining an opti-
mal prediction error estimator. To apply this framework, we specif-
ically consider binary classifiers due to their simplistic yet descrip-
tive power. Moreover, we separate the comparisons for two classes
of binary classifiers, namely the adaptive and non-adaptive classifiers.
For the non-adaptive classifiers, we consider K-Nearest Neighbors (K-
NN) and linear Support Vector Machine (SVM), and for the adaptive
ones we consider a SVM with Radial Basis Function kernel, and Gen-
eralized Linear Vector Quantisation (LVQ).

The paper proceeds as follows: in section 2 (Literature Review)
we provide the necessary background needed for understanding the
problem at hand, in section 3 (Methods) we specify the comparative
framework and how it will be used to compare the two classes of es-
timators, in section 4 (Results) we compare the results obtained from
experiments in which different types of synthetic data sets are gener-
ated and utilised within the comparative framework. Finally, we carry
out a discussion in section 5 (Discussion), and finish with a conclusion
and section on future work.

2 LITERATURE REVIEW

This section outlines the validation techniques under consideration,
namely Cross Validation and Bootstrap, along with the theoretical ba-
sis required to formally arrive at the objective of the paper.
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(a) Cross Validation (b) Nested Cross Validation (c) Bootstrapping

Fig. 1: Resampling Techniques

2.1 Generalized Prediction Error and its Estimates
The generalisation error is a measure of a Machine Learning model’s
ability to correctly predict a value of an example that the model has
not encountered during its training phase. Due to the fact that the prin-
cipal utility of such a model lies in its predictive capability, methods to
arrive at an accurate assessment of this error garner significant interest.

Typically, the generalisation error is understood in terms of a
model’s Bias and Variance [7]. Here Bias refers to error arising from
imperfect approximation by the model to the data provided to fit the
given reference values, while Variance refers to the degree of spread in
the model’s predictive ability should it have been trained on a different
set of data.

These two metrics form what is commonly termed the Bias-
Variance Tradeoff, typically demonstrated through the Mean Squared
Error, i.e. the expected value of the squared distance between the pre-
dicted and actual outcome. It can be shown that the Mean Squared
Error may be decomposed into three terms, Bias, Variance, and the
Irreducible Error [7], i.e.,

E(y0− f̂ (x0))
2 =Var( f̂ (x0))+(Bias( f̂ (x0))

2 +σ2,

where

Bias( f̂ (x0)) = y0−E( f̂ (x0))

Var( f̂ (x0)) = ( f̂ (x0)−E( f̂ (x0)))
2

Typically, the Mean Squared Error has a single minimum value for
some (bias,var) that represents an ideal fit. The estimation of the
generalisation error of a classification model may be treated as a min-
imisation problem of the Mean Squared Error of the predicted general-
isation error obtained compared with the ground truth. This is possible
only if the irreducible error σ2 is known.

Due to the fact that this error is generally not possible to obtain in
practice due to the absence of information regarding the population,
the validation techniques under consideration have been constructed
in order to arrive at an estimate of this measure.

2.2 Cross Validation
The Cross-Validation (CV) techniques for estimating the generaliza-
tion error of a model appear in the literature well before it was named.
In the paper by Stone [13], this generalized estimator is investigated
as a means of assessing the performance of statistical predictions, and
forms the foundation for the modern CV estimator and all of its vari-
ants. The variants that are considered for the comparative framework
are K-Fold Cross Validation (K-CV), Leave One Out Cross Validation
(L1O-CV) and Nested Cross Validation (NCV).

2.2.1 K-Fold Cross Validation
The idea behind K-CV is that a data set D is partitioned into K parti-
tions or ‘folds’, where K−1 partitions in union form the training set,
and the remaining partition forms the test set. The prediction error is
then determined based on the test set, and the procedure is repeated
for a total of K times where in each successive step, a new test set is
selected. The approach is outlined in figure 1a.

2.2.2 Leave One Out Cross Validation
L1O-CV is a special case of K-CV, where K := N when N is the size
of the data set D. As the name suggests, the validation set consists of
just a single sample, which is left out of the training set, and then used
as the only novel sample to estimate the performance of the prediction
error.

2.2.3 Nested Cross Validation
The NCV technique, shown in figure 1b, is an extension of K-CV
where each training set is split further into R partitions, where the first
R− 1 folds form the new training set and the last fold forms the vali-
dation set. This means that there is an inner-loop with R iterations for
each of the K outer-loop iterations. In this approach, we first perform
model selection within each inner-loop, and then estimate the predic-
tion error on the unseen testing set, as opposed to performing model
selection on all samples from the data set and then trying to estimate
the error by re-substituting the test set. This would avoid information
leakage as it ensures that the model selection did not take place on any
samples from the test set in each iteration of the CV procedure.

2.3 Bootstrap Techniques
Bootstrapping techniques, similar to Cross Validation, are resampling
techniques. However, where Cross Validation divides a data-set into a
number of folds, and performs repeated validation using them, Boot-
strapping techniques seek to derive inferences regarding a given data-
set through repeated sampling from it with replacement. Applying
Bootstrapping as a validation technique involves the creation of vali-
dation sets from the given data-set by such resampling with replace-
ment (i.e. drawing samples from the data-set without checking for
uniqueness of the draw).

2.3.1 Leave One Out Bootstrap
When given a data-set of size P, the Leave One Out Bootstrap con-
structs P additional datasets, each of size P by iterating over the orig-
inal, excluding exactly one element from it, and sampling from the
remainder with replacement. A classification model is then trained on
the original data-set, and its accuracy (termed score) is measured on
each of the generated test-sets. These accuracies are then averaged to
obtain the Bootstrapped measure of generalisation error. This tech-
nique may be represented as in figure 1c.

2.3.2 .632 and .632+ Bootstrap
It was noted by Efron and Tibshirani [3] that the Leave One Out Boot-
strap tends to provide an overly optimistic estimate of the generalisa-
tion error when used in this manner. The reason is that the bootstrap
and original training data have common samples, and so there is infor-
mation leakage [5]. They proposed the .632 Bootstrap as a remedy to
this problem, which is calculated as

score.632 = (0.368× scoretrain)+(0.632× scorel1o)

According to Efron and Tibshirani [3] fractions 0.632 and 0.368
used in this formulation were due to the fact that when sampling with
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replacement the proportion of supported (i.e. unique) observations in
the resampled data set tends to (1− 1

e )≈ 0.632.
This measure, however, was found by the authors to have a notable

downward bias. As a modification, they further proposed the .632+
Bootstrap which determines a relative overfitting rate that further di-
minishes the Leave One Out score in cases of severe overfit.

3 METHODS

In order to develop an understanding of the behaviour exhibited by
these disparate validation techniques and construct meaningful evalu-
ation criteria, a ”Comparative Framework” was created, varying a set
of parameters, namely, data-set sample space size, data-set noise, na-
ture of the data set, and machine learning technique employed. This
paper limits itself to the construction of such a framework for classi-
fication techniques. The framework may be described formally as in
3.2, and the statistical basis for the formulation of this framework is
given below.

3.1 Problem Statement and Statistical Justification
The framework to be constructed must identify the most appropriate
validation technique for a given set of circumstances. In order to do
this it is necessary to identify a measure of how accurately a given
validation technique is able to arrive at the generalisation error of the
model.

The estimate of generalisation error created by a validation tech-
nique is itself subject to bias and variance. This allows for the treat-
ment of estimator accuracy as an exercise in determining the deviation
of the estimated generalisation error from the actual generalisation er-
ror (i.e. as a regression problem), using the Mean Squared Error as
a primary evaluation metric. The evaluation of predicted generalisa-
tion error in this manner is in accordance with the findings of Efron
and Tibshirani [3], and was previously used by Borra et al. in their
evaluation [1] using regression trees. Identifying the the most suitable
validation technique is then a matter of selecting that technique that
provides the lowest error estimate.

3.1.1 Controlling the actual generalisation error
The principal assumption made in formulating the problem statement
is that the actual generalisation error of a given classifier is known,
in order to determine the validation techniques that provide the low-
est deviation from it. On an unknown data-set this would lead to a
circular dependency, where the actual error requires estimation using
the techniques under evaluation. In order to avoid this, synthetic data
sets would need to be prepared with known, decision boundaries and
thereby known upper bounds on classifier accuracy, measured as the
misclassification error.

3.2 Comparative Framework
Given a dataset with size P representing some dichotomy D ⊂
RN , with known classes E and known irreducible error σ , the
Bias B, Variance Var, Mean Squared Error MSE, and Execu-
tion Time Texec of a given Classifier C are observed, subject to
5 fold Cross Validation (K-CV), Leave-One-Out Cross Validation
(1-CV), Nested Cross Validation (KR-NCV), Leave-One-Out Boot-
strap (l1o-bootstrap), .632 Bootstrap (.632-bootstrap) and
.632+ Bootstrap (.632+-bootstrap).
The behaviour of B, Var, MSE, and Texec for each validation technique
are observed on independent variation of:

1. Population Size P

2. Irreducible Error σ
3. Nature of data set D

4. Nature of Classifier

5. Dimensionality of the data set

The classifiers selected for comparison are as follow:

1. 5 Nearest Neighbours (knn-05)

2. Support Vector Machines (Linear and RBF Kernels)
3. Generalised Linear Vector Quantization (lvq)

were chosen to serve as a representation of the classification tech-
niques commonly used in Machine Learning applications. The im-
plementations of knn-05, svm-l, and svm-r were taken from the
standard Scikit Library [11], while the implementation of lvq was
taken from the scikit lvq module [9], based on the approach by
Schneider, Bunte, Biehl, et al. [12]

The effects of the parameters outlined was observed on the bias,
variance, Mean Squared Error, and execution time for each technique.

3.2.1 Data-Sets Under Test
As outlined in 3.1.1, a critical assumption that was required for the
construction of the framework was that the irreducible error σ in D
is known. In order to ensure this, synthetic data-set generators were
designed in R2 with known decision boundaries. These data-set gen-
erators, adapted from the Scikit[11] library with modifications may be
described as below

1. Box Generator

D⊂ R2 ∼ (xi,yi)∼
{
[0,5+η ] ei = 0
[5+η ,1] ei = 1

2. Circle Generator

D⊂ R2 ∼ (xi,yi) =

[
(ri +η)cosθi
(ri +η)sinθi

]

θ ∼ [0,2π], η ∼N (0,σ2), r =

{
0.7 if ei = 0
1 if ei = 1

3. Gaussian Blob Generator

D⊂ R2 ∼ (xi,yi)∼
{
(N (−1,σ2),N (0,σ2)) if ei = 0
(N (+1,σ2),N (0,σ2)) if ei = 1

,

where σ is a controllable parameter.
In all cases, ei represents the class assigned to the sample (xi,yi).

Sample data-sets generated in this manner were obtained similar to
those below.

(a) 100 samples, no misclassifica-
tion

(b) 100 samples, 22.9% misclassifi-
cation

Fig. 4: Box Generator

(a) (b)

Fig. 5: Gaussian Blob and Circle Generator
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(a) Bias vs. Data Set Size (b) Variance vs. Data Set Size (c) MSE vs. Data Set Size

Fig. 2: Effect of data set size on bias, variance, and MSE respectively

(a) Bias vs. Data Set Noise : P=500 (b) Variance vs. Data Set Noise : P=500 (c) MSE vs. Data Set Noise : P=500

Fig. 3: Effect of data set noisiness on bias, variance, and MSE respectively

Through the pre-determined decision boundaries, it was possible to
arrive at a value for the irreducible error in each data-set by dividing
the number of misclassified points by the size of the sample space. Fi-
nally, in order to test the effect of dimensionality, the Gaussian blob
generator was extended to retain a decision boundary along the pri-
mary axis in N dimensions.

3.2.2 Experimental Setup
The hyperparameters as defined in 3.2 were tested independently in
sequence. Each experiment was repeated 30 times, with new data-
sets drawn, and the mean accuracy and variance were obtained for the
experiment. Bias and Mean Squared Error were then computed as
outlined in 2.1. A summary of hyperparameters tested is given below.
All experiments excluding the data-set size were repeated for P = 100
and P = 500 to account for the size as a potential confounding factor.

Data-set Size 10, 20, 50, 100, 200, 500, 1000
Noise 0, 0.05, 0.1, 0.25, 0.5, 0.75

Data-set Types Squares, Circles, Blobs
Classifiers K-NN,SVM-l, SVM-r, LVQ

Dimensionality Range - [2,50]

4 RESULTS

The results obtained from the experiments run have been represented
graphically for ease of interpretation. In order to demonstrate the be-
haviour of bias and variance, their graphs have been shown in addition
to the principal criterion of Mean Squared Error for the first and sec-
ond experiments. The effect of data set size on execution time has also
been shown.

4.1 Data-Set Size Experiment
The effect of the data-set size P on the bias of the validation tech-
nique, as P varies from 10 to 1000 is represented in figure 2a. An ideal
validation technique is expected to have a Bias approaching 0.

Similarly, the effect of P on the variance of the generalisation error
estimates has been captured. A value approaching 0 is considered to
be ideal. See figure 2b.
The effect of P on the primary evaluation metric, i.e. Mean Squared
Error has been recorded as in figure 2c. Given the derivation of Mean
Squared Error as a function of Bias and Variance, an ideal validation
technique should have an MSE approaching 0.
The time taken (in seconds) per iteration of each validation technique
has been captured as below. Lower values per iteration are generally
preferable.

Fig. 6: Effect of data set size on execution time

4.2 Noise Experiment

In this experiment, the effect of irreducible error, i.e. noise within
the data-set on the validation techniques was captured. Similar to 4.1,
the effect of noise on the Bias, Variance, and Mean Squared Error has
been captured for P = 500. A minor skew in favour of Bootstrap was
observed in MSE compared to this for P = 100.
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(a) MSE vs. Data Set Type : P=500, SVM-R (b) MSE vs. Classifier Type : P=500 (c) MSE vs. Dimensionality : P=500

Fig. 7: MSE of remaining experiments

4.3 Data-Set Type Experiment

For each Data-Set generator as defined in 3.2.1, the validation tech-
niques were tested using the Support Vector Machine as a classifier
with a Radial Basis Function kernel. The results for P = 500 have
been represented in figure 7a. The results for P = 100 were similar,
with a minor reduction in MSE for Bootstrap.

4.4 Classifier Experiment

The effect of the classifier in use was tested with the Gaussian Blobs
generator with an irreducible error∼ 0.25. The results for P = 500 are
depicted in figure 7b.

4.5 Dimensionality Experiment

Finally, the effect of data set dimensionality was tested with the Gaus-
sian Blobs generator and SVM with a linear kernel as classifier. The
results for P = 500 are shown in figure 7c.

5 DISCUSSION

From the results of the experiments, a number of patterns made them-
selves apparent, addressed in brief below.

5.1 Data-Set Size Experiment

This experiment was performed on data sampled from the Box distri-
bution defined in 3.2.1, with a Noise Ratio of 0.4, resulting in irre-
ducible error ∼ 0.25. From the graph of Bias vs. Population Size in
4.1, it may be observed that in scenarios where the available data-set is
of limited size, all validation techniques exhibit significant downward
bias. This is notably consistent with the downward bias described by
Efron, Tibshirani et al. [3] for bootstrap techniques. This downward
bias reduces in magnitude as P approaches larger values, as observed
when P→ 100. However, as P increases beyond 100, bootstrap vali-
dation techniques begin to exhibit upward bias, while cross validation
techniques continue to demonstrate downward bias with smaller mag-
nitude.

5.1.1 Performance measured by Mean Squared Error

Considering Mean Squared Error as the primary evaluation metric, it
would appear that both Cross Validation and Bootstrap techniques are
able to produce comparable results, with the notable, consistent ex-
ception of Leave-One-Out Cross Validation, which shows characteris-
tic signs of overfitting, and performs objectively worse than all other
techniques. It may also be noted that when P ≤ 100 Bootstrap tech-
niques produce a small but measurable reduction in MSE compared
to Cross Validation. Additionally, it is observed that Nested Cross
Validation is able to achieve marginally lower Bias for large datasets,
approaching 0, with low Variance, indicating high stability of results.

5.1.2 Performance by Execution Time

The graph of Execution Time vs. Population size indicates superlin-
ear growth of the execution time for Bootstrap techniques, approach-
ing O(n2) in O-notation, while Cross validation techniques appear to
experience growth in execution time in O(n). This behaviour would
strongly discourage the use of Bootstrap techniques for validation on
larger data-sets.

5.1.3 Data-Set Size as a Confounding Variable

The effect of data-set size on the performance of the validation tech-
niques was significant enough to affect the results of the remaining
experiments. It was observed in each case that the results pr P = 100
showed marginally better performance for Bootstrap techniques over
Cross Validation, which was not so at P = 500. The latter set of results
proved to be less biased based on the results of the data set experiment,
and were thus favoured over P = 100.

5.2 Noise Experiment

Using the Box distribution generator, with Noise Ratios ∈ [0,0.75]
the resulting irreducible error was varied between 0 and 0.45. While
it may be noted that the Bias exhibited by the Cross validation tech-
niques oscillated with increasing amplitude around Bias = 0, the Bias
exhibited by Bootstrapping techniques rose sharply at a Noise Ratio of
0.25, representing around 15% nominal misclassification. This sug-
gests that the estimates produced by Bootstrapping techniques may
be overly optimistic for noisy data, and thus may not be an appropri-
ate choice. This observation is also reflected in the graph for Mean
Squared Error vs. Noise Ratio, where Bootstrapping and Cross vali-
dation techniques diverge.

5.3 Data-set Type Experiment

In order to account for the effectiveness of the classifier as a potential
confounding factor, for the purposes of this experiment, the Support
Vector Machine was chosen, with separate sub-experiments for the
Linear kernel and the Radial Basis Function kernel.

It can be seen that in the case of the linear kernel the Mean Squared
Error values converge in the case of Box and Blob distributions, but
appear to diverge in the case of the Circle distribution. Upon examina-
tion of the graph for the Radial Basis Function however, there is near
complete convergence.

This provides strong evidence to support an argument that the na-
ture of the data-set is immaterial to the choice of validation technique.

5.4 Classifier Experiment

It can be observed that there is little variation in the results of each
validation technique due to the classifier itself, suggesting strongly that
each technique is equally valid for all classifiers, once again, with the
exception of Leave-One-Out CV.
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5.5 Dimensionality Experiment
Similar to the results of the Data-Set and Classifier experiments, the
behaviour exhibited by both sets of validation techniques is near iden-
tical, with the exception of Leave-One-Out CV.

5.6 Practical Implications
From the results, a simple heuristic arises, that bootstrapping tech-
niques provide more accurate estimates of generalisation error in low
sample count and low noise scenarios, with factors such as the choice
of classifier, or the distribution of data being immaterial to the choice
of validation technique.

From the chosen bootstrap techniques, .632+ provides marginally
better Mean Squared Error, and is well justified mathematically [3].
However, its quadratic complexity highly discourages its use for large
datasets. Among the chosen Cross validation techniques, it was found
that Nested Cross Validation provides measurable improvement in
terms of Mean Squared Error over K-Cross Validation, at the expense
of higher linear computational load, which may prove a worthwhile
trade-off.

Finally, Leave-One-Out Cross Validation performs objectively
worse in all scenarios due to extremely high variance and high com-
putational load, in line with the findings of Borra et al [1].

The results so obtained may thus be distilled into a simple 2× 2
matrix, with data set size and noise as key parameters.

Low Noise High Noise
Small Sample Size .632+ Bootstrap NCV
Large Sample Size NCV NCV

Table 1: Selecting an appropriate validation technique

5.7 Comments on Theoretical Conformance
In their work on the .632 bootstrap [4] Efron and Tibshirani noted
that the asymptotic performance of Bootstrapping and Cross validation
techniques would be identical, that Cross validation techniques would
generally deliver lower bias, but higher variance, and that Bootstrap
estimates would tend to have a downward bias while Cross validation
techniques would remain consistent.

The results of the experiment largely validate the first two assertions
as the Mean Squared Error estimates for both classes of techniques
converge for large P, the variance of Cross validation techniques are
slightly larger compared to Bootstrap techniques throughout the ex-
periments, and the bias observed with Cross Validation is consistently
below the Bootstrap estimates for large P.

The third assertion, however, appears to be falsified by the exper-
iments for large P, where Bootstrap estimates are consistently opti-
mistic, with positive Bias, while Cross validation techniques are con-
sistently pessimistic. Only when P < 100 does the downward bias for
Bootstrap techniques become apparent, and there also, it is observed
that Cross validation techniques provide more pessimistic estimates.
The latter may be explained by virtue of Cross validation techniques
effectively reducing the number of samples used for training in any
given iteration of the validation process, which would cause the model
to under-train at small P.

6 CONCLUSION

This paper presented a framework for the evaluation of two classes of
validation techniques in their ability to estimate the generalisation er-
ror of a given classifier, namely Bootstrapping and Cross Validation.
Three metrics, Bias, Variance, Mean Squared Error were evaluated
subject to changes in data-set size, extent of noise, nature of the distri-
bution within the data-set, the classifier used, and the dimensionality
of the data-set.

Through this framework, it was observed that there is a significant
deviation in performance between these two classes of techniques with
respect to the data-set size, and the noise, but not with respect to the
distribution, dimensionality, or the classifier.

It was further observed that Bootstrapping techniques demonstrate
a notably lower Mean Squared Error when the size of the data-set is
small, and the noisiness is low. In other cases, Cross validation tech-
niques provided lower Mean Squared Error.

A practical guideline for the selection of an appropriate validation
technique to estimate generalisation error was thus created, encapsu-
lated by the table presented in Table 1.

7 FUTURE WORK

The evaluation of the two techniques was of an exploratory nature.
Thus, while the results obtained appear to provide strong evidence to
suggest the use of one technique over another given knowledge of a
data-set’s sample size and noisiness, these results would require formal
statistical hypothesis testing in order to ensure conclusiveness.

While the comparison of these validation techniques was performed
for a number of parameters, the effect of ratio between the two classes
in the system was not observed. Similarly, the applicability of these
techniques in multi-class and regression problems was not explored.
These may prove to be worthwhile lines of further research due to the
endemic nature of such problems in practical application.
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Isolation Techniques in Software Verification at Runtime

Antonin Thioux, Patrick Lindner

Abstract—We live in a world that expects software systems to constantly evolve through updates, extensions, hotfixes, and mainte-
nance. Simultaneously, society relies upon software systems to function more than ever and expects software to run correctly with
minimal bugs. The combined expectations of correctness and evolution of software have led to an increase in the need for software
runtime testing. Runtime testing provides a solution to both expectations of software without undermining its volume and depth of
test cases. Additionally, runtime testing executes tests in realistic environments, unlike testing done at the development, which suffers
from testing in lab-like environments. These lab-like environments problematically eliminate most of the disruptive factors which affect
software.
Five isolation approaches were introduced in the survey “A survey on runtime testing of dynamically adaptable and distributed sys-
tems” by Mariam Lahami and Moez Krichen. Their paper suggests that these isolation approaches can improve system runtime
testability. Specifically, exploring the following approaches: Built-In-Test, Aspect-Based, Tagging Components, Cloning Components,
and Blocking Components.
Through a synthesis of research papers on these five approaches, our research details and evaluates different isolation approaches
against each other and found that each technique presented unique advantages and disadvantages. We found that the analyzed
approaches can be divided in two groups. The built-in approach, the aspect based approach and the tagging approach require the
implementation of the code to be modified, while the blocking and the cloning approach do not. Rather, the latter require the deploy-
ment of the system to be adjusted. Additionally, we found that the mentioned isolation techniques differ in resource requirements,
implementation complexity, and limitations.

Index Terms—Runtime Testing, Test Isolation, Software Verification

1 INTODUCTION

The current digital society we inhabit is hugely dependent on its under-
lying software support. We expect this software to execute correctly
at all times with minimal bugs and errors. During the development of
this software: unit tests, integration tests, and system tests all ensure
that written code meets its requirements. However, these development
tests are applied in lab-like environments where most disruptive fac-
tors are eliminated. While these tests mostly focus on finding errors in
code implementation, they can not find errors related to the software’s
deployment in the production environment. The production environ-
ment of a software system mostly differs from the development and
the test environment in an external system and library dependencies.
Therefore, unknown bugs and errors, related to these dependencies,
might occur. Some errors might not even be detected right away after
deployment. For instance, pointer or memory allocation/disallocation
defects are most often detected when the system has been deployed
and running for a certain time [10].

Furthermore, modular systems, where components can be added,
removed, and updated during runtime, have to be tested after a recon-
figuration in order to assure a working system. Testing the reconfig-
uration is impossible during development time since it happens dur-
ing runtime and future behavioral/structural evolutions are unknown
at development time [5]. Applying runtime tests can verify the cor-
rectness and availability of running software in a production environ-
ment. Since they are conducted in the production environment, the
actual integration of the system is tested in the same setting in which
the end-user uses it.

Test sensitivity is used to describe to which extent software can be
tested without enduring side effects. Low test sensitivity is desirable to
perform runtime testing [5, 4]. To improve a system’s test sensitivity,
various isolation techniques have been developed. Isolation techniques
allow a system to split test processes and business processes [5, 4].

This research takes a deeper dive into the existing literature on iso-
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lation techniques to provide a detailed analysis and evaluation. Specif-
ically, the following research questions are answered in this research.

RQ1 What are the runtime isolation techniques, and how are they im-
plemented?

RQ2 What are the strengths and weaknesses of the approaches?

RQ3 Which isolation techniques are more appropriate for which sys-
tem types?

These questions are answered with an in-depth literature review.
Various researches have introduced different isolation techniques (i.e.
Build-in [10], Aspect Based Approach [8], Tagging Approach [11],
Cloning/Blocking Components [5]) which we analyze. The analysis
of the different techniques mainly focuses on the effectiveness and
meaningfulness of their results, as well as on their resource inten-
sity. Furthermore, strengths, weaknesses, and limitations are part of
the analysis. From this analysis, we fill in gaps in the research by sug-
gesting different isolation techniques for different system types based
on the results of the analysis.

The paper is structured as follows. In Section 2 we give background
information on runtime testing and dynamic system updating. Section
3 introduces the method we used to conduct the research, while Sec-
tion 4 introduces runtime testing isolation approaches. In Section 5 we
discuss the different approaches and present the results of our analysis.
Section 6 concludes the paper.

2 BACKGROUND

In this section, we outline some background information related to the
research field.

2.1 Runtime testability
Runtime testing refers to all testing activities conducted on a system
running on the target/production environment, while still being able to
execute production work [5]. This form of testing is, next to devel-
opment testing, very important in current software systems. Develop-
ment tests are focused on verifying the correct implementation of the
produced software. Therefore, they are executed in lab-like environ-
ments where most disruptive factors are eliminated. These environ-
ments differ in hardware as in dependencies to other components and
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Approach Paper Title Relevant Used
Build-In-Test Principles of Built-In-Test for Run-Time-

Testability in Component-Based Software
Systems [10]

Yes Yes

Aspect-Based AOP-based Testability Improvement for
Component-based Software [8]

Yes Yes

Tagging Components Automating Integration Testing of Large-Scale
Publish/Subscribe Systems [11]

Yes Yes

Cloning Components Dependency Isolation for Thread-based Multi-tier
Internet Services [2]

No No

Blocking Components None - -

Table 1. Summary of Lahami’s cited papers

systems to the target environment, where the software system will be
deployed to execute its productive work. So the software components
might exhibit different behavior in the target environment than in a
development test.

Runtime testing is supposed to cover errors that occur in the target
environment, but not in the development test. In a dynamic software
system, for instance, where components can be added, removed, and
updated during runtime, a reconfiguration can introduce unknown er-
rors [5]. This is relevant especially with the rise of Dynamically Up-
datable Systems [1], where continuous availability is vital. Addition-
ally, software components with improper or competing resource han-
dling can introduce major resource bottlenecks after a certain amount
of uptime [10].

However, periodically testing a running software system and moni-
toring the resulting outcome can help to ensure that a provided service
is available to the customer. These results might be logged to be used
in audits for availability critical systems.

To ensure that runtime testing is available and safe in a running
software system, isolation techniques can be used.

2.2 Related Works
Most of the work done on defining isolation techniques was done by
Mariam Lahami and Moez Krichen [5, 4]. However, their work does
not provide an in depth comprehension of the different techniques, nor
does it compare the different techniques to one another.

3 METHOD

We performed a literature review to answer our research questions.
The research started with the paper “A survey on runtime testing of dy-
namically adaptable and distributed systems” by Mariam Lahami and
Moez Krichen. Their survey introduces the five isolation approaches
that we explore in this paper. These are Build-In-Test, Aspect-Based,
Tagging Components, Cloning Components, and Blocking Compo-
nents. We expanded our research in two ways. Firstly, we explored pa-
pers cited in Lahami and Moez’s work regarding isolation techniques.
Secondly, we searched for relevant scientific papers using search en-
gines.

Table 1 summarizes the papers cited in Lahami and Moez’s work.
The three citations for Build-In-Test, Aspect-Based, and Tagging
Components were relevant to our research. Our literature review ex-
cluded the citation for Cloning Components, as it did not contribute to
answering our research questions. Lastly, the Blocking Components
approach had no cited literature.

To find relevant scientific literature, we followed the following
steps.

1. Search for literature through GoogleScholar and SmartCat with
the following keywords “(runtime OR testing OR validation
OR isolation strategies) AND (build-in OR aspect-based OR
tagging OR blocking OR cloning).”

2. Read the abstracts of the papers found.

3. Exclude papers based on the abstract if they aren’t relevant or not
sufficiently different from other papers found.

4 INTRODUCTION OF ISOLATION APPROACHES

In this section, we answer RQ1 by introducing five different isolation
approaches.

4.1 Build-In-Test Approach

The Build-In-Test (BIT) isolation approach has been introduced by
Vincent et al. [10]. Its main concern is to ensure that components
are implemented correctly. Additionally, the correct integration of a
component in the whole system can be verified using this approach.
This is achieved by providing test functionality to a component, which
can be invoked during runtime.

The structure of a built-in test environment is depicted in Figure 1.
This figure is a simplistic version of a figure from J. Vincent, G. King,
P. Lay, and J. Kinghor [10].

The BIT approach is supposed to be a standardization on how
to structure runtime-testable components. Such a component (BIT-
Component) consists of the component under test itself, a BIT config-
uration interface (CIF), and optional test modules. The BIT configu-
ration interface is mainly concerned with managing test modules and
proper error handling. The test code itself will be implemented in the
test modules, where every module is concerned about a different test
target.

The testing infrastructure, outside the BIT-Component, comprises
a handler and optional external testers. The handler is concerned
about handling system-level errors properly to prevent the system from
crashing. The external tester is a component where actual assertions
on the system level take place. It receives calls from a test module of
a BIT-Component, evaluates the results, and takes suitable action in
case of an error.

J. Vincent, G. King, P. Lay, and J. Kinghor [10] introduced a num-
ber of testing targets suitable for the BIT approach. These targets in-
clude: deadlock testing, testing for residual defects, user conformance
testing, code integrity checking, data integrity checking, resource mon-
itoring, real-time constraints, and tracing. Each of these testing tar-
gets can be added to the testing environment by adding its respective
testing module to the BIT-Component.

Third-party software components, implementing this approach, can
easily be tested during runtime without exposing their source code.
This is beneficial for both, the provider of proprietary software compo-
nents and the user, who builds a software system from the proprietary
component. The provider does not have to ship their source code, and
the user can verify that the proprietary component is integrated cor-
rectly and works properly during runtime.

4.2 Aspect Based Approach

One of the suggested ways to improve the runtime testability of soft-
ware is through an Aspect Based Approach. Aspect Based Approach
to testing leverages Aspect-Oriented Programming (AOP) to facilitate
the creation of relevant tests, provide self-checking options, and detect
faults at runtime. AOP is a paradigm that encourages the separation
of concerns (such as logging, self-checking, and error handling) from
the actual business logic through aspect code, see figure 2. This sepa-
ration prevents the cluttering of business logic. Pointcuts are inserted
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Fig. 1. BIT Environment

Fig. 2. Aspect Based Overview

into the business logic which weave the aspect and business code to-
gether. AOP works on top of other programming paradigms and does
not replace them.

As mentioned, one of the goals of the Aspect Based Approach is
to improve the tests made for components. Often, component/system
testers do not have enough information to create good tests. Using
AOP’s logging capabilities to enhance the observability of components
gives the testers more information about their internal and external be-
havior through logs. Testers can use these logs to inform their deci-
sions when creating tests [8].

Another goal is to provide runtime self-checking through AOP. Ex-
ecution invariants are monitored at runtime execution to achieve this
goal [8]. In the cases of an external component provider, this provider
will make these invariants test, since they are familiar with the code
structure. Monitoring execution invariants is not unique to AOP. How-
ever, AOP does provide reduced coupling between maintenance and
business code. Which in turn leads to simple code evolution based on
running phase requirements.

The last goal of the Aspect Based testing Approach is to detect

faults at runtime [7]. AOP can be used to again separate business code
from error/exception handling code, which allows error handling in a
modular fashion and reduces lines of code related to exception han-
dling by a factor of four [6]. However, for complex error/exception
handling, the Aspect Based Approach does more harm than good [9].

4.3 Tagging Approach
The tagging approach has been introduced by [11] for runtime testing
event based systems safely. Executing runtime tests in a production
environment can make unwanted changes to stateful components or
have side effects beyond system boundaries. To tackle this problem,
the tagging approach marks input data, which are supposed to runtime-
test the system, with a testing flag. The event based components can
subscribe to these flagged events and process them accordingly. All
data resulting from a flagged input will also be flagged. Testable com-
ponents are supposed to expose a configuration interface which can
toggle the subscription to test events. Since the component is aware,
that it is processing test data, it can adapt its behavior accordingly.
Components with this ability are called test-aware. A stateful compo-
nent for instance, whose output is generated based on a certain state,
would keep a second testing state for the tests to prevent test data alter-
ing the production state. A component with side effects to the “outside
world” would suppress the effect in a test scenario or start a simula-
tion instead. Components which are not stateful and do not have any
side effects to the outside world are called test-insensitive. These com-
ponents can be used unmodified when runtime tests in the production
environment are conducted.

In Figure 3 the environment of the tagging approach is visualized.
Components with a red background are subscribed to incoming test-
ing data. The figure describes an update in component C to C’. This
change can now be verified by subscribing all components except C
to the incoming testing data. While the reconfiguration of the envi-
ronment is tested using component C’, production data can still be
processed by component C.

4.4 Blocking and Cloning Components Approach
The following section introduces both blocking and cloning isolation
techniques. The most high-level description of blocking components
refers to the practice of stopping a component at runtime to perform
tests [5]. Cloning refers to duplicating a component at runtime to per-
form tests on the identical clone [5]. Blocking and cloning are similar
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in that neither one is running tests on a component at runtime. In a pro-
ceeding “Towards Self-Testing in Autonomic Computing Systems” by
Tariq King, Djuradj Babich, Jonatan Alava, and Peter Clarke, both
blocking and cloning isolation techniques have been proposed exten-
sions of Self-Management systems.

Self-Management systems manage themselves through self-
configuration, self-optimization, self-healing, and self-protection.
They follow a basic workflow to achieve these properties, Monitor→
Analyze→ Plan→ Execute. A natural extension of these properties
would include self-testing. Either safe adoption or replication with
validation is used to achieve this [3], the former mapping to blocking
and the latter mapping to cloning.

The blocking isolation technique was preferable when it is too ex-
pensive, impractical, or impossible to clone components [3]. When
using the blocking isolation technique, resource managers (or touch-
points) perform tests on the actual deployed resource component. Re-
source managers employ the following steps in testing. First, they
bring the Self-Management system to partial operation by blocking
the resources in testing. Second, they keep the system in a safe state
while tests are performed. Next, after running the tests on blocked
components, these are unblocked, and the system returns to full oper-
ation. Lastly, the state of the system is returned to a running state.

The cloning isolation technique allows the testing of resource com-
ponents without stopping or bringing the system to partial operation.
Additionally, testing systems do not need to impact the system’s per-
formance if the testing is performed on a different node. However, the
downside is that the cloning approach endures a high overhead cost
caused by the generation or maintenance of the component clones [3].
The only difference between cloning and blocking is that, in cloning,
resource managers (touchpoints) do not interact with the original com-
ponents. Instead, they interact with clones that have either been cre-
ated for testing or maintained for testing over time.

Lastly, it is necessary to mention that in their paper [3] Tariq King,
Djuradj Babich, Jonatan Alava, and Peter Clarke suggested that both
blocking and cloning isolation strategies can coexist in the same sys-
tem. By creating and using validation policies on a resource compo-
nent basis, a system administrator can decide which approach applies
better to each component. Overall, implementation on top of a self-
managing system of both isolation strategies is easy.

5 DISCUSSION

In this section, the introduced approaches from section 4 are being
compared and discussed answering RQ2 and RQ3.

Generally, the five given approaches can be divided based on the
modification required to be executed. The built-in, aspect-based, and
tagging approach requires the production code to be changed. The
blocking and cloning approach, however, do not require the code to be
changed. Rather, a reconfiguration of the deployment needs to be un-
dertaken. Changing the code is generally more complex and expensive
than a reconfiguration of the deployment.

5.1 Evaluation of Build-In-Test Approach

In this section, the built-in test approach will be evaluated. In sec-
tion 4.1 we stated the large number of testing targets covered by this
approach, which is a huge advantage. A testable unit in the built-in
approach can be as small as it is defined by the developer. This is ad-
vantageous over the tagging approach, where a testable unit must have
the ability to process events and is therefore limited by the system de-
sign. Furthermore, it can be implemented very near to the hardware
and allows a straightforward option to conduct tests that include more
than one component, like deadlock testing. Hence, built-in testing of-
fers more than pure function testing based on test input data.

Additionally, continuous monitoring of different targets can be im-
plemented using this approach. Thanks to its configuration interface
and modular structure, testing targets can be added and removed from
BIT-Components easily. A downside of the built-in approach is the
strict and complex structure, the BIT-Components have to retain. Ad-
ditionally, test code is included in the production software artifact,
which could introduce a larger chance of bugs if not (development-
) tested carefully.

5.2 Evaluation of Aspect Based Approach

Since the Aspect Based Approach is more of a paradigm that can be
used to improve runtime testability rather than an actual strategy, it is
hard to evaluate it compared to the 4 other strategies. On its own, the
aspect-based approach is often not enough to perform runtime testing.
However, it can be combined with other isolation strategies to further
improve the testability of a resource component. The aspect-based ap-
proach shines when performing runtime testing on externally provided
components, since it is a proven way to effectively transfer informa-
tion from the component manufacturer to the component user. This
information is especially useful when the component user is selecting
or creating their test suite based on the functionality that they expect
from the external manufactured component.

If a component is already created, it is not advised to try and im-
prove its runtime testability by using an aspect-based approach, as
refactoring the code to accommodate this new paradigm will take a
lot of time. However, if a component manufacturer is in the process of
creating a new component, using the aspect-based paradigm will give
a clear separation between business code and testing code, which will
decrease technical debt.

Additional functionality such as logging, self-checking, fault-
detection can be added to the business code with relative ease, which
can lead to even further potential to improve runtime testability. The
downside of the aspect-based approach is that it puts a burden on the
component users to use additional information given through logging
and exception tracking. In cases where the user is not expected to en-
gage with additional information productively, it would be better to
use a built-in test suite and avoid flooding the component users with
irrelevant information.

Fig. 3. Tagging Approach
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5.3 Evaluation of Tagging Approach
The tagging-based runtime testing approach includes testing code in
the production software artifact. It is supposed to be less hardware
near than the built-in approach due to its abstraction to event process-
ing. Furthermore, it might be easier to implement due to the absence
of a predefined structure of the testing component and the testing en-
vironment. Instead, the components under test are loosely coupled
through their event-based nature. The only change of implementation
required in the tagging approach is some change of behavior for state-
ful and side-effect-producing components.

In the tagging approach, the actual deployed functionality in the
production environment is tested using flagged test data. That means
it can not be utilized for monitoring.

Starting a tagging-based runtime test might be beneficial, especially
after a component has been added, removed, or modified, to ensure
that the system still works and the change of configuration has not
introduced any unwanted side effects. However, like the built-in ap-
proach, the tagging-based isolation approach requires the production
software artifact to include testing code, which increases the level of
code complexity along with the chance of bugs.

5.4 Evaluation of Blocking Approach
Strictly speaking, this method is not an isolation approach, since the
system stops its production data processing. However, it describes
testing a running system that is deployed in its target environment and
is therefore included in this paper. Using the blocking approach for
runtime testing means stopping the production service of the system
(or component) until the test is completed. To make the most use of
this technique, tests should be started when the system gets statisti-
cally fewer production requests. For a software system deployed for
a single time zone, this would mean starting the test during nighttime.
Additionally, software systems that are deployed completely redun-
dant can transfer the production requests to the backup system while
the primary system is runtime tested. This way, the backup takeover
is tested simultaneously. If only a certain component of the system
should be blocked and tested, it is advised to also have a backup com-
ponent, which can take over the production workload during the test
to reduce the downtime of the system.

Compared to the built-in, aspect-based, and tagging approach, the
blocking approach can be seen as the purest form of runtime testing,
since no test code is deployed to the production environment. Ad-
ditionally, developers do not need to be concerned about including
test functionality in their software or sticking to a strict and complex
structure. Instead, the production code “as-is” will be tested in the
exact target environment where production data is processed. The dis-
advantages of this approach include the absence of monitoring and
resource testing. Other isolation approaches can measure and trace the
resource extensiveness of software components during a high work-
load measured over a long period. The blocking approach can not
provide such measurements and traces, since a test executed during
blocking of other requests will only be a snapshot of the current state
of the system. Since this approach blocks production processing, it
is suited best for systems with dependencies to hardware components,
like robotic arms for instance. The whole system “as-is” can be tested
in the production environment, and test data will be treated exactly as
production data by the system. Therefore, test results of this approach
are more meaningful than results from other approaches.

5.5 Evaluation of Cloning Approach
The cloning approach is just an extension of the blocking method. It
allows the system to be tested during runtime, without having to stop
the production data processing. Therefore, the whole system (or com-
ponent) under test, will be duplicated including their state, and be re-
sponsible for running the test while the original system proceeds its
normal work. Like the blocking approach, the cloning approach en-
ables runtime testing, without providing testing code in the compo-
nent artifact. Additionally, it allows testing software components at
any time without being concerned about blocking services. A down-
side of this approach is the huge resource consumption, as the system

(or component) under test requires additional resources to be executed
since it is not executed in the production environment directly.

Compared to the blocking approach, there is one significant disad-
vantage: Hardware components, like robotic arms for instance, cannot
be cloned like software components. The cloned system therefor needs
to be deployed in an environment which simulates or omits calls to
such hardware components. Hence, systems without dependencies to
non-duplicatable hardware are more suitable for this approach. Note
that a cloned component including its state is not deployed in the actual
production environment, which could introduce biases in the testing
result, rendering it less meaningful. Testing availability of the service
to the customer is not possible using this technique, due to a different
testing environment. Container based applications executed by an or-
chestrating platform nowadays are extremely easy to clone. By taking
a snapshot of the current container, the running system, including its
state, can be cloned and deployed on a different machine. No reconfig-
uration of the production system has to be done during a test, rendering
this approach minimal invasive to the production environment.

The cloning approach of all isolation techniques is the least com-
plex to implement. It purely relies on the deployment configuration
and does not infer the code implementation and the runtime environ-
ment.

5.6 Overview
To provide a clear overview of the evaluation, Table 2 is provided. It
describes multiple properties of the approaches. The column “Modifi-
cation” provides an overview on which modification has to be done in
the software setup to use the respective approach. The “Complexity”
column depicts the complexity of actions, which need to be performed
to set up runtime testing. It is rated on a scale from 1 to 4. Approaches
with complexity 4 are supposed to have the most complex setup. Last,
the “Suitable For” column gives an overview of system types and de-
ployment models, which are more suitable for the respective isolation
approach.

6 CONCLUSION AND FUTURE WORK

In the scope of this research, RQ-1, RQ-2, and RQ-3 have all been an-
swered. Five runtime testing isolation approaches have been identified
and analyzed. It has been found that some isolation approaches are
more suitable for specific types of systems and deployment structures
than others. The paper contributes to the runtime testing research field
by assembling relevant information on different isolation approaches
in one single paper. Furthermore, the introduced approaches have been
analyzed and compared to each other, which may support a decision-
making process when choosing a runtime isolation approach.

A limitation of this research is the focus on the isolation approaches,
introduced in the work of Mariam Lahami and Moez Krichen [5].
Hence, the research might not include all possible runtime testing iso-
lation approaches. Furthermore, the analysis is based on synthesized
knowledge from the cited papers, rather of real-world experiments.
Future research could focus on an experimental evaluation of the in-
troduced runtime testing isolation approaches. Hereby, every approach
could be applied to the same simple code project in order to support or
refute our analysis results.
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Approach Modification Complexity Suitable For
Built-in code 4 Hardware-near Systems with low level of abstraction
Aspect based code 3 Externally provided Components, monitoring
Tagging code 3 Event based system
Blocking deployment 2 System with backup deployment, Systems with low workload

at certain time points, Systems with non-clonable hardware
dependencies

Cloning deployment 1 System with high availability requirements

Table 2. Overview
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A Review of Transparency and Accessibility in Automated Machine
Learning
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Abstract—Automated Machine Learning (AutoML) is a field which has been gaining considerable traction over the last decade. The
field has several driving factors behind it, such as the prospect of making machine learning tools accessible to all. Additionally, critically
considering and automating the machine learning workflow contributes to acceleration of research within the machine learning field
itself.
In this work we present a novel framework to put AutoML tools into context when it comes to transparency and accessibility. Ten of
the most prominent AutoML tools are then evaluated based on this framework.
It is learned that most of the evaluated AutoML tools are not accessible to the average user. This is problematic since it is one of the
main things behind the development of automated machine learning. Additionally, a number of sophisticated AutoML tools are not
transparent with the methods they use to derive an optimal machine learning strategy.
As the field of automated machine learning progresses, it is important that developers and researchers must keep accessibility for
average users in mind. Similarly, for the field to progress quickly, the inner workings of AutoML tools should be presented in a clear
way.

Index Terms—Automated machine learning, AutoAI, AutoML.

1 INTRODUCTION

The field of automated machine learning (AutoML) attempts to partly
or entirely automate the machine learning workflow. A primary goal
of this is to give people with little knowledge of the machine learning
field access to powerful machine learning tools. Additionally this
could provide valuable insights into the machine workflow itself, and
accelerate the research within the field of machine learning because of
that.

AutoML has already shown promise for solving machine learning
tasks in fields such as health-care [23, 1, 9], astrophysics [16, 20] and
international relations [5]. Multiple useful surveys [21, 8, 18, 24, 4].
of the field show that can AutoML tools can also achieve performance
close to hand-made models.

However, often there is lack of user trust in AutoML tools [6],
and with it comes a need for transparency. El Shawi et al. [19]
show that a considerable amount of AutoML tools are not open source
projects, which is another detriment to transparency. Wang et al. [22]
have acknowledged the importance of transparency in AutoML tools,
and consequently developed ATMSeer, a tool to visualize multiple
components of the automated machine learning process. However,
ATMSeer is directed mainly at expert users, and thus does not
contribute much to transparency for other users. Simply visualizing
potential model configurations and performance results can go a long
way increasing trust of users [6]. Drozdal et al. [6] have delivered
excellent work in identifying factors which contribute to trust in
AutoML tools, but have not addressed in what sense these factors exist
in state-of-the-art AutoML tools.

Increased transparency causes increased the trust of expert users in
AutoML tools as discussed by Wang et al. [22] but is also crucial in
achieving clarity and accessibility for non-expert users. Consequently,
the aim of this paper us to highlight the state of transparency and
accessibility within a number of the most well-known AutoML tools.

Firstly, in Section 2 we will define a novel framework suit to rank
AutoML tools on accessibility and transparency. Following this, a
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number of existing AutoML tools are ranked with this framework.
The results of this are presented in Section 3. Additionally, specific
experiences with each tool are discussed in depth. Finally, in Section
4 we address a number of concerns with our framework, and present a
fitting conclusion.

2 METHODS

To compare the transparency of different AutoML tools, we define
a novel framework. The framework consists of seven different
criteria, of which six are dedicated to measuring transparency. The
additional criterion Accuracy is provided to put the models into
context, and highlight possible relationships between performance and
transparency.

In addition to the ranking of the AutoML tools based on the
framework, we include an in-depth review of each specific tool,
where different notable characteristics of each tool are highlighted.
This serves to highlight the transparency and accessibility properties
beyond the framework.

Now we move on to a description of the framework and all of the
criteria that exist within it.

2.1 Framework
Accuracy – This corresponds to a very basic metric to show the
performance of the AutoML tool on the MNIST1 dataset. This aims
to put each AutoML tool into context when it comes to performance.
A more extensive evaluation of the performance of existing AutoML
tools can be found in numerous great surveys of the field [8, 25, 21].

SaaS – This criterion reflects whether the AutoML tool can be run
locally, or whether it is provided in the form of Software as a Service
(SaaS). An AutoML tool that can be run locally can be run whenever
the user desires, and on whatever hardware the user desires. Users can
also monitor the activity of an AutoML tool more directly when it is
run on a system which they have full access to.

Accessibility – Accessibility is of great importance when it comes
to AutoML tools, since one of the goals of the automated machine
learning field is to make machine learning accessible to users that do
not have a background in IT.s

We define accessibility as a score which ranges from 0 to 2. Within
our framework a higher accessibility score means a tool is easier to

1http://yann.lecun.com/exdb/mnist/
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use. We define a number of different groups of users corresponding to
the different levels of accessibility.

0. Machine Learning Expert – To operate the tool the user must be
an expert in the field of machine learning. This group of users
includes for example experienced data scientists and developers.

1. Developer – This group of users includes users who have
programming expertise, but do not necessarily have experience
with machine learning.

2. Domain Expert – A domain expert is assumed to have technical
expertise, but no real programming experience.

Search Space – When searching for optimal configurations,
AutoML tools traverse a so-called search space [14]. This is the space
which contains all possible different model configurations for a given
AutoML tool.

This criterion then describes whether the tool is transparent with the
parameter search space or not. For experienced users especially, it is
important to know what configurations will be tested [19], and in what
fashion since users can then avoid testing these configurations again.

Final Configuration Known – After traversing the search space,
an AutoML tool must settle on a final model configuration. This
final configuration is chosen based on a set number of metrics which
measure performance. Often various configurations with the best
performance are shown to the user.

Here we note whether the precise structure of the final pipeline is
disclosed to the user. This is crucial, since it enables the user to re-
create the model easily for example. This also enables expert users to
test the model separate ouside of the environment of the AutoML tool.

Fig. 1. Example configuration generated by auto-sklearn

Open Source – Open source AutoML tools allow expert users to
analyze the internal workings of the code. This helps to progress
the AutoML field since experts can learn from the workings of
previously designed AutoML tools. Additionally, expert users can
modify existing tools to work to their own preference. Thus, this
criterion simply notes whether the tool is an open source project or
not.

Free To Use – An important part of the accessibility of AutoML
tools is whether they are free to use. When testing AutoML tools a
number were found to be locked behind a paywall. Thus, this column
simply denotes whether the AutoML tool is free to use or not.

2.2 Experimental Setup
Experiments which required us to run any code were conducted
on Google Colab2, which provides free computing resources. Free
accounts on Google Colab are equipped with a NVIDIA Tesla K80
with 12 GB of RAM [3]. Auto-WEKA comes as an optional package
with the WEKA software and hence could not be run on Google Colab,

2https://colab.research.google.com/

Fig. 2. Sample digits from the training dataset. Each sample has 64
features. A feature is an integer with a value between 0 and 16.

instead, this software was tested on a 2015 Macbook Pro quipped with
2,5 GHz Quad-Core Intel Core i7 and 16 GB of RAM. Tools which are
only available as SaaS, needed to be run on the provider’s platform.

To test the tools, sklearn’s digits dataset was used3, this is often also
referred to as the MNIST dataset. The dataset consists of 1797 samples
of 10 hand-written digits. Each sample has 64 features (integers
between 0 and 16). A few examples are displayed in Figure 2. There
is roughly 180 samples per class. Furthermore, the dataset is split into
train and test partitions. The test partition corresponds to 25% of the
original dataset. Each tool is run for at most 10 minutes and then the
best found pipeline is evaluated using the test set and accuracy as the
primary metric.

3 RESULTS

First, the results of evaluation using the defined framework are
presented. Following this, we include the in-depth experiences of
operating the different tools.

3.1 Framework
A total of ten AutoML tools were evaluated using our framework. The
results can be viewed in Table 1.

For a number of the AutoML tools, we could not generate accuracy
values. The reasons for this will be discussed in later sections. The
same holds for two of the Search Space Known values.

It can be seen that most of the tools are not accessible to the average
user, or as defined our framework; the domain expert. Furthermore,
all AutoML tools that were evaluated do disclose the final model
configuration.

Notably, most of the AutoML perform quite well on the MNIST
data set. MLBox is the only exception to this, achieving a considerably
lower accuracy. Furthermore, there seems to be a correlation between
the rows Final Configuration Known, Open Source and Free To Use.

3.2 Experiences
Now follows a description of all of the automated machine learning
tools, in addition to a description of the experience with using
them. The focus is on overall accessibility level, ease of use, and a
description of the results and experiments.

3.2.1 auto-sklearn
auto-sklearn4 is an open source automated ML toolkit, which helps
the user with pipeline engineering and hyperparameter tuning. To do
so it utilizes techniques from fields such as Bayesian optimization,
meta-learning and ensemble construction [7]. auto-sklearn is very
easy to run, a classifier can be initialized, trained and used to
make predictions in just 3 lines. Furthermore, it provides methods
to display the best configuration (which is usually an ensemble of
models) in a table as well as showing a leader board of all attempted
configurations. Printing statistic overview gives the user the number
of configuration considered, number of algorithms that crashed,
exceeded the time/memory limits and the best validation score.

However, it does not explicitly state why certain configurations
were tried out or why certain ensemble weights were assigned. It
is possible to get additional details about each of the attempted runs

3https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.load_digits.html

4https://automl.github.io/auto-sklearn/master/
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Accuracy SaaS Accessibility Search Space Known Final Configuration Known Open Source Free To Use
auto-sklearn 0.986 × Level 1 ✓ ✓ ✓ ✓

TPOT 0.988 × Level 1 ✓ ✓ ✓ ✓
AutoKeras 0.942 × Level 0 ✓ ✓ ✓ ✓

PyCaret 0.991 × Level 1 ✓ ✓ ✓ ✓
MLBox 0.593 × Level 0 ✓ ✓ ✓ ✓

IBM AutoAI - ✓ Level 2 ✓ ✓ × ×
AutoML-Zero - × Level 0 ✓ ✓ ✓ ✓

AWS ML - ✓ - - - × ×
Vertex AI - ✓ - - - × ×

Auto-WEKA 0.986 × Level 2 ✓ ✓ ✓ ✓

Table 1. Results of evaluation of ten commonly used automated machine learning tools.

and their results, however, this requires certain level of programming
knowledge and willingness to look into their code base or find
solutions on the internet. Nevertheless, their documentation is easy
to navigate and provides implementation details as well as several
examples on how to use the tool.

auto-sklearn’s final ensemble reached the accuracy of 0.986 on our
withheld test dataset. auto-sklearn requires its users to write code,
however, it does not require them to have very deep understanding of
machine learning concepts, hence Level 1 accessibility was assigned.

3.2.2 TPOT

Tree-based Pipeline Optimization Tool (TPOT)5 tries to be a data
science assistant. It tries to help its users by building and
recommending optimized pipelines to solve any given task. Genetic
programming is used to traverse the search space and generate
candidate pipelines [13]. TPOT is an open source project built on top
of scikit-learn.

Similarly to auto-sklearn, TPOT requires only a few lines of code to
train and test a model. Therefore, Level 1 accessibility was assigned.
Additionally, it provides methods to list details about all the ran
pipelines and their validation scores.

Lastly, TPOT can export the best pipeline by generating a python
script. The full pipeline, including the pre-processing and feature
engineering steps, as well as the initialzed model with its proper
configuration is present in this script. Furthermore, the script can be
used to run the pipeline on novel data. However, to make it run, the
user needs to edit this script and provide path to the data. This requires
some programming and scikit-learn experience, since one should be
able to understand what the script does before editing or running it
blindly. Nevertheless, this script could be a great starting point for
a junior data scientist to learn the best practices related to setting up
pipelines to be used on novel data. Moreover, TPOT provides clear and
concise documentation with number of detailed examples for various
datasets and tasks. On the other hand, TPOT does not provide any easy
to use API to visualize various metrics of the model.

TPOT’s final pipeline reached an accuracy of 0.988 on our withheld
test dataset,

3.2.3 AutoKeras

AutoKeras6 is an open source automated ML tool, which uses
Bayesian optimization theory to morph the topology of neural
networks and efficiently explore the search space. As opposed
to existing neural architecture search algorithms such as NASNet,
PNAS, which commonly suffer from expensive computational cost
[10]. AutoKeras is built on top of Keras, a popular deep learning
framework7. Hence, the API closely resembles the API of Keras.
AutoKeras claims that its goal is to make machine learning accessible
to everyone. It does a decent job at this. Level 0 accessibility was
assigned to AutoKeras.

5http://epistasislab.github.io/tpot/
6https://autokeras.com/
7https://keras.io/

Firstly, AutoKeras does not do any data pre-processing, the data is
fed directly to the artificial neural network. In some cases this may not
be required, however, in real world problems the data is often noisy
and the algorithm could greatly benefit from normalizing and cleaning
the data beforehand. Secondly, the user either has to choose one of
the specific models, e.g. ImageClassifier or TextRegressor, or they can
use the so-called AutoModel. However, even when the AutoModel
is chosen the user is required to specify input type (e.g. ImageInput,
TextInput) and output type (e.g. ClassificationHead, RegressionHead).
This means that the user is required to have a certain level of machine
learning knowledge to be able to understand the differences between
them and to chose the correct option. On the other hand, AutoKeras
comes with detailed documentation providing a wide range of code
examples. This makes AutoKeras an extremely easy-to-use tool for
anyone with prior programming and machine learning experience.

After AutoKeras has run, the final model with the best topology and
trained weights can be exported. The result is a Keras model instance,
which can be handled with the regular Keras API. It can be either used
in the pipeline right away or it can be saved to a file and loaded later.

Similarly to the majority of the reviewed tools, AutoKeras lacks
a simple API which would help less skilled users review various
performance or error metrics of the best model.

AutoKeras’ final model reached the accuracy of 0.942 on our
withheld test dataset. The performance is slightly lower than that
of auto-sklearn or TPOT. Possible reasons for this are discussed in
Section 4 of this paper.

3.2.4 PyCaret
PyCaret8 is an automated end-to-end machine learning tool, which
additionally helps with model management. It tries to speed up
the development process by automating tasks such as data analysis,
data pre-processing, model training, evalution and even deployment.
PyCaret allows the user to setup a session with their data and target
feature. Then it automatically analyses the data and determines certain
properties of the session, such as whether there is class imbalance
in the dataset. The user is then prompted to apply methods to solve
this issue. The tool suggests principal component analysis (PCA),
removing of outliers, normalization and many more. This large
overview may seem overwhelming at first, however at the same time it
gives a very good overview of the data and possible problems with it.
As well as its strategy to fix these problems. Afterwards, the

compare models()

method can be used to build up a list of models and compare their
performance. It also returns the best model. As opposed to all other
tools discussed in this paper, PyCaret includes a DummyClassifier
in this overview, hence giving a baseline to which all the other
performances can be compared. Furthermore, this feature is very
important, since it enables the user to identify skew in datasets and
instances of over- or under-fitting. Another unique feature of PyCaret
is its simple API to which can visualize various performance metrics.
A call such as

8https://pycaret.org/
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Fig. 3. Result of using PyCaret to plot model’s confusion matrix.

plot model(model, plot = "confusion matrix")

will produce results such as the one shown on Figure 3. PyCaret can
plot metrics such as the confusion matrix, area under the curve, error
rate, feature importance and several others.

PyCaret’s best model reached the accuracy of 0.991 on our withheld
test dataset. This is the highest obtain accuracy from all of our
experiments. Furthermore, PyCaret was very easy to use and
get running. On the other hand, a little programming experience
and willingness to read PyCaret’s documentation was required to
efficiently use it.

3.2.5 MLBox
MLBox9 is an open source Python library for AutoML. It provides a
number of features such as distributed data pre-processing, cleaning,
formatting, feature selection and leak detection, hyperparameter
optimization, models for classification and regression and others [2].
This library requires users to describe their search space in detail.
On one hand this provides total transparency with regards to what
experiments are being run. On the other hand, a domain expert
without much technical knowledge and even a developer without a
solid background in machine learning will not be able to define this
search space optimally. Because of this, users might spend more
time trying pipelines which are bound to fail than testing promising
configuration. In light of this we assign Level 0 accessibility to
MLBox, since non-trivial knowledge in ML is required to setup the
experiments properly.

This library seems to be easy to use when predefined narrative is
followed, however, it is very inflexible as soon as the user strays from
this narrative. For example: training and testing data needs to be
loaded from a file, it is impossible to process an in-memory data frame.
After thorough examination of the source code, it became apparent
that this is a result of poor component architecture. MLBox’s Reader
component, does not only read the dataset, but it also fixes missing
values, trains the model and saves an encoder. All of this is done in a
single massive method. Therefore, if the user skips the file Reader and
tries to work with the data already loaded in memory, soon they will
be unable to continue since they will be missing a label encoder. This
could be easily avoided by either splitting the Reader component into
smaller components with a single responsibility or at least splitting
the method which does all the steps into smaller methods which can
be called separately as required by situation bases. Furthermore, the
documentation is lacking severely, therefore deep diving into the code
of the library was often a necessity to debug the errors produced by
our attempt to get the experiment running.

When testing MLBox it miss-classified the task as a regression,
rather than a classification. We were unable to push MLBox to

9https://mlbox.readthedocs.io/en/latest/

correctly recognize the task, even with attempts such as converting
the labels into string digits. Furthermore, no straight-forward option
to set the task type was found after examining the source code.
Misclassifying the task and approaching it as regression resulted in
poor performance. MLBox’s best model reached the accuracy of 0.593
on our withheld test dataset. This is the lowest recorded accuracy
among all the tools that we were able to run.

Lastly, it should be noted that MLBox does present the user with
the best performing pipeline, which then later can be applied to novel
data.

3.2.6 IBM AutoAI

IBM AutoAI10 also known as Watson Machine Learning service, tries
to discover candidate pipelines which suit the given problem the best.
It automatically performs data cleaning and pre-processing, feature
engineering, model selection, hyperparameter optimization.

For model selection IBM AutoAI uses the Data Allocation using
Upper Bounds strategy. The goal of this strategy is to sequentially
take subsets of the training dataset and apply a large set of classifiers
on it [17]. This enables IBM AutoAI to test and select a near-
optimal classifier from a large number of classifiers, without the
need of training them all on the full training dataset, effectively
saving both computational resources and time. When it comes
to feature engineering AutoAI leverages algorithms based on [12]
and [11] to automate this task. This system is inspired by the
usual “trial and error” approach, applied by many machine learning
experts. Furthermore, it tries to discover data transformations such as
principle component analysis, square or word to vector to improve the
performance of the candidate pipeline.

IBM AutoAI has a clear and very extensive documentation, which
describes the inner working of this tool in detail. Even citing original
papers to algorithms and approaches used in their tool. A sense
of transparency and trustworthiness is established by this practice.
However, the full product is hidden behind a pay wall. Nevertheless,
an interactive demo is available. This demo presents IBM AutoAI’s
very simple, interactive and intuitive UI, which could be easily used
by non-techincal users, such as domain experts and business owners.
Users can easily select files with their dataset, highlight a target feature
and let AutoAI figure out the rest. Level 2 accesibility was assigned to
IBM AutoAI.

The experience overall was very smooth. IBM AutoAI presents the
user with a wide variety of visualisations for the final pipeline, which
provides further insight into the chosen model and what its strong or
weak points may be. Moreover, the pipeline can be deployed and
served with a few clicks. However, it should be noted that this demo is
scripted and the users are allowed to only perform pre-defined actions.
Hence, it was not possible to upload our custom dataset and evaluate
the tool.

3.2.7 AutoML-Zero

AutoML-Zero11 is a promising open source tool for research. It
can discover or improve existing algorithms via an evolutionary
algorithm. These novel or existing algorithms found by AutoML-
Zero are discovered symbolically as opposed to numerically, therefore
it is easier to explain the solutions. Its search space is very general
therefore the possibilities for the pipelines are practically endless.
AutoML-Zero places emphasis on requiring very little manual work
when designing the algorithms. The authors claim that it can
automatically search for complete ML algorithms, while placing very
little restriction on the form and using only simple mathematical
operations as building blocks. Furthermore, they speculate that our
bias towards human-designed algorithms can limit the innovation in
the ML space. AutoML-Zero tries to return the focus on the search
method and look for novel solutions in rather generic search space[15].

10https://www.ibm.com/docs/en/cloud-paks/cp-data/4.
0?topic=models-autoai

11https://github.com/google-research/
google-research/tree/master/automl_zero
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It is important to note that a machine learning expert is still
necessary to design an evaluation method, feature engineering,
interpretation of the results, deploying of the models et cetera. In light
of these requirements Level 0 accessibility was assigned to AutoML-
Zero.

Lastly, when running AutoML-Zero the users are required to
provide a configuration to define the task and search space parameters.
A certain level of familiarity with the project and an understanding
of its inner working seems to be required when crafting a reasonable
configuration. Moreover, we were unable to produce a custom
configuration which yields any meaningful solutions to our task.

3.2.8 AWS Machine Learning & Vertex AI

AWS Machine Learning12 and Vertex AI13 are cloud based application
developed by Amazon and Google respectively. Both of these products
are marketed as tools which enable its users to empower their products
with machine learning without having to write code or have expertise
in the machine learning field. Nevertheless, neither of these tools are
very transparent about how they achieve this. Additionally, they both
provide a free tier “demo”, however, to sign up for it, the user has to
provide their credit card information, the lack of transparency and trust
deterred us from providing this information, hence, we were unable to
get hands on experience with these tools.

3.2.9 Auto-WEKA
Auto-WEKA14 is an open source package, built on top of WEKA.
WEKA is a collection of ML algorithms used for tasks such as
data mining. It contains tools for data preparation, classification,
regression, clustering, association rules mining, and visualization15.
All of these tools are powerful on their own, however, they all have
hyperparameters which need to be tuned. That is where Auto-WEKA
comes into the picture. Auto-WEKA builds, fine-tunes and evaluates
pipelines. Similarly to other tested tools, Auto-WEKA leverages
innovations in Bayesian optimization to traverse the search space
efficiently. Auto-WEKA has a friendly user interface, which can be
used to load the data, select a target feature and start the searching
process without having to write any code. After, Auto-WEKA reaches
its time limit it stops the search and displays information about the run.
This information includes total number of run experiments, estimated
error rate, best classifier and its attributes. Furthermore, it provides
JAVA code which could be copied into the user’s application to run the
classifier in the user’s own program. However, that is not necessary
since Auto-WEKA lets you save the model, which then can be loaded
into classification section of WEKA and used to apply it on novel data.
Due to the ease of use and no need to write any code, accessibility
Level 0 was assigned to Auto-WEKA. Auto-WEKA’s best model
reached the accuracy of 0.986 on our withheld test dataset.

4 DISCUSSION, SUMMARY, CONCLUSION

We have evaluated the transparency and accessibility of a number of
the most notable AutoML tools that exist within the field currently.
Additionally, we have included a number of in-depth descriptions of
each tool to illustrate their working beyond the criteria. The results
show that users often still need a background in IT to be able to use
AutoML tools. In addition to that, a number of prominent AutoML
tools refrain from making their code open source. Having summarized
the results briefly, we will now move on to critically consider a number
of issues regarding our method.

In this work, only free to use AutoML tools were run and tested on
the data set. Due to this, a number of accuracy values are missing in
Table 1. In addition to that, the search space could not be discerned
for two of the AutoML tools. Which tools were not free to use is
also included in Table 1. The remaining information concerning the

12https://aws.amazon.com/machine-learning/
13https://cloud.google.com/vertex-ai
14https://www.cs.ubc.ca/labs/algorithms/Projects/

autoweka/
15https://www.cs.waikato.ac.nz/ml/weka/

premium AutoML tools was gained by researching the tools, rather
than testing them.

This leads us to the second point of concern, which is that the
columns Open Source and Free To Use in Table 1 are identical, and
SaaS is the complement of them both. This seems to be the result of
the property that SaaS projects in general tend not to be open source
or free. The main issue with this is that not much new information is
gained with each column due to this correlation. However, we would
argue that these criteria are still distinct enough to justify adding all
three of them since there are SaaS projects that are free and open
source, and this might hold for AutoML tools in the future as well.

Regarding time limits for training, some tools did not allow for
the setting of a specific time limit. As noted before, in the case
that it was possible to set a time limit, the time limit was set to 10
minutes. However, even with a set time limit, the run-time varied
a lot, since in certain cases the time limit corresponded to the time
limit for generating new experiments. The AutoML tool will then
still continue to evaluate already generated experiments, and thus go
beyond the time limit in terms of run time. The key problem with this
is that the accuracy values are no longer completely comparable. This
is because it is no longer a fair fight when different tools have different
resources. Having discussed a number of concerns with the methods
used in this work, let us now turn to our conclusion.

Regarding accessibility, It has been shown that there quite a lot
of AutoML tools that are still not accessible to the average user.
Researchers and developers within the field of AutoML must not lose
sight of one of the initial goals of the field, which is making machine
learning accessible to all.

When it comes to the general experiences with the AutoML tools
in this work, there seems to be quite a lack of visualization tools for
performance of model configurations. This is quite surprising since
this is exactly what Drozdal et al. [6] refer to as a way to increase trust
in AutoML. Clever visualization is also a simple way to increase the
transparency and accessibility of a tool, thus it is surprising that this
does not exist in most of the tools.

On the question of transparency, most of the state-of-the-art
AutoML tools are transparent when it comes to their model search
space and final model configuration. However, there are also a small
number of tools which are not free to use and not open source. For the
sake of the field it is to be hoped that the majority of AutoML tools
stay open source, since this allows developers and researchers to build
upon each other’s work.

In terms of future work, it would be interesting to see the insights
gained from the work of Drozdal et al. [6] incorporated in novel and
existing AutoML tools. Additionally, research in making AutoML
tools accessible to users outside of the field of machine learning could
be fruitful, since research on this is lacking currently.
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An overview of the Graph Neural Network pipeline

David Boerema and Auke Roorda

Abstract—The graph data structure is a very useful data structure for modeling many applications like chemistry, social media and
recommender systems. With the increasing availability of large amounts of graph data for these applications, there is an increasing
demand for the processing of this data. This gives rise to Graph Neural Networks; models that are able to learn features from graph
data. Over the last decade, there have been many new and different models constructed for graph data, resulting in greater applica-
bility and accessibility of the typical machine learning tasks on graph data. In this paper, we provide an overview of the IO-pipeline
when working with graph neural networks, describing the different relevant aspects of the input graphs and how to accommodate for
these variations, followed by the various layers of a graph neural network, and a concise list of possible tasks. Finally, a discussion of
the strengths and weaknesses of the current methods is provided.

Index Terms—Graphs, Neural networks, pipeline.

1 INTRODUCTION

In computing science, discrete graph data structures are a valuable
type of data representation that can be used to model many types of
data. Graphs are very powerful, as they provide efficient solutions for
many problems through for instance graph trees. As such, storing data
in graphs can often provide many benefits through the representation
alone.

For this purpose, graph neural networks (GNNs) have been de-
signed to bridge the gap between traditional artificial neural networks
and graphs. Artificial neural networks typically learn from vector data
and are able to provide great generalisability for different kinds of data
and tasks. GNNs are able to provide the same kind of generalisabil-
ity but then for graph data, as the difference in representation leads to
different tasks and data properties.

The data flow in a GNN follows a specific pipeline from input to
output while learning. This pipeline consists of 3 core steps that any
GNN should take:

1. Preprocess the graph as input of the GNN.

2. Learn graph features through GNN layers.

3. Apply learned features to a specific task.

This pipeline is very similar to the IO-pipeline of artificial neural net-
works and is used in this paper to introduce all the important concepts
of GNNs. This paper aims to be an accessible, high-level overview
of the IO-pipeline when working with graph neural networks. Mul-
tiple important concepts of GNNs will be discussed and compared to
their counterparts in artificial neural networks. This paper aims to con-
tribute an overview of GNNs through a comparison to artificial neural
networks as well as a discussion of the current strengths and weak-
nesses of the state-of-the-art GNNs.

In section 2 an overview is given of the various types of graphs,
how they can be preprocessed and how they can be transformed to be
used as an input of a GNN. In section 3 the inner workings of GNNs
are explained, explaining the roles of the different layers in a GNN.
Then, in section 4, the various tasks for which GNNs can be used are
addressed. In section 5 a small overview of similar works and some
core GNN papers is given. Lastly, in section 6 a discussion about
the current state-of-the-art is presented. Note that in this paper, the
term ”Graph Neural Network” (GNN) is used to encompass all neural
networks that work with graph data, and unlike [1], it is not used for
the specific Graph Neural Network model as described in [16].

• David Boerema is a master student at the University of Groningen, E-mail:
d.h.boerema@student.rug.nl

• Auke Roorda is a master student at the University of Groningen, E-mail:
a.c.roorda@student.rug.nl

This paper serves as a literature review of the core concepts of
the graph neural network research field. This literature review was
conducted through an analysis of multiple similar literature reviews
and a subset of their references. The literature selection favored
earlier and more popular works as these can often be identified as
the core results of the research field upon which many later works
improve. An overview of some of the considered works is given in
section 5.

2 GRAPH DATA AS INPUT

In general, the input of a neural network consists of multiple scalar
values, such as a feature vector describing a particular example. De-
pending on the task at hand, the neural network tries to classify this
example, or use this input for regression. However, not all data can
straightforwardly be represented by feature vectors. Graphs in partic-
ular, do not conform to standard sizes or explicit, predefined structures
that feature-vector oriented neural networks expect. Therefore, a so-
called transduction is done, which converts the nodes of the graph
into node embeddings (sometimes called node states, node represen-
tations) [1]. These are not just a function of the feature vector associ-
ated with the node, but also influenced by the vertices connected to the
node, in an effort to not lose the connectivity information of the graph.
After the transduction, this representation of the graph can be put into
a neural network.

2.1 Graph types and representations

There are multiple variations on graphs. A standard graph is a data
structure that can describe the relational structure between nodes, by
means of connections between the nodes. Formally, a graph G =
(VG,EG) consists of at least a set of vertices VG and a set of edges
EG ⊆ VG×VG, consisting of pairs of vertices. The set of edges EG is
sometimes represented by an adjacency matrix AG, a |V |× |V | matrix,
with elements au,v ∈ {0,1} denoting the presence of an edge from ver-
tex vu to vv. A variation of standard graphs, hypergraphs, which have
edges between more than two nodes, are not discussed in this paper.

In many practical applications of graphs, the nodes and edges of a
graph are given properties to represent certain features. The proper-
ties added of course depend on the context in which the graph neural
network is applied.

Some elements of the data are not encoded by the feature vectors
on nodes or edges, but are part of the structure of the graph itself, such
as the direction of edges in a directed graph. A second aspect is that of
node and edge types; in homogeneous graphs, each node is of the same
type as other nodes, and the same holds for edges. In heterogeneous
graphs, the type of each node and edge can differ from others.
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2.2 Graph structures
An important distinction that [19] makes is between structural (ex-
plicit) graphs, and unstructured (implicit) graphs. In structural graphs,
the data is inherently structured, such as in social networks or knowl-
edge graphs. But it is not always the case that the data being worked
on has this explicit structure. With natural language processing, the
sequence of words is usually transformed into a graph, in which the
references between words are stored. In this context, the graph struc-
ture has to be deduced from the data first, before a graph becomes
apparent. This is called an unstructured setting [19].
Finally, there is the distinction between static and dynamic graphs.
Dynamic graphs are updated as time progresses. These updates them-
selves can be important sources of information [19].

2.3 Preprocessing graphs
Some of these structural variations of graphs can be consolidated, to
reduce the amount of different graph types that have to be worked with
later on.

A trivial transformation is that from an undirected graph to a di-
rected graph; every edge eu,v in the undirected graph is replaced by a
pair of symmetrical directed edges (eu,v,ev,u).

For heterogeneous graphs, an approach using so-called meta-path-
based methods can be used to reduce a single heterogeneous graph
into multiple homogeneous graphs [19]. A meta-path consists not of
the vertices in the path, but the types of the vertices and the types of
the edges that connect them. An example as given by [13] is on a
graph of an academic network, with e.g. author (A), paper (P), con-
ference (C) nodes. A meta-path (A)-(P)-(C)-(P)-(A) would
then indicate that two different authors (A) with contributions to two
different papers (P) have presented these at the same conference (C).
This captures a somewhat weak relation between the two authors. A
meta-path (A)-(P)-(A) on the other hand would indicate that two
authors contributed to the same paper, which can be a sign of a stronger
relation between two authors. Using this method, a new graph of just
author nodes can be constructed, even though the author nodes are not
directly connected in the original graph. This results in a homogeneous
graph, where every node is of the same type.

2.4 Representation learning
As already seen in the case of meta-paths, the connections of a node
are able to capture information that is not present on the node itself,
but that can still be of relevance. In general, this kind of information
is either aggregated using the direct neighbours, or by a random walk
from the node. The former can be seen as the equivalent of applying a
kernel on an image, where the neighbouring pixels are replaced by the
nodes that reside in the neighbourhood of each node.

The neighbourhood of a vertex v consists of all vertices u that can
be directly reached with an edge from v: Nv = {u∈VG|ev,u ∈EG}. Ag-
gregating data using the neighbourhood can of course be recursively
applied to aggregate data from further neighbours as well.

A second option is to initialize a so-called random walk from a
node. This captures the topological features of the node by taking
a sequence of steps to neighbouring nodes. One example of this
is [7], whose Node2Vec framework is based on a parameterized ver-
sion of random walks, in which a balance can be stricken between a
depth-first- and a breadth-first-search approach. Collecting the rele-
vant neighbouring information of a node, to represent it in a single
feature vector, is the processing of representation learning, in which
not just the features of the node itself, but also an encoding of its topo-
logical features is captured.

3 LEARNING FROM GRAPHS

In this section, the concept of ‘learning’ from graph data along with
the possible learning tasks will be introduced. Zhou et al. go into great
detail about the learning methods [19], but the goal of this paper is to
provide an easy to understand overview of the inner workings of GNNs
through a comparison to the traditional neural network framework.
Traditional neural networks for continuous data typically consist of a
couple of core components: activation functions, loss functions and

Fig. 1. An example of how a simple undirected graph (left) is repre-
sented as a hidden state (middle) as well as the hidden aggregated
graph state (right).

the computational neuron layers. With a change of input and learning
task also comes a change of these components, as the learning happens
through these components. Graph neural networks need new types
of computational neuron layers as well as loss functions that suit the
learning objective.

3.1 Computational layer types
The layers of an artificial neural network come in multiple types, all
having different functions in the network as a whole. In image clas-
sification, convolutional layers are commonly used to select specific
image features while pooling layers can be used to up- or downsample
the data. For both of these, GNN variants exist which specifically act
upon graph properties. Additionally, GNNs define new types of layers
specific to graphs, as for instance the graph topology and neighbor-
hoods of vertices matter. Zhou et al. divided the different layer types
for GNNs into 3 groups [19]:

• Propagation layers, which diffuse vertex neighborhood infor-
mation as well as capture feature and topological information of
the graphs.

• Sampling layers, which sample specific parts of the graph in an
effort to reduce the complexity of neighborhood aggregation.

• Pooling layers, which provide lower level representations of
parts of a graph.

Through a combination of these layers and other neural network com-
ponents, a GNN can learn graph features that can be used for different
kinds of tasks. Graph features can consist of node, edge and whole
graph-level features and the type of features learned is determined by
the task. More detail about the possible tasks of GNNs is given in
section 4.

The layers of a GNN work on the internal representation of the
graph. An example of the conversion from graph to internal repre-
sentation can be seen in figure 1. This representation can be seen as
a hidden state represented by a feature vector per vertex, which can
be operated on and aggregated to receive the internal graph represen-
tation. This type of representation is consistent across many GNN
architectures [1].

3.1.1 Propagation layers
Propagation in graph neural networks serves the purpose of perform-
ing the actual learning in the network, as these layers contain trainable
parameters. In graph neural networks, these layers also have the job
of context diffusion, where the goal is to spread the information from
one vertex to the other. Propagation is achieved using 2 types of
operators: convolutional and recurrent operators.

Convolution
One of the problems one might encounter when processing graphs

is the variable size and shape, which can form problems when apply-
ing any input sensitive method. This problem has been solved through
processing graphs at the vertex level rather than graph level, which

An overview of the Graph Neural Network pipeline – David Boerema and Auke Roorda

112



Fig. 2. An overview of the FastGCN [3] pipeline. A denotes the preprocessed graph data vector, which is used as the input of the GNN model.

is one of the most important building blocks in graph neural network
models [1]. For this to work, the data of neighboring vertices needs to
be propagated across all vertices of the graph. One of the most pop-
ular propagation layers to use in a standard artificial neural network
is a convolutional layer. This is a trainable layer that can be used for
aggregating neighboring data, and as such is also very practical for
context diffusion in GNNs.

For graph based convolution, there are 2 types of approaches:
spatial and spectral [19]. Spatial approaches operate on the graph
topology directly and can make use of attention mechanisms [18].
Multiple spatial methods can also be combined into a framework
like MoNet [14]. Spectral approaches use the graph Fourier trans-
form to apply convolution using the spectral representation of the
graph [19][11][17].

Recurrent
Recurrent operators are similar to convolutional ones, with the ma-

jor difference being that recurrent operators share their weights within
a layer [19]. These methods originally required the hidden states to
converge, but methods using the gate mechanism (like LSTM [9]) have
been developed to overcome some of the shortcomings of these oper-
ators and only run a certain amount of steps.

3.1.2 Sampling layers
One of the main issues with large and dense graphs is the number of
neighbors for an arbitrary node in the graph. When neighborhood ag-
gregation is performed on these nodes, the computational load scales
in the number of neighbors. For this reason, sampling layers sample
the neighborhood of a node to reduce the computational load. An ex-
ample of this is the GraphSAGE network [8], which samples a fixed
number of neighbors within a subset of nodes of the graph. Other sam-
pling methods that sample at layer or subgraph level also exist [19].

3.1.3 Pooling layers
In feed forward neural networks, it is common to follow a convolu-
tional layer by a pooling layer to reduce the data dimensions and pro-
cess the convoluted data. This is also the case for pooling layers for
GNNs, which have the aim to reduce the data and discover important
communities within the graph [1]. These layers range from performing
simple operations (sum, min, max) to trainable operations that perform
clustering to apply topological pooling.

3.2 Example model
To exemplify how some of these layers can work in conjunction, an ex-
ample model using the FastGCN network [3] is shown. This network
had 3 tasks on 3 data sets:

1. Classify research topics on the Cora citation data set.

2. Categorise academic papers from the Pubmed database.

3. Predict the community structure of a social network using Reddit
posts.

For these tasks, a model using 2 layers was used. An overview of
the model and pipeline of the FastGCN model can be seen in figure
2. A similar model was also used in [3] to model GCN [11] and
GraphSAGE [8], with the major difference being the inner workings

of the second propagation layer. Important to note is that much like
GraphSAGE[8], the sampling and convolutional layers are combined
into one layer for the FastGCN. This means that a node’s neighbor-
hood is sampled first and aggregated afterwards. Before the data is
used in the model, it is preprocessed to generalise the input and opti-
mize the training process. One example of preprocessing is the down-
sampling of the edges of the graph in the Reddit data set [8]. Across
all tasks, the models were able to reach a minimum F1-score of 0.82
with GraphSAGE and FastGCN providing substantial improvements
in training time over the classic GCN [3].

4 TASKS

Due to the ubiquitous nature of graphs, the amount of applications
of GNNs is vast. The tasks in these applications can be categorized
by the components of the graph they focus on: the nodes, the edges
or the topology of the graph. Within each of these categories there
are different possibilities, depending on the goal of the task and the
availability of labels.

4.1 Tasks on nodes
Node classification aims to provide the most likely label for a given
node in a network. In the graph of e.g. an academic network, nodes
would be classified as being a paper, an author or a conference. For this
to be possible, at least a segment of the nodes in the network should
have their labels available, to facilitate training. On the other hand
there is node regression, concerned with prediction of continuous fea-
tures of a node. These could be objective measures, such as the word
count of a paper, as well as more subjective features, e.g. a scale indi-
cating “how related is this paper to the field of neural networks?”. One
of the frequently occurring goals of unsupervised learning is cluster-
ing. The aim is then to group similar nodes together [19].

4.2 Tasks on edges
Link prediction has the aim of deciding whether there should be a
link between two existing nodes. Approaches for this are based on
the principle of homophily, which states that nodes that exhibit more
similar features are more likely to be connected to each other [12]. An
exemplary case for link prediction is in the context of social networks.
Typical social network graphs consist of nodes representing people,
and edges to represent their relationship, e.g. whether they are friends
or not. In an effort to connect users with each other, the social network
wants to be able to provide suggestions to users to connect with other
users they might already know. These suggestions are the result of
link prediction on the social network graph. When edges are given
properties themselves, link regression is possible as well.

4.3 Topological tasks
The Node2Vec framework by [7] is able to classify nodes according
to their structural equivalence; nodes that are fully connected within
their cluster are distinguished from more ’hub’-like nodes. These can
be indicative of the role these nodes play in the network [7].

A different example is to predict a property of the complete graph,
a task that finds its purpose especially in chemistry. The structure
of molecules can be represented exceptionally well, with nodes repre-
senting atoms and different edges to match the different bonds between
atoms. These two factors determine the properties of the molecule as
a whole, which can be thought of as the properties of the graph. As
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discussed in [4], this can be used to predict different chemical proper-
ties of molecules. The properties can then be used for computer-aided
drug design [19].

5 RELATED WORK

One of the initial problems when dealing with graphs was the presence
of cycles. The first works in the area of neural networks for graphs, the
Recursive Neural Networks [2], could not easily be extended to deal
with this, and were therefore limited to processing acyclic graphs. One
of the earliest models to be able to deal with cycles is the Graph Neural
Network [16], a recurrent model using a state transition system, which
implements a function that maps the nodes of a graph to a feature
vector in a new euclidean space. It is based on information diffusion
techniques, as well as approaches using random walks.

In 2014, a novel approach for random walks was presented by [15],
named DeepWalk. It builds on the at-the-time recent progress in the
field of language modelling, and employs a learning method that treats
the random node walks as sentences. This improves the resulting em-
beddings significantly, while also being applicable on graphs that are
too large to run spectral methods on [15].

However, the work of [7] notes that these feature learning algo-
rithms are not able to capture certain topological aspects of the graph,
due to their limited expressiveness. They introduce node2vec, a
generalization of the DeepWalk approach, i.e. the DeepWalk approach
can be simulated by node2vec by setting parameters accordingly. It
introduces a tunable random walk, which can strike a balance between
depth-first and breadth-first search.

In recent years, many publications have been made in the field
of neural networks for graphs, albeit with little systematization,
resulting in the need for a more solid framework. The work of [1]
provides a new tutorial-like overview of the field of GNNs, with clear
definitions of the concepts used as well as a set of building blocks
for the construction of neural networks for graphs. It constructs this
overview by summarizing and consolidating the methods of previous
impactful works, without focusing on the most recently published
articles in the field.

For an explicit overview of the design pipeline for GNNs, we refer
the reader to [19], in which a four-step approach to the model design is
presented, as well as a wide variety of frameworks and methods, with
their use cases.

6 DISCUSSION AND FUTURE WORK

The field of research of graph neural networks has come quite far since
its inception. Many different methods with different purposes have
been proposed as shown in [19], constantly trying to improve over
previous work. Consequently, the current field of research has some
strengths and weaknesses that will be highlighted in this section along
with recommendations for future work.

6.1 Strengths and weaknesses
One of the benefits of the maturing of the field of GNNs is that
GNNs are now more accessible than ever. With libraries like PyTorch
Geometric [6], which provides PyTorch implementations of many
important works, it is easier to get up and running with different GNN
architectures. Surveys like [1] and [19] also contribute to this by
providing overviews of general concepts and methods respectively.
However, the amount of research in this field also introduces the
problem of over-saturation. Models like the GCN [11] and Graph-
SAGE [8] are well recognised and will be used when comparing the
performance of a new model, even though superior models may have
already been proposed but have gone under the radar. This pitfall is
not specific to the research field of GNNs, but reduces the speed at
which progress is made even though more studies are being performed
on the subject. To solve this, an assessment should be made of what is
state-of-the-art and what is not to set a new baseline to compare to.

Another strength of GNNs is the performance on tasks. As has
been shown by Dwivedi et al. [5], GNNs can have pretty good

performance on medium-size data sets for different kinds of tasks like
node classification and link prediction. The caveat however is that
the input of GNNs is not always generalizable to multiple types of
graphs. Architectures like the GCN [11] do not directly account for
edge directionality in graphs as well as heterogeneous graphs. While
these deficiencies can be accounted for through preprocessing most of
the time, this can have an impact on model efficiency by multiplying
the dimensions of the input data by a factor, for instance by turning a
single heterogeneous into multiple homogeneous graphs.

Finally, GNNs have also been shown to be vulnerable to multiple
types of adversarial attacks just like other deep neural networks [10].
An adversarial attack tries to fool a GNN by modifying the model
input with the goal of getting a wrong prediction. This is a big security
concern, as the opaqueness of the operation of neural networks in
general does not allow for detecting these vulnerabilities up front.
This prevents the use of GNNs in security sensitive applications
unless a model robust to adversarial attacks is used, and as such forms
a weakness for most standard GNN architectures.

7 CONCLUSION

Graph neural networks have become a viable solution for perform-
ing machine learning tasks on big graph structured data sets. Various
preprocessing and learning methods have been developed to solve nu-
merous different machine learning tasks, and the field is ever expand-
ing in search of more improvements. In this paper, the core concepts
of GNNs have been discussed through the use of the IO-pipeline of
artificial neural networks. First, the graph data structure along with
preprocessing steps have been discussed to detail the input of GNNs.
Secondly, the inner workings of GNN models have been explained
through a comparison to artificial neural networks. Finally, the ap-
plications and strengths and weaknesses of the current GNN research
field have been reviewed to form some recommendations for the future
direction of the GNN research field.
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A comprehensive guideline for Human Activity Recognition with
Deep Learning

Philip Andreadis and Mariya Shumska

Abstract—Human Activity Recognition (HAR) is the challenging problem of automatically identifying actions performed by individuals
during their day-to-day routine, formulated as time-series classification. HAR has recently become a prominent area of research, as
it can serve as a basis for many innovative applications in a variety of different fields like healthcare, smart homes, wellness, and
entertainment. Moreover, the advances in activity-capturing techniques and the rapid growth of the Internet of Things (IoT) have led
to the availability of a large amount of sensory data, triggering the application of state-of-the-art deep learning methods. In our study,
we make a comprehensive review of the most promising deep learning techniques proposed by researchers, with respect to the
various challenges and end goals of HAR. The plethora of deep learning morphologies and the vast space of hyperparameters make
the search for the optimal solution a by far non-trivial task. Therefore, we will analyze different methods, highlight their strong and
weak points and infer a set of guidelines for choosing the most appropriate deep learning approach for the HAR problem at hand.

We define five fundamental aspects that influence the choice of the DL methodology for HAR, namely the target users, type of sensor
modality, characteristics of activities, training data peculiarities, and the need for real-time recognition. As the field is just emerging, it
is not trivial to find a universal framework that tackles the challenges of all the above-mentioned criteria. Therefore, using them as the
basis, we suggest a set of guidelines for building case-specific DL pipelines for different HAR problems along with the corresponding
visual representation for easier navigation.

Index Terms—Human activity recognition, HAR, sensors, deep learning, neural networks, CNN, RNN, LSTM.

1 INTRODUCTION

Human Activity Recognition (HAR) refers to the task of classifying
physical activities through the use of various sensor modalities. HAR
systems have many areas of application, including health monitoring,
elderly care, intelligent surveillance, smart homes, virtual reality gam-
ing, etc. [33]. Recent advances in IoT and hardware, cheapening of
the sensors and their presence in ubiquitous devices like smartphones
and smartwatches attract the attention of researchers and the general
public. Moreover, as the data collection becomes easier, deep learning
(DL) for HAR has arisen and proved to be effective. However, due to
the plethora of DL approaches and wide range of HAR applications,
building an appropriate pipeline is not a trivial task.

In our work, we introduce a taxonomy consisting of five major crite-
ria that influence the choice of the methodology, and suggest relevant
deep learning techniques that may help to achieve the end-goal of a
HAR task. One major factor that motivates this categorization is the
distribution discrepancy between training and test data. The discrep-
ancy can be accredited to three reasons, namely the monitored users,
time, and sensors. As for the users, each of them has a unique mo-
tion pattern for the same activity, moreover, the data distribution even
within one user can vary over time. Regarding the sensors, their types
or even slight changes in device positioning would produce different
data patterns. Thus, a model fitted for one user at a particular point in
time will not necessarily perform well for other users or the same user
in the future.

The possible HAR use cases can vary a lot depending on the afore-
mentioned discrepancy sources, as well as on the end-goal of each
scenario. Specifically, we highlight the problem of real-time HAR
systems, as the goals of many HAR applications can be achieved only
with online classification. Therefore, we try to summarize the applied
methodologies and provide indicative state-of-the-art implementations
with respect to different sensor and activity types, user-related discrep-
ancy, data imperfections, and the ultimate objectives of each applica-
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tion. Moreover, we create visual guidelines that will facilitate the nav-
igation in the choice of the most appropriate DL techniques for HAR.

In the following Section 2 we give an overview of related work that
we used as a basis and mention major differences and contributions
of our work. Section 3 provides relevant background information re-
garding the different ways to attain human activity data and introduces
the DL methods mentioned in this paper. In Section 4, we discuss
the five aforementioned aspects of HAR, along with our proposed vi-
sual guidelines, and report corresponding state-of-the-art solutions for
each one of them. Finally, in Section 5, we provide an overview of
the current state of the HAR field and the shortcomings of the ongoing
research.

2 RELATED WORK

We base our work on the paper by Chen et al. [8] where an extensive
taxonomy of HAR-related challenges and appropriate deep learning
techniques have been proposed. However, it concerns the issues and
solutions inherited from both DL and HAR, which might be harder to
navigate having specific requirements and peculiarities for the activ-
ity recognition task. We do, however, extract the main challenges of
deep learning recently outlined by its “founding fathers” in [3] and put
them in the context of HAR. We consider other works such as [17, 4]
that compared the performance of most common models like deep
feed-forward, convolutional, and recurrent neural networks. More-
over, we also present and give references for specific state-of-the-art
frameworks that were designed to fulfill particular HAR tasks in terms
of e.g. synthetic data generation [13] or performance on mobile de-
vices [10]. In general, our categorization is more concise than the one
proposed in [8]. It can also be seen as more use case-oriented and prac-
tical since the reader can focus on specific criteria that are applicable
for their HAR task or data at hand. Additionally, we put emphasis and
elaborate more on real-time activity recognition and computationally
cheap techniques as many recent use cases, especially in the entertain-
ment or wellness realm, need almost instant classification on personal
gadgets. Finally, one of the contributions of our work is visual aids in
a form of flowcharts/decision trees which we could not find in other
overview or survey papers on HAR.
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3 BACKGROUND INFORMATION

In general, activity recognition can be realized with video-based or
sensor-based systems, however, the latter is a dominant approach due
to fewer privacy concerns [8]. Thus, we focus on sensor tracking
modalities in our paper. In turn, they can be divided into two main
categories, namely ambient and wearable sensors.

Ambient. Ambient sensors are usually placed around the envi-
ronment of target subjects. One obvious advantage of this type of
sensors against wearables is that they can be used to simultaneously
capture the behavior and interactions of multiple individuals, in multi-
occupant scenarios. The most common setting where ambient sensors
are used is that of the so-called smart-home, in which multiple sensor
units are installed in a residence in order to capture the everyday ac-
tivity of the dweller(s), enabling the facilitation of a variety of smart
services. Examples of such sensors could be WiFi, radar, or radio-
frequency identification (RFID) devices.

Wearable. Wearables can be attached directly to body parts and
gather physiological and movement information about the individual
wearing them. The advances in mobile technology have allowed for
the embedding of these units (e.g. accelerometer, gyroscope) into
mobile devices, such as smartphones, smartwatches, and wristbands
making the process of data collection considerably seamless. In
medical settings, the examples of wearable sensors are EMG and
EEG modalities that measure the electrical activity of muscles and the
brain, respectively.

The recorded sensory data is a time series, which, especially in
the case of medical settings may be high dimensional. Time series
classification is a challenging task for classical Machine Learning
since domain knowledge might be required for suitable pre-processing
methods and manual feature engineering. Therefore, as DL methods
emerge, their potential has been actively discovered in the time series
classification realm. In particular, Artificial Neural Networks (ANNs)
are considered, since they might operate on raw data and are able to
automatically extract features. Moreover, they can be used not only
as classifiers but as data augmentation tools. ANNs try to mimic the
human brain and thus consist of many connected neurons. Typically,
they consist of many layers of neurons as it allows high-level feature
extraction from the data and therefore improves the performance of
the model. There exist different classes of neural networks to address
particular problems or types of data. Below we will briefly describe
the main ideas behind the most used networks in the context of HAR.

Deep Neural Network (DNN). A common practice in most
of the Artificial Intelligence applications [6], DNN comprises a
multi-layer feed-forward architecture, which consists of hidden units,
synapses, weights, biases, and activation functions. DNN is a super-
vised machine learning algorithm, that can be used for both regression
and classification tasks.

Fully Connected Network (FCN). FCN is essentially a DNN,
where each neuron of a layer is connected to every neuron of the next
layer. Although they yield lower performance than specific-purpose
networks, they have a wide variety of applicability. For instance, FCN
is frequently used as the last segment of a Convolutional networks
architecture, purposed for image classification.

Convolutional Neural Networks (CNN). A most commonly
used Deep Learning architecture to analyze images (e.g. extract im-
age features, image segmentation, etc.). Inspired by the biological
virtual cortex, convolution kernels (or filters) with learnable weights
slide along the input image and provide a feature mapping of lower
dimensionality.

Recurrent Neural Network (RNN). A network adapted for
working with sequential or time series data since it has an ’internal
memory’ which helps them store the information about previous in-
puts to generate the following output of the sequence. This is real-
ized through feedback loops which are absent in feed-forward archi-
tectures.

Long Short Term Memory (LSTM). An extension of RNN that
allows remembering inputs over longer periods of time. This is
achieved with three different gates that decide on accepting the new
input (input gate), removing the information (forget gate), or allowing
it to influence the output (output gate). LSTM is very suitable for pro-
cessing time series where the lengths of the time lags are not known.

Autoencoder. A special type of feed-forward network that is
trained to reconstruct its input to its output. The goal is to achieve
a lower-dimensional representation, which is also referred to as latent
space, of the input data.

Variational Autoencoder (VAE). A modification of autoencoder
with regularized latent space. It assumes that the data has some under-
lying probability distribution and aims to find the parameters of that
distribution. VAE is a generative model, i.e. is able to produce new
content.

Generative Adversarial Network (GAN). Belongs to generative
models. The training process is realized with two competing net-
works: generator for producing new samples and discriminator for
distinguishing true data from the output of the generator.

Deep Belief Network (DBN). A generative graphical model,
consisting of multiple layers of hidden units. Connections between
layers exist, however, units within each layer are not connected with
each other. This type of network, when trained without supervi-
sion, can learn to probabilistically reconstruct its input. DBNs can
be trained further with supervision in order to perform classification.

4 DEEP LEARNING APPROACHES FOR HUMAN ACTIVITY
RECOGNITION

In the following subsections, we will provide a summary of the chal-
lenges posed by five crucial aspects and the corresponding state-of-
the-art solutions.

4.1 User-related discrepancy
Users are of course the integral component of the HAR problem. Each
person has unique activity patterns and behavior. Therefore, the as-
sumption that the model trained on one person’s data would perform
equally well for another or even the same individual after some time
period will not hold.

Clearly, personal biological characteristics and different environ-
ments affect the way the task is performed. For example, people of
different ages will have a diverse walking or running pace. Since HAR
models may be intended to be applied to previously not seen subjects
during the working phase, the aforementioned factors account for user-
related distribution discrepancy between training and test data. Obvi-
ously, using both training and test data collected from the same user is
not a viable tactic, because while it may showcase high performance
during training it will not yield good generalization when deployed
against new targets. Thus, researchers have proposed methods to ad-
dress this form of distribution divergence in an effort to mitigate the
loss of performance when models are tested across individuals. [36]
propose building personalized RNN models for each specific individ-
ual, while [21] uses Learning Hidden Unit Contributions to achieve
user adaptation of CNN models and [27] employs transfer learning for
the same purpose. On a different direction, [29] have used GANs to
generate target domain data directly from the source domain in order
to introduce the needed discrepancy.

Another important characteristic is inherited from the fact that ac-
tivity data is temporal. Especially, if the HAR system is designed to
be long-term, the performance of the model trained on the initially
collected data may decrease due to the natural changes in human ac-
tivities. Such changes can occur within the same class of activity, like
gait changes, for example. To adjust to the new user’s characteris-
tics, active learning can be incorporated into DL models. The idea is
to continuously update the system using upcoming data and request-
ing a ground truth label. For instance, Gudur et. al [16] proposed a
Bayesian Neural Network with dropout for uncertainties approxima-
tions. Another long-term-related issue is that new types of activities
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may occur over time, that were not included in a training set. One
approach to deal with it would be decomposing the new activity into
mid-level features like leg (arm) down (up), however, it requires ex-
perts to define these features [8]. Another way of dealing with new
classes is treating HAR as an open-set problem, meaning that the ac-
tivity is not exactly classified, but rather labeled as part of the target
activity or not. In order to obtain a so-called negative set consisting of
all non-target activities, GANs can be used [38].

We can see that user-related discrepancy is inevitable in the context
of HAR and need urgent addressing if the HAR system is not intended
to be personalized or has to work in a long-term perspective. The
flowchart that suggests solutions for different types of discrepancies
can be found in Figure 1.

Fig. 1. Visualized guidelines for choosing the appropriate DL approach
in terms of user-related distribution discrepancy along with references
to relevant papers.

4.2 Training data peculiarities

Supervised learning of neural networks needs a large amount of la-
belled training data in order to be successful. On the one hand, the
ubiquity of various sensor devices can provide a lot of data, however,
the labelling process might be quite expensive, time-consuming and
error-prone. On another hand, some activities or events are rather
rare and hard or unethical to obtain, such as falls of elderly people
or disease-related motor complications. Therefore, one should con-
sider the peculiarities of the available training set in both cases of the
”excess” of (unlabelled) data or lack of samples.

Semi-supervised techniques may alleviate the tedious annotating
task [8]. The example of such technique is pre-training of a network
on unlabelled data to extract features which then are used during a su-
pervised training with a limited supply of labels. At this stage, the
weights in the feature extractor can be fine-tuned with backpropa-
gation [3]. Deep generative models like DBNs [2] and stacked au-
toencoders [11, 15] are frequently used as feature extraction in a pre-
training phase for HAR. Another semi-supervised approach is called
co-training which trains two classifiers on different views of data [19].
This is applicable for HAR tasks only if multiple sensing modalities
were used [7], since then different data views are available.

Synthesizing human activity data may solve the issue of lack of
training samples. Artificial data can be produced by generative mod-
els such as VAE and GANs [14]. Different frameworks were de-
veloped and tested for human activity generation, such as Sensory-
GANs [34], Adversarial Variational Embedding [40], Control-HAR-
GAN [13]. These approaches, however, are not unsupervised, there-
fore, labelled data is required which brings us back to the annotation
issues mentioned at the beginning of this subsection. Visual guideline
in a form of a decision tree in Figure 2 summarizes main approaches
to tackling training data problems.

Fig. 2. Visualized guidelines for choosing the DL approach for tackling
potential training data challenges along with references to relevant pa-
pers.

4.3 Activity tracking modalities

Due to their sensitivity, a small variation in the sensors could translate
to significant changes in the collected data. Additionally, the plethora
of available modalities accounts for data with totally different shapes,
sampling frequencies, and scales. To name a few of these factors,
the sensor instances influence parameters such as the sampling rate,
while wearable sensors output data according to the body part they are
attached to. Lastly, in the case of ambient sensors, the surrounding
layout greatly affects the generated signal.

In order to address the heterogeneity of sensor instances, re-
searchers have used GANs for data augmentation [20] to synthesize
data from different sensors with sufficient discrepancy. Moreover, in
an effort to tackle the issues deriving from the different types and po-
sitioning of wearables, [1] have created a domain adaptation method
to expand training algorithms from known wearable sensors to new
sensors, based on generative autoencoders. Since smart devices can
be placed on multiple positions, many source domains (i.e. preex-
isting sensors with labeled data) can emerge, which are needed for
annotating the target domain (i.e. sensor placed on new position) in
the context of transfer learning. [35, 9] propose methods of similarity
distances between the target and source domains to facilitate the accu-
rate transfer of knowledge between them and recognize activities on
the former. Lastly, regarding ambient sensors, which are considerably
influenced by the surrounding layout in both domestic and wild envi-
ronments, the need to mitigate the discrepancy coming from different
domains has directed the research towards one-fits-all models that are
able to capture domain-independent features and fit to varying HAR
scenarios [42].

Asides from the distribution discrepancy sources, the most obvious
division of sensor types is that of wearables against device-free and
ambient sensors, placed at a fixed point in space. [17] provides an ex-
tensive comparison among typical DNNs, CNNs, and RNNs. Their
results show that regular DNNs require more investment in parame-
ter exploration and show significantly higher spread in performance
compared to the most sophisticated alternatives of CNN and RNN. On
the other hand, [5] propose a novel method that uses fully convolu-
tional networks combined with frequency-based encoding with word
embedding from Natural Language Processing for automatic feature
extraction, applied to HAR in smart-homes. A diagram showing the
most suitable techniques w.r.t. sensor types can be found in Figure 3.

4.4 Target activity types

Even though existing methods yield promising performance against
simple and repetitive actions, e.g., jogging or walking and stationary
activities such as standing, little progress has been made towards rec-
ognizing more complex scenarios. The so-called composite activities
consist of sequences of simpler actions, (e.g. preparing dinner) and
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Fig. 3. Visualized guidelines for choosing the DL approach for the cor-
responding sensor types along with references to relevant papers.

their recognition is greatly desired as they tend to be a more com-
plete reflection of people’s daily life. [31] mixes complex and simple
activities and uses a DNN to categorize both in a unified way. The
model shows a high accuracy of 90%, however, its training is limited
to samples from a single subject. In contrast, [23] treats composite
and simple activities separately. Specifically, a CNN is used to extract
features from simple activities, whereas an LSTM network is applied
to complex activities to learn the temporal dependencies. Joint learn-
ing of the two networks is then realized by a shared structure between
them.

A single person can perform multiple actions at a given period of
time, e.g., eating while watching television, hence the recognition
of concurrent activities has become another point of interest for re-
searchers. The first approach to this problem is to consider each con-
current activity separately and classify them individually. For instance,
the authors in [41] designed a single fully-connected network for each
candidate activity on top of a shared multi-modal feature space, where
independent softmax layers classify each one of them. A major dis-
advantage of this architecture is the fact that the computational cost
will significantly increase as more activities are added. In an opposite
way, [22] realized a multi-layer combined CNN and LSTM frame-
work, which targets overlapping activities concurrently, considering
every possible activity combination. It is important to mention that
this specific HAR task has not yet been extensively explored and the
approaches discussed above are only early steps.

Finally, an even more challenging aspect of activity recognition,
with significant practical value, is multi-occupant activities. Most
state-of-the-art studies provide solutions only for scenarios where the
generated activity signals come from a single person. However, in
most residential and working environments the existence of multiple
individuals is very likely. Two distinctive cases are observed here,
namely, the instance where two or more persons carry out independent
activities (e.g. one is speaking on the phone while the other is eating),
termed parallel activities, and the instance of collaborative activities
where multiple individuals perform the same task in a synergetic man-
ner (e.g. playing pool). In [30] a proposed multi-label RNN, with each
RNN cell corresponding to the activity of a single occupant, is trained
on ambient sensor data and used for daily parallel activity recognition
in the context of smart home. An important remark is that parallel
activity recognition from wearables can be treated as multiple single-
person activity recognition tasks and tackled with one of the methods
discussed formerly. On the contrary, authors in [28] leveraged data
from both ambient and body-worn sensors as inputs into a multimodal
sequential network composed of a RBM layer, a DBN with multiple
RBM layers and a final Multi-layer Perceptron (MLP), for the infer-
ence of group activities performed by pairs of occupants. Figure 4
summarizes the main types of activities and appropriate DL methods
according to our findings.

4.5 Real-time feasibility
For some applications, a real-time classification might be favorable.
It might be especially important for medical scenarios where a dan-
gerous event such as falling must be recognized instantly. In general,
we observe two dominant architectures for real-time HAR, which are
CNNs due to relatively low number of connections and high paral-
lelism [18] and recurrent networks like LSTM which model movement
at the sample level. LSTM-based approaches usually perform better
since they make use of long-term dependencies, but CNNs are faster
to train [17]. Unlike recurrent models though, they require fixed input
size, meaning that the data needs to be segmented. Although choosing
a suitable segment size that results in fast and accurate classification
might be challenging, using a sliding window allows for real-time ac-
tivity recognition.

One of the biggest issues that hinder real-time HAR is that the
most accurate DL models are resource-hungry and therefore, are not
suitable for portable devices. In order to solve the problem of high
computational costs, researchers proposed different modifications for
the neural networks’ architecture. Although deep models are supe-
rior for feature extraction, shallower models that have lower resource
requirements can still perform well if combined with manually en-
gineered features as demonstrated in [25, 26, 24]. Another strategy
would be to optimize the network by, for instance, filter size reduction
for improved memory consumption in the case of CNN [26] or net-
work quantization [12, 39] which is efficient due to bitwise operations.
Some specific architectures were proposed, such as self-gated RNN,
where the complexity is lower in comparison to a standard LSTM
model [32], CNN with CondConv [37] layers instead of conventional
convolutions [10]. Therefore, we cannot conclude that either CNN- or
RNN-based model is the most feasible for accurate real-time activity
recognition, both can perform comparatively well if optimized. How-
ever, as noted in [17], CNNs might be more suitable for prolonged and
repetitive activities, while RNNs outperform them significantly in the
case of short actions. For a visual overview of available approaches
for real-time systems refer to Figure 5.

5 DISCUSSION AND CONCLUSION

As we can see, various DL techniques can be applied in the context of
HAR problems to solve sensor- or training data-related issues. More-
over, the end goals of the application with respect to the target activi-
ties and need for real-time recognition, non-personalized or long-term
system may influence the architecture of the classifier network signif-
icantly. Finding the ultimate DL model for HAR seems not to be pos-
sible due to unavoidable trade-offs between the desired requirements,
such as speed and accuracy. However, ensuring sensible prioritization
and timely detected data peculiarities will lead to the optimal pipeline.
To make this process easier, we summarized existing works on chal-
lenges and DL techniques for HAR and derived five crucial criteria to
look into. To facilitate it even further, we generate the visual support
of our guidelines.

Although many of the works discussed in our review show promis-
ing results and already comprise deployable solutions, there is a num-
ber of challenges that have not been addressed yet. This is due
to the fact that, as already mentioned, deep learning for HAR is a
fairly recent field and many research directions are yet to be explored.
Additionally, the specificity and the diverse characteristics of each
HAR setting render the standardization of a unified evaluation method
a very complex task. Different experimental setups, dissimilarities
in datasets, and the varying scope among studies, generally lead to
skewed comparison. Hence, coming up with a rigorous universal ap-
proach of evaluation for DL in the context of HAR is an open area of
work for future research.
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[12] M. Edel and E. Köppe. Binarized-blstm-rnn based human activity recog-
nition. In 2016 International Conference on Indoor Positioning and In-
door Navigation (IPIN), pages 1–7, 2016.

[13] W. Gerych, H. Kim, J. DeOliveira, M. Martin, L. Buquicchio, K. Chan-
drasekaran, A. Alajaji, H. Mansoor, E. Rundensteiner, and E. Agu. Gan
for generating user-specific human activity data from an incomplete train-
ing corpus. In 2021 IEEE International Conference on Big Data (Big
Data), pages 4705–4714, 2021.

[14] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial networks,
2014.

[15] F. Gu, K. Khoshelham, S. Valaee, J. Shang, and R. Zhang. Locomotion
activity recognition using stacked denoising autoencoders. IEEE Internet
of Things Journal, 5(3):2085–2093, 2018.

[16] G. K. Gudur, P. Sundaramoorthy, and V. Umaashankar. Activeharnet: To-
wards on-device deep bayesian active learning for human activity recog-
nition. CoRR, abs/1906.00108, 2019.

[17] N. Y. Hammerla, S. Halloran, and T. Ploetz. Deep, convolutional, and
recurrent models for human activity recognition using wearables, 2016.

Human Activity Recognition with Deep Learning – Philip Andreadis and Mariya Shumska

120



[18] A. Ignatov. Real-time human activity recognition from accelerome-
ter data using convolutional neural networks. Applied Soft Computing,
62:915–922, 2018.

[19] G. Katz, C. Caragea, and A. Shabtai. Vertical ensemble co-training for
text classification. ACM Transactions on Intelligent Systems and Tech-
nology (TIST), 9(2):1–23, 2017.

[20] A. Mathur, T. Zhang, S. Bhattacharya, P. Veličković, L. Joffe, N. D. Lane,
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A Comparison of In-Process & In-Network Methods for Global
Order of Messages

Arjan Dekker and Jesse Maarleveld

Abstract— Temporal and causal ordering of messages in distributed system is a large area of research. Historically, such message
ordering was implemented by coordination between different processes (in-process). Ongoing research has lead to the development
of more programmable network switches. One example development is the P4 language for parsing and processing packet headers.
Such techniques can be used to implement and enforce a message ordering using the switches in the network, allowing for the
development of new algorithms. One such algorithm is the newly proposed method 1Pipe. In this research, we review literature in
order to investigate the difference between in-network and traditional in-process methods. We find that in-network methods achieve
lower latency, and better throughput and scalability compared to in-process global ordering methods. By comparing 1Pipe with other
in-network algorithms, we find that it can be implemented on less expressively programmable devices than those with traditional
CPUs, because of the simplicity of the computations.

Index Terms—Total Order Communication, Programmable Switches, In-Network Scheduling, Global Event Order

1 INTRODUCTION

Ordering of messages in distributed systems is hard. For many appli-
cations the order of messages is important. An example application
is distributed database replication, where different ordering can lead
to conflicting states. Another application is complex event processing,
where events have to be detected in continuous real-time data streams.
Wrong ordering could lead to false positives or false negatives. Those
mistakes can be crucial in a medical setting for example [8, 16].

In the past, various algorithms, such as sequencers or token-based
approaches, have been proposed that tackled this total ordering prob-
lem [6]. Especially the early algorithms had many drawbacks, such as
poor scalability and lacking the ability to tolerate failures directly, that
have been somewhat addressed in later research [18, 7, 12]. Such al-
gorithms always operated at the process level, and were not deployed
in the network.

A new development over the recent years, is the development and
deployment of programmable switches in data center networks [21, 3,
22, 20]. Previously, it was difficult if not impossible to deploy custom
algorithms on switches. Changing algorithms in the field would be
almost completely impossible [21, 3].

As a result of these developments, there is more flexibility for
network-operators to use – and change – the algorithms to fit their
needs. Additionally, programmable switches allow switching from
process level handling of message order, to an in-network determined
order [15, 16]. An example algorithm using such developments, is
1Pipe: a communication abstraction with a global message order for
unicast and multicast, particularly well-suited for use in data centers.
1Pipe can scale its throughput to a total of 256 processes with ease and
only have a small decrease in throughput for 512 processes, whereas
the throughput of even the best in-process methods deteriorates when
the number of processes exceeds 16 [15].

In this research, we want to look at the developments made with
regards to fully ordered communication algorithms in literature. We
want to investigate what methods do and do not operate in the network.
Our goal is to see to what extent such algorithms leverage the power
of programmable switches, and what the benefits are of doing so.

In the remainder of the article, we will first discuss some relevant
background information, including the programmability of switches,
and different types of message ordering. This will be done in section
2. Next, we will provide an overview of various categories of methods
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for global order of messages in section 3. Then, we will further discuss
and compare strengths and weaknesses of those algorithms in section
4. We will further discuss and summarize those findings in section 5.
We will end with our final conclusions in section 6.

2 BACKGROUND

This section contains the background information about different types
of message ordering and a number of developments with regards to
programmable switches.

2.1 Lamport Causality
One type of totally ordered communication is a causal order of mes-
sages. Often, this is causality as defined by Lamport in [13]:

Suppose that we have n processes P1,P2, . . . ,Pn, with correspond-
ing clocks C1,C2, . . . ,Cn. Let a and b be events (e.g. send or receive)
in processes Pi and P j, respectively (i = j is allowed). The values of
the clocks at the times of these events occurring are given by Ci(a) and
C j(b), respectively. Lamport then defines that a =⇒ b (a occurs be-
fore b) by a =⇒ b≡ Ci(a)< C j(b)∨(Ci(a) = C j(b)∧Pi ≺P j). Here,
≺ is some arbitrary totally ordering on the processes P1,P2, . . . ,Pn
which can be used to break ties and obtain a total causal order; other-
wise, we only have a partial ordering. An example of such an ordering
could be on process ID, e.g. Pi ≺ P j ⇐⇒ i < j [13].

To fully define the causality principle, we also need to define how
the clocks C1,C2, . . . ,Cn should behave. All clocks must satisfy two
properties. i) if a and b are events in the same process Pi with a occur-
ring before b, then Ci(a) < Ci(b). ii) if a represents a send operation
from process Pi and b the corresponding receive operation in process
P j, then Ci(a) < C j(b) [13]. The first condition essentially mandates
an ordering of events within a single process, while the second prop-
erty mandates some sort of synchronization between processes (e.g. a
receiving process cannot keep having its clock run late).

A simple method which is sufficient to implement this causal order-
ing, is the so-called Lamport timestamp. Instead of a physical clock,
a logical clock is used. Such a clock can satisfy the first condition by
simply having a logical clock increase its value when sending a mes-
sage. A receiving process must then update its clock accordingly when
receiving a message [13].

2.2 Broadcast and Multicast
It is important to understand some basic notions regarding broadcast
and multicast. Broadcast means sending a message to all devices con-
nected to a network, whereas multicast means sending a message to
a subset of all devices in the network. In the limiting case where a
message is only sent to one device, we speak about unicast.
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Within systems, we can have open and closed group algorithms for
multicast. In closed group algorithms, processes that are not members
of the group cannot multicast messages to the group. The opposite
group of algorithms is called open group, where any arbitrary process
in the network may multicast to a group [6].

2.3 Atomic Operations
Another type of ordered communication, is atomic communication op-
erations. Atomic operation ordering constraints are different from the
causal ordering constraints specified by Lamport [1].

Perhaps the easiest operation to understand is atomic broadcast.
In atomic broadcast, messages broadcast in a network by producing
processes (producers), are received by all consuming processes (con-
sumers) in the same order. In the following, we will use “deliver”
to say that a message is “delivered” to the application by the under-
lying network software. There are four properties which must hold
for atomic broadcast: i) every consumer delivers a message at most
once, and only if it was generated by a producer, ii) if some pro-
ducer generates a message, then eventually some consumer delivers
that message, iii) if some consumer delivers a message, then eventu-
ally all consumers deliver that message, iv) if two consumers deliver
messages m and m′, then they deliver them in the same order [1].

The atomic broadcast problem, can be generalized to the atomic
multicast problem. In this version, instead of considering the set of all
consumers, we only consider the properties (i), (ii), (iii), and (iv) with
respect to the consumers to which the messages were specifically sent
(i.e. the members of the multicast group). Intuitively, this means that
all members in the multicast group receive a message, or none – and
they receive all messages in the same order [1]. Note that this gives
rise to only a partial order of messages – there is no enforced global
order between disjoint multicast groups.

The final problem, global atomic multicast, is largely equivalent to
atomic multicast. However, it has a stronger requirement with respect
to the ordering of messages. It also requires a consistent, global order-
ing of messages across different multicast groups. Formally, this can
be stated as follows: there exists an ordering m1,m2, . . . ,mn of mes-
sages such that if any consumer delivers mi before m j, then i < j [1].
Note that global atomic multicast is somewhat similar to total order.
Total ordering dictates the same complete ordering of messages, but
does not dictate the other properties of atomic operations.

2.4 Programmable Switches
In this section, we will discuss some developments which made
switches programmable. We will look at some languages and hard-
ware features. The goal is to show how programmable switches have
been realized, and to give an idea of their potential and their limita-
tions.

2.4.1 Basic Switch Architecture
We will briefly discuss the architecture of network switches, so that it
may be understandable how they can be programmed. There are var-
ious abstract switch models in literature (e.g. P4-14, P4-16, Banzai),
but most of them agree on the basics [3, 23, 20]. Incoming packets are
first parsed by a parser [3, 20]. Next, they enter the ingress pipeline. In
the ingress pipeline, so-called match+action tables are executed [20].
These tables are used to execute actions which may modify the packet
headers, or modify some persistent state [3, 20]. After this, packets are
buffered in a queue. Once they are almost ready for departure, they are
dequeued, and will pass through the egress pipeline [20]. This pipeline
once again features a set of match+action tables. After the actions have
been performed, the packet is transmitted [3, 20]. This abstract model
is shown in figure 1.

2.4.2 P4
P4 is a high-level programming language for packet processing. P4
can be used to program the handling of custom headers for pack-
ets. The language has several aims. The language is re-configurable,
allowing re-definition of packet parsing and processing in the field.
Additionally, the language is protocol independent. The underlying

Fig. 1. Simplified architecture of a P4-14 switch ([3]); Also compatible
with Banzai ([20]); P4-16 has separate parsers/deparsers in the ingress
and egress pipelines [23]. Queues are located in the traffic manager.

switch should not be tied to specific packet formats. It is possible
to define parsers for packets and match+action tables for processing
these headers. Finally, the language is meant to be target independent,
like languages as C are not tied to a single particular CPU [3]. The
language had an initial version P4-14, superseded by P4-16, targeted
towards switches conforming to the P4-14 and P4-16 abstract switch
models, respectively [3, 23].

In P4, programmers can define a header structure, a parser for the
custom headers (using state machines), match+action table entries,
and actions. The header structure defines the structure of a header,
and specifically the bits per field. The parser definition can be used
to determine how to parse custom headers. For instance, some por-
tion of the header may be parsed differently based on some value of
another field. Next, the match+action tables are used to determine the
next actions of the program, based on some control program. Based on
the header field and metadata, actions from this table may be selected
and executed. Actions are small ”programs” composed of primitive
actions directly supported by the switch written as expressions [3, 23].
It should be noted that actions in P4 have no higher level constructs,
such as variables or control flow. Finally, the control program is a short
program which can trigger switching on the match+action tables, and
perform some basic control flow based on metadata to determine what
tables to consider [3]. P4 has some support for cross-packet data stor-
age in registers [15].

2.4.3 Domino
P4 uses match+action tables, which are relatively low level. The do-
main specific language Domino was developed for data-plane pro-
gramming, trying to provide a level of abstraction closer to that of
C (but without loops). Domino is meant to be more expressive than
P4, and should be applicable to a larger number of use cases [20]. The
language uses the concept of so-called packet transactions: the same
piece of code is executed for every packet. This piece of code can,
amongst other things, examine headers and schedule packet departure
order. Domino targets an abstract machine model called Banzai. Un-
der the hood, this machine model also has match+action tables. How-
ever, the primitive actions supported by the switch are designed in such
a fashion that a simple imperative language can be implemented based
on them. Note that it is also possible to have some shared data between
transactions. Nowadays, various switches are programmable using P4
[15], but we were unable to find any programmable with Domino.

2.4.4 Customizable Scheduling
P4 enables the parsing and processing of packet headers. However, it
does not enable programmable packet scheduling [21, 3]. Domino can
be used to program scheduling algorithms [22].

All of this programming is based on switches which support so-
called PIFO (push in, first out) queues. Such queues allow insert-
ing packets into an arbitrary place in the queue based on some field,
and can be efficiently implemented in hardware. Such queues can be
used to implement some ordering based on priority, or based on some
scheduled ”departure time” (calendar queue). Most scheduling algo-
rithms can be implemented by using either a priority queue or calen-
dar queue (or both), which can thus be implemented using this single
hardware primitive – allowing for efficient programmability [21]. One
potential way to implement scheduling this way in practice, is have a
piece of code compute an index for a packet, and then insert it [20].
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3 TOTAL ORDER METHODS: HISTORY & STATE OF THE ART

In this section, we will be looking at various methods of establishing
a total ordering of messages. We will be looking at methods operating
in processes (in-process methods), and in-network methods.

3.1 In-process Methods
3.1.1 Sequencer Algorithms
Sequencer algorithms use a single process that is elected to be the
sequencer of the messages that are being sent, i.e. the sequencer deter-
mines the order of the messages. Since there is only a single sequencer,
there cannot be a conflicting order of messages. The order is total, and
broadcast and multicast can be made atomic, but not causal.

An example of a sequencer algorithm is the Amoeba group com-
munication system (AGCS) [10], which is used for group communi-
cation. Processes that are part of the group can communicate with all
other group members with a single message. The AGCS algorithm
guarantees that all group members see messages in the same order.

In terms of reliability, AGCS can deal with lost, garbled, and du-
plicate messages. Besides the reliable variant, the AGCS algorithm
also supports an unreliable variant with better performance. Hence,
these variants trade-off performance with reliability. However, since
the AGCS algorithm had to be implemented in the kernel and the cre-
ators of AGCS preferred to keep the kernel and the software simple,
they only implemented the reliable variant. That decision forced some
users lose part of the performance for reliability, which is not needed
for them. The same holds for the point-to-point communication proto-
col that AGCS supports, as it only support RPC [10].

Since AGCS is a sequencer-based algorithm, only a single process
in the group is selected as the sequencer. Due to the implemented fault-
tolerance, when the sequencer crashes, a new sequencer is elected by
the other processes in the group.

Various derivatives and improvements of the sequence based
method exists. One example is Ridge, which uses Paxos to alternate
sequencers (called ”distributors”) in order to distribute the workload
across multiple sequencers. Ridge uses timestamps in combination
with deterministic merging (section 3.2.2) at receivers in order to guar-
antee a proper order of messages [2].

3.1.2 Token-based Algorithms
Token-based algorithms make use of tokens. Tokens are concise mes-
sages that contain the global status of the protocol in a process group.
In this process group, tokens are passed from process to process in a
predetermined order and therefore the structure of the passing can be
seen as a logical ring (see figure 2).

Only the process that possesses the token can send messages. The
order of these messages is appended to the global order of messages.
When the process that possesses the token is finished with that, it can
pass the token to the next process. A causal ordering can be achieved
as well, since only one process is able to send messages at any point.

Fig. 2. Visualisation of a token-based algorithm

An example of a token-based algorithm is Token-Passing Multicast
(TPM) [19]. TPM guarantees a few properties. First of all, message
delivery is atomic. Second, TPM has support for dynamic groups.
This means that the group membership can change during a multicast
operation and that after the change each member in the group has a

consistent view of the group in a finite amount of time. Third, TPM
has failure recovery. In the event that the network of the group parti-
tions, the group with the majority membership can continue operation.
Fourth, when the network is reconnected again, the portioned groups
can regroup again [19].

One of the drawbacks of the naive implementation of a token-based
algorithm is the limitation to networks that have a low packet loss rate
and a low latency. Essentially only LANs are suitable for token-based
algorithms, because of the packet loss rate that is typically less than
0.0001 [19]. However, the Totem protocol makes it possible to have a
token-based algorithm on multiple LANs. Exchanging messages be-
tween LANs is facilitated by Lamport timestamps (see section 2.1)
to deliver the messages in order according to those timestamps [18].
Furthermore, token-based algorithms have a high stability time, i.e.
the time it takes until all process have confirmed that they received
a message. By using a dynamic solution to pass the tokens around,
this stability time can be reduced and the buffer to store unconfirmed
messages can be made smaller [12].

Most token-based algorithms use a group-membership service,
since those algorithms do not tolerate failures directly [7]. The idea
of this service is to detect processes in the group that have crashed and
remove them from the group. This is needed to avoid blocking the
algorithm, since otherwise the algorithm would wait until the crashed
process receives the messages. Besides removing a process, another
process is sometimes added to the group to keep the replication de-
gree identical, leading to two costly operations. However, removing a
crashed process from the group and adding a new one is not needed
when using failure detectors instead of the group member service [7].

3.2 In-network Methods
3.2.1 Tree-Based Methods
One particular method used for totally ordered communication, is a
tree based approach. An example is given in [5]. In this paper, an al-
gorithm for reliable, total order broadcast in wireless sensor networks
is proposed. Starting from the root, nodes send tokens through the
network to their directly adjacent children in a breadth-first fashion,
allowing for the construction of a logical tree. To ensure reliability,
nodes plan tree repair actions for cases where other nodes fail. Total
order is achieved trivially since messages are only broadcast from the
root of tree, along edges in the logical tree, and are assumed to be pro-
cessed in FIFO order by other nodes in the network. The use of the
same tree every time guarantees a total ordering of messages. Parent
nodes buffer messages, so they can be re-send to new child nodes after
tree reconstruction in case of node failure [5]. It is important to note
that this approach only allows sending messages from the tree root.

There are also methods which perform only the opposite operation:
sending data from all nodes towards one root node. This is referred
to as converge cast. One method for this is PPVG (proposed in [4]),
which is specifically designed for use in wireless body area networks
(i.e. a network of on/in-body sensors). A child node transmits its
message to a single parent for a specific amount of times, determined
by the reciprocal of the probability of that link existing (based on the
position of the person). Parent nodes propagate messages further in
the same fashion, until the sink node is reached. Because the same
path is always used and FIFO order handling of messages is assumed,
the messages from a single node always arrive at the sink node in the
same order that they were sent by the original child node. In this sense,
this method guarantees total order delivery. On the other hand, it is not
reliable, and data loss may be significant [4].

3.2.2 Deterministic Merging
A method for achieving atomic broadcast and global atomic multi-
cast, is through so-called deterministic merging algorithms. In these
types of algorithms, message streams are merged in a deterministic
manner by nodes in the network, resulting in a consistent ordering of
messages [15, 1]. Such algorithms are usually deployed in networks
with a (logical) tree structure, which means they are sometimes also
called tree-based [15]. One example implementation of deterministic
merging is given in [1].
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The merging algorithm is fairly straightforward for a many-to-one
application. Nodes in the network record the time of the last package
they received from senders. For every sender, they also have a bias,
based on the rate of incoming messages from said sender. By adding
the bias to the time of the last received message, an estimate for the
arrival time of the next message is made. The sender with the closest
expected arrival time is then determined. The algorithm waits for a
message from that sender, updates the time of the last received mes-
sage for that sender, and further processes (e.g. deliver to application
or send to other nodes) the message. Note that this aggregation of in-
formation is depend on a tree structure of the network (i.e. no circular
information feedback is possible) [1].

The merging algorithm can also be extended to support atomic mul-
ticast. The principles remain roughly the same. However, the algo-
rithm no longer waits for a message from a specific sender and instead
executes the same procedure when receiving from any producer. Ad-
ditionally, messages from a node i are now sent with two timestamps
(p, t). Here, p is the time at which the previous message was sent, and
t is the timestamp at which this message was sent. In receiving nodes,
the values p̂ = p+ bias[i] and t̂ = t + bias[i] are stored. Additionally,
the last message received from every sender is stored as last[i] = t̂.
Due to the addition of the bias, p̂ can be seen as the time of arrival
of the current message, and t̂ is the arrival time of the next message.
All messages with an arrival time (p̂) less than any future arrival time
(min(last)), can thus be further processed. For ordering, this is done in
ascending order of p̂ (with process IDs i used for tie breaks) [1]. One
important thing to note that in this particular implementation, node
failure was not taken into account.

3.2.3 In-network Multi-Sequencer
One example application of message ordering in networks, is in in-
creasing the performance of databases with multiple shards and repli-
cas. The Eris protocol aims to implement coordination-free, consistent
transactions for such database systems. One of its features, is using the
network for concurrency control and ordering of transactions [16].

Eris achieves a partial, consistent order of transactions using an in-
network multi-sequencer. The usual problem with sequencers, is that
all messages have to be send to all receivers, so that they are aware
of the global transaction sequence number. This is what makes the
sequencer a severe bottleneck [6]. To avoid this problem, Eris has a
sequence number per multicast group; hence why we speak of multi-
sequencing. Additionally, it introduces the notion of groupcast: a
communication primitive allowing to send a message to multiple mul-
ticast groups at once (in order to support transactions spanning multi-
ple shards) [16]. This method is able to guarantee a consistent ordering
of messages, which need not be causal; operations are also not atomic.

3.2.4 1Pipe
We will now examine the in-network algorithm 1Pipe. 1Pipe offers
two guarantees: messages are delivered to all receivers in the same
order, and 1Pipe delivers messages in causal order [15]. We start with
a treatment of the best-effort version of 1Pipe.

1Pipe, when deployed in a data center, makes use of programmable
switches and the DAG structure of the routing topology. It makes use
of the fact that there are very accurate clock synchronization methods
for use in data center networks. A timestamp T is added to messages
when they are sent, which are used to determine message order [15].

Since buffer size in switches is small, messages are not buffered
in switches themselves, but are forwarded to recipients directly. A
so-called barrier timestamp B is attached to all messages, which is
updated by all switches in the network. The barrier timestamp is used
to determine what messages can be delivered to the application [15].

If a node sends a barrier timestamp B, it promises that all its fu-
ture messages have a timestamp ≥ B. It is computed as the minimum
over the timestamps of all messages that still have to be sent. Only
messages with a timestamp T < B are delivered to the application.
Aggregating the timestamp information requires a hierarchical (DAG)
structure (either logical or physical) of the network. This makes 1Pipe
especially efficient in data center networks [15].

When a node has no messages to send, it may periodically send
a beacon after a specific time interval, in order to update the barrier
timestamp of other devices, to make sure that it does not halt the de-
livery of other messages. If a node sends no messages or beacon for
some specified amount of time, it is considered dead.

1Pipe can also be adjusted to be reliable. Reliable 1Pipe makes the
additional promise of failure atomicity: multicast messages are either
received by all or none of the target processes. To deal with packet
loss and crashing nodes, a 2 phase commit (2PC) system is used. In
the preparation phase, the sender sends messages to its receivers, who
respond with acknowledgements (ACK). The receivers do not update
their barrier timestamp based on these messages yet. During the com-
mit phase, the sender sends a commit message containing a commit
barrier B′. This commit is send to all neighbouring switches, who use
it to update their own commit barrier, and in turn send new commit
barriers to their own neighbours. The commit barriers serve the same
purpose as the original barrier timestamps. The ACKs are used to de-
tect and recover from packet loss [15].

To deal with device failure, 1Pipe uses a central controller (e.g.
elected using Paxos). The central controller watches for failed (discon-
nected) devices. Once it detects one, it broadcasts the failed process P
and a failure timestamp T ′ (maximum last commit timestamp reported
by neighbours of P). Processes discard messages from P with times-
tamp > T ′, processes discard messages to P in their send buffer, and,
in case of a scattering operation, a recall message is send so that no
processes in the group receive the message. Finally, failure callbacks
are executed in the processes involved in the failed delivery [15].

4 COMPARISON

In this section, we will highlight various drawbacks, benefits, or per-
formance characteristics of the algorithms covered in section 3.

4.1 In-process Methods
One general remark that can be made about in-process methods is
about reliability. In-process algorithms are not limited in that regard.
Various fault-tolerance methods can be used to improve reliability,
such as failure detectors and group membership services.

The following subsections contain the comparisons that are specific
for the corresponding type of in-process algorithm.

4.1.1 Sequencer Algorithms
The first drawback of sequencer algorithms such as AGCS is scala-
bility. The paper of AGCS mentions that its scalability depends on
the message processing time. In practice, depending on a single pro-
cess (the sequencer), is not scalable. Another drawback of AGCS in
comparison with open-group algorithms is the fact that message trans-
mission is limited to processes that are part of the same group, e.g.
AGCS is a closed-group protocol. This limits the possibility of send-
ing messages to other destinations outside the group, whereas with
open-group algorithms this is possible [10].

More sophisticated sequencer algorithms such as Ridge can achieve
high throughput and low latency, which does not deteriorate as rapidly
as the number of destinations increases. However, especially for reli-
able messaging, there is significant communication overhead [2].

4.1.2 Token-based Algorithms
Token-based algorithms such as TPM are considered to be relatively
simple, and they also maintain a relatively small amount of state in-
formation [19]. Token-based algorithms are considered to have an ef-
ficient throughput [7]. However, they are not very scalable, due to
the ring structure which is used. As expected, when the number of
processes in the ring becomes larger, it takes longer before a process
is allowed to broadcast, thus increasing the latency. On top of that,
most token-based algorithms use a predefined token passing order. A
drawback of this is that it can take, in worst case scenario, a full cir-
cle before the required processes have confirmed that they received
the message. However, this problem is partly solved by using a dy-
namic token passing scheme such as DTP [12]. DTP reduces both the
stability time and buffer size needed to store unconfirmed messages.
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Due to the fact that a token is passed around in the group of pro-
cesses, it essentially only performs well in low latency and low packet
loss environments [18]. This is somewhat overcome in the Totem pro-
tocol. By using token-rings in and Lamport timestamps between LANs
for total order of messages, Totem can be used as a communication
protocol between different LANs.

Another drawback of most token-based protocols is the usage of the
group-membership service. This essentially implies two expensive op-
erations when a process crashes. However, this drawback is dealt with
by using failure detectors for detecting crashed processes [7]. The im-
pact of the failure detector on the performance of the algorithm was
not tested. Therefore it is currently impossible to determine the draw-
backs of using the failure detector regarding that aspect.

Similar to sequencer algorithms, token-based algorithms do not al-
low a broadcast or multicast to processes that are not part of the group.

4.2 In-Network Methods
The following subsections outline the performance characteristics,
benefits, and drawbacks of in-network methods.

4.2.1 Tree-Based Methods
Tree-based algorithms are not necessarily suitable for in-network use
in datacenters. The algorithms they use cannot easily (if at all) be
expressed in terms of the functions provided by a switch [5, 4, 15]. In-
stead, such algorithms are more often deployed in sensor networks,
where they are more suitable [5, 4]. Additionally, the size of the
buffers required increases linearly with the height of the tree [5]. At
some point, this will be more difficult to scale, due to the limited mem-
ory of switch devices [15]. Once the buffers are no longer sufficient,
reliability begins to suffer [5]. Tree-based algorithms in sensor net-
works make little to no guarantee regarding reliability [5, 4].

4.2.2 Deterministic Merging
Deterministic merging has similar ideas, compared to 1Pipe. Both
use timestamps for ordering of messages [15, 1]. Deterministic merg-
ing was traditionally difficult to implement on switches, because of
small per-port buffer sizes and the lack of ability to change the order
of packets in the buffer, which might be necessary [15]. However,
PIFO queues could be used to handle the ordering of packets, leaving
only the buffer size as a problem. The authors are not aware of any
research investigating this.

4.2.3 In-Network Multi-Sequencer
Eris ([16]) uses an in-network multi-sequencer as part of its design. It
tries to overcome classical problems with global sequencers by only
enforcing a partial ordering. However, this still means that there must
be a separate sequence number register for every multicast group.
On resource-constrained devices such as switches, this limit may be
reached relatively quickly [16]. Of course, this method can still be
slow when multicast groups are large.

The sequencer can be implemented on many different devices, in-
cluding programmable switches. One of the drawbacks of implement-
ing the algorithm on devices with less high-level programmable fea-
tures, such as switches, is that delivery is only best effort (e.g. cannot
re-send messages), although dropped messages can be detected [16].

When deployed on an end-host (like in-process sequencing), the
throughput is 1.61∗106 packets/second. On middleboxes, throughput
of 6.19∗106 packets/second was observed. It is expected that perfor-
mance on switches will be even better, but this was not tested [16].

4.2.4 1Pipe
The scalability of 1Pipe, in comparison with various other algorithms,
was tested in [15]. The results are presented here in figure 3. From
figure 3a, it can be seen that both best effort and reliable 1Pipe keep
roughly the same throughput when the number of processes increases,
while performance deteriorates with other algorithms. Other algo-
rithms may first have similar performance compared to 1Pipe for a
small number of destinations, but it deteriorates when the number of
processes is increased.

In figure 3b, we can see the latency for various algorithms. Once
again, 1Pipe performs best when the number of processes becomes
sufficiently large. For most algorithms, latency tends to increase rather
steeply. For 1Pipe, it increases slower, both at hosts and switches.

The overall takeaway is that 1Pipe tends to be more scalable than
other algorithms. The main scalability problems come when scaling to
larger networks. Latency issues can increase clock skew, which affects
the performance of 1Pipe – though not the correctness. Additionally,
there may be some overhead from beacon hops. However, the largest
bottleneck is the centralized coordination of failure handling in reliable
1Pipe. This may cause significant performance overhead [15].

Fig. 3. Comparison of 1Pipe with various other algorithms. 1Pipe/BE:
best effort 1Pipe; 1Pipe/R: Reliable 1Pipe; SwitchSeq: In-network se-
quencer (global sequencing); HostSeq: Centralized Sequencer; Token:
Token Based; Lamport: Lamport Timestamp Based. Measurements are
for total order broadcast. Image source: [15]

5 DISCUSSION

Based on the discussion of various algorithms in section 4, we can
make some observations.

One of the major observations is that it seems that in-network
scheduling methods for global message order can offer superior
throughput and lower latency. Figure 3 in particular provides strong
evidence for this. 1Pipe clearly performs better than all other algo-
rithms in terms of both throughput and latency. The next best method
seems to be in-network sequencing. Hence, in-network methods seem
to out-perform other methods. This is also in accordance with liter-
ature, which says that in-process methods such as token based algo-
rithms or global sequencing do not scale well [10, 7]. It would be inter-
esting to see a comparison between 1Pipe and the multi-sequencing al-
gorithm implemented for Eris, although preliminary results from their
respective papers show that multi-sequencing might be able to achieve
even better throughput than 1Pipe [15, 16].

In addition, we saw that 1Pipe, in contrary to many other algo-
rithms, does not significantly deteriorate in performance as the num-
ber of process is increased. Hence, we can conclude that it is more
scalable. This could possibly be attributed to the fact that 1Pipe does
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comparatively little computation inside the network: it only needs to
track barrier timestamps, and perhaps some additional bookkeeping
for reliable 1Pipe. This allows for less slowdown inside the network,
and less performance deterioration when adding more processes.

Not all in-network methods can be applied in data-center context.
In fact, many algorithms for in-network event order seem to be do-
main specific and operate at levels of detail unfit for programmable
switches. Tree-based methods tend to have poor or incomplete han-
dling of message loss, with converge cast algorithms essentially only
avoiding message loss by sending a message an optimal amount of
times [4]. In fact, the converge cast algorithm proposed in [4] would
be impossible to implement on switches, because it requires loop-
ing, which is not usually supported by switch programming languages
[3, 20]. Likewise, deterministic merging is also infeasible to imple-
ment on switches because the algorithm requires sufficiently large
buffers for messages. Note that in 1Pipe, which is similar in idea com-
pared to deterministic merging, this is avoided by forwarding all mes-
sages to recipients directly, and instead managing order and causality
on the recipient using timestamps and barrier timestamps [15].

We also saw that the ordering and reliability guarantees offered by
the different algorithms were widely different. A consistent and causal
order, combined with reliable messaging, makes programming eas-
ier. This can be achieved by sequencers and token-based algorithms.
1Pipe is also able to guarantee all of this, contrary to other in-network
algorithms. Additionally, it is able to do so in a scalable manner on
relatively cheap and fast hardware (switches).

6 CONCLUSION

In this research, we examined various methods for global ordering
of messages. We saw that in-network methods can achieve superior
performance compared to direct coordination between applications.
However, several classes of algorithms are either domain specific or
unfit for use on switches, thus requiring devices with more expressive
programmability. 1Pipe is an algorithm which offers the best of many
worlds: it can run on relatively simple yet powerful hardware, is scal-
able, provides total and causal ordering, and is reliable. It shows how
development in programmable switches can enable the development
of powerful and scalable technologies in the data centers.

A number of technologies were not considered in this paper due to
time and space constraints. They could potentially be included in a
more elaborate review in future research. We will list some potential
research directions here, although a more elaborate literature review
could be performed to ensure no additional significant methods were
missed by this research. In [9], an atomic multicast algorithm with
a Paxos-like mechanism with a leader responsible for ordering mes-
sages is presented. In [17], Ring-Paxos is proposed, another algorithm
for atomic multicast. Another algorithm, RamCast, was designed for
RDMA-based atomic multicast in shared memory environments [14].
Finally, TEA is an RDMA-based algorithm for increasing storage ca-
pabilities of switches by using server DRAM, which could potentially
be used for future interesting in-network ordering algorithms [11].
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