
SoftwareX 11 (2020) 100367

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

WAF-A-MoLE: An adversarial tool for assessingML-basedWAFs
Andrea Valenza a,∗, Luca Demetrio a,∗, Gabriele Costa b, Giovanni Lagorio a
a University of Genoa, Italy
b IMT School for Advanced Studies, Lucca, Italy

a r t i c l e i n f o

Article history:
Received 24 September 2019
Received in revised form 22November 2019
Accepted 23 November 2019

Keywords:
Web application firewall
SQL injection
Penetration testing
Adversarial machine learning

a b s t r a c t

Web Application Firewalls (WAFs) are plug-and-play security gateways that promise to enhance
the security of a (potentially vulnerable) system with minimal cost and configuration. In recent
years, machine learning-based WAFs are catching up with traditional, signature-based ones. They are
competitive because they do not require predefined rules; instead, they infer their rules through
a learning process. In this paper, we present WAF-A-MoLE, a WAF breaching tool. It uses guided
mutational-based fuzzing to generate adversarial examples. The main applications include WAF (i)
penetration testing, (ii) benchmarking and (iii) hardening.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version v1.0.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2019_295
Legal Code License MIT
Code versioning system used git
Software code languages, tools, and services used Python 3
Compilation requirements, operating environments & dependencies Click
If available Link to developer documentation/manual https://waf-a-mole.readthedocs.io/en/latest/
Support email for questions andrea.valenza@dibris.unige.it, luca.demetrio@dibris.unige.it

1. Motivation and significance

Many modern systems expose some web services over the
Internet. When they are vulnerable, the security of the entire
system is compromised. A widespread mitigation technique is
to deploy a Web Application Firewall (WAF). A WAF attempts to
detect malicious incoming payloads and drop them before they
reach their target. Clearly, the ability to craft payloads that pass
undetected gives a tremendous advantage to attackers.
WAFs are traditionally signature-based, with a predefined set

of rules for attack identification. However, this approach lacks
generality and requires a significant effort to maintain the rule
set. For this reason, researchers have recently considered the
adoption of machine learning (ML). ML-based WAFs overcome

∗ Corresponding authors.
E-mail addresses: andrea.valenza@dibris.unige.it (A. Valenza),

luca.demetrio@dibris.unige.it (L. Demetrio).

some of the limitations of traditional WAFs. Their detection rules
are inferred from a set of payloads through a training process.
An aware attacker, however, can take advantage of biases in

the training set. For instance, the training set might miss some
relevant payloads, so causing blind spots in the classification
space. Adversarial machine learning [1] investigates how to find
and exploit the ‘‘blind spots’’ of machine learning algorithms. In
particular, an adversarial approach consists in crafting adversarial
examples, i.e., samples that are wrongly classified. If an attacker
knows how to systematically generate adversarial examples, they
can craft malicious payloads that evade the classification and use
them for an attack.
In this paper we present WAF-A-MoLE, a tool to generate ad-

versarial examples for ML-based WAFs. In particular, the current
version of the tool focuses on SQL injection (SQLi) attacks. WAF-
A-MoLE starts from a payload and mutates it to bypass a target
WAF. The tool relies on a set of semantics preserving mutation
operators. The mutation process is guided by the classification
confidence of the target WAF.

https://doi.org/10.1016/j.softx.2019.100367
2352-7110/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

https://doi.org/10.1016/j.softx.2019.100367
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2019.100367&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2019_295
https://waf-a-mole.readthedocs.io/en/latest/
mailto:andrea.valenza@dibris.unige.it
mailto:luca.demetrio@dibris.unige.it
mailto:andrea.valenza@dibris.unige.it
mailto:luca.demetrio@dibris.unige.it
https://doi.org/10.1016/j.softx.2019.100367
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 A. Valenza, L. Demetrio, G. Costa and G. Lagorio / SoftwareX 11 (2020) 100367

Fig. 1. Main workflow of WAF-A-MoLE.

This paper is structured as follows. Section 2 describes WAF-A-
MoLE and its main functionalities. Section 3 shows an example of
howWAF-A-MoLE bypasses a target toy WAF. Section 4 highlights
the impact of WAF-A-MoLE on the security community. Section 5
presents some work related to WAFs and evasion techniques.
Finally, Section 6 concludes the paper.

2. Software description

WAF-A-MoLE uses a mutation-based fuzz testing [2] methodol-
ogy to create attacks that bypass a target WAF. More precisely,
WAF-A-MoLE uses the classification score of the WAF to guide
the fuzzing process by prioritizing the most promising payloads.
We describe the overall architecture and main functionalities of
WAF-A-MoLE in the next section.

2.1. Software architecture

WAF-A-MoLE is both a library and a command line tool (ob-
tained by means of Click1 decorators on the main exported func-
tions) implemented in Python 3. Fig. 1 shows the main workflow
of WAF-A-MoLE. Briefly, the orchestrator (not shown in the fig-
ures) takes an initial payload p0, that the target WAF detects as
malicious with a confidence score σ0 ∈ [0, 1], and inserts it in
the initially empty payload Pool. The Pool, in turn, manages a
priority queue, storing payloads in decreasing ordered of their
scores.
During each iteration, the head of the queue pn is picked from

the Pool, and passed to the Fuzzer, which randomly mutates pn
into pn+1 by applying some mutation operators (see Section 2.2).
Then, pn+1 is submitted to the target WAF for classification.
Since we do not expect WAFs to adhere to any specific interface,
WAF-A-MoLE uses specific adapters that ensure compatibility. The
Adapter then returns the classification score σn+1 of pn+1, which
is fed back into the Pool.
This cycle finishes successfully whenever the best confidence

score σ ∗ is less than a given threshold, or is interrupted, return-
ing the best pair (p∗, σ ∗) found so far, because the number of
iterations, queue sizes or computation time reach their maximum
values.
In order to apply WAF-A-MoLE to different machine learning

models, without incurring into a tight coupling, we designed an
interface, modeled in Python as an abstract class called Model,
which generalizes the behavior of those models. This class pro-
vides two abstract methods, classify and extract_features,
that need to be instantiated for each kind of model. That is, since,
no real model matches exactly our interface, for each of them we
need an adapter class that wraps the target model and exports
our Model interface (see Fig. 1).
We provide many wrappers out of the box, which are the

ones that we used for running our experiments. They also serve
as examples of how to implement new wrappers. In particular,

1 https://click.palletsprojects.com/en/7.x/.

we offer wrappers for two well-known frameworks: Sklearn-
ModelWrapper for scikit-learn,2 and KerasModelWrapper for
keras.3.

2.2. Software functionalities

As discussed in Section 2.1, the main components of WAF-
A-MoLE are Pool and Fuzzer. The former handles the priority
queue and termination conditions. Although they raise some
technical issues (e.g., due to the memory usage of large data struc-
tures), these aspects belong to the generic context of program
optimization. Instead, Fuzzer requires more attention.
Following the mutational fuzzing approach, Fuzzer applies

a number of mutation operators. Mutation operators act on the
string representation, and they modify the syntax of a payload
without altering its semantics. Since we focus on SQLi, the cur-
rently implemented mutation operators work on SQL. We de-
scribe them below.

CS. The Case Swapping operator randomly changes the capital-
ization of keywords in a query (e.g., Select to sELecT).

WS. Whitespace Substitution leverages the equivalence between
several alternative separators (whitespaces) between query to-
kens. For instance, alternative whitespaces include \n (line feed),
\r (carriage return) and \t (horizontal tab). Each whitespace can
be replaced by an arbitrary, non-empty sequence of whitespaces
(e.g., 1 = 1 may become 1\n\t=\r 1).

CI. The Comment Injection operator randomly adds an inline
comment (/*...*/) between two query tokens. As whitespaces,
inline comments act as token separators (e.g., modifying 1 = 1 to
1/**/= 1).

CR. The Comment Rewriting operator randomly modifies the
content of a comment. This both applies to inline and trailing (#
and --) comments (e.g., /*abc*/ may become /*xy*/).

IE. The Integer Encoding operator modifies the representation
of numerical constants. This includes alternative base representa-
tions, e.g., from decimal to hexadecimal (e.g., 0x2 for 2), as well
as statement nesting (e.g., (SELECT 42) for 42).

OS. Some operators can be replaced by others that behave in
the same way. For instance, 1 = 1 (equality check) is simulated
by 1 LIKE 1 (pattern matching).4 We call this mutation Operator
Swapping.

LI. A Logical Invariant operator modifies a boolean expres-
sion by adding terms that preserve its semantics (e.g., 1 = 1 is
equivalent to 1 = 1 AND True).
In defining our mutation operators, we took inspiration from

some malicious payload samples such as those listed by Awesome
WAF5 and Payloads All The Things.6 All in all, our operators
generalize the techniques for producing payloads similar to those
mentioned above.

2 https://scikit-learn.org/stable/index.html.
3 https://keras.io/
4 Notice that, in general, LIKE is not equivalent to =. However, the equiv-
alence holds when restricting to specific domains, e.g., comparison between
integer constants.
5 https://github.com/0xInfection/Awesome-WAF.
6 https://github.com/swisskyrepo/PayloadsAllTheThings.

https://click.palletsprojects.com/en/7.x/
https://scikit-learn.org/stable/index.html
https://keras.io/
https://github.com/0xInfection/Awesome-WAF
https://github.com/swisskyrepo/PayloadsAllTheThings

A. Valenza, L. Demetrio, G. Costa and G. Lagorio / SoftwareX 11 (2020) 100367 3

Fig. 2. WAF-A-MoLE applied to the admin’ OR 1=1# payload.

Table 1
Mutants and classification scores for the toy WAF.
Op. Mutant σ Op. Mutant σ

WS admin’\t OR\n 1=1# 0.75 CI admin’ OR 1=1/**/# 0.67
CR admin’ OR 1=1#abcde 0.63 IE admin’ OR 0x1=1# 0.75
OS admin’ OR 1 LIKE 1# 0.79 LI admin’ OR 1=1 AND 0<1# 0.68

3. Illustrative example

In this section, we provide a demonstration of WAF-A-MoLE
applied to a toy WAF. The toy WAF assigns a score to a (non-
empty) payload p through the following function:

σ (p) = min
{
1,
3 · S(p)
T (p)

}
where S(p) is the number of special characters ’, = and ␣ (a
single white space) and T (p) is the total number of characters in
p. For instance

σ (admin’ OR 1=1#) = min
{
1,
3 · 4
14

}
≈ 0.86

σ (admin) = min
{
1,
3 · 0
5

}
= 0

Assuming the acceptance threshold of the toy WAF to be 1/2
(that is p is rejected when σ (p) > 1/2) the first payload above is
rejected. Table 1 reports the σ values of some mutants obtained
through the application of the operators of Section 2.2.
Let assume that WAF-A-MoLE generated the payloads of Ta-

ble 1. They are ordered by their σ values and inserted in the
payload pool. Then, the next mutation round starts from the
payload with the lowest σ , i.e., the one generated by CR.

4. Impact

The impact of our tool on penetration testing activities is
straightforward. Penetration testers can use WAF-A-MoLE as an
off-the-shelf utility to craft attacks. For instance, we used WAF-
A-MoLE against 9 instances of WAFs taken from literature to
assess its effectiveness. The results are promising, and we provide
an excerpt in Fig. 2. Briefly, WAF-A-MoLE rapidly decreases the
confidence score of the considered WAFs. The plot on the left
shows how confidence decreases with the number of applied
mutations. The plot on the right shows how it decreases over
time, with a logarithmic scale. Since our approach is inherently
stochastic, we ran our tool multiple times and chose the best run
(i.e., the one that reached the threshold in the fewest mutation
rounds) for each classifier.
For our analysis, we considered different classifiers:

1. WAF-Brain,7 a deep neural network trained on raw char-
acters containing legitimate and malicious payloads,

2. Token-based models [3,4], implemented using different al-
gorithms, built on a histogram of tokens extracted from the
queries, and

3. SQLiGoT [5], a Support Vector Machine (SVM) [6] classifier
that reasons on top of a graph structure extracted from
input queries.

WAF-A-MoLE bypasses WAF-Brain in 7 mutation rounds. Some
Token-based approaches performed worse than WAF-Brain,
Token-based Random Forest and Gaussian SVM variants reached
the threshold in respectively 2 and 3 mutation rounds. The Linear
SVM and Naive Bayes variants performed better, with 24 and
46 rounds. SQLiGoT proved to be the most resilient: one of its
variants, namely the Undirected Proportional one, reached the
threshold after 134 rounds, and the Undirected Unproportional
version needed 290 steps.
The full details about our experiments can be found at

https://github.com/AvalZ/waf-a-mole.
The by-product of WAF-A-MoLE are adversarial examples [7]

for the target WAF. Adversarial examples are a cornerstone in
adversarial training [7–9]. ML-based WAFs are trained on datasets
that very rarely characterize the entire classification domain. De-
velopers can use the adversarial examples to re-train their WAF,
covering areas originally not included in the training dataset [7–
9]. Intuitively, training the classifier with regular data and adver-
sarial examples leads to a more robust model. On the other hand,
an adversarially trained model loses accuracy w.r.t. its standard
counterpart, as the problem to be learned is more complex.
Although the methodology of [7–9] is not applied to our working
domain, i.e., SQL payloads, we believe that a similar technique can
be ported in our context. In this way, WAF-A-MoLE can support
the WAF hardening process.
Using WAF-A-MoLE, we showed that ML-based WAFs are vul-

nerable to adversarial attacks. We believe that the main reason
is the gap between the syntax level (of the WAFs classification)

7 https://github.com/BBVA/waf-brain.

https://github.com/AvalZ/waf-a-mole
https://github.com/BBVA/waf-brain

4 A. Valenza, L. Demetrio, G. Costa and G. Lagorio / SoftwareX 11 (2020) 100367

and the semantic level (of the vulnerable application). This ob-
servation pushes forward an open research question: to what
extent (syntax-based) WAFs prevent injection attacks? WAF-A-
MoLE candidates to be a valuable assessment tool to support this
research line.

5. Related work

Machine learning based WAFs. Ceccato et al. [10] propose a clus-
tering method for detecting SQL injection attacks against a victim
service. The algorithm learns from the queries that are processed
inside the web application under analysis using an unsupervised
one-class learning approach, namely K-medoids [11]. New sam-
ples are compared to the closest medoid and flagged as malicious
if their edit distance w.r.t. the chosen medoid is higher than the
diameter of the cluster. Kar et al. [5] develop SQLiGoT, an SVM that
express queries as graphs of tokens, whose edges represent the
adjacency of SQL-tokens. Pinzon et al. [12] explore two different
directions: visualization and detection, achieved by a multi-agent
system called idMAS-SQL. To tackle the task of detecting SQL
injection attacks, the authors set up two different classifiers,
namely a Neural Network and an SVM. Makiou et al. [4] develop a
hybrid approach that uses both machine learning techniques and
pattern matching against a known dataset of attacks. The learning
algorithm used for detecting injections is a Naive Bayes [13]. They
look for different 45 tokens inside the input query, chosen by do-
main experts. Similarly, Joshi et al. [3] use a Naive Bayes classifier
that, given a SQL query as input, extracts syntactic tokens using
spaces as separators. The algorithm produces a feature vector that
counts how many instances of a particular word occurs in the
input query. The vocabulary of all the possible observable tokens
is set a priori. Komiya et al. [14] propose a survey of different
machine learning algorithms for SQL injection attack detection.

Adversarial ML attacks. Among all the techniques proposed in
the state-of-the-art that leverage on white-box gradient tech-
niques [7,15,16], we focus on black-box attacks, as they are sim-
ilar to our method. Ilyas et al. [17] use the Natural Evolution
Strategy (NES) [18] to guide the creation of adversarial exam-
ples against well-known image classifiers. Xu et al. [19] propose
a genetic algorithm that automatically learns which mutations
should be applied to PDF malware to bypass a target classifier.
Anderson et al. [20] train an agent to learn the best sequences of
mutations applied to Windows malware to fool a target classifier.
Chen et al. [21] estimate the target function’s boundary locally
around a particular input. Then, they guide the generation of
adversarial examples by computing an approximated gradient
using the values obtained from the target classifier in that local
region.

6. Conclusions

In this paper we presented WAF-A-MoLE, a guided mutational
fuzzing tool to generate adversarial examples for ML-based WAFs.
The tool has several possible applications, the main one being the
security assessment of the WAFs.
There are numerous future directions for this research line.

In particular, there are three that we consider of primary im-
portance. In the first place, we plan to apply WAF-A-MoLE to
commercial WAFs. The main difficulty is that vendors usually do
not share details about the internals of their products. Hence,
this direction requires establishing an agreement with vendors.
Secondly, we aim at extending our approach to deal with hybrid
WAFs that also consider payload signatures. For both commercial
and hybrid WAFs, we would also like to explore the possibility
of integrating our tool in a re-training process for ML classifiers.
Finally, we are interested in finding new mutation operators as
well as investigating their effectiveness when applied alone or
combined with others.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This work was partially funded by the Horizon 2020 project
‘‘Strategic Programs for Advanced Research and Technology in
Europe’’ (SPARTA), Italy.

References

[1] Huang L, Joseph AD, Nelson B, Rubinstein BI, Tygar JD. Adversarial machine
learning. In: Proceedings of the 4th ACM workshop on security and
artificial intelligence. ACM; 2011, p. 43–58.

[2] Zeller A, Gopinath R, Böhme M, Fraser G, Holler C. Mutation-based fuzzing.
In: Generating Software Tests. Saarland University; 2019, Retrieved 2019-
05-21 19:57:59+02:00, https://www.fuzzingbook.org/html/MutationFuzzer.
html.

[3] Joshi A, Geetha V. SQL injection detection using machine learning. In: 2014
international conference on control, instrumentation, communication and
computational technologies. IEEE; 2014, p. 1111–5.

[4] Makiou A, Begriche Y, Serhrouchni A. Improving web application firewalls
to detect advanced SQL injection attacks. In: 2014 10th international
conference on information assurance and security. IEEE; 2014, p. 35–40.

[5] Kar D, Panigrahi S, Sundararajan S. SQLiGoT: Detecting SQL injection
attacks using graph of tokens and SVM. Comput. Secur. 2016;60:206–25.

[6] Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20(3):273–
97.

[7] Goodfellow I, Shlens J, Szegedy C. Explaining and harnessing adversarial
examples. In: International conference on learning representations. 2015.
http://arxiv.org/abs/1412.6572.

[8] Grosse K, Papernot N, Manoharan P, Backes M, McDaniel P. Adversarial
examples for malware detection. In: European Symposium on Research in
Computer Security. Springer; 2017, p. 62–79.

[9] Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A. Towards deep learning
models resistant to adversarial attacks. In: Sixth International Conference
on Learning Representations (ICLR). 2018.

[10] Ceccato M, Nguyen CD, Appelt D, Briand LC. SOFIA: an automated security
oracle for black-box testing of SQL-injection vulnerabilities. In: Proceedings
of the 31st IEEE/ACM international conference on automated software
engineering. ACM; 2016, p. 167–77.

[11] Kaufmann L, Rousseeuw P. Clustering by means of medoids. In: Data
analysis based on the L1-norm and related methods. 1987, p. 405–16.

[12] Pinzon CI, De Paz JF, Herrero A, Corchado E, Bajo J, Corchado JM. idMAS-
SQL: intrusion detection based on MAS to detect and block SQL injection
through data mining. Inform. Sci. 2013;231:15–31.

[13] Maron ME. Automatic indexing: an experimental inquiry. J. ACM
1961;8(3):404–17.

[14] Komiya R, Paik I, Hisada M. Classification of malicious web code by
machine learning. In: 2011 3rd international conference on awareness
science and technology. IEEE; 2011, p. 406–11.

[15] Papernot N, McDaniel P, Jha S, Fredrikson M, Celik ZB, Swami A. The
limitations of deep learning in adversarial settings. In: 2016 IEEE european
symposium on security and privacy. IEEE; 2016, p. 372–87.

[16] Carlini N, Wagner D. Towards evaluating the robustness of neural net-
works. In: 2017 IEEE symposium on security and privacy. IEEE; 2017, p.
39–57.

[17] Ilyas A, Engstrom L, Athalye A, Lin J. Black-box adversarial attacks with
limited queries and information. In: Proceedings of the 35th international
conference on machine learning. 2018. https://arxiv.org/abs/1804.08598.

[18] Wierstra D, Schaul T, Peters J, Schmidhuber J. Natural evolution strategies.
In: 2008 IEEE congress on evolutionary computation (IEEE world congress
on computational intelligence). IEEE; 2008, p. 3381–7.

[19] Xu W, Qi Y, Evans D. Automatically evading classifiers. In: Proceedings of
the 2016 network and distributed systems symposium. 2016, p. 21–4.

[20] Anderson HS, Kharkar A, Filar B, Roth P. Evading machine learning malware
detection. Black Hat 2017.

[21] Chen P-Y, Zhang H, Sharma Y, Yi J, Hsieh C-J. Zoo: Zeroth order optimiza-
tion based black-box attacks to deep neural networks without training
substitute models. In: Proceedings of the 10th ACM workshop on artificial
intelligence and security. ACM; 2017, p. 15–26.

http://refhub.elsevier.com/S2352-7110(19)30299-7/sb1
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb1
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb1
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb1
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb1
https://www.fuzzingbook.org/html/MutationFuzzer.html
https://www.fuzzingbook.org/html/MutationFuzzer.html
https://www.fuzzingbook.org/html/MutationFuzzer.html
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb3
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb3
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb3
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb3
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb3
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb4
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb4
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb4
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb4
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb4
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb5
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb5
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb5
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb6
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb6
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb6
http://arxiv.org/abs/1412.6572
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb8
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb8
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb8
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb8
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb8
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb10
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb10
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb10
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb10
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb10
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb10
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb10
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb11
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb11
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb11
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb12
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb12
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb12
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb12
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb12
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb13
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb13
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb13
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb14
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb14
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb14
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb14
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb14
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb15
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb15
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb15
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb15
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb15
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb16
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb16
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb16
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb16
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb16
https://arxiv.org/abs/1804.08598
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb18
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb18
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb18
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb18
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb18
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb20
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb20
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb20
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb21
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb21
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb21
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb21
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb21
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb21
http://refhub.elsevier.com/S2352-7110(19)30299-7/sb21

	WAF-A-MoLE: An adversarial tool for assessing ML-based WAFs
	Motivation and significance
	Software description
	Software architecture
	Software functionalities

	Illustrative example
	Impact
	Related work
	Conclusions
	Declaration of competing interest
	Acknowledgment
	References

