368 research outputs found

    The MIRAS “all-licef” calibration mode

    Get PDF
    Since each of the individual elements of the MIRAS array is a total power radiometer, the zero-spacing visibility can be obtained by the average of all the corresponding antenna temperatures. The main advantage of this option with respect to using the NIR measurements is that amplitude calibration is more consistent between zero-spacing visibility and the rest. On the other hand, total power radiometers are not usually as stable as noise injection radiometers, so a small loose of stability could be expected. Preliminary results show, however, similar performance.Peer ReviewedPostprint (author's final draft

    Sensitivity of GNSS-R spaceborne observations to soil moisture and vegetation

    Get PDF
    Global navigation satellite systems-reflectometry (GNSS-R) is an emerging remote sensing technique that makes use of navigation signals as signals of opportunity in a multistatic radar configuration, with as many transmitters as navigation satellites are in view. GNSS-R sensitivity to soil moisture has already been proven from ground-based and airborne experiments, but studies using space-borne data are still preliminary due to the limited amount of data, collocation, footprint heterogeneity, etc. This study presents a sensitivity study of TechDemoSat-1 GNSS-R data to soil moisture over different types of surfaces (i.e., vegetation covers) and for a wide range of soil moisture and normalized difference vegetation index (NDVI) values. Despite the scattering in the data, which can be largely attributed to the delay-Doppler maps peak variance, the temporal and spatial (footprint size) collocation mismatch with the SMOS soil moisture, and MODIS NDVI vegetation data, and land use data, experimental results for low NDVI values show a large sensitivity to soil moisture and a relatively good Pearson correlation coefficient. As the vegetation cover increases (NDVI increases) the reflectivity, the sensitivity to soil moisture and the Pearson correlation coefficient decreases, but it is still significant.Postprint (author's final draft

    Review of the CALIMAS Team Contributions to European Space Agency's Soil Moisture and Ocean Salinity Mission Calibration and Validation

    Get PDF
    Camps, Adriano ... et al.-- 38 pages, 22 figuresThis work summarizes the activities carried out by the SMOS (Soil Moisture and Ocean Salinity) Barcelona Expert Center (SMOS-BEC) team in conjunction with the CIALE/Universidad de Salamanca team, within the framework of the European Space Agency (ESA) CALIMAS project in preparation for the SMOS mission and during its first year of operation. Under these activities several studies were performed, ranging from Level 1 (calibration and image reconstruction) to Level 4 (land pixel disaggregation techniques, by means of data fusion with higher resolution data from optical/infrared sensors). Validation of SMOS salinity products by means of surface drifters developed ad-hoc, and soil moisture products over the REMEDHUS site (Zamora, Spain) are also presented. Results of other preparatory activities carried out to improve the performance of eventual SMOS follow-on missions are presented, including GNSS-R to infer the sea state correction needed for improved ocean salinity retrievals and land surface parameters. Results from CALIMAS show a satisfactory performance of the MIRAS instrument, the accuracy and efficiency of the algorithms implemented in the ground data processors, and explore the limits of spatial resolution of soil moisture products using data fusion, as well as the feasibility of GNSS-R techniques for sea state determination and soil moisture monitoringThis work has been performed under research grants TEC2005-06863-C02-01/TCM, ESP2005-06823-C05, ESP2007-65667-C04, AYA2008-05906-C02-01/ESP and AYA2010-22062-C05 from the Spanish Ministry of Science and Innovation, and a EURYI 2004 award from the European Science FoundationPeer Reviewe

    2000 days of SMOS at the Barcelona Expert Centre: a tribute to the work of Jordi Font

    Get PDF
    Soil Moisture and Ocean Salinity (SMOS) is the first satellite mission capable of measuring sea surface salinity and soil moisture from space. Its novel instrument (the L-band radiometer MIRAS) has required the development of new algorithms to process SMOS data, a challenging task due to many processing issues and the difficulties inherent in a new technology. In the wake of SMOS, a new community of users has grown, requesting new products and applications, and extending the interest in this novel brand of satellite services. This paper reviews the role played by the Barcelona Expert Centre under the direction of Jordi Font, SMOS co-principal investigator. The main scientific activities and achievements and the future directions are discussed, highlighting the importance of the oceanographic applications of the mission.Peer ReviewedPostprint (published version

    Soil moisture estimation synergy using GNSS-R and L-Band microwave radiometry data from FSSCat/FMPL-2

    Get PDF
    The Federated Satellite System mission (FSSCat) was the winner of the 2017 Copernicus Masters Competition and the first Copernicus third-party mission based on CubeSats. One of FSSCat’s objectives is to provide coarse Soil Moisture (SM) estimations by means of passive microwave measurements collected by Flexible Microwave Payload-2 (FMPL-2). This payload is a novel CubeSat based instrument combining an L1/E1 Global Navigation Satellite Systems-Reflectometer (GNSS-R) and an L-band Microwave Radiometer (MWR) using software-defined radio. This work presents the first results over land of the first two months of operations after the commissioning phase, from 1 October to 4 December 2020. Four neural network algorithms are implemented and analyzed in terms of different sets of input features to yield maps of SM content over the Northern Hemisphere (latitudes above 45° N). The first algorithm uses the surface skin temperature from the European Centre of Medium-Range Weather Forecast (ECMWF) in conjunction with the 16 day averaged Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate SM and to use it as a comparison dataset for evaluating the additional models. A second approach is implemented to retrieve SM, which complements the first model using FMPL-2 L-band MWR antenna temperature measurements, showing a better performance than in the first case. The error standard deviation of this model referred to the Soil Moisture and Ocean Salinity (SMOS) SM product gridded at 36 km is 0.074 m3/m3. The third algorithm proposes a new approach to retrieve SM using FMPL-2 GNSS-R data. The mean and standard deviation of the GNSS-R reflectivity are obtained by averaging consecutive observations based on a sliding window and are further included as additional input features to the network. The model output shows an accurate SM estimation compared to a 9 km SMOS SM product, with an error of 0.087 m3/m3. Finally, a fourth model combines MWR and GNSS-R data and outperforms the previous approaches, with an error of just 0.063 m3/m3. These results demonstrate the capabilities of FMPL-2 to provide SM estimates over land with a good agreement with respect to SMOS SM.This work was supported by the 2017 ESA S3 challenge and Copernicus Masters overall winner award (“FSSCat” project). This work was (partially) sponsored by project SPOT: Sensing with Pioneering Opportunistic Techniques grant RTI2018-099008-B-C21 / AEI / 10.13039/501100011033, and by the Unidad de Excelencia Maria de Maeztu MDM-2016-0600. This work was also (partially) sponsored by the Spanish Ministry of Science and Innovation through the project ESP2017-89463-C3, by the Centro de Excelencia Severo Ochoa (CEX2019-000928-S), and by the CSIC Plataforma Temática Interdisciplinar de Teledetección (PTI-Teledetect). Joan Francesc Munoz-Martin received support from the grant for the recruitment of early-stage research staff FI-DGR 2018 of the AGAUR - Generalitat de Catalunya (FEDER), Spain; Christoph Herbert received the support of a fellowship from “la Caixa” Foundation (ID 100010434) with the fellowship code LCF/BQ/DI18/11660050 and funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 713673; David Llavería received support from an FPU fellowship from the Spanish Ministry of Education FPU18/06107.Peer ReviewedPostprint (published version

    Canadian Experiment for Soil Moisture in 2010 (CanEX-SM10): Overview and Preliminary Results

    Get PDF
    The Canadian Experiment for Soil Moisture in 2010 (CanEx-SM10) was carried out in Saskatchewan, Canada from 31 May to 16 June, 2010. Its main objective was to contribute to Soil Moisture and Ocean salinity (SMOS) mission validation and the pre-launch assessment of Soil Moisture and Active and Passive (SMAP) mission. During CanEx-SM10, SMOS data as well as other passive and active microwave measurements were collected by both airborne and satellite platforms. Ground-based measurements of soil (moisture, temperature, roughness, bulk density) and vegetation characteristics (Leaf Area Index, biomass, vegetation height) were conducted close in time to the airborne and satellite acquisitions. Besides, two ground-based in situ networks provided continuous measurements of meteorological conditions and soil moisture and soil temperature profiles. Two sites, each covering 33 km x 71 km (about two SMOS pixels) were selected in agricultural and boreal forested areas in order to provide contrasting soil and vegetation conditions. This paper describes the measurement strategy, provides an overview of the data sets and presents preliminary results. Over the agricultural area, the airborne L-band brightness temperatures matched up well with the SMOS data. The Radio frequency interference (RFI) observed in both SMOS and the airborne L-band radiometer data exhibited spatial and temporal variability and polarization dependency. The temporal evolution of SMOS soil moisture product matched that observed with the ground data, but the absolute soil moisture estimates did not meet the accuracy requirements (0.04 m3/m3) of the SMOS mission. AMSR-E soil moisture estimates are more closely correlated with measured soil moisture

    Deriving vertical total electron content maps from SMOS full polarimetric data to compensate the Faraday rotation effect

    Get PDF
    The Faraday rotation is a geophysical effect that causes a rotation of the electromagnetic field components emitted by the Earth when it propagates through the ionosphere. It depends on the vertical total electron content (VTEC) of the ionosphere, the geomagnetic field, and the frequency. For satellite measurements at the L band, this effect is not negligible and must be compensated for. This is the case of the Soil Moisture and Ocean Salinity (SMOS) mission, where the measured polarimetric brightness temperature must be corrected from the Faraday rotation effect before the retrieval of the geophysical parameters. The Faraday rotation angle (FRA) can be estimated using a theoretical formulation that makes use of external sources for the VTEC and the geomagnetic field. Alternatively, it can be continuously retrieved from the SMOS full-polarimetric data. However, this is not straightforward due to the relatively poor radiometric sensitivity (thermal noise) and accuracy (spatial bias) of its payload MIRAS (Microwave Interferometer Radiometer by Aperture Synthesis). In this thesis, a methodology for estimating the total electron content of the ionosphere by using an inversion procedure from the measured rotation angle has been developed. These SMOS VTEC maps are derived from SMOS measurements in the Extended Alias-Free Field of View (EAF-FoV) by applying spatio-temporal filtering techniques to mitigate the radiometric errors present in the full-polarimetric measured brightness temperatures. Systematic error patterns found in the Faraday rotation angle retrieval have been characterized along the mission and corrected. The methodology is independent, not only of external databases and forward models, but also of the target that is being measured. Eventually, these SMOS-derived VTEC maps can then be used in the SMOS level 2 processors to improve the geophysical retrievals. The impact of using these SMOS VTEC maps to correct the FRA in the SMOS mission instead of the commonly used VTEC data from GPS has also been assessed, particularly over ocean, where the ionospheric effect is stronger. This assessment has demonstrated improvements in the spatial biases, in the stability of the brightness temperatures (especially in the third Stokes parameter), and in the reduction of the latitudinal gradient present in the third Stokes parameters. All these quality indicators point to a better quality of the geophysical retrievals.La rotación de Faraday es un efecto geofísico que causa un giro en las componentes del campo electromagnético emitido por la Tierra cuando éste se propaga a través de la ionosfera. Ésta depende del contenido vertical total de electrones (VTEC) en la ionosfera, el campo geomagnético y la frecuencia. En las medidas de los satélites que operan en banda L, este efecto no es despreciable y se debe compensar. Este es el caso de la misión SMOS (Soil Moisture and Ocean Salinity), por lo que el efecto de Faraday se tiene que corregir en las medidas polarimétricas captadas por el instrumento antes de obtener parámetros geofísicos. El ángulo de rotación de Faraday (FRA) se puede estimar con una fórmula teórica que usa bases de datos externas para el VTEC y el campo geomagnético. Alternativamente, se puede obtener de una manera continua a partir de los datos polarimétricos de SMOS. Sin embargo, esto no se logra con un cálculo directo debido a la pobre sensibilidad radiométrica (ruido térmico) y a la baja precisión (sesgos espaciales) que presenta el instrumento MIRAS (Microwave Interferometer Radiometer by apertura Synthesis), que se encuentra a bordo del satélite. En esta tesis, se desarrolla una metodología para estimar el VTEC de la ionosfera usando un proceso inverso a partir del ángulo de rotación medido. Estos mapas de VTEC se derivan de medidas en todo el campo de visión extendido en donde no hay aliasing. Para mitigar los errores radiométricos en las temperaturas de brillo polarimétricas, se aplican técnicas de filtrados temporales y espaciales. En el ángulo de rotación de Faraday recuperado se detectaron errores sistemáticos. Estos se caracterizaron a lo largo de la misión y se corrigieron. La metodología es independiente, no solo de bases de datos externas y modelos de océano, sino también de la superficie medida. Estos mapas de VTEC derivados de los datos SMOS se pueden usar en el procesador de nivel 2 para mejorar las recuperaciones geofísicas. Se ha evaluado el impacto de usar estos mapas para corregir el FRA en la misión, en vez de los datos de VTEC que comúnmente se emplean (mapas provenientes de datos de GPS), particularmente sobre océano, en donde los efectos de la ionosfera son más críticos. Esta verificación ha demostrado mejoras en el sesgo espacial, en la estabilidad de las temperaturas de brillo (especialmente en el tercer parámetro de Stokes) y en la reducción del gradiente latitudinal presente en el tercer parámetro de Stokes. Todos estos indicadores de calidad apuntan a la obtención de parámetros geofísicos de mejor calidad.Postprint (published version

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version
    corecore