4,763 research outputs found

    LES Modelling of Propagating Turbulence Premixed Flames using a Dynamic Flame Surface Density Model

    Get PDF
    A Dynamic flame surface density (DFSD) model, developed recently from experimental images for transient turbulent premixed flames, is implemented and tested using the large eddy simulation (LES) modelling technique. Numerical predictions from DFSD model are compared with those predicted using the flame surface density (FSD) sub-grid scale (SGS) model for reaction rate. In the SGS-DFSD model, dynamic formulation of the reaction rate is coupled with the fractal analysis of the flame front structure. The fractal dimension is evaluated dynamically from an empirical formula based on the sub-grid velocity fluctuations. A laboratory scale combustion chamber with inbuilt solid obstacles is used for model validation and comparisons. The flame is initiated from igniting a stichiometric propane/air mixture from stagnation. The results obtained with the DFSD model are in good comparisons with experimental data and the essential features of turbulent premixed combustion are well captured. It has also been observed that the SGS-DFSD model for reaction rate found to capture the unresolved flame surface density contributions. Further investigations are planned to examine and validate of the SGS-DFSD for different flow geometries

    Large-eddy Simulation of NASA LaRC Coaxial He-O2/Air Jet

    Get PDF
    Large-eddy simulation (LES) is conducted of a coaxial jet flow configuration. This configuration was previously considered in the laboratory experiments at the Hypersonic Air-breathing Propulsion Branch at the NASA Langley Research Center (LaRC). It consists of a coaxial jet discharging into stagnant air with a main stream of He-O2 (95% helium and 5% oxygen by volume) and a coflow of air. The objective of this work is to investigate the performance of conventional LES models for supersonic flows. In the simulations, the filtered, compressible, 3-dimensional Nevier-Stokes equations for a multi-species system are solved. The subgrid scale closure is attained using the generalized Smagorinsky model and the dynamic model. The predicted results are assessed via comparison with data from the NASA LaRC

    Application of FDS and firefoam in large eddy simulations of a turbulent buoyant helium plume

    Get PDF
    Large eddy simulations are conducted in the near-field region of a large turbulent buoyant helium plume. Such plumes are of relevance for fire safety research due to the similar flow features as in the buoyant (smoke) plumes above the fire source. The transient and mean flow dynamics are discussed with and without the use of a Smagorinsky-type subgrid scale (SGS) model. For this purpose, two different computational fluid dynamics (CFD) packages are used. Small-scale structures, formed at the edge of the plume inlet due to a baroclinic and gravitational mechanism and subject to flow instabilities, interact with large-scale features of the flow, resulting in a puffing cycle. This puffing cycle is recovered in the simulations. In general, the LES calculations reproduce the main features of the turbulent plume. Mean velocity results compare well with the experimental data. The mass fractions are overpredicted on the centerline though, and higher on the domain

    Experimental assessment of presumed filtered density function models

    Get PDF
    Measured filtered density functions (FDFs) as well as assumed beta distribution model of mixture fraction and “subgrid” scale (SGS) scalar variance, used typically in large eddy simulations, were studied by analysing experimental data, obtained from two-dimensional planar, laser induced fluorescence measurements in isothermal swirling turbulent flows at a constant Reynolds number of 29 000 for different swirl numbers (0.3, 0.58, and 1.07)

    Large eddy simulation of a turbulent non-premixed propane-air reacting flame in a cylindrical combustor

    Get PDF
    Large Eddy Simulation (LES) is applied to investigate the turbulent non-premixed combustion flow, including species concentrations and temperature, in a cylindrical combustor. Gaseous propane (C3H8) is injected through a circular nozzle which is attached at the centre of the combustor inlet. Preheated air with a temperature of 773 K is supplied through the annulus surrounding of this fuel nozzle. In LES a spatial filtering is applied to the governing equations to separate the flow field into large-scale and small-scale eddies. The large-scale eddies which carry most of the turbulent energy are resolved explicitly, while the unresolved small-scale eddies are modelled using the Smagorinsky model with Cs = 0.1 as well as dynamically calibrated Cs. The filtered values of the species mass fraction, temperature and density, which are the functions of the mixture fraction (conserved scalar), are determined by integration over a beta probability density function (β-PDF). The computational results are compared with those of the experimental investigation conducted by Nishida and Mukohara. According to this experiment, the overall equivalence ratio of 0.6, which is calculated from the ratio of the air flow rate supplied to the combustion chamber to that of the stoichiometric reaction, is kept constant so that the turbulent combustion at the fuel nozzle exit starts under the fuel-rich conditions

    LES modelling of nitric oxide (NO) formation in a propane-air turbulent reacting flame

    Get PDF
    Large Eddy Simulation (LES) technique is applied to investigate the nitric oxide (NO) formation in the propane-air flame inside a cylindrical combustor. In LES a spatial filtering is applied to the governing equations to separate the flow field into large scale eddies and small scale eddies. The large scale eddies which carry most of the turbulent energy are resolved explicitly while the unresolved small scale eddies are modelled. A Smagorinsky model with model constant Cs = 0.1 as well as a dynamic model has been employed for modelling of the sub-grid scale eddies, while the nonpremixed combustion process is modelled through the conserved scalar approach with laminar flamelet model. In NO formation model, the extended Zeldovich (thermal) reaction mechanism is taken into account through a transport equation for NO mass fraction. The computational results are compared with those of the experimental results investigated by Nishida and Mukohara [1] in co-flowing turbulent flame

    Hydrodynamic instabilities in gaseous detonations: comparison of Euler, Navier–Stokes, and large-eddy simulation

    Get PDF
    A large-eddy simulation is conducted to investigate the transient structure of an unstable detonation wave in two dimensions and the evolution of intrinsic hydrodynamic instabilities. The dependency of the detonation structure on the grid resolution is investigated, and the structures obtained by large-eddy simulation are compared with the predictions from solving the Euler and Navier–Stokes equations directly. The results indicate that to predict irregular detonation structures in agreement with experimental observations the vorticity generation and dissipation in small scale structures should be taken into account. Thus, large-eddy simulation with high grid resolution is required. In a low grid resolution scenario, in which numerical diffusion dominates, the structures obtained by solving the Euler or Navier–Stokes equations and large-eddy simulation are qualitatively similar. When high grid resolution is employed, the detonation structures obtained by solving the Euler or Navier–Stokes equations directly are roughly similar yet equally in disagreement with the experimental results. For high grid resolution, only the large-eddy simulation predicts detonation substructures correctly, a fact that is attributed to the increased dissipation provided by the subgrid scale model. Specific to the investigated configuration, major differences are observed in the occurrence of unreacted gas pockets in the high-resolution Euler and Navier–Stokes computations, which appear to be fully combusted when large-eddy simulation is employed

    Detailed characteristics of drop-laden mixing layers: Large eddy simulation predictions compared to direct numerical simulation

    Get PDF
    Results are compared from direct numerical simulation (DNS) and large eddy simulation (LES) of a temporal mixing layer laden with evaporating drops to assess the ability of LES to reproduce detailed characteristics of DNS. The LES used computational drops, each of which represented eight physical drops, and a reduced flow field resolution using a grid spacing four times larger than that of the DNS. The LES also used models for the filtered source terms, which express the coupling of the drops with the flow, and for the unresolved subgrid-scale (SGS) fluxes of species mass, momentum, and enthalpy. The LESs were conducted using one of three different SGS-flux models: dynamic-coefficient gradient (GRD), dynamic-coefficient Smagorinsky (SMD), and constant-coefficient scale similarity (SSC). The comparison of the LES with the filtered-and-coarsened (FC) DNS considered detailed aspects of the flow that are of interest in ignition or full combustion. All LESs captured the largest-scale vortex, the global amount of vapor emanating from the drops, and the overall size distribution of the drops. All LESs tended to underpredict the global amount of irreversible entropy production (dissipation). The SMD model was found unable to capture either the global or local vorticity variation and had minimal small-scale activity in dynamic and thermodynamic variables compared to the FC-DNS. The SMD model was also deficient in predicting the spatial distribution of drops and of the dissipation. In contrast, the GRD and SSC models did mimic the small-scale activity of the FC-DNS and the spatial distribution of drops and of the dissipation. Therefore, the GRD and SSC models are recommended, while the SMD model seems inappropriate for combustion or other problems where the local activity must be predicted

    Large Eddy Simulations of gaseous flames in gas turbine combustion chambers

    Get PDF
    Recent developments in numerical schemes, turbulent combustion models and the regular increase of computing power allow Large Eddy Simulation (LES) to be applied to real industrial burners. In this paper, two types of LES in complex geometry combustors and of specific interest for aeronautical gas turbine burners are reviewed: (1) laboratory-scale combustors, without compressor or turbine, in which advanced measurements are possible and (2) combustion chambers of existing engines operated in realistic operating conditions. Laboratory-scale burners are designed to assess modeling and funda- mental flow aspects in controlled configurations. They are necessary to gauge LES strategies and identify potential limitations. In specific circumstances, they even offer near model-free or DNS-like LES computations. LES in real engines illustrate the potential of the approach in the context of industrial burners but are more difficult to validate due to the limited set of available measurements. Usual approaches for turbulence and combustion sub-grid models including chemistry modeling are first recalled. Limiting cases and range of validity of the models are specifically recalled before a discussion on the numerical breakthrough which have allowed LES to be applied to these complex cases. Specific issues linked to real gas turbine chambers are discussed: multi-perforation, complex acoustic impedances at inlet and outlet, annular chambers.. Examples are provided for mean flow predictions (velocity, temperature and species) as well as unsteady mechanisms (quenching, ignition, combustion instabil- ities). Finally, potential perspectives are proposed to further improve the use of LES for real gas turbine combustor designs

    The subgrid-scale scalar variance under supercritical pressure conditions

    Get PDF
    To model the subgrid-scale (SGS) scalar variance under supercritical-pressure conditions, an equation is first derived for it. This equation is considerably more complex than its equivalent for atmospheric-pressure conditions. Using a previously created direct numerical simulation (DNS) database of transitional states obtained for binary-species systems in the context of temporal mixing layers, the activity of terms in this equation is evaluated, and it is found that some of these new terms have magnitude comparable to that of governing terms in the classical equation. Most prominent among these new terms are those expressing the variation of diffusivity with thermodynamic variables and Soret terms having dissipative effects. Since models are not available for these new terms that would enable solving the SGS scalar variance equation, the adopted strategy is to directly model the SGS scalar variance. Two models are investigated for this quantity, both developed in the context of compressible flows. The first one is based on an approximate deconvolution approach and the second one is a gradient-like model which relies on a dynamic procedure using the Leonard term expansion. Both models are successful in reproducing the SGS scalar variance extracted from the filtered DNS database, and moreover, when used in the framework of a probability density function (PDF) approach in conjunction with the β-PDF, they excellently reproduce a filtered quantity which is a function of the scalar. For the dynamic model, the proportionality coefficient spans a small range of values through the layer cross-stream coordinate, boding well for the stability of large eddy simulations using this model
    corecore