17 research outputs found

    Inter-domain networking innovation on steroids: Empowering IXPs with SDN capabilities

    Get PDF
    While innovation in inter-domain routing has remained stagnant for over a decade, Internet Exchange Points (IXPs) are consolidating their role as economically advantageous interconnection points for reducing path latencies and exchanging ever increasing amounts of traffic. As such, IXPs appear as a natural place to foster network innovation and assess the benefits of Software-Defined Networking (SDN), a recent technological trend that has already boosted innovation within data-center networks. In this paper, we give a comprehensive overview of use cases for SDN at IXPs, which leverage the superior vantage point of an IXP to introduce advanced features like load-balancing and DDoS mitigation. We discuss the benefits of SDN solutions by analyzing real-world data from one of the largest IXPs. We also leverage insights into IXP operations to not only shape benefits for members but also for operators.This research is (in part) supported by European Union’s Horizon 2020 research and innovation programme under the ENDEAVOUR project (grant agreement 644960).This is the author accepted manuscript. The final version is available from IEEE via https://doi.org/ 10.1109/MCOM.2016.758827

    Stellar: Network Attack Mitigation using Advanced Blackholing

    Get PDF
    © ACM 2018. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Proceedings of the 14th International Conference on Emerging Networking EXperiments and Technologies - CoNEXT ’18, http://dx.doi.org/10.1145/3281411.3281413.Network attacks, including Distributed Denial-of-Service (DDoS), continuously increase in terms of bandwidth along with damage (recent attacks exceed 1.7 Tbps) and have a devastating impact on the targeted companies/governments. Over the years, mitigation techniques, ranging from blackholing to policy-based filtering at routers, and on to traffic scrubbing, have been added to the network operator’s toolbox. Even though these mitigation techniques pro- vide some protection, they either yield severe collateral damage, e.g., dropping legitimate traffic (blackholing), are cost-intensive, or do not scale well for Tbps level attacks (ACL filltering, traffic scrubbing), or require cooperation and sharing of resources (Flowspec). In this paper, we propose Advanced Blackholing and its system realization Stellar. Advanced blackholing builds upon the scalability of blackholing while limiting collateral damage by increasing its granularity. Moreover, Stellar reduces the required level of cooperation to enhance mitigation effectiveness. We show that fine-grained blackholing can be realized, e.g., at a major IXP, by combining available hardware filters with novel signaling mechanisms. We evaluate the scalability and performance of Stellar at a large IXP that interconnects more than 800 networks, exchanges more than 6 Tbps tra c, and witnesses many network attacks every day. Our results show that network attacks, e.g., DDoS amplification attacks, can be successfully mitigated while the networks and services under attack continue to operate untroubled.EC/H2020/679158/EU/Resolving the Tussle in the Internet: Mapping, Architecture, and Policy Making/ResolutioNetDFG, FE 570/4-1, Gottfried Wilhelm Leibniz-Preis 201

    ENDEAVOUR: A Scalable SDN Architecture For Real-World IXPs.

    Get PDF
    Innovation in interdomain routing has remained stagnant for over a decade. Recently, IXPs have emerged as economically-advantageous interconnection points for reducing path latencies and exchanging ever increasing traffic volumes among, possibly, hundreds of networks. Given their far-reaching implications on interdomain routing, IXPs are the ideal place to foster network innovation and extend the benefits of SDN to the interdomain level. In this paper, we present, evaluate, and demonstrate EN- DEAVOUR, an SDN platform for IXPs. ENDEAVOUR can be deployed on a multi-hop IXP fabric, supports a large number of use cases, and is highly-scalable while avoiding broadcast storms. Our evaluation with real data from one of the largest IXPs, demonstrates the benefits and scalability of our solution: ENDEAVOUR requires around 70% fewer rules than alternative SDN solutions thanks to our rule partitioning mechanism. In addition, by providing an open source solution, we invite ev- eryone from the community to experiment (and improve) our implementation as well as adapt it to new use cases.European Union’s Horizon 2020 research and innovation programme under the ENDEAVOUR project (grant agreement 644960)

    The growing complexity of content delivery networks: Challenges and implications for the Internet ecosystem

    Get PDF
    Since the commercialization of the Internet, content and related applications, including video streaming, news, advertisements, and social interaction have moved online. It is broadly recognized that the rise of all of these different types of content (static and dynamic, and increasingly multimedia) has been one of the main forces behind the phenomenal growth of the Internet, and its emergence as essential infrastructure for how individuals across the globe gain access to the content sources they want. To accelerate the delivery of diverse content in the Internet and to provide commercial-grade performance for video delivery and the Web, Content Delivery Networks (CDNs) were introduced. This paper describes the current CDN ecosystem and the forces that have driven its evolution. We outline the different CDN architectures and consider their relative strengths and weaknesses. Our analysis highlights the role of location, the growing complexity of the CDN ecosystem, and their relationship to and implications for interconnection markets.EC/H2020/679158/EU/Resolving the Tussle in the Internet: Mapping, Architecture, and Policy Making/ResolutioNe

    Inferring BGP blackholing activity in the Internet

    Get PDF
    The Border Gateway Protocol (BGP) has been used for decades as the de facto protocol to exchange reachability information among networks in the Internet. However, little is known about how this protocol is used to restrict reachability to selected destinations, e.g., that are under attack. While such a feature, BGP blackholing, has been available for some time, we lack a systematic study of its Internet-wide adoption, practices, and network efficacy, as well as the profile of blackholed destinations. In this paper, we develop and evaluate a methodology to automatically detect BGP blackholing activity in the wild. We apply our method to both public and private BGP datasets. We find that hundreds of networks, including large transit providers, as well as about 50 Internet exchange points (IXPs) offer blackholing service to their customers, peers, and members. Between 2014-2017, the number of blackholed prefixes increased by a factor of 6, peaking at 5K concurrently blackholed prefixes by up to 400 Autonomous Systems. We assess the effect of blackholing on the data plane using both targeted active measurements as well as passive datasets, finding that blackholing is indeed highly effective in dropping traffic before it reaches its destination, though it also discards legitimate traffic. We augment our findings with an analysis of the target IP addresses of blackholing. Our tools and insights are relevant for operators considering offering or using BGP blackholing services as well as for researchers studying DDoS mitigation in the Internet

    Securing the Internet at the Exchange Points

    Get PDF
    Tese de mestrado, Engenharia Informática (Arquitectura, Sistemas e Redes de Computadores), 2022, Universidade de Lisboa, Faculdade de CiênciasBGP, the border gateway protocol, is the inter-domain routing protocol that glues the Internet. Despite its importance, it has well-known security problems. Frequently, the BGP infrastructure is the target of prefix hijacking and path manipulation attacks. These attacks disrupt the normal functioning of the Internet by either redirecting the traffic, potentially allowing eavesdropping, or even preventing it from reaching its destination altogether, affecting availability. These problems result from the lack of a fundamental security mechanism: the ability to validate the information in routing announcements. Specifically, it does not authenticate the prefix origin nor the validity of the announced routes. This means that an intermediate network that intercepts a BGP announcement can maliciously announce an IP prefix that it does not own as theirs, or insert a bogus path to a prefix with the goal to intercept traffic. Several solutions have been proposed in the past, but they all have limitations, of which the most severe is arguably the requirement to perform drastic changes on the existing BGP infrastructure (i.e., requiring the replacement of existing equipment). In addition, most solutions require their widespread adoption to be effective. Finally, they typically require secure communication channels between the participant routers, which entails computationally-intensive cryptographic verification capabilities that are normally unavailable in this type of equipment. With these challenges in mind, this thesis proposes to investigate the possibility to improve BGP security by leveraging the software-defined networking (SDN) technology that is increasingly common at Internet Exchange Points (IXPs). These interconnection facilities are single locations that typically connect hundreds to thousands of networks, working as Internet “middlemen” ideally placed to implement inter-network mechanisms, such as security, without requiring changes to the network operators’ infrastructure. Our key idea is to include a secure channel between IXPs that, by running in the SDN server that controls these modern infrastructures, avoids the cryptographic requirements in the routers. In our solution, the secure channel for communication implements a distributed ledger (a blockchain), for decentralized trust and its other inherent guarantees. The rationale is that by increasing trust and avoiding expensive infrastructure updates, we hope to create incentives for operators to adhere to these new IXP-enhanced security services

    From the edge to the core : towards informed vantage point selection for internet measurement studies

    Get PDF
    Since the early days of the Internet, measurement scientists are trying to keep up with the fast-paced development of the Internet. As the Internet grew organically over time and without build-in measurability, this process requires many workarounds and due diligence. As a result, every measurement study is only as good as the data it relies on. Moreover, data quality is relative to the research question—a data set suitable to analyze one problem may be insufficient for another. This is entirely expected as the Internet is decentralized, i.e., there is no single observation point from which we can assess the complete state of the Internet. Because of that, every measurement study needs specifically selected vantage points, which fit the research question. In this thesis, we present three different vantage points across the Internet topology— from the edge to the Internet core. We discuss their specific features, suitability for different kinds of research questions, and how to work with the corresponding data. The data sets obtained at the presented vantage points allow us to conduct three different measurement studies and shed light on the following aspects: (a) The prevalence of IP source address spoofing at a large European Internet Exchange Point (IXP), (b) the propagation distance of BGP communities, an optional transitive BGP attribute used for traffic engineering, and (c) the impact of the global COVID-19 pandemic on Internet usage behavior at a large Internet Service Provider (ISP) and three IXPs.Seit den frühen Tagen des Internets versuchen Forscher im Bereich Internet Measu- rement, mit der rasanten Entwicklung des des Internets Schritt zu halten. Da das Internet im Laufe der Zeit organisch gewachsen ist und nicht mit Blick auf Messbar- keit entwickelt wurde, erfordert dieser Prozess eine Meg Workarounds und Sorgfalt. Jede Measurement Studie ist nur so gut wie die Daten, auf die sie sich stützt. Und Datenqualität ist relativ zur Forschungsfrage - ein Datensatz, der für die Analyse eines Problems geeiget ist, kann für ein anderes unzureichend sein. Dies ist durchaus zu erwarten, da das Internet dezentralisiert ist, d. h. es gibt keinen einzigen Be- obachtungspunkt, von dem aus wir den gesamten Zustand des Internets beurteilen können. Aus diesem Grund benötigt jede Measurement Studie gezielt ausgewählte Beobachtungspunkte, die zur Forschungsfrage passen. In dieser Arbeit stellen wir drei verschiedene Beobachtungspunkte vor, die sich über die gsamte Internet-Topologie erstrecken— vom Rand bis zum Kern des Internets. Wir diskutieren ihre spezifischen Eigenschaften, ihre Eignung für verschiedene Klas- sen von Forschungsfragen und den Umgang mit den entsprechenden Daten. Die an den vorgestellten Beobachtungspunkten gewonnenen Datensätze ermöglichen uns die Durchführung von drei verschiedenen Measurement Studien und damit die folgenden Aspekte zu beleuchten: (a) Die Prävalenz von IP Source Address Spoofing bei einem großen europäischen Internet Exchange Point (IXP), (b) die Ausbreitungsdistanz von BGP-Communities, ein optionales transitives BGP-Attribut, das Anwendung im Bereich Traffic-Enigneering findet sowie (c) die Auswirkungen der globalen COVID- 19-Pandemie auf das Internet-Nutzungsverhalten an einem großen Internet Service Provider (ISP) und drei IXPs

    Optimization of BGP Convergence and Prefix Security in IP/MPLS Networks

    Get PDF
    Multi-Protocol Label Switching-based networks are the backbone of the operation of the Internet, that communicates through the use of the Border Gateway Protocol which connects distinct networks, referred to as Autonomous Systems, together. As the technology matures, so does the challenges caused by the extreme growth rate of the Internet. The amount of BGP prefixes required to facilitate such an increase in connectivity introduces multiple new critical issues, such as with the scalability and the security of the aforementioned Border Gateway Protocol. Illustration of an implementation of an IP/MPLS core transmission network is formed through the introduction of the four main pillars of an Autonomous System: Multi-Protocol Label Switching, Border Gateway Protocol, Open Shortest Path First and the Resource Reservation Protocol. The symbiosis of these technologies is used to introduce the practicalities of operating an IP/MPLS-based ISP network with traffic engineering and fault-resilience at heart. The first research objective of this thesis is to determine whether the deployment of a new BGP feature, which is referred to as BGP Prefix Independent Convergence (PIC), within AS16086 would be a worthwhile endeavour. This BGP extension aims to reduce the convergence delay of BGP Prefixes inside of an IP/MPLS Core Transmission Network, thus improving the networks resilience against faults. Simultaneously, the second research objective was to research the available mechanisms considering the protection of BGP Prefixes, such as with the implementation of the Resource Public Key Infrastructure and the Artemis BGP Monitor for proactive and reactive security of BGP prefixes within AS16086. The future prospective deployment of BGPsec is discussed to form an outlook to the future of IP/MPLS network design. As the trust-based nature of BGP as a protocol has become a distinct vulnerability, thus necessitating the use of various technologies to secure the communications between the Autonomous Systems that form the network to end all networks, the Internet
    corecore