4,078 research outputs found

    Efficient Raw Signal Generation Based on Equivalent Scatterer and Subaperture Processing for SAR with Arbitrary Motion

    Get PDF
    An efficient SAR raw signal generation method based on equivalent scatterer and subaperture processing is proposed in this paper. It considers the radar’s motion track, which can obtain the precise raw signal for the real SAR. First, the imaging geometry with arbitrary motion is established, and then the scene is divided into several equidistant rings. Based on the equivalent scatterer model, the approximate expression of the SAR system transfer function is derived, thus each pulse’s raw signal can be generated by the convolution of the transmitted signal and system transfer function, performed by the fast Fourier transform (FFT). To further improve the simulation efficiency, the subaperture and polar subscene processing is used. The system transfer function of pluses for the same subaperture is calculated simultaneously by the weighted sum of all subscenes’ equivalent backscattering coefficient in the same equidistant ring, performed by the nonuniform FFT (NUFFT). The method only involves the FFT, NUFFT and complex multiplication operations, which means the easier implementation and higher efficiency. Simulation results are given to prove the validity of this method

    Acceleration of Range Points Migration-Based Microwave Imaging for Nondestructive Testing

    Get PDF
    We report on an experimental investigation of the properties of volume holographic recording in photopolymerizable nanoparticle?polymer composites (NPCs) doped with chain transferring multifunctional di- and tri-thiols as chain transfer agents. It is shown that the incorporation of the multifunctional thiols into NPCs more strongly influences on volume holographic recording than that doped with mono-thiol since more chemical reactions involve in the polymer network formation. It is found that, as similar to the case of mono-thiol doping, there exist optimum concentrations of di- and tri-thiols for maximizing the saturated refractive index modulation. It is also seen that recording sensitivity monotonically decreases with an increase in multifunctional thiol concentration due to the partial inhibition of the photopolymerization event by excessive thiols

    Range-Point Migration-Based Image Expansion Method Exploiting Fully Polarimetric Data for UWB Short-Range Radar

    Get PDF
    Ultrawideband radar with high-range resolution is a promising technology for use in short-range 3-D imaging applications, in which optical cameras are not applicable. One of the most efficient 3-D imaging methods is the range-point migration (RPM) method, which has a definite advantage for the synthetic aperture radar approach in terms of computational burden, high accuracy, and high spatial resolution. However, if an insufficient aperture size or angle is provided, these kinds of methods cannot reconstruct the whole target structure due to the absence of reflection signals from large part of target surface. To expand the 3-D image obtained by RPM, this paper proposes an image expansion method by incorporating the RPM feature and fully polarimetric data-based machine learning approach. Following ellipsoid-based scattering analysis and learning with a neural network, this method expresses the target image as an aggregation of parts of ellipsoids, which significantly expands the original image by the RPM method without sacrificing the reconstruction accuracy. The results of numerical simulation based on 3-D finite-difference time-domain analysis verify the effectiveness of our proposed method, in terms of image-expansion criteria

    SAR imagery of ocean-wave swell traveling in an arbitrary direction

    Get PDF
    The intensity wave like patterns observed in Synthetic Aperture Radar (SAR) are known to be caused by two mechanisms: the microwave radar cross sectional amplitude modulation due to tilt and hydrodynamic interaction of the long ocean waves, and intensity modulation due to the motion of the long ocean waves. Two dimensional closed form expressions of intensity wave patterns based on ocean wave swell are developed. They illustrate the relative importance of the amplitude and motion modulations; they also show that velocity bunching and a distortion due to the phase velocity of the ocean wave field are independent of the focus adjustment, provided that the second order temporal effects are neglected. Second order effects are small only over a limited range of ocean/radar parameters
    • 

    corecore