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ABSTRACT

The intensity wave-llke patterns observed in Synthetic Aperture Radar

(SAg) are known to be caused by two mechanisms: the microwave radar cross-

sectional amplitude modJlatlon due to tilt and hydrodynamic interaction of the

long ocean waves• and intensity modulation due to the motion of the long ocean

waves. Two-dimension_l closed form expressions of intensity wave patterns

based on ocean wave swell are developed. They illustrate the relative Intpor-

tance of the amplitude and motion modulations; furthermore, they show that

velocity bunching and a distortion due to the phase velocity of the ocean wave

field are independent of the focus adjustment, provided that the second-order

temporal effects are neglected. £econd-order effects are small only over a

limited range of ocean/radar parameters. Future modeling work should con-

' centrate on two-dimenslonal expressions and numerical methods• including _he I

anlsotropy of the amplitude modulation, that will allow quantitatively com-
pared with measurements. *

J

' 1. INTRODUCTION !,

I The interpretation of ocean wave _magery is an area of active research in
i microwave remote sensing of the ocean surface. The principles of Synthetic {

! Aperture Radar (SAR) are well understood for point targets; see, for example, 4

I Raney (1971). However, SAg signatures caused by random and systematic motion
of an extended surface such as the ocean are not as well understood but ere of :

: considerable interest.
j t

To construct a sag image, the radar utilizes the Doppler shift or equlva-

[ lently Its phase history, produced by the u,-,Iform platform velocity, to locate i

targets in the flight direction. If the targets move during the time interval i
" required to form the phase history, then the history is modified and target !

locations differ from the ones expected for stationary targets. Suppose that

an ensemble of targets are moving uniformly in the flight direction; then j

i there is no relative position error between the targets. However, !suppose
!

_ that targets exist Chat are spatially separated in the flight direction w_th
different radial velocity components. The radar then senses the disp)aced J

. Doppler histories in the flipht direction, by a process called "velocity t
bunching." This bunchlng, which is unique to the SAg, can allow the detection

of ocean waves and ocean-current boundaries even when the radar cross section , I
is uniform. However, second-order temporal (quadratic vhase) effects Chat
include the random nature of the surface also called scene coherence and the i

i

i 169

1984019194-175

https://ntrs.nasa.gov/search.jsp?R=19840019210 2020-03-22T09:24:25+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10372755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


awl

_ ORIGINAL PAGE i_
OF POOR QUALITY

i

orbital acceleration of the long waves can degrade the wave imaging process
f

ca_sed hy velocity bunching.l

The previous interpretation of ocean wave imagery has usually emphasized

the image formation process along the flight direction, while others have con-

sidered the two orthogonal directions, along the flight and cros_--fllght slant

range directions (see, e.g., Alpers and Rufenach ('979); Jat,_ (1981); Valen-

zuela (1980); Harger (1980); Alpers et al. (19_' • The p,_pose of the present

work Is to extend earlier results to ocear_ _'aves trmveling n an arbitrary

direction and include the motion of temporal amplitude modulation. To

accomplish this generalization, it is necessary to develop a two-dimensions],

analytical expression based on the two mechanisms responsible for wave-llke

patterns in the imagery: (I) the cros_-sectional modulation due to tilt and

_ydrodynamlc effects, also called amplitude modulation or the modulation
transfer function, and (2) the Int=nslty modulation due to ocean wave motions.

The relative importance of amplitude and artificial modulation based on an

arbitrary long ocean wave orientation must be included for quantitative

modeling. Furthermore, for typical ocean/radar parameters, the image for-

mation process is non-llnear except for limited ocean-wave parameters.

Therefore, a closed form expression for this mapping is not usually available)

except for the case when the mapping Is linear. However, a two-dlmenslonal
" description is useful because it gives physical insight even under the above

restrlctlons.

Jain (lq81), and Shuchman and Zelenka (197fl) have made specialized mea-

surements where the maximum image contrast occurs at a focus adjustment dif-

ferent than expected for a stationary surface. SAR Images are brought into

focus at the focal (reference) plane by adjusting the matched filter chirp

rates such that gb =Ab = 0 In Eq. (6). Jaln (19ill) has suggested that thls !

defocus is equal _o rthe azlmutha] component of the long wave phase velocity;

whereas Alpers et al. (1981) h_s suggested that it is the radial component of
the orbital acceleration of long ocean waves that causes thls defocus. The

expressions developed in the present work may help resolve the focus adjust-

meat d_screpancv. Also, we show that tile amplitude modulation, which is not a

focusing phenomenon, can al_o cause distortlons in the inferred ocean wave

field which may be important for slow flying aircraft measurements. Fur_her-

more, the two-dlmenslona] encountered wave-llke patterns are glven in terme of

the apparent ocean wavelength and direction caused by the phase velocity of i

swell which is relevant for both synthetic and real aperture iocean wave

radars. I
)

(

2. SYSTEM MODEL )
i

Suppose that a radar plaLform is moving wlth velocity V along the x direc- I

$

tlon. Furthermore, assume that a point radar scatt¢rer Is located at a range I
•, r on the surface at x, y, and at a range R at midbeam, x - Vt, as illustrated I

_ in Fig. I. The surface elevatlon associated wlth the wave field Is )
i !

, !
i

[
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Figure 1. Artist's concept of radar/ocea_ geometry; O is the anFie of inci- i
dence, # is the azimuth angle betweenk the long ocea. vet'.- _ve number
and the flight direction and 8 Is antenna bean_Jidth. _ ,.:_. it _f ,:he !
long waves is traveling in the same direction as the {,'_ ,.recticm; l
i.e., i # 90". i

I
i

t

I #

"! _(x,y,t) = _ {11 c°s(kxnX + kynY wnt) (1) '

Li °-, Iwhere the ocean vavenumbers xn' k are the components slon_ the x- and j

{4 y-dl.rectlons, respectlvely, _n cos Cn' sin in, and kn = I
I/_ 2 + k 2_ xn " n ky - kn I
xn yn I

The complex amplitude si_nsI back¢cattered from the ocean surface depends i

on the reflectlvlty properties of t_e surface Includlng the time dependence of 1
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the amplitude =odulstIon due to the long ocean waves. The complex amplitude
;, received at the ptatform based on a point scatterer, following Hasselmann

(198o), is

+ -l(brt 2 + br x2)
dA(t,r) = C(x - Vt,y) E(T-._') • a(x,y,t, dxdy (2)

.o

where G is a factor that includes the antenna-weighting function E(T) is the
pulse-welghr_ng function, b is the azimuth chirp rate, b is the range chirpx

, rata, and a(x,y,t) is the complex amplitude reflectlvttyf The dependence of
- A(t,z) on T (fast time) is used in processing to determine the slant range-r

positions of the _,catterlng element; the Doppler signature is related to the
platform velocity and sIo_ variability of the reflective surface through t
(slow t_me) to infer the aximuthal x-position of the scattering element.

The received signal is compared with a reference signal in the processor
which is also called a matched filter representeo here by h(t,x). The two-
dimensional convolution whose output is the image complex amplitude for a
polnt scatterer is

a(t-t', T-T') " _f A(tl-t TI-t ) h(t'-t[, r'-T I) dtldT I . (3)

Ba_Kscattered _crowave signals from the rough sea surface are described
by a two-scale Bragg scattering model first introduced by Wright (1968) ar, d
8ass et el. (1968). This _od61 is consistent with wavelike amplltude pat:erns
observed in i_gtng radar, proplded that the radar resolution Is _maller than
the long ocean wavelength. Initially, thls amplitude _dulatton was explained

"- by the geometric tilting of the long ecean waves in a local reference plane.
Some years later, after more complete analysis, it was shown that the strain-
Ing of the short (say I-I00 cml waves by the l_ng waves a_so influenced the
modulation. This straining, also called hydrodynamic interaction, causes an
asyumetrical distribution of the short waves with respect to the long waves
(Keller and Wright, 1975).

An extension of the previoua S_R ra_-ults, which shows that the amplitude
modulat!un is de_endeat on the _tch filtering, is Qore easily accomplished by
restricting the _del to ocean wave zwell, which to a first approxi_tion can t
b_ r_presented by a slnuaoldal long ocean _ave. ¢hla elmplifies Eq. (I) to i

+ one Fourier component, ¢(x,y,t) - ¢o coS(_x x _ _y.y - _¢). Therefore the i
__ colplex amplitude reflactlvlty can he approxlsatad by

!

+. .(..,.t) , [1+ ooa(• + -

where m 1_ the complex Mplitude sodulztton index caused by the long ocean
waves, _ is the phase pertnrbatlons caused by the orbltal awtlon, and the hat

"" "-" Indlcates long ocean wave psrumter. For the present sods1 the scene
A coherence Is neglected. The reader tntetestsd In th_s coherence is referred

to Raney (1980), gufermch _ad A_pers (1981), _nd LysenKs and Shuchsmn (t983).
The phase perturhetlon .:an usually be approxLmted by

t
[
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_ 2ko(Urt + ar/2 t 2) , (5)

where k is the radar wave,umber, and _ and _a are _ d_a] rnmpnnents nf ther r

orbital :loci_y and accel ation of the long waves, respectively. The amp[i-

_x 2rude modulation index can be approximated by m = mo_ ° + based on ocean

2

, Y
wave swell where m is the modulation transfer function given by others (see,o

e.g., Keller and Wright, 1975); ann dependent on ocean/radar parameters. For

example, suppose the long ocean waves are traveling along the radar look

dlrectlon (range traveling waves) and the receiving and transmitting antennaq

are horizontally polarized then m - _{tan8 + ct: g) or vertically polarizedo

m --2 31n 20/(1 + sin20) + 4 ctn0 (Rufenach et al., 1983).
o

The image is brought into focus In a reference plane by adJustlag the

quadratic phase of the matched filter. In practice, thls focus adjustment is

usually achieved on an optical prc _sor by adjustments of the focal length

between the platfoLm and a stationary reference surface. Therefore the
matched ftltr'r is given by

-- t b !i(b t 2 + 2)
h(t,_) = e x r , (6)

' and b ' may dlfter from the received ,.,_i-,,where .he refere:ce chirp rates bx r

rates b x = ko V2/R and br = 2Br/"r by the dlfferentlel rate Abx = 5x' - bx a.'d
Ab = b ' - b • The received envelope of the chirp signal is related to ther r r

azimuthal bandwidth Bx = b T /2 and range bandwidth _ = brTr/2 wi_er_ _ T andx g r g
T are the azimuth integration time and the rf pulse duration, respectively.
r

The "_nr'nslty modulation based on a point scattprer riding an ocean swell

and assuming a Gausslan antenna weighting

2 _2__
- exp[- (t'-t. (7> "

X r

is obtained by substi_utlng Eqs. (2), (4), and t6) Into Eq. L3) based or. the i

high radar wavenumber limit (k �_),and assuming m << l. Followi=g Rufenach l

and All_rs (1981), and Hasse_mann (1980) for tempcral-to-epatlal coordlna_e

transforaatlon and uslr.g stralghtforward but tedious mathematlcs, !

i
i

I
|
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&b Ab

(1 + x ^' _rr);Al2 = _ _--)(l + _-_) T2T2×r [l + _ cos(kxX + ]
, X r

; ABx 2 R u')2 (_)2(1 + _b_r)(r'-r)2] (8)" , exp[- (_....)2 (1 + --_ --) (x'-x + _ -
Px x r _r r

. A! ^

where k = k (I xx x V ) is the apparent long ocean wavenumber,

c t_ " = velocity of light

nV

and Px = _ B- '
x

c

; Pr = _ "- ,
r

A

U^, r
and u =

r Ab "
X

l+--
b
x

The high wavenumber limit is taken with the azimuth antenna diameter constant

which means that the integration time is sufficiently small that all quadratic

phase effects such as orbital acceleration can be neglected. The above

expressions apply for an image whose azimuth scale is equal to the radar

antenna beamwidth. Equation (8) illustrates that the amplitude modulation

field as measured in radar images can be distorted from the actual wave field

on the ocean surface. This distortion occurs only along the flight direction.

Furthermore, this distortion Is not caused by a quadratic phase effect. In-

deed, the type of distortion in Eq. (8) is most important for slow flying

aircraft when the long ocean waves are traveling along the fllght direction,

relevant for both synthetic aperture and real aperture radars. Equation (8)

shows the dependence of amplitude modulation on image formation based on a

< point scatterer riding on a monochromatic ocean wave swell.

The image response based on a distributed surface such as the ocean is

obtained by summing all the elementary point scatterer contributions:

I(x',r') = ff IAI2 dxdr . (9)

i sing the assumptions of Alpers and Rufenach (1979) namely

*" C b
t
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" r

_, Ur aa,l [1 + V_--[R du ,

not varying much within a resolution cell we obtain

./4 T2T 2 Ab Ab

l(x' r') x r x r " ^
• = ^, (I +_---)(I + _---)!I + msar cos(kxX' + k r')] (I0)rdu x r

R r
• i1 + 7 d-_-I

2 2

where m = m exp[- I (_'×2 Px _2 Pr

sar -- AD + r --bSbr)2)]"4"2 (I + ___)2 (I +
X r

^

du
R r

Furthermore, if _---<< I then Eq. (I0) simplifies to
X

d, ^

R r "' ' r')] (11)I(x',r') - K(l V d )[I + msar c°s(kxX + kr
X

Ab Ab

K = ./4 T2 T2(I- + _-_--_](I+--_--L_or in terms of ocean wave swellwhere
X r D'' D"

X r
parameters

v

cosCk,,,+kr,)+I;,.,,arlcos(kxX'+k r' +6)] (12):(x',r')-K[I+_o x r . r

• !

= R/V _o _ _ _in2e sin2¢ + c°s2e is the amplitude of the velocity 'where no x

x 2 _ '_bunching, l:sarl-_%%- + 2"provlded the radar resolution filtering of

the long waves is neglected, andY6 Is the phase angle of the amplitude modula-
tion. For tilt modulation _ - .'./2, w_tch means that the surface elevation is
90 ° out of phase with the amplitude modulation, E:uattons (10) and (11) show
that wave-llke patterns in the image caused by ocean wave swell are due to two
mechan!sms: velocity bunching and amplitude modulation. These equations hold

only ove_ a narrow range of ocean/radar parameters since quadratic effects
such as oroital acceleration have been neglected. However, they do illustrate
the relative importance of the real and artificial modulations. The amplitude
modulatl,;n is the factor within the square brackets in gqs. (I0) and (11).
gquatlcn (II) and (12) are linear expressions relating the wave field to the

image Incenslty modulation.

The Synthetic Aperture Radar is generally considered to be a sensor that
can measure the dominant ocean wavelength and direction. Under certain
limited conditions, significant distortions can occur in both the observed
wavelengt,1 and direction. Using Eq. (I0) or (11) gives

175 _'_
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^! ^ ^

k = k - m/V (12)
X X

^! ^

k = k (13)
Y Y

where primed parameters indicate apparent parameters, whereas the unprimed

parameters refer to the actual wavefield. Therefore, the apparent wavelength
is

^ ^

_, ^ Wk
= _ II V xl (14)

^

^! ^ _ k

where % = 2_/k' and k = ___E_x
COS _ '

and the apparent direction is

¢' = tan [ ] • (15)

" cos_ +
: V

A
As an example consider two cases in whlch deep water swell with _ = 250 m is

{ traveling along and opposite to the sensor flight direction. Suppose further

that the sensor is a slow-flying aircraft with V - I00 m/s. The phase velo-

city is _/_ = 20 m/s which gives _' _ 250 (I + 0.2) = 200, 300 m. Thisx

c illustrates that significant distortion can be due to other than non-llnear
effects under certain conditions. However, it should be noted that non-

linearities, caused by orbital acceleration are likely to dominate on most
occasions,

3. DISCUSSION AND SUMMARY

r

The wave-ICke patterns observed in SAR imagery are caused by two mecha- _

nisms: (i) the radar cross-sectional (amplitude) modulation due to tilt and !
i

hydrodynamic modulation by tlle long ocean waves and (2) intensity modulation i
due to the motion of the ocean surface which is unique to SAR. The motion-

induced modulation can be separated into modulation enhancement and degrada-
i tlon due to the systematic orbital acceleration of the long waves and the )
J

i degradation of the modulation due to the stochastic character of the wind

i waves. The radar amplitude modulation is dominant for ocean waves traveling i
perpendicular to the flight direction whereas the motlon-lnduced modulation

1 may dominate when ocean waves are traveling along tileflight direction.

Determination of the relative i_aportance of these underlying mechanisms is
'i I

essential to a complete understanding of the radar interaction with the ocean t
waves and the modeling of SAR wavelike patterns; for example, see, Lyzenga et t
al., 1984. Interest in the different mechanisms has increased in recent years
since it is difficult to separate them except for the soectal case when the I

waves are traveling exactly perpendicular to the flight direction (range i

176
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waves). For this case, motions on the surface are negligible. Most of the
theoretical work has emphasized the modulation due to ocean wave motion and

its associated non-llnearitles. A two-dlmenslonal closed form expression is

not available except over a limited range of ocean/radar parameters. This has
led some workers to consider Monte Carlo numerical methods to model the image-

formation process (Alpers, 1983). Two-dlmenslonal expressions have been deve-

loped which are valid over a limited range of ocean/radar parameters. Indeed

in this limited range, the Monte Carlo results that required numerical com-

putation could be compared with closed form results such as Eqs. (10) and
(11).

Equations (10) and (II) include the effects of both radar amplitude _nd

velocity bunching modulation. These equations show the following salient

features: (1) Velocity bunching is independent of focus adjustment, provided

• that the quadratic phase is negligibly small which normally means short

integration times; however, focus adjustment will degrade the image in the

same manner as in a stationary scene, and (2) Ocean wave field distortion

caused by the motion of the wave field (phase velocity of the long waves)

relative to the platform velocity is independent of focus adjustment, again
.-- provided that the quadratic phase is negligibly small. These conclusions are

: in disagreement with Jaln (1981), who claims that the focus adjustment is
equal to the azimuth component of the long wave phase velocity. Furthermore,

"t the dependence of the focus adjustment on orbital acceleration as suggested by

Alpers et el. (1981), is not relevant since these expressions are not valld
when the orbital acceleration is important.

It is recommended that future work continue to emphasize development of

quantitative two-dlmenslonal models whlch give the relative importance of

_ amplitude and motion modulation for any arbitrary orientation of the ocean
wave field. Furthermore, the anlsotropy of the amplitude modulation must be

included in order to quantify this modulation.
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