42 research outputs found

    Logical and deep learning methods for temporal reasoning

    Get PDF
    In this thesis, we study logical and deep learning methods for the temporal reasoning of reactive systems. In Part I, we determine decidability borders for the satisfiability and realizability problem of temporal hyperproperties. Temporal hyperproperties relate multiple computation traces to each other and are expressed in a temporal hyperlogic. In particular, we identify decidable fragments of the highly expressive hyperlogics HyperQPTL and HyperCTL*. As an application, we elaborate on an enforcement mechanism for temporal hyperproperties. We study explicit enforcement algorithms for specifications given as formulas in universally quantified HyperLTL. In Part II, we train a (deep) neural network on the trace generation and realizability problem of linear-time temporal logic (LTL). We consider a method to generate large amounts of additional training data from practical specification patterns. The training data is generated with classical solvers, which provide one of many possible solutions to each formula. We demonstrate that it is sufficient to train on those particular solutions such that the neural network generalizes to the semantics of the logic. The neural network can predict solutions even for formulas from benchmarks from the literature on which the classical solver timed out. Additionally, we show that it solves a significant portion of problems from the annual synthesis competition (SYNTCOMP) and even out-of-distribution examples from a recent case study.Diese Arbeit befasst sich mit logischen Methoden und mehrschichtigen Lernmethoden fĂŒr das zeitabhĂ€ngige Argumentieren ĂŒber reaktive Systeme. In Teil I werden die Grenzen der Entscheidbarkeit des ErfĂŒllbarkeits- und des Realisierbarkeitsproblem von temporalen Hypereigenschaften bestimmt. Temporale Hypereigenschaften setzen mehrere Berechnungsspuren zueinander in Beziehung und werden in einer temporalen Hyperlogik ausgedrĂŒckt. Insbesondere werden entscheidbare Fragmente der hochexpressiven Hyperlogiken HyperQPTL und HyperCTL* identifiziert. Als Anwendung wird ein Enforcement-Mechanismus fĂŒr temporale Hypereigenschaften erarbeitet. Explizite Enforcement-Algorithmen fĂŒr Spezifikationen, die als Formeln in universell quantifiziertem HyperLTL angegeben werden, werden untersucht. In Teil II wird ein (mehrschichtiges) neuronales Netz auf den Problemen der Spurgenerierung und Realisierbarkeit von Linear-zeit Temporallogik (LTL) trainiert. Es wird eine Methode betrachtet, um aus praktischen Spezifikationsmustern große Mengen zusĂ€tzlicher Trainingsdaten zu generieren. Die Trainingsdaten werden mit klassischen Solvern generiert, die zu jeder Formel nur eine von vielen möglichen Lösungen liefern. Es wird gezeigt, dass es ausreichend ist, an diesen speziellen Lösungen zu trainieren, sodass das neuronale Netz zur Semantik der Logik generalisiert. Das neuronale Netz kann Lösungen sogar fĂŒr Formeln aus Benchmarks aus der Literatur vorhersagen, bei denen der klassische Solver eine ZeitĂŒberschreitung hatte. ZusĂ€tzlich wird gezeigt, dass das neuronale Netz einen erheblichen Teil der Probleme aus dem jĂ€hrlichen Synthesewettbewerb (SYNTCOMP) und sogar Beispiele außerhalb der Distribution aus einer aktuellen Fallstudie lösen kann

    Solving Infinite-State Games via Acceleration

    Full text link
    Two-player graph games have found numerous applications, most notably in the synthesis of reactive systems from temporal specifications, but also in verification. The relevance of infinite-state systems in these areas has lead to significant attention towards developing techniques for solving infinite-state games. We propose novel symbolic semi-algorithms for solving infinite-state games with ω\omega-regular winning conditions. The novelty of our approach lies in the introduction of an acceleration technique that enhances fixpoint-based game-solving methods and helps to avoid divergence. Classical fixpoint-based algorithms, when applied to infinite-state games, are bound to diverge in many cases, since they iteratively compute the set of states from which one player has a winning strategy. Our proposed approach can lead to convergence in cases where existing algorithms require an infinite number of iterations. This is achieved by acceleration: computing an infinite set of states from which a simpler sub-strategy can be iterated an unbounded number of times in order to win the game. Ours is the first method for solving infinite-state games to employ acceleration. Thanks to this, it is able to outperform state-of-the-art techniques on a range of benchmarks, as evidenced by our evaluation of a prototype implementation

    Formal Methods for Autonomous Systems

    Full text link
    Formal methods refer to rigorous, mathematical approaches to system development and have played a key role in establishing the correctness of safety-critical systems. The main building blocks of formal methods are models and specifications, which are analogous to behaviors and requirements in system design and give us the means to verify and synthesize system behaviors with formal guarantees. This monograph provides a survey of the current state of the art on applications of formal methods in the autonomous systems domain. We consider correct-by-construction synthesis under various formulations, including closed systems, reactive, and probabilistic settings. Beyond synthesizing systems in known environments, we address the concept of uncertainty and bound the behavior of systems that employ learning using formal methods. Further, we examine the synthesis of systems with monitoring, a mitigation technique for ensuring that once a system deviates from expected behavior, it knows a way of returning to normalcy. We also show how to overcome some limitations of formal methods themselves with learning. We conclude with future directions for formal methods in reinforcement learning, uncertainty, privacy, explainability of formal methods, and regulation and certification

    Project Final Report Use and Dissemination of Foreground

    Get PDF
    This document is the final report on use and dissemination of foreground, part of the CONNECT final report. The document provides the lists of: publications, dissemination activities, and exploitable foregroun

    Security Analysis of System Behaviour - From "Security by Design" to "Security at Runtime" -

    Get PDF
    The Internet today provides the environment for novel applications and processes which may evolve way beyond pre-planned scope and purpose. Security analysis is growing in complexity with the increase in functionality, connectivity, and dynamics of current electronic business processes. Technical processes within critical infrastructures also have to cope with these developments. To tackle the complexity of the security analysis, the application of models is becoming standard practice. However, model-based support for security analysis is not only needed in pre-operational phases but also during process execution, in order to provide situational security awareness at runtime. This cumulative thesis provides three major contributions to modelling methodology. Firstly, this thesis provides an approach for model-based analysis and verification of security and safety properties in order to support fault prevention and fault removal in system design or redesign. Furthermore, some construction principles for the design of well-behaved scalable systems are given. The second topic is the analysis of the exposition of vulnerabilities in the software components of networked systems to exploitation by internal or external threats. This kind of fault forecasting allows the security assessment of alternative system configurations and security policies. Validation and deployment of security policies that minimise the attack surface can now improve fault tolerance and mitigate the impact of successful attacks. Thirdly, the approach is extended to runtime applicability. An observing system monitors an event stream from the observed system with the aim to detect faults - deviations from the specified behaviour or security compliance violations - at runtime. Furthermore, knowledge about the expected behaviour given by an operational model is used to predict faults in the near future. Building on this, a holistic security management strategy is proposed. The architecture of the observing system is described and the applicability of model-based security analysis at runtime is demonstrated utilising processes from several industrial scenarios. The results of this cumulative thesis are provided by 19 selected peer-reviewed papers

    Formal Specification and Verification for Automated Production Systems

    Get PDF
    Complex industrial control software often drives safety- and mission-critical systems, like automated production plants or control units embedded into devices in automotive systems. Such controllers have in common that they are reactive systems, i.e., that they periodically read sensor stimuli and cyclically execute the same program to produce actuator signals. The correctness of software for automated production is rarely verified using formal techniques. Although, due to the Industrial Revolution 4.0 (IR4.0), the impact and importance of software have become an important role in industrial automation. What is used instead in industrial practice today is testing and simulation, where individual test cases are used to validate an automated production system. Three reasons why formal methods are not popular are: (a) It is difficult to adequately formulate the desired temporal properties. (b) There is a lack of specification languages for reactive systems that are both sufficiently expressive and comprehensible for practitioners. (c) Due to the lack of an environment model the obtained results are imprecise. Nonetheless, formal methods for automated production systems are well studied academically---mainly on the verification of safety properties via model checking. In this doctoral thesis we present the concept of (1) generalized test tables (GTTs), a new specification language for functional properties, and their extension (2) relational test tables (RTTs) for relational properties. The concept includes the syntactical notion, designed for the intuition of engineers, and the semantics, which are based on game theory. We use RTTs for a novel confidential property on reactive systems, the provably forgetting of information. Moreover, for regression verification, an important relational property, we are able to achieve performance improvements by (3) creating a decomposing rule which splits large proofs into small sub-task. We implemented the verification procedures and evaluated them against realistic case studies, e.g., the Pick-and-Place-Unit from the Technical University of Munich. The presented contribution follows the idea of lowering the obstacle of verifying the dependability of reactive systems in general, and automated production systems in particular for the engineer either by introducing a new specification language (GTTs), by exploiting existing programs for the specification (RTTs, regression verification), or by improving the verification performance

    Getting the point : obtaining and understanding fixpoints in model checking

    Get PDF
    corecore