1,281 research outputs found

    Runtime Verification of Temporal Properties over Out-of-order Data Streams

    Full text link
    We present a monitoring approach for verifying systems at runtime. Our approach targets systems whose components communicate with the monitors over unreliable channels, where messages can be delayed or lost. In contrast to prior works, whose property specification languages are limited to propositional temporal logics, our approach handles an extension of the real-time logic MTL with freeze quantifiers for reasoning about data values. We present its underlying theory based on a new three-valued semantics that is well suited to soundly and completely reason online about event streams in the presence of message delay or loss. We also evaluate our approach experimentally. Our prototype implementation processes hundreds of events per second in settings where messages are received out of order.Comment: long version of the CAV 2017 pape

    COST Action IC 1402 ArVI: Runtime Verification Beyond Monitoring -- Activity Report of Working Group 1

    Full text link
    This report presents the activities of the first working group of the COST Action ArVI, Runtime Verification beyond Monitoring. The report aims to provide an overview of some of the major core aspects involved in Runtime Verification. Runtime Verification is the field of research dedicated to the analysis of system executions. It is often seen as a discipline that studies how a system run satisfies or violates correctness properties. The report exposes a taxonomy of Runtime Verification (RV) presenting the terminology involved with the main concepts of the field. The report also develops the concept of instrumentation, the various ways to instrument systems, and the fundamental role of instrumentation in designing an RV framework. We also discuss how RV interplays with other verification techniques such as model-checking, deductive verification, model learning, testing, and runtime assertion checking. Finally, we propose challenges in monitoring quantitative and statistical data beyond detecting property violation

    Statically-analyzed stream monitoring for cyber-physical Systems

    Get PDF
    Cyber-physical systems are digital systems interacting with the physical world. Even though this induces an inherent complexity, they are responsible for safety-critical tasks like governing nuclear power plants or controlling autonomous vehicles. To preserve trust into the safety of such systems, this thesis presents a runtime verification approach designed to generate trustworthy monitors from a formal specification. These monitors are responsible for observing the cyber-physical system during runtime and ensuring its safety. As underlying language, I present the asynchronous real-time specification language RTLola. It contains primitives for arithmetic properties and grants precise control over the timing of the monitor. With this, it enables specifiers to express properties relevant to cyber-physical systems. The thesis further presents a static analysis that identifies inconsistencies in the specification and provides insights into the dynamic behavior of the monitor. As a result, the resource consumption of the monitor becomes predictable. The generation of the monitor produces either a hardware description synthesizable onto programmable hardware, or Rust code with verification annotation. These annotations allow for proving the correctness of the monitor with respect to the semantics of RTLola. Last, I present the construction of a conservative hybrid model of the underlying system using information extracted from the specification. This model enables further verification steps.Cyber-physische Systeme sind digitale Systeme, die mit der physischen Welt interagieren. Obwohl das zu einer inhärenten Komplexität führt, sind sie verantwortlich für sicherheitskritische Aufgaben wie der Steuerung von Kernkraftwerken oder autonomen Fahrzeugen. Umdas Vertrauen in deren Sicherheit zu wahren, präsentiert diese Doktorarbeit einen Ansatz zur Laufzeitverifikation, konzipiert, um vertrauenswürdige Monitore aus einer formalen Spezifikation zu generieren. Diese Monitore sind dafür verantwortlich, das cyber-physische System zur Laufzeit zu überwachen und dessen Sicherheit zu gewährleisten. Als zugrundeliegende Sprache präsentiere ich die asynchrone Echtzeit-Spezifikationssprache RTLola. Sie enthält Primitiven für arithmetische Eigenschaften und gewährt präzise Kontrolle über das Timing des Monitors. Damit wird es Spezifizierenden ermöglicht Eigenschaften auszudrücken, die für Cyber-physische Systeme relevant sind. Weiterhin präsentiert diese Doktorarbeit eine statische Analyse, die Unstimmigkeiten in der Spezifikation identifiziert und Einblicke in das dynamische Verhalten des Monitors liefert. Aufgrund dessen wird der Ressourcenverbrauch des Monitors vorhersehbar. Die Generierung des Monitors erzeugt entweder eine Hardwarebeschreibung, die auf programmierbarer Hardware synthetisiert werden kann, oder Rust Code mit Verifikationsannotationen. Diese Annotationen erlauben es, die Korrektheit des Monitors bezogen auf die Semantik von RTLola zu beweisen. Abschließend präsentiere ich die Konstruktion von einem konservativen hybriden Modell des zugrundeliegenden Systems anhand von Informationen, die aus der Spezifikation gewonnen wurden. Dieses Modell ermöglicht weitere Verifikationsschritte

    Runtime Enforcement of Timed Properties

    Get PDF
    International audienceRuntime enforcement is a powerful technique to ensure that a running system respects some desired properties. Using an enforcement monitor, an (untrustworthy) input execution (in the form of a sequence of events) is modified into an output sequence that complies to a property. Runtime enforcement has been extensively studied over the last decade in the context of untimed properties. This paper introduces runtime enforcement of timed properties. We revisit the foundations of runtime enforcement when time between events matters.We show how runtime enforcers can be synthesized for any safety or co-safety timed property. Proposed runtime enforcers are time retardant: to produce an output sequence, additional delays are introduced between the events of the input sequence to correct it. Runtime enforcers have been prototyped and our simulation experiments validate their effectiveness

    Hybrid Multiresolution Simulation & Model Checking: Network-On-Chip Systems

    Get PDF
    abstract: Designers employ a variety of modeling theories and methodologies to create functional models of discrete network systems. These dynamical models are evaluated using verification and validation techniques throughout incremental design stages. Models created for these systems should directly represent their growing complexity with respect to composition and heterogeneity. Similar to software engineering practices, incremental model design is required for complex system design. As a result, models at early increments are significantly simpler relative to real systems. While experimenting (verification or validation) on models at early increments are computationally less demanding, the results of these experiments are less trustworthy and less rewarding. At any increment of design, a set of tools and technique are required for controlling the complexity of models and experimentation. A complex system such as Network-on-Chip (NoC) may benefit from incremental design stages. Current design methods for NoC rely on multiple models developed using various modeling frameworks. It is useful to develop frameworks that can formalize the relationships among these models. Fine-grain models are derived using their coarse-grain counterparts. Moreover, validation and verification capability at various design stages enabled through disciplined model conversion is very beneficial. In this research, Multiresolution Modeling (MRM) is used for system level design of NoC. MRM aids in creating a family of models at different levels of scale and complexity with well-formed relationships. In addition, a variant of the Discrete Event System Specification (DEVS) formalism is proposed which supports model checking. Hierarchical models of Network-on-Chip components may be created at different resolutions while each model can be validated using discrete-event simulation and verified via state exploration. System property expressions are defined in the DEVS language and developed as Transducers which can be applied seamlessly for model checking and simulation purposes. Multiresolution Modeling with verification and validation capabilities of this framework complement one another. MRM manages the scale and complexity of models which in turn can reduces V&V time and effort and conversely the V&V helps ensure correctness of models at multiple resolutions. This framework is realized through extending the DEVS-Suite simulator and its applicability demonstrated for exemplar NoC models.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Verifying service continuity in a satellite reconfiguration procedure: application to a satellite

    Get PDF
    The paper discusses the use of the TURTLE UML profile to model and verify service continuity during dynamic reconfiguration of embedded software, and space-based telecommunication software in particular. TURTLE extends UML class diagrams with composition operators, and activity diagrams with temporal operators. Translating TURTLE to the formal description technique RT-LOTOS gives the profile a formal semantics and makes it possible to reuse verification techniques implemented by the RTL, the RT-LOTOS toolkit developed at LAAS-CNRS. The paper proposes a modeling and formal validation methodology based on TURTLE and RTL, and discusses its application to a payload software application in charge of an embedded packet switch. The paper demonstrates the benefits of using TURTLE to prove service continuity for dynamic reconfiguration of embedded software
    corecore