25,870 research outputs found

    High Energy Physics Forum for Computational Excellence: Working Group Reports (I. Applications Software II. Software Libraries and Tools III. Systems)

    Full text link
    Computing plays an essential role in all aspects of high energy physics. As computational technology evolves rapidly in new directions, and data throughput and volume continue to follow a steep trend-line, it is important for the HEP community to develop an effective response to a series of expected challenges. In order to help shape the desired response, the HEP Forum for Computational Excellence (HEP-FCE) initiated a roadmap planning activity with two key overlapping drivers -- 1) software effectiveness, and 2) infrastructure and expertise advancement. The HEP-FCE formed three working groups, 1) Applications Software, 2) Software Libraries and Tools, and 3) Systems (including systems software), to provide an overview of the current status of HEP computing and to present findings and opportunities for the desired HEP computational roadmap. The final versions of the reports are combined in this document, and are presented along with introductory material.Comment: 72 page

    Continuous Performance Benchmarking Framework for ROOT

    Get PDF
    Foundational software libraries such as ROOT are under intense pressure to avoid software regression, including performance regressions. Continuous performance benchmarking, as a part of continuous integration and other code quality testing, is an industry best-practice to understand how the performance of a software product evolves over time. We present a framework, built from industry best practices and tools, to help to understand ROOT code performance and monitor the efficiency of the code for a several processor architectures. It additionally allows historical performance measurements for ROOT I/O, vectorization and parallelization sub-systems.Comment: 8 pages, 5 figures, CHEP 2018 - 23rd International Conference on Computing in High Energy and Nuclear Physic

    LIKWID Monitoring Stack: A flexible framework enabling job specific performance monitoring for the masses

    Full text link
    System monitoring is an established tool to measure the utilization and health of HPC systems. Usually system monitoring infrastructures make no connection to job information and do not utilize hardware performance monitoring (HPM) data. To increase the efficient use of HPC systems automatic and continuous performance monitoring of jobs is an essential component. It can help to identify pathological cases, provides instant performance feedback to the users, offers initial data to judge on the optimization potential of applications and helps to build a statistical foundation about application specific system usage. The LIKWID monitoring stack is a modular framework build on top of the LIKWID tools library. It aims on enabling job specific performance monitoring using HPM data, system metrics and application-level data for small to medium sized commodity clusters. Moreover, it is designed to integrate in existing monitoring infrastructures to speed up the change from pure system monitoring to job-aware monitoring.Comment: 4 pages, 4 figures. Accepted for HPCMASPA 2017, the Workshop on Monitoring and Analysis for High Performance Computing Systems Plus Applications, held in conjunction with IEEE Cluster 2017, Honolulu, HI, September 5, 201

    MGSim - Simulation tools for multi-core processor architectures

    Get PDF
    MGSim is an open source discrete event simulator for on-chip hardware components, developed at the University of Amsterdam. It is intended to be a research and teaching vehicle to study the fine-grained hardware/software interactions on many-core and hardware multithreaded processors. It includes support for core models with different instruction sets, a configurable multi-core interconnect, multiple configurable cache and memory models, a dedicated I/O subsystem, and comprehensive monitoring and interaction facilities. The default model configuration shipped with MGSim implements Microgrids, a many-core architecture with hardware concurrency management. MGSim is furthermore written mostly in C++ and uses object classes to represent chip components. It is optimized for architecture models that can be described as process networks.Comment: 33 pages, 22 figures, 4 listings, 2 table

    Rational physical agent reasoning beyond logic

    No full text
    The paper addresses the problem of defining a theoretical physical agent framework that satisfies practical requirements of programmability by non-programmer engineers and at the same time permitting fast realtime operation of agents on digital computer networks. The objective of the new framework is to enable the satisfaction of performance requirements on autonomous vehicles and robots in space exploration, deep underwater exploration, defense reconnaissance, automated manufacturing and household automation

    A Monitoring Language for Run Time and Post-Mortem Behavior Analysis and Visualization

    Get PDF
    UFO is a new implementation of FORMAN, a declarative monitoring language, in which rules are compiled into execution monitors that run on a virtual machine supported by the Alamo monitor architecture.Comment: In M. Ronsse, K. De Bosschere (eds), proceedings of the Fifth International Workshop on Automated Debugging (AADEBUG 2003), September 2003, Ghent. cs.SE/030902

    Model based code generation for distributed embedded systems

    Get PDF
    Embedded systems are becoming increasingly complex and more distributed. Cost and quality requirements necessitate reuse of the functional software components for multiple deployment architectures. An important step is the allocation of software components to hardware. During this process the differences between the hardware and application software architectures must be reconciled. In this paper we discuss an architecture driven approach involving model-based techniques to resolve these differences and integrate hardware and software components. The system architecture serves as the underpinning based on which distributed real-time components can be generated. Generation of various embedded system architectures using the same functional architecture is discussed. The approach leverages the following technologies – IME (Integrated Modeling Environment), the SAE AADL (Architecture Analysis and Design Language), and Ocarina. The approach is illustrated using the electronic throttle control system as a case study

    Interactive Visual Analysis of Networked Systems: Workflows for Two Industrial Domains

    Get PDF
    We report on a first study of interactive visual analysis of networked systems. Working with ABB Corporate Research and Ericsson Research, we have created workflows which demonstrate the potential of visualization in the domains of industrial automation and telecommunications. By a workflow in this context, we mean a sequence of visualizations and the actions for generating them. Visualizations can be any images that represent properties of the data sets analyzed, and actions typically either change the selection of data visualized or change the visualization by choice of technique or change of parameters
    • …
    corecore