1,061 research outputs found

    Improving OWL RL reasoning in N3 by using specialized rules

    Get PDF
    Semantic Web reasoning can be a complex task: depending on the amount of data and the ontologies involved, traditional OWL DL reasoners can be too slow to face problems in real time. An alternative is to use a rule-based reasoner together with the OWL RL/RDF rules as stated in the specification of the OWL 2 language profiles. In most cases this approach actually improves reasoning times, but due to the complexity of the rules, not as much as it could. In this paper we present an improved strategy: based on the TBoxes of the ontologies involved in a reasoning task, we create more specific rules which then can be used for further reasoning. We make use of the EYE reasoner and its logic Notation3. In this logic, rules can be employed to derive new rules which makes the rule creation a reasoning step on its own. We evaluate our implementation on a semantic nurse call system. Our results show that adding a pre-reasoning step to produce specialized rules improves reasoning times by around 75 %

    A Logical Framework for the Representation and Verification of Context-aware Agents

    Get PDF
    © 2014, Springer Science+Business Media New York. We propose a logical framework for modelling and verifying context-aware multi-agent systems. We extend CTL∗ with belief and communication modalities, and the resulting logic 𝓛OCRS allows us to describe a set of rule-based reasoning agents with bound on time, memory and communication. The set of rules which are used to model a desired systems is derived from OWL 2 RL ontologies. We provide an axiomatization of the logic and prove it is sound and complete. We show how Maude rewriting system can be used to encode and verify interesting properties of 𝓛OCRS models using existing model checking techniques

    Datalog Rewritability of Disjunctive Datalog Programs and its Applications to Ontology Reasoning

    Full text link
    We study the problem of rewriting a disjunctive datalog program into plain datalog. We show that a disjunctive program is rewritable if and only if it is equivalent to a linear disjunctive program, thus providing a novel characterisation of datalog rewritability. Motivated by this result, we propose weakly linear disjunctive datalog---a novel rule-based KR language that extends both datalog and linear disjunctive datalog and for which reasoning is tractable in data complexity. We then explore applications of weakly linear programs to ontology reasoning and propose a tractable extension of OWL 2 RL with disjunctive axioms. Our empirical results suggest that many non-Horn ontologies can be reduced to weakly linear programs and that query answering over such ontologies using a datalog engine is feasible in practice.Comment: 14 pages. To appear at AAAI-1

    Reasoning in the OWL 2 Full Ontology Language using First-Order Automated Theorem Proving

    Full text link
    OWL 2 has been standardized by the World Wide Web Consortium (W3C) as a family of ontology languages for the Semantic Web. The most expressive of these languages is OWL 2 Full, but to date no reasoner has been implemented for this language. Consistency and entailment checking are known to be undecidable for OWL 2 Full. We have translated a large fragment of the OWL 2 Full semantics into first-order logic, and used automated theorem proving systems to do reasoning based on this theory. The results are promising, and indicate that this approach can be applied in practice for effective OWL reasoning, beyond the capabilities of current Semantic Web reasoners. This is an extended version of a paper with the same title that has been published at CADE 2011, LNAI 6803, pp. 446-460. The extended version provides appendices with additional resources that were used in the reported evaluation

    Ambient-aware continuous care through semantic context dissemination

    Get PDF
    Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results

    Tractable approximate deduction for OWL

    Get PDF
    Acknowledgements This work has been partially supported by the European project Marrying Ontologies and Software Technologies (EU ICT2008-216691), the European project Knowledge Driven Data Exploitation (EU FP7/IAPP2011-286348), the UK EPSRC project WhatIf (EP/J014354/1). The authors thank Prof. Ian Horrocks and Dr. Giorgos Stoilos for their helpful discussion on role subsumptions. The authors thank Rafael S. Gonçalves et al. for providing their hotspots ontologies. The authors also thank BoC-group for providing their ADOxx Metamodelling ontologies.Peer reviewedPostprin

    A set-based reasoner for the description logic \shdlssx (Extended Version)

    Full text link
    We present a \ke-based implementation of a reasoner for a decidable fragment of (stratified) set theory expressing the description logic \dlssx (\shdlssx, for short). Our application solves the main TBox and ABox reasoning problems for \shdlssx. In particular, it solves the consistency problem for \shdlssx-knowledge bases represented in set-theoretic terms, and a generalization of the \emph{Conjunctive Query Answering} problem in which conjunctive queries with variables of three sorts are admitted. The reasoner, which extends and optimizes a previous prototype for the consistency checking of \shdlssx-knowledge bases (see \cite{cilc17}), is implemented in \textsf{C++}. It supports \shdlssx-knowledge bases serialized in the OWL/XML format, and it admits also rules expressed in SWRL (Semantic Web Rule Language).Comment: arXiv admin note: text overlap with arXiv:1804.11222, arXiv:1707.07545, arXiv:1702.0309

    A survey of large-scale reasoning on the Web of data

    Get PDF
    As more and more data is being generated by sensor networks, social media and organizations, the Webinterlinking this wealth of information becomes more complex. This is particularly true for the so-calledWeb of Data, in which data is semantically enriched and interlinked using ontologies. In this large anduncoordinated environment, reasoning can be used to check the consistency of the data and of asso-ciated ontologies, or to infer logical consequences which, in turn, can be used to obtain new insightsfrom the data. However, reasoning approaches need to be scalable in order to enable reasoning over theentire Web of Data. To address this problem, several high-performance reasoning systems, whichmainly implement distributed or parallel algorithms, have been proposed in the last few years. Thesesystems differ significantly; for instance in terms of reasoning expressivity, computational propertiessuch as completeness, or reasoning objectives. In order to provide afirst complete overview of thefield,this paper reports a systematic review of such scalable reasoning approaches over various ontologicallanguages, reporting details about the methods and over the conducted experiments. We highlight theshortcomings of these approaches and discuss some of the open problems related to performing scalablereasoning
    corecore