
VU Research Portal

A survey of large-scale reasoning on the Web of data

Antoniou, Grigoris; Batsakis, Sotiris; Mutharaju, Raghava; Pan, Jeff Z.; Qi, Guilin;
Tachmazidis, Ilias; Urbani, Jacopo; Zhou, Zhangquan

published in
Knowledge Engineering Review
2018

DOI (link to publisher)
10.1017/S0269888918000255

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Antoniou, G., Batsakis, S., Mutharaju, R., Pan, J. Z., Qi, G., Tachmazidis, I., Urbani, J., & Zhou, Z. (2018). A
survey of large-scale reasoning on the Web of data. Knowledge Engineering Review, 33, 1-43. [e21].
https://doi.org/10.1017/S0269888918000255

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303696367?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1017/S0269888918000255
https://research.vu.nl/en/publications/43c8a217-7d61-4020-a4a7-1392346e39c7
https://doi.org/10.1017/S0269888918000255

A survey of large-scale reasoning on the
Web of data

GRIGORIS ANTONIOU1, SOTIRIS BATSAKIS1, RAGHAVA MUTHARAJU2,
JEFF Z. PAN3, GUILIN QI4 , ILIAS TACHMAZIDIS1, JACOPO URBANI5 and
ZHANGQUAN ZHOU4

1School of Computing and Engineering, University of Huddersfield, UK;
e-mail: G.Antoniou@hud.ac.uk, S.Batsakis@hud.ac.uk, I.Tachmazidis@hud.ac.uk;
2GE Global Research, USA;
e-mail: raghava.mutharaju@ge.com;
3Department of Computing Science, The University of Aberdeen, UK;
e-mail: jeff.z.pan@abdn.ac.uk;
4School of Computer Science and Engineering, Southeast University, China;
e-mail: gqi@seu.edu.cn, quanzz@seu.edu.cn;
5Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands;
e-mail: jacopo@cs.vu.nl;

Abstract

As more and more data is being generated by sensor networks, social media and organizations, the Web
interlinking this wealth of information becomes more complex. This is particularly true for the so-called
Web of Data, in which data is semantically enriched and interlinked using ontologies. In this large and
uncoordinated environment, reasoning can be used to check the consistency of the data and of asso-
ciated ontologies, or to infer logical consequences which, in turn, can be used to obtain new insights
from the data. However, reasoning approaches need to be scalable in order to enable reasoning over the
entire Web of Data. To address this problem, several high-performance reasoning systems, which
mainly implement distributed or parallel algorithms, have been proposed in the last few years. These
systems differ significantly; for instance in terms of reasoning expressivity, computational properties
such as completeness, or reasoning objectives. In order to provide a first complete overview of the field,
this paper reports a systematic review of such scalable reasoning approaches over various ontological
languages, reporting details about the methods and over the conducted experiments. We highlight the
shortcomings of these approaches and discuss some of the open problems related to performing scalable
reasoning.

1 Introduction

Huge amounts of data are being generated at an increasing pace by sensor networks, government autho-
rities and social media. The challenge of managing this data and processing it in a way that uncovers
hidden insights has come to be known under the term big data and is at the core of many contemporary
scientific, technological and business developments.

Usually, machine learning and data mining techniques are applied on big data in order to uncover
patterns hidden in the data, thus allowing new insights. However, other disciplines are also relevant to the
big data challenge, in particular knowledge and semantic technologies. These approaches are useful
because, among others, they:

The Knowledge Engineering Review, Vol. 33, e21, 1–43. © Cambridge University Press, 2018
doi:10.1017/S0269888918000255

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

mailto:G.Antoniou@hud.ac.uk
mailto:S.Batsakis@hud.ac.uk
mailto:I.Tachmazidis@hud.ac.uk
mailto:raghava.mutharaju@ge.com
mailto:jeff.z.pan@abdn.ac.uk
mailto:gqi@seu.edu.cn
mailto:quanzz@seu.edu.cn
mailto:jacopo@cs.vu.nl
https://doi.org/10.1017/S0269888918000255
https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

∙ can enrich data through the use of semantic structures (ontologies), thus adding value;
∙ allow data to be combined with other information, including database and web data, by overcoming
semantic interoperability barriers, thus making data more useful;

∙ provide methods for decision making/support based on the wealth of data available. These methods rely
on the derivation of non-trivial information from an existing information through a process that is
commonly referred to as reasoning. The importance of reasoning is demonstrated by tasks such as
consistency checking, which are critical in large-scale applications involving heterogeneous data.

In this context,Web of Data is an umbrella term to indicate a large number of information sources that
are publicly available on the Web and that are interlinked through the usage of shared ontologies as
discussed in Horrocks (2008). Data is typically encoded using the resource description framework (RDF)
language, whose semantics was formally defined by W3C in Hayes (2004). A number of ontological
languages have been built either on top of RDF data, or designed to work with it, and reasoning is used to
derive new information. Widely used semantic schemas include those contained for example in schema.
org, endorsed by leading search engines, such as Google and Bing. The volume of linked open data
(LOD), that is, interconnected open data sets in RDF format, has grown exponentially in recent years1,
thus raising the complexity of reasoning over this data.

Reasoning is in practice a very challenging problem, due to the large amount of data that is involved in
this process. Common reasoning tasks such as classification and inconsistency detection are needed when
heterogeneous data is interlinked. Reasoning is a first step for inconsistency detection that in turn is needed
for proper diagnosis and repair of errors in a data set, before further analysis can be applied. In addition,
when querying data, reasoning must be applied in order to retrieve inferred information and to provide
more complete and meaningful answers.

There are significant challenges arising from the area’s traditional focus on small but expressive
knowledge bases (KBs) instead of KBs with large amounts of data assertions, and its reliance on cen-
tralized in-memory solutions. Centralized in-memory techniques are constantly improving, for example,
some large KBs that used to take hours to classify 10–15 yr ago can now be classified within 5 s. However,
it is quite clear that they cannot work at, say, Web scale. Thus, the question arises whether the reasoning
community, as found in the areas of knowledge representation, rule systems, logic programming and
Semantic Web, can raise to the big data challenge.

As discussed in Fensel et al. (2008), reasoning on the large scale can be achieved through paralleli-
zation by distributing the computation among nodes. There are several dimensions to consider when
dealing with large-scale reasoning, such as the target formalism (ontology language), the supported rea-
soning tasks and the data set size, which influence the algorithm and implementation. There are mainly two
proposed approaches in the literature, namely rule/knowledge partitioning and data partitioning as dis-
cussed in Soma and Prasanna (2008)). In the case of rule/knowledge partitioning, the computation of each
rule is assigned to a node in the cluster. Thus, the workload for each rule (and node) depends on the
structure and the size of the given rule set, which could possibly prevent balanced work distribution and
high scalability. On the other hand, for the case of data partitioning, data is divided in chunks with each
chunk assigned to a node, allowing more balanced distribution of the computation among nodes.

Parallel reasoning, mainly based on data partitioning, has been studied extensively in the past few
years. A wealth of approaches has emerged, studying a wide range of representation and reasoning
approaches on various computational architectures. The increasing application of both big data and
semantic technologies (ontologies, LOD) make this area of research an important direction of research,
critical for the implementation of large-scale intelligent applications. The aim of this paper is to provide an
overview of this recent body of research, analyze the state of the art and emerging trends and highlight
some important research questions worth pursuing. The target audience are researchers and practitioners
in the area of semantic and knowledge technologies who are interested to learn about making these
technologies scalable using massively parallel approaches.

1 http://lod-cloud.net/

G . A N T O N I O U E T A L .2

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

http://lod-cloud.net/
https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

The paper is organized as follows. Section 2 provides basic background information on the ontology
languages covered in this paper. Section 3 provides a brief introduction of the computational models that
are used by the parallel reasoning approaches reviewed. Section 4 presents the criteria against which the
approaches are evaluated. Section 5 describes the main approaches in the area of massively parallel
reasoning. Section 5 is organized according to the criteria defined in Section 4. Section 6 provides a critical
analysis of the state of the art. Finally, Section 7 discusses some important trends and areas of future
research.

2 Background

We start our discussion by introducing some background notions to better contextualize the parallel rea-
soning approaches that will be reviewed in this paper. A KB can be broadly defined as a set of asserted facts
and axioms. A KB typically contains statements about specific individuals and axioms about categories (or
classes, or types), and their properties that apply on corresponding individuals. A KB can contain only
knowledge on a specific domain or be more generic, for instance by encoding common-sense knowledge.

In order to express the factual knowledge in a clear an unambiguous way, KBs are constructed using
formal definitions of concepts and categories and their properties and relations, which are known as
ontologies as discussed in Horrocks (2008). Several languages were proposed to serialize the ontologies in
a machine-readable way (see below). These languages can be more or less expressive by allowing the
definition of more or less complex relations between the various concepts. Since ontological languages are
grounded in logic, we can infer new conclusions from the content of the KB and the ontological language
used in it. This process is known as reasoning. Common reasoning tasks are:

∙ Materialization refers to the inference of implied facts from the given data and the ontology, based on
the semantics of the ontology language used. Materialization can be total or partial (i.e. inference of all
implied facts or a subset of inferred facts respectively). Typically materialization is achieved using
forward chaining, that is, applying axioms and rules to existing facts in order to derive new facts. In
backward chaining the starting point for reasoning is a goal or query and execution of rules aims at
matching required facts in rule bodies with existing facts, backward chaining is typically used in query
answering. Closure and classification are tasks similar to materialization.

∙ Closure is the process of inferring facts implied by existing rules and axioms and it is often applied in an
ontology TBox, full closure is equivalent to full materialization.

∙ Classification is the process of inferring the subsumption hierarchies for classes and properties and is
related to materialization and closure. Notice that, closure could also refer to logic programming, while
classification is used in description logics.

∙ Consistency checking is the process of checking whether a KB is consistent, that is, it does not contain
any contradiction.

∙ Subsumption is the process of checking whether a concept defined in an ontology is a specialization of
(is subsumed by) another concept.

∙ Concept satisfiability is the process of checking whether individuals satisfying the definition and
restrictions of a specific concept can exist, or whether the concept has to be empty by definition.

∙ Instance checking is the process of inferring which concepts/properties apply to a specific individual.
This is related to classification task but inference process is applied on individuals instead of classes/
properties as in classification.

∙ Finding justifications is the task of identifying the facts and axioms that lead to a particular conclusion.

In the context of the Web, reasoning is very valuable for inferring new factual information. Despite the
fact that modern KBs contain billion of facts (e.g. DBPedia, presented in Bizer et al. (2009), Wikidata
presented in Vrandečić & Krötzsch (2014)), it is well-known that they are still highly incomplete. By
exploiting the knowledge stored in the ontology, reasoners can derive many new conclusions from the
input data. In this context, the large size of theWeb of Data allows us to derive a large wealth of potentially
new information, provided that the reasoning system is robust enough to handle the computation at such
a scale.

A survey of large-scale reasoning on the web of data 3

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Reasoning is also very valuable to verify whether a given system (which could be a large organization,
or a physical machine like a vehicle) is performing without any fault. On the Web, knowledge is produced
in a multi-domain and uncoordinated fashion, thus it is an error-prone process. For instance, a recent
empirical study observed that there is a non-negligible number of publicly available KBs which are
inconsistent (see Bazoobandi et al., 2017). In such cases, reasoning can be used not only to detect the
inconsistency(ies), but also to repair it(them). In fact, another valuable feature of reasoning is that its
output is fully interpretable since it is the result of a logical process. Therefore, reasoners can be used to
“trace” the reason for the inconsistency and thus allow a quick repair.

In the following, we will first describe the two major ontological languages that allow non-trivial
inference used on the Web of Data: RDF schema (Â§2.1) and ontology Web langage (OWL) (Â§2.2).
Then, we introduce datalog (Â§2.3) and nonmonotonic reasoning (Â§2.4), which are two closely related
formalisms used to perform reasoning.

2.1 RDF schema

We assume a basic familiarity of the reader with the RDF language, that is, the W3C standard for
representing information in the form of subject-predicate-object triplets2. RDF schema is an extension of
RDF which provides an additional vocabulary to describe relations between classes and properties; spe-
cific datatypes and containers such as lists are also supported. Among others, RDF schema allows the
definition of domain and range of properties, as well as class and property hierarchies (subsumption
relationships). The semantics of RDF schema is defined via the well-knownmodel-set semantics presented
in Hayes (2004) which allows the inference of additional consequences through a logical process.

Most of the inference processes on RDFS can be performed by the application of simple rules and have
desirable computational properties: they are tractable when function symbols are not used. However, a
complete materialization of all conclusions is impossible in the general case because the language contains
an infinite number of axioms as pointed out by ter Horst in ter Horst (2005). Therefore, all RDFS reasoning
engines are bound to be incomplete.

2.1.1 ρdf
As mentioned above, reasoning over RDFS is incomplete if full specification is taken into account;
moreover reasoning can be complex even if RDFS fragments containing specific constructs are used as
discussed in Muñoz et al. (2009). In order to overcome these problems, ρdf is proposed in Muñoz et al.
(2009) as a smaller fragment of RDFS that captures the main features of RDFS and avoids rare cases that
must be considered in the full RDFS specification. In practice, this fragment reduces the reasoning to the
type inference from the domain/range of properties, and subclasses/subproperties inheritance and transi-
tivity, and it is the fragment of RDFS that is typically used in large-scale reasoning.

2.2 Ontology Web langage (OWL)

RDFS allows for definitions of taxonomies of concepts and properties and specification of domains and
ranges of properties but it does not support more complex definitions of concepts and restrictions of
concepts. Concepts corresponding to expressions such as “a teacher teaches at least one class” or “persons
with three children are entitled to additional social benefits” cannot be represented using RDFS, thus an
ontology definition language with additional expressivity has been introduced for such definitions. OWL
(see Hitzler et al., 2009) is the standard Web ontology language from W3C, with its first version stan-
dardized in 2009 and second version (OWL 2) in 2012. The OWL allows the definitions of vocabularies
for annotating RDF data with complex axioms. Axioms such as cardinality restrictions over properties,
existential and universal quantifications, intersection, union, disjointness of concepts, symmetry and
transitivity of properties among others. There are two semantics which are associated to OWL: the direct
semantics, which is underpinned in description logics (DL), and the RDF-based semantics, which is

2 https://www.w3.org/TR/2004/REC-rdf-primer-20040210/

G . A N T O N I O U E T A L .4

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://www.w3.org/TR/2004/REC-rdf-primer-20040210/
https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

compatible with the RDF semantics. The correspondence between these two semantics was well analyzed
by the standardization committee. While OWL 2 is decidable, worst case computational complexity of
reasoning tasks is intractable (N2ExpTime-complete) thus fragments of OWL (OWL profiles) that allow
for efficient reasoning have been defined.

2.2.1 OWL 2 profiles
The OWL standardization provides three sets of syntactic restrictions that trade some expressivity in order
to improve the computational complexity. These are:

∙ OWL QL. OWL QL (short for OWL query language) is designed for query answering through
knowledge expressed in OWL. It is underpinned by the family of DL-Lite in Calvanese et al. (2007).
The core of DL-Lite allows concepts being defined through conjunction and existential quantification;
concept inclusions and role inclusions are the main axioms in DL-Lite. DL-Lite has several extensions
with more DL constructors imported. Reasoning over OWL QL is LogSpace with respect to the size of
the instance data (also known as assertions). OWL QL provides enough features necessary for
expressing conceptual models such as unified modeling language and entity relationship diagrams. In
particular, OWL QL also contains the intersection of RDFS and OWL 2 DL. One can rewrite the OWL
QL queries into structured query language queries that are then answered by the relational database
management system, without any changes to the data in form of relational tuples. OWL-2QL has mainly
been established for tractable query answering where query answering is done through query rewriting
??? since materialization is not always possible. In Calvanese et al. (2007) one of the first such
algorithms called perfect reformulation is presented. Query rewriting for more expressive constraints/
axioms than OWL-2QL can be captured by tuple generating dependencies (TGDs) and equality
generating dependencies (EGDs) and a combined approach to query answering for several classes of
TGDs has been studied in Gottlob et al. (2014). In Benedikt et al. (2017) an evaluation of systems
supporting forward-chaining under TGDs and EGDs is presented. OWL QL can also be used to support
classification services as discussed in Lembo et al. (2013). A reasoner of OWL QL classification is
publicly available in Lembo et al. (2013).

∙ OWL EL. OWL EL is underpinned by the family of DLs EL in Baader et al. (2005). The core of EL is
also based on conjunction and existential quantification, allowing concept inclusions and role
inclusions. Its main extension EL + + also supports role chains and nominal classes. Moreover, one can
add range restrictions for roles as discussed in Baader et al. (2008). Reasoning over EL + + ontologies is
in the complexity PTime-complete as discussed in Baader et al. (2005). OWL EL has been widely
adopted in several domains, in particular in the bio-medical domains (see the work on Gene Ontology3

and SNOMED CT4). Recently, OWL EL has also been used for traffic congestions diagnosing in Lécué
et al. (2014). CEL presented in Baader et al. (2006) and ELK presented in Kazakov et al. (2011) are the
two state-of-the-art reasoners for OWL EL reasoning.

∙ OWL RL. OWL RL can be seen as an improved version of pD* as discussed in ter Horst (2005). The
specification document5 contains about 80 first-order logic rules that can be used to implement such an
OWL RL reasoner. These rules can also be applied to sets of RDF triples. For example, a rule that
describes the symmetric property of the owl:sameAs axiom expressed using ternary predicate T is
written: T(?x,owl:sameAs,?y)→ T(?y,owl:sameAs,?x). The computational complexity of reasoning with
OWL RL is polynomial in the size of the processed ontology. OWL RL is designed for the applications
that require quite a bit of the expressivity of OWL 2 DL, but also require scalable reasoning. The first
reasoner that handles OWL RL is DLEJena in Meditskos and Bassiliades (2010) which is implemented
based on Jena APIs and the Pellet reasoner. A highly scalable OWL RL reasoner is proposed in
Kolovski et al. (2010), which can be applied to RDF-based data on the Oracle database system.

3 http://geneontology.org/
4 http://www.ihtsdo.org/
5 http://www.w3.org/TR/owl2-profiles/

A survey of large-scale reasoning on the web of data 5

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

http://geneontology.org/
http://www.ihtsdo.org/
http://www.w3.org/TR/owl2-profiles/
https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

2.3 Datalog

Datalog is a QL based on function-free Horn rules and has been used as a data model for relational
databases (Abiteboul et al., 1995). A datalog program consists of facts about a subject of interest and
datalog rules to deduce new facts implicit in the data. A datalog rule is in the following form.

B1; :::;Bn ! H (1)

In the rule (1), H is referred to as the head atom and B1,...,Bn the body atoms. Facts can be seen as rows
in a relational database table, while rules can be used to enrich database queries. The traditional datalog is
designed as a QL for deductive databases. In recent years, datalog has also been widely exploited in other
applications, such as declarative networking, program analysis, distributed social networking and security
as discussed in Huang et al. (2011).

The evaluation of datalog programs can be either query-driven or not. Query-driven evaluation receives
in input an initial query which should contain the final answers of the computation. Non query-driven
evaluation does not receive any query in input, and hence focuses on applying all the rules in the program
until fixpoint. We call this last type of processing materialization since its goal is to derive any possible
conclusion that can be entailed. Traditionally, query-driven evaluation is executed in a top-down fashion,
trying to limit the derivation to only answers that are relevant for the input query. However, query-driven
evaluation can be implemented also with a bottom-up approach: The Magic-sets algorithm is perhaps the
most famous example of query-driven bottom-up approach as discussed in Abiteboul et al. (1995).
Materialization is typically implemented in a bottom-up fashion. The most important datalog bottom-up
algorithm is called semi-naive evaluation (see Abiteboul et al., 1995) and all bottom-up approaches which
are discussed in this paper implement variants of this algorithm. The complexity of datalog evaluation is
well-known: The data complexity is PTime-complete, and the program complexity and combined com-
plexity are both ExpTime-complete as discussed in Ullman (1989).

2.4 Nonmonotonic reasoning

Nonmonotonic reasoning presented in Antoniou and Williams (1997) is a family of logics and associated
reasoning algorithms that can deal with imperfect information. Imperfection may be caused by missing
(incomplete) information, erroneous data, inconsistencies in knowledge structures caused, for example, by
combining various ontologies or by evolving knowledge.

A prominent computationally simple approach is the well-founded semantics (WFS) presented in
Gelder et al. (1991), which considers logic programs with negation and provides a way of interpreting
negation. Essentially, it does so by assigning truth values to atoms only if the existing knowledge (the logic
program at hand) makes it necessary to do so. So it is a sceptical kind of semantics. Its computational
complexity is polynomial, the fastest reasoning algorithm for computing the WFS is quadratic.

Another computationally simple approach is the family of default logics presented in Billington et al.
(2010). Its driving idea is that rules may support contradictory conclusions, and it uses a priority relation to
resolve such conflicts in a sceptical way, if possible. In a nutshell, a conclusion is drawn if it is supported
by facts or rules, and all possible attacks (rules supporting its negation) are successfully countered by
stronger supporting rules. Defeasible logics lie at the intersection of logic programming and systems of
argumentation, and the most basic defeasible logic has linear complexity.

More expressive nonmonotonic reasoning approaches have also emerged, the most prominent being
answer-set programming (ASP) presented in Gelfond (2008). Like WFS it is an approach that interprets
negation in logic programs. The idea is to compute answer sets, maximal and consistent alternative ‘world
views’, based on the existing knowledge. Each answer set represents a credulous way of resolving con-
flicts in the KB. ASP has exponential complexity, so on the one hand it can represent richer problems
compared to the approaches outlined above, but on the other hand it poses big challenges in terms of
computation, particularly w.r.t. run time.

After providing a brief overview of reasoning approaches above we turn our attention to computational
models in the next section.

G . A N T O N I O U E T A L .6

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

3 Computing models

In this section, we briefly introduce the various computing models used for large-scale reasoning. These
are the models that are used in large-scale reasoning systems presented in Section 5, thus a presentation of
computing models is needed in order to understand the implementation details of these systems.

3.1 MapReduce framework

MapReduce is a programming model for distributed processing of data on clusters of machines (each
machine being called a node) presented in Dean and Ghemawat (2004). MapReduce transforms lists of
input data elements into lists of output data elements. This happens twice, once in a map and again in
reduce. The terms map and reduce are taken from several list processing languages such as LISP,
Scheme, ML.

Map: The data set to be processed is divided into multiple chunks, and each chunk is assigned to a map.
Map nodes generate intermediate output according to a user-defined function. In its general form, the
function accepts a key-value pair and returns a set of key-value pairs. The output pairs are typically written
to the local disk. The functionality of Map nodes can be represented as

Map : ðk1; v1Þ7!listðk2; v2Þ:
Reduce: Reduce nodes are notified of the locations of intermediate output. They group values by key, and
then process the values according to a user-defined Reduce function. One or more output values is
produced. The general process can be represented as

Reduce : ðk2; listðv2ÞÞ7!listðv3Þ:
Map and Reduce functions are shown in Figure 1.
Hadoop6 is a prominent implementation of the MapReduce model. Developers need only define the

map and reduce functions. Lower level and administrative tasks, such as allocating data to nodes and
recovering from failures, are handled by general purpose (GP) components of the system.

3.2 GPU computing

Graphics processing unit (GPU) is used for efficient processing of computer graphics, images and in turn
offloads these responsibilities from aGP central processing unit (CPU). GPUs are highly parallel and follow
the single instruction, multiple data (SIMD) model. Threads in a GPU are lightweight, which makes
their creation, context switching and termination, a low cost operation. This makes GPU ideal for embar-
rassingly parallel tasks which exhibit data parallelism. The use of GPUs for non-graphics applications is
referred to as GP computing on GPUs (GPGPU) or GPU computing as discussed in Owens et al. (2008).

Figure 1 Map and reduce operations

6 http://hadoop.apache.org

A survey of large-scale reasoning on the web of data 7

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

http://hadoop.apache.org
https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

The architecture of a GPU is shown in Figure 2. A bunch of data records, called streams, are processed
at any time by a streaming multiprocessor, which in turn consists of several processing elements (PE).
Each PE runs a thread at a time and has access to the local memory including registers and cache. A GPU,
typically, has several streaming multiprocessors and all of them have access to a slower, shared global
memory.

GPUs cannot access the main memory. So, it is the responsibility of the CPU to transfer data from the
main memory to the GPU’s global memory and when the task is done, transfer back the results to the main
memory.

Several programming languages to develop GPGPU applications have been developed by extending
the C language. Among them, CUDA7 from Nvidia and OpenCL8 (recognized as a standard) from
Khronos group are popular.

3.3 Peer-to-peer model

A distributed network architecture is called peer-to-peer (P2P) if resources such as computing power,
storage etc. are decentralized and each node can act as both a server as well as a client (Schollmeier, 2001).
All nodes in the network collaborate with each other to accomplish a common goal. This is different from a
Client-Server architecture where servers provide the service and clients have to request the servers to get
their job done.

3.4 Multithreading

A traditional (heavyweight) process has a single flow of control and has a sequence of instructions that
should be executed sequentially. On the other hand, threads, also called lightweight processes, exist within
a process and allow multiple streams of control flow to coexist. All threads within a process share the same
address space as that of the parent process. Threads should be synchronized in order to avoid problems
such as data inconsistencies and deadlocks.

All computing models discussed above vary in terms of the process/thread interaction and their access
to main memory. GPU computing and multithreading have shared memory architecture whereas the other

Figure 2 GPU architecture

7 http://www.nvidia.com/object/cuda_home_new.html
8 https://www.khronos.org/opencl

G . A N T O N I O U E T A L .8

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

http://www.nvidia.com/object/cuda_home_new.html
https://www.khronos.org/opencl
https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

two have a distributed memory architecture. The choice of which model to use, depends on the task
at hand.

Having provided a short introduction to reasoning approaches and computional paradigms, we will
discuss in the next section the criteria against which large-scale reasoning approaches will be evaluated.

4 Classification and evaluation criteria

In this section, we describe the characteristics that are considered for categorizing the different approaches
for large-scale reasoning. These characteristics are used both to structure the description of the approaches
in Section 5, and their critical evaluation in Section 6. The first criterion is the target formalism (see
below), since the complexity of reasoning and the corresponding implementation and achieved scalability
are critically dependent on the formalism. In many cases even minor additions in expressivity can sig-
nificantly complicate the reasoning tasks. The second dimension is the reasoning task at hand (see below),
since for each formalism various tasks can be supported. Then the algorithms and the implementation
details for each system are presented along with the achieved scalability.

Target formalism There are different standard ontology languages, such as RDFS, OWL 2 RL, OWL 2
EL, and their extensions, such as fuzzy RDFS, fuzzy OWL 2 RL, while existing systems are mostly
designed to support some specific ontology languages. In addition, large-scale reasoning has been con-
sidered for formalisms such as logic programming and nonmonotonic reasoning, that have been con-
sidered in conjunction with ontology languages.

The subsequent sections of this paper are structured according to the target formalism supported.
Formalisms used for representing Web of Data are selected for this analysis, and these formalisms are
presented in ascending order with respect to their complexity. Thus we have decided to structure
approaches and works in the following groupings: (a) RDFS, (b) datalog, OWL Horst and OWL 2 RL, (c)
DL and (d) nonmonotonic reasoning. We found that this grouping is the best in terms of communality
among individual works carried out for the respective group of formalisms.

Supported reasoning tasks Approaches are designed to support specific reasoning tasks. Tasks to be
considered include classification (i.e. identifying the class(es) that an individual belongs to), materi-
alization or computing closure (inferring all implied facts), query answering (a query answer can consist of
a list of results or it can be a “Yes/No” answer), finding justifications (i.e. presenting the facts/rules and
axioms that lead to a specific inference) and checking satisfiability (i.e. if a concept or all concepts are
contradictory or not). Common reasoning tasks are typically equivalent since a reasoning task can be
reduced to another reasoning task. For example, checking subsumption over DL is reduced to unsa-
tisfiability. In practice, systems dealing with reasoning tasks are not implemented by reduction to another
equivalent reasoning task but by dealing with the given task direclty and applying task specific optimi-
zations. Individual approaches and systems usually consider either forward-chaining (bottom-up) or
backward-chaining (top-down) reasoning.

Algorithm Generally, a large-scale reasoning algorithm is always based on a specific computing model,
which is essentially characterizing the corresponding platform, for example the MapReduce framework
and GPU. Typically existing reasoning algorithms were designed for centralized computer architectures,
but in case of large-scale reasoning these algorithms must be applied on a distributed computing model.
Compared to the already known reasoning algorithm, originally developed to work with in-memory
(centralized) data, the new element here is how to adapt the reasoning algorith to the underlying compu-
tational model; for instance, how to partition the workloads and develop a new distributed algorithm for
large-scale reasoning.

Implementation We distinguish between algorithm and implementation here, since an implementation
depends on a specific platform in addition to the generic computing model. Thus, some other technical
issues should also be considered, such as storage, indexing and even data structures. Where an imple-
mentation exists we are interested, among others, in:

A survey of large-scale reasoning on the web of data 9

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

∙ The underlying computing model: Most of the surveyed works propose implementations based on
specific platforms. These platforms can be grouped into two categories: centralized ones and
distributed ones.

∙ Theoretical properties: In particular soundness and completeness. In many cases, these properties can
be guaranteed only under certain restrictions on expressivity.

Reported scalabilityWhen an implementation exists, we are interested in understanding its computational
properties. This consideration has to be closely considered with the data used, as it plays a dominant role in
determining the performance of implementations. We have to consider both the volume of data and the
structure of data, as a complex structure may affect adversely the performance.

Typical criteria (appearing in the presentation of the systems that are surveyed in this work) for evaluating
a large-scale reasoning system include:

∙ Data throughput or data pressure: This means the amount of data in the tolerance of the evaluated
reasoning systems.

∙ Speedup: This criterion indicates the potential capacity of systems with expanding the scale of the
platforms.

∙ Computing resources: Although time and space efficiencies are not the most urgent points in the context
of Web scale reasoning, a system with good performance has to face the issue of reducing the cost of
these two computing resources.

∙ Overheads: Overheads can also be viewed as the computing resources used in a trivial way. This is
always generated from the inner of a platform, such as disc reading and writing, or network
communication.

∙ Skew of workloads: When parallelizing a reasoning task, to balance the workloads is an obvious
optimization. However, in most cases, this depends also on the examined data sets, which could lead to a
skew of workloads.

After setting these criteria, we proceed to provide a detailed review of the state of the art in large-scale
reasoning over the Web of Data.

5 State of the art in large-scale reasoning

In this section large-scale reasoning systems on the Web of Data are presented. The presented systems
were selected according to the following criteria: (a) systems are used for reasoning tasks over formalisms
that are used on the Web of Data such as RDFS or OWL RL and (b) these systems are based on a
distributed computational model in order to be used in large-scale reasoning (i.e. in cases that centralized
in-memory solutions are not applicable). Since the target formalism is a critical factor for defining the
complexity of reasoning tasks and also algorithmic and implementation details and achieved performance,
the presentation order is based on the selected formalism and then on chronological order.

5.1 RDFS

In Kaoudi et al. (2008), the authors propose a method for scalable RDFS reasoning (both forward and
backward reasoning) using distributed hash tables (DHTs), a popular instantiation of P2P networks.

Target formalism RDFS reasoning is studied in this work.

Supported reasoning tasks Both forward chaining and backward chaining reasoning are considered.

Algorithm The proposed algorithm allows that instance data and schema knowledge are handled uni-
formly and no global information about the schema is required. The authors rewrite the RDFS entailment
rules into datalog rules, thus, some optimization techniques of datalog reasoning can be utilized for RDFS
reasoning. The authors propose two distributed algorithms for forward chaining and backward chaining
reasoning. The proposed backward chaining algorithm is a top-down algorithm designed for RDFS rea-
soning in a distributed environment.

G . A N T O N I O U E T A L .10

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Theoretical properties: The proof of soundness and completeness of this method is also reported.

Implementation A prototype system is implemented. The RDF triples are stored as tuples in relational
tables. The proposed algorithms are then implemented to adapt to the distributed hash table (DHT)
platform. The DHT platform used in this work contains 123 available nodes.

Reported scalability The used data set with binary-tree-shaped RDFS class hierarchies for evaluation is
produced using the RBench generator. First, the authors evaluate the backward chaining algorithm. It takes
8 and 50 s respectively for inserting 103 and 104 triples into the network. However, for forward chaining
implementation, the time needed for inserting 103 and 104 triples varies dramatically from about 100 s to
10 000 s. The experimental results show that the bandwidth of forward chaining algorithm increases
exponentially with the tree-depth while it remains constant in backward chaining algorithm. The authors
conclude that simple forward chaining implementation cannot scale well. The main issues are caused by
redundant computation and communication overhead.

Marvin (MAssive RDF Versatile Inference Network) presented in Oren et al. (2009) is a parallel and
distributed platform for massive processing of RDF data, based on a P2P model.

Target formalism The work considers incomplete RDFS reasoning.

Supported reasoning tasks The main task here is the computation of the closure for the given set of
RDF data.

AlgorithmMarvin implements the divide-conquer-swap strategy, which partitions the given data set into
subsets (divide), computes the closure (conquer) and repartitions data by exchanging triples among
neighboring nodes (swap). Eventual completeness of the inference is guaranteed, since triples that may
emit new knowledge are gradually collocated on the same node. In Kotoulas et al. (2010), the authors
extend the work with a technique to improve the problem of load balancing which affects a fixed term-
based partitioning criterion. This technique creates elastic regions in case the frequency of some terms is
significantly higher than others.

Implementation Reasoning over monotonic logics is supported, while closure is computed by utilizing
reasoners as an external library. In addition, duplicate detection and removal is supported in order to
minimize memory and bandwidth overheads. On the one hand, the random approach (triples are
exchanged randomly among nodes) provides good load balancing properties, but is highly inefficient since
triples appear on random nodes, thus postponing derivation. On the other hand, the deterministic approach
(triples are redirected to a specific node according to their key) is efficient as triples that will lead to
derivations are located on the same node, but at the cost of highly unbalanced workloads for skewed data
set distributions. Marvin achieves a balance between random and deterministic approach, combining load
balancing with efficient derivation. The implemented SpeedDate algorithm swaps triples within a neigh-
borhood of nodes, thus popular keys are distributed over several nodes, and provides a certain degree of
determinism as triples are constantly located within a restricted subset of nodes.

∙ Theoretical properties: Soundness and completeness depends on the used reasoner (as an external
library).

Reported scalability The authors studied various metrics by providing simulated results. Simulations deal
with the number of nodes, number of items in the system, various data distributions, node availability
during the reasoning process, recall, load balancing and scalability. The system is more efficient compared
to the random approach, showing similar load balancing properties and is more scalable compared to the
deterministic approach, thus able to utilize higher degree of parallelization. Considering scalability, the
average throughput per node follows a square root curve with respect to the number of items. Subse-
quently, authors provide experiments on real RDF data. Despite platform’s overhead, the system reached a
throughput of 2.3 million triples s˗1 on 32 nodes, when no reasoning was applied. However, when
reasoning process is included, the system is shown to scale to up to 64 nodes processing data sets of up to
14.9 million triples. In addition, Marvin shows sublinear speedups (reaching a speedup of 12.94 on 64
nodes), while performing better when low tolerance to duplicates is allowed. In Kotoulas et al. (2010), the

A survey of large-scale reasoning on the web of data 11

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

evaluation was extended to 64 computing nodes and data sets with up to 200 million triples and resulted in
an overall throughput of 450 thousand triples s˗1.

In Weaver and Hendler (2009), the authors identify an property of RDFS reasoning; This makes the
embarrassingly parallelism of materialization on RDFS ontologies possible, that is, the derived results can
be partitioned into independent and fairly even parts.

Target formalism The work considers incomplete RDFS reasoning.

Supported reasoning tasks The authors use this property to optimize the efficiency of materialization
based on forward chaining reasoning.

Algorithm The authors find that the RDFS rule set implies a special property (called ABox Partition
Safe) that makes the embarrassingly parallelism possible for the materialization of RDFS ontologies. We
use the following figure to simply show this property. The triples in an RDFS ontology can be categorized
into two parts:schema (or ontological) triples (see Figure 3, the gray part in each processor) and instance
(or assertion) triples (the white part). All RDFS rules contain at most one instance triple pattern in rule
body. On the other hand, the assumption that schema triples tend to be a fixed part in ontologies is always
reasonable. Thus, the main algorithm parallelizes the schema triples to all processors and partitions the
assertion triples into fairly even parts and distributes them to different processors (for example, the derived
triples from the processor P1 are partitioned evenly for all processors). The authors further prove that the
partition schema (called ABox partition schema) is correct in each iteration of materialization.

Theoretical limits: The proposed property makes it possible for data partition. However some limits exist
when handling other languages. It is not hard to show that this property does not hold in other languages
with richer expressive power, like pD* and OWL 2 RL. On the other hand, LUBM is a simply structured
manual data set and includes a very small part of schema triples. This is also an important factor that makes
the method given in this paper work. No report on real data sets is presented in this work.

Implementation The authors implement their system based on a memory-based cluster with 128 allocated
cores (namely a multi-thread system). The system is coded by C\MPI—a parallel data processing interface.
This implementation is evaluated on a popular benchmark LUMB.

Reported scalability The purpose of the experiments in this work is to evaluate the scalability of the
above implementation. A version of LUMB ontology containing about 650 million triples is used as the
test data set. The experimental results show that materialization time increases linearly on the multiplied
threads. For the whole data set, the implementation takes 8 min for materialization. For ensuring the
parallelism, the system does not eliminate the duplicate triples globally. The authors also set an experiment
to show such duplicates tend to be halved when the data set doubles in size.

In Goodman et al. (2011) authors study RDFS reasoning over a shared-memory machine with multi-
threaded processors.

Figure 3 The ABox partition schema

G . A N T O N I O U E T A L .12

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Target formalism The proposed method presents a parallel approach for RDFS reasoning.

Supported reasoning tasks The proposed approach deals with dictionary encoding, RDFS closure
computation and SPARQL query processing.

Algorithm This work is based on in-memory processing of RDFS triples using multithreading, describing
technical details that pertain to the underlying model.

Implementation All processes are performed completely in-memory by utilizing the global shared-
memory, on the Cray XMT supercomputer. In particular, authors present an algorithm for encoding RDFS
triples, represented in N-Triples or N-Quads format, into a set of 64-bit integers, thus mapping strings into
integers. Dictionary encoding is highly optimized for parallel processing while the final representation
consists of triples encoded as integer values, and the mappings from each unique string to its corre-
sponding integer value and vice versa. This in-memory representation is used for RDFS closure
computation.

RDFS closure is based on a previously presented algorithm, although the approach is altered in order to
reduce memory usage. Specifically, triples are stored in a global hash table, with the new approach
optimizing the use of hash key values in order to include information about the availability of each slot. In
addition, RDFS reasoning is based on processing the entire data set instead of using queues that contain
matching triples for each rule. Subsequently, RDFS closure is transformed into a graph representation to
facilitate SPARQL query answering. An algorithm called Sprinkle SPARQL is used in order to identify
matching triples and calculate final results by combining all intermediate results.

Reported scalability Experimental results show that the system is able to scale up to 512 processors while
handling 20 billion triples completely in-memory using the Cray XMT supercomputer. In particular,
dictionary encoding handled up to 16.5 billion triples, coming with compression ratio ranging from 3.2 to
4.4, speedups ranging from 2.4 to 3.3, and throughput of up to 561 MB/s. RDFS closure generated 20.1
billion unique triples, requiring 40% less memory at the cost of a 11% to 33% increase in computation
time, with speedups ranging from 6 to 9, and throughput of 13.7 (resp. 21.7) million inferences s˗1

including (resp. ignoring) I/O. SPARQL queries showed speedups ranging from 4.3 to 28 for complicated
queries, while authors point out the fact that Sprinkle SPARQL did not outperform all evaluated alter-
natives, for simple queries, as it comes with a significant overhead.

In Salvadores et al. (2011), the author presents a backward-chaining system to perform minimal RDFS
reasoning on top of 4Store, a distributed RDF storage engine.

Target formalism The work considers incomplete RDFS reasoning.

Supported reasoning tasks This work considers query-driven inference (also called backtrack-chaining
or query rewriting).

Algorithm In 4Store, data is distributed in non-overlapping segments which are evenly distributed across
the peers, while terminological knowledge is replicated on all nodes. This allows the system to perform
reasoning without any inter-node communication.

Whenever a query must be processed, each node rewrites it in multiple queries exploiting the termi-
nological knowledge that is available locally. Since the rules in the minimal RDFS segment are rather
simple, this process can be carried out efficiently by chaining the subqueries.

Implementation The method is implemented inside the Java engine 4Store. The development of the
system seems to be discontinued.

Reported scalability An experimental evaluation was carried out using the LUBM (Guo et al., 2005) data
set and up to 5 machines. As inputs, the authors used a number of data sets with a number of triples
between 13 to 138 million triples and 5 atomic queries. The system produced derivations between 150 and
300 thousands triples s˗1, but unfortunately no comparison with other systems was performed.

A survey of large-scale reasoning on the web of data 13

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Hoeksema and Kotoulas (2011) studies stream reasoning over RDF data and C-SPARQL query
answering using Yahoo S49.

Target formalism This work deals with distributed stream reasoning over RDFS.

Supported reasoning tasks The presented method is focused on stream reasoning over RDF data and
C-SPARQL query answering.

Algorithm The authors first introduce a naive RDFS reasoning process over Yahoo S4 and point out
several issues considering performance. Such issues include the minimization of stored triples and join
operations that do not lead to inference, incompleteness of the reasoning process and duplicate elimina-
tion. Subsequently, an efficient RDFS reasoning is presented providing the description of components for
duplicate elimination, for analysis and distribution of unique triples, and components that compute
RDFS rules.

Implementation Reasoning process feeds triples to C-SPARQL query processing, where a number of
components dealing with different aspects of a C-SPARQL query is defined. In particular, authors describe
components that provide variable bindings for matched query patterns, perform joins on variables in the
query, filter incoming bindings and emit the final results in the required format. Authors also discuss the
two types of windows supported by C-SPARQL, namely a window comprises of either a fixed number of
triples or a fixed period of time during which triples are entering the stream. The latter approach is chosen
as it is more appropriate given a distributed setting. Triples that enter the system are assigned a timestamp
and an expiration time, while triples that are derived again after their expiration are reassigned their
corresponding timestamps. Moreover, authors describe several components that support aggregates such
as SUM, AVG, COUNT, MIN and MAX.

∙ Theoretical properties: The process is based on eventual completeness, namely the system gradually
increases its knowledge until no new knowledge can be added.

Reported scalability The system is evaluated based on two metrics, namely maximum throughput in
terms of triples per second (with maximum supported throughput of 160 000 triples s˗1) and the number of
processing nodes. When no reasoning is performed and the applied query passes through any given triple
(passthrough query), high throughput is achieved even with three nodes showing linear performance.
However, when RDFS reasoning is performed over the passthrough query, the system is showed to scale
up to 8 nodes, but it is unclear why linear performance is not retained for 16 and 32 nodes. In addition, two
queries are considered where no RDFS reasoning is applied. For both queries linear performance is
reported for up to eight compute nodes.

The authors of Heino and Pan (2012) report their work on RDFS reasoning on massively parallel
hardware.

Target formalism The authors of this work focus on RDFS reasoning.

Supported reasoning tasks The target reasoning task is materialization.

Algorithm Their approach uses forward chaining based on the six RDFS entailment rules. Their eva-
luation uses two real-world data sets, DBPedia and YAGO2 Core. To improve efficiency and scalability, a
few optimizations have been employed, such as encoding the strings in RDFS document into 64-bit
integers.

Implementation The approach has been implemented in both multi-core CPU and multi-core GPU with
shared main memory. The CPU implementation uses 4 8-core CPUs and the GPU implementation uses a
20-core GPU.

Reported scalability Evaluation shows that when double the CPU cores used, the CPU kernal time is
reduced by half, with up to 16 cores. It also shows an interesting comparison between the CPU imple-
mentation and the GPU implementation, in which the latter has a shorter kernal time but longer overall

9 http://incubator.apache.org/s4/

G . A N T O N I O U E T A L .14

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

http://incubator.apache.org/s4/
https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

time. The authors explain that this is because GPU has more cores but the data needs to be copied back and
forth between the main memory and GPU’s global memory.

DynamiTE (Urbani et al., 2013) is a parallel engine that performs materialization of inference con-
sidering the minimal RDF fragment.

Target formalism DynamiTE focuses on maintaining the materialization obtained with the rules in the
minimal RDFS fragment in Muñoz et al. (2009).

Supported reasoning tasks The system first performs a full materialization (when the data is initially
loaded into the system) and then incrementally updates the materialization after new data is added or
removed.

Algorithm The full materialization is executed using standard datalog semi-naive evaluation. The incre-
mental updates can be executed either using D-Red, presented in Gupta et al. (1993), or with a bookeeping
algorithm that stores counters next to each derivations.

Implementation The system is implemented in Java and exploits multi-core parallelism. TheKB is indexed
on various permutations of the triples and stored on disk using multiple B-Tree data structures.

Reported scalability The system was evaluated using LUBM benchmark data sets presented in Guo et al.
(2005) with up to one billion triples. The performance was compared against WebPIE and the results
indicated that DymamiTE was able to produce higher throughputs due to less overhead. The best per-
formance was obtained with the counting algorithm. Unfortunately, this algorithm does not work properly
with recursive rules as discussed in Motik et al. (2015).

5.2 Datalog, OWL Horst and OWL 2 RL

Soma and Prasanna (2008) studies how reasoning on OWL KBs can be parallelized with balanced
workload.

Target formalism The presented approach targets reasoning over OWL Horst.

Supported reasoning tasks This work is focused on the materialization of OWL Horst KBs.

Algorithm Two parallelization techniques are explored, namely rule partitioning and data partitioning.
For the case of rule partitioning, each node in the cluster is responsible for the computation of a subset of
rules, for a given rule set. Thus, the workload per rule (and node) depends both on the structure of the rule
set and the number of rules, therefore, balanced workload is difficult to be achieved. On the contrary, for
the case of data partitioning, data is divided into subsets with each subset being assigned to a node,
allowing more balanced distribution of the computation among nodes.

In order to evaluate the effectiveness of each partitioning approach, authors proposed certain metrics.
Balanced partitioning is achieved when each processor is assigned an equal amount of work, and con-
sequently all processors finish their work simultaneously, thus no processor remains idle (wasting com-
putational power). Inevitably, processors should be synchronized exchanging information, thus the system
shouldminimize communication between processors, namely each processor needs to be as independent as
possible. Efficiency, in the context of reasoning, refers to the number of duplicates produced during the
inference process. To achieve optimal efficiency each conclusion must be derived by exactly one pro-
cessor. Speed and scalability evaluate the partitioning process itself. The chosen partitioning approach
should be fast and have the potential to scale for large data sets.

Implementation The implementation was based on Java, using Jena as an external reasoner.

Reported scalability Experimental results, computing OWL Horst closure, over millions of triples, on a
cluster of machines over P2P communication using Jena reasoner and examining both techniques, are
reported. For data partitioning, authors observed both super-linear and sub-linear speedups, depending on
the evaluated data set over the graph partitioning algorithm. Moreover, as the number of partitions
increases, the time spent in inter-process communication and synchronization increases respectively. In
addition, results indicate that graph and domain specific partitioning have a relatively close performance
since they produce balanced partitions, while a naive hash based partitioning performs badly due to

A survey of large-scale reasoning on the web of data 15

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

imbalanced partitions. For rule based partitioning, evaluation shows sub-linear but monotonic speedups.
However, the used rule sets were small and thus only a small number of processors could be used.

WebPIE presented in Urbani et al. (2010) and Urbani et al. (2012b) is a distributed forward-chaining
reasoner that relies on the MapReduce primitives to distribute and parallelize the computation. The system is
implemented on top of theHadoop framework and supports reasoningwith someRDFS andOWLHorst rules.

Target formalism Reasoning is executed using almost all RDFS rules and the OWL Horst rules.

Supported reasoning tasks The system performs a full materialization of the KB.

AlgorithmWebPIE implements intra-query parallelism: that is, the evaluation of each rule is performed in
parallel. The parallelism consists of partitioning the input in several chunks and processing each chunk by
a different processor. The initial version of WebPIE supported only partial RDFS reasoning, but later it
was extended to support the Horst fragment. The research contribution consisted in showing how certain
rules could be evaluated efficiently with MapReduce by exploiting certain properties of current data sets
(i.e. a relatively small size of terminological knowledge compared to the assertional one).

Implementation Each rule is encoded using the MapReduce primitives, and executed with one or more
Hadoop programs. The system reads in input a series of (compressed) RDF triples, performs the materi-
alization, and returns another list of files which contains the inferred triples. Each rule is hardcoded,
therefore the system cannot be easily extended to more rules.

Reported scalability WebPIE is the system which has shown the best scalability so far. In the largest
experiments, it was able to compute the materialization of 100 billion triples. The system however suffers
of two major limitations: First, it cannot be quickly extended to other rulesets since each rule is hardcoded
in the program. Second, the system does not index the derivation. This means that after the computation of
WebPIE is finished, the user must load its output into a RDF engine in order to query the results efficiently.

The authors of Hogan et al. (2010) discuss optimizations of rule-based materialization approaches for
reasoning over large static RDF data sets.

Target formalism The considered languages include RDFS, pD* (OWL Horst) and OWL 2 RL.

Supported reasoning tasks The target reasoning task is forward reasoning.

Algorithm The authors generalize and formalize the notion of partial indexing techniques which are
optimized for application of linear rules and which rely on a separation of terminological data. Due to their
focus on the linear rules in RDFs, pD* and OWL 2 RL rule set, many of the rule executions can be
perfectly parallelized.

Implementation A reasoner called SAOR is implemented based on a distributed platform.

Reported scalability In their evaluation, they show that the time required for most expensive tasks such as
TBox extraction and ABox reasoning decreased by half when the number of machines doubled.

In Kolovski et al. (2010), the authors present efficient optimization techniques for the inference of
OWL RL using Oracle Databases.

Target formalism OWL RL is the focus language of this work.

Supported reasoning tasks The methods proposed in this work mainly aim at forward chaining reasoning
of OWL RL.

Algorithm Three important topics are addressed: compact materialization of equivalence closures, incre-
mental maintenance of inferred closure and parallel inference. A novel hybrid (memory and disk-based)
approach is developed for building large-scale owl:sameAs cliques and applicable to other equivalence
relations such as owl:equivalentClass and owl:equivalentProperty. Batches of owl:sameAs assertions are
first loaded from input table, then merged in memory and appended to the cliques. Then similar batch
processing is employed on the cliques table, merging where needed, until a fix-point is reached.

Implementation The above method is implemented on an Oracle database. To make full utilizations of
modern hardware with multiple CPUs and high I/O throughput capacities, The authors give a technique

G . A N T O N I O U E T A L .16

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

called break-up to simplify complex and multi-pattern rules. Other optimizations that are used to ensure
efficiency include the introduction of source table, the usage of 8-byte binary RAW type and the perfect
reverse hashing. The authors apply lazy duplicate elimination strategy during the process of incremental
inference which indicated through the experiment that the duplicate overhead is acceptable. A heuristic
method called dynamic semi-naive evaluation is adopted which could dramatically improve the perfor-
mance of incremental inference.

Reported scalability The algorithm has time complexity Oðn log nÞ and achieves almost linear perfor-
mance from experiments.

The authors of Bonatti et al. (2011) leverage annotated logic programs to incorporate provenance and
trust in linked data reasoning.

Target formalism The authors annotate whether a piece of linked data should be trusted, ignored or used
with a numeric ranking in a reasoning procedure that employs part of the OWL 2 RL/RDF rule set.

Supported reasoning tasks The target reasoning task is forward reasoning on the annotated linked data.

Algorithm In addition to a number of desired formal properties such as monotonicity and decidability, the
algorithm is designed based on a shared-nothing distributed architecture to support large-scale linked data.
In this architecture, a master machine is used to partition the data and task, to request tasks executions, to
pull tasks results and to broadcast global knowledge. A number of slave machines are used to execute
concrete tasks and can exchange data between each other when necessary. Each slave machine is assigned
with an approximately equal number of triples/quads.

Due to the design of the approach, most of the expensive tasks can be performed in an embarrassingly
parallel manner, significantly reducing the data exchange between slave machines.

Implementation A prototype system is implemented based on a shared-nothing distributed platform
where several independent machines are involved.

Reported scalability The behaviour of embarrassing parallelism has also been observed in evaluation, in
which a data set of 1.11 billion triples/quads is used. Evaluation shows that, the distributed reasoning and
inconsistency checking time is reduced, on average, by 40% − 50% when the number of slaves is doubled.
The speed up for distributed ranking is less significant. The reduction of ranking time diminishes when
more and more slaves are used.

QueryPIE presented in Urbani et al. (2011) and Urbani, Piro, et al. (2014) is a backward-chaining, top-
down reasoner that supports OWL Horst and partial OWL 2 RL/RDF. The computation can be performed
either on a single, multi-core machine, or be distributed across several machines that communicate to each
others using a message passing library.

Target formalism The system focuses on generic datalog but it is primarily evaluated using the pD* and
OWL 2 RL rulesets.

Supported reasoning tasks The system performs datalog query-driven evaluation using a top-down
approach.

Algorithm The system implements two major contributions: a permanent tabling technique (which is
rebranded as hybrid reasoning in Urbani, Prio, et al. (2014), and a parallel variant of the well-known
QSQ-R algorithm in Abiteboul et al. (1995).

The tabling technique consists in materializing a consistent part of the terminological knowledge
and indexing it in main-memory so that it can be retrieved quickly. This pre-materialization is useful to
prune the search space at query-time and reduces the inference process to the calculation of only
assertional data.

The parallel variant of QSQ is introduced to speed up the top-down evaluation of the rules. The
parallelism is inter-query: this means that the system evaluates several rules concurrently and synchro-
nization is introduced only during few stages. The algorithm presented in (Urbani et al., 2011) is
incomplete (interestingly, the source of incompleteness is the same that affected the original presentation
of QSQR). The algorithm was later fixed in Urbani, Prio, et al. (2014). In subsequent work, some of the

A survey of large-scale reasoning on the web of data 17

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

original authors interleaved sequential execution with parallel ones. The sequential code is reserved for
“hard” rules which require joins between multiple intensional predicates. Simpler rules, which only
require either no join or only joins between extensional and intensional predicates, are executed in parallel.

Implementation The system is implemented in Java. It relies on a distributed computing framework,
called Ajira in Urbani, Margara, et al. (2014), to execute the computation in parallel.

Reported scalability The work in Urbani, Prio, et al. (2014) reports the execution of single-pattern queries
using a LUBM data set of 10 billions triples on a single machine. Later, another evaluation was conducted
on multi-pattern queries in Urbani and Jacobs (2015). In terms of input size, this system scales well since it
can handle KBs with billions of triples. However, its main limitation is that it stores the inferred tuples in
main memory, and this precludes the execution of queries which produce a number of intermediate
answers whose size exceeds the available main memory.

The authors of Aslani and Haarslev (2012) present an empirical evaluation of a parallel TBox classi-
fication algorithm. In this approach, multiple threads work together to construct a shared global taxonomy.

Target formalism The method proposed in this work covers the DL SHIQ. Some optimizations are also
discussed for EL.

Supported reasoning tasks The target reasoning task is classification on TBoxes.

Algorithm To start with, each thread is assigned with a partition, that is, a set of concepts, in a round-robin
manner. Then for each of the assigned concept, the thread will try to find its least super-concepts in a top-
down manner, starting from the Τ concept, and its most sub-concepts in a bottom-up manner, starting from
the ⊥ concept. For each candidate super/sub-concept, the tread will run a subsumption test to verify the
relationship. In order to avoid thread locking, the concurrent collections from the java.util.concurrent are
employed to maintain the global taxonomy and other shared data structures. By doing this, the threads can
achieve concurrent classification without having to wait for each other.

This mechanism is designed to be independent from the concrete classification mechanism used.
Hence, it is applicable to a wide range of representations. Nevertheless, it requires the existence of a
subsumption testing algorithm and such an algorithm will be executed by each thread to test concept
inclusions. Therefore, the approach cannot provide parallel subsumption checking. Each thread is assigned
with approximately equal numbers of concepts to classify. This does not necessarily imply balanced
workload because some concepts may require more computation efforts than the others to classify.

Implementation A prototype system is implemented using multi-threads.

Reported scalability In evaluation a number of ontologies with different expressivities and different sizes
are tested, the largest one being the SNOMED CT ontology with 379,691 concepts. For each ontology, the
evaluation runs the implemented approach with different number of threads (1,2,4) and different partition
sizes (5,25) for each thread.

The evaluation shows that the approach has good CPU time improvement performance. When
increasing the number of threads or the size of partition, the speed-up (non-parallel classification time in
comparison to parallel classification) is approximately increased in a linear manner. Also, increasing the
size of the ontology will not significantly affect the speed up.

The authors of Martínez-Angeles et al. (2013) exploit the strength of GPUs on highly parallelizable
computations, and present an approach of parallelizing datalog bottom-up materialization on GPUs. The
most remarkable contribution of this work is that it gives a memory management schema to reduce the
transfers between host (CPU) memory and GPU memory.

Target formalism General datalog programs are studied. Ontology languages are not considered in
this work.

Supported reasoning tasks This work explores the possibility of using GPUs for enhance bottom-up
materialization of datalog programs.

Algorithm The authors implement three relational operations: selection, join and projection. The main
algorithm of datalog reasoning is implemented based on these three operations. Specifically, for applying a

G . A N T O N I O U E T A L .18

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

rule, selection operations are performed on body atoms; join operations are then performed on the selected
tuples using the indexed nested loop join algorithm; finally, projection operations retain the useful col-
umns of the temporary relation table according to the variables in the head atom.

It is relatively easy to implement the three relational operations on GPUs, where the main challenge is
how to reduce the transfers between GPU memory and CPU memory. The authors give a cache-like
method to tackle this issue: a fact list is being maintained, which records all facts being loaded in GPU
memory. When a new fact is loaded, its corresponding item is moved to the beginning of the list, or created
if no such item exists. The facts at the end of the lists may be deallocated for new facts when memory space
is not enough.

The parallelism pattern essentially relies on the mechanism of GPU, that is, a “single operation, massive
data processing” pattern. The most critical operation for bottom-up materialization is joining. A basic join
operation can be formulated as R1ð~t1Þ . /R2ð~t2Þ, where R1, R2 are two relational names and t1⃑ and t2⃑ are the
corresponding argument vectors. When performing joining, each pair of the tuples from R1 and R2 will be
processed by a GPU thread, so that all pairs are processed concurrently.

Implementation A prototype system is implemented based on a GPU server. It is an in-memory system.

Reported scalability The purpose of evaluation is to compare the GPU implementation and the CPU
implementation. The evaluations are performed on three designed queries. The experimental results show
that the performance on a GPU has a significant improvement compared to that on a single CPU. However
these three queries are all evaluated on synthetic data sets. These data sets aim at special situations (for
example transitive closure computation) and of which the number of facts stays below millions. This
throws two unanswered questions: 1) does this method work in practical cases? 2) what is the upper bound
of the data volume that this method can handle?

The authors of Motik et al. (2014) propose an approach for parallelizing materialization of datalog
programs. It covers general datalog programs and is further adapted to OWL languages, such as
OWL 2 RL.

Target formalism The proposed method and the implemented system handle general datalog materi-
alization. RDFS and OWL 2 RL are also covered in this work.

Supported reasoning tasks Forward chaining materialization on datalog programs is studied.

Algorithm The authors extend the classical datalog materialization algorithm, that is, the semi-naive
algorithm (Abiteboul et al., 1995), to a parallel variant. They give a strategy of indexing RDF triples in
memory. This indexing strategy leads to efficient join operations. The following process briefly describes
the algorithm:

(a) Step 1. Initially, a global iterator is provided, in which all facts (including the newly added ones) are
ordered according to a strict total order.

(b) Step 2. Any free thread captures a fact F from the global iterator and attempts to match it to the body
atoms in all rules. For example, when a thread is applying the rule (1), it attempts to match F to each
Bi(1 ≤ i ≤ n), and all Bjwhere j< i (resp. j ≥ i) can only be matched to the facts having a lower (resp.
Higher or equal) order than Bi.

(c) Step 3. Step 2 is repeated until all threads generate no more facts.

The global order helps to avoid generating redundant facts. The other critical issue for this method is
how to implement the operations of accessing facts through the global iterator, inserting new facts and
checking if a new fact is already existing. In this work, the authors propose a new indexing strategy for
RDF triples, which results in highly efficient join operations.

In the core of the materialization algorithm, any free thread obtains the next fact from the global iterator
and applies rules on a specific fact set. We give an intuitive algorithm snapshoot in Figure 4 to clarify the
parallelism strategy: Thread1 obtains a fact Fi from the iterator. Then, it matches the set of facts with lower
orders than Fi (including Fi) to the rules. Since Fi has to be bound to a body atom for all rules, no repeat
matching would be performed by other threads. This strategy makes the workload being partitioned
relatively even and different threads share a minimum of connects.

A survey of large-scale reasoning on the web of data 19

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

ImplementationA system called RDFox is developed for testing concurrency overhead and scalability. It
is essentially an OWL 2 RL management system based on datalog programs. It is an in-memory reasoner.

Implementation limits: The proposed method strategy cannot be prioritized for distributed computing,
since it is difficult to maintain a global order on facts when computation nodes share nothing.

Reported scalability The purpose of evaluation is to examine concurrency overhead and scalability of
RDFox. The test data sets are LUBM data sets and DBpedia. The experimental results show that: first,
RDFox performs better than other serial systems both on materialization and data importing on most data
sets; second, the fraction of the work performed in parallel ranges from 88% to 98% when 32 threads are
available (according to Amdahl’s law). This means in most cases, parallelizing reasoning pays off; third, in
practice, the memory-based approach is sufficient for real data sets like DBpedia. However, from the
proposed results, there are still cases when memory goes to exhaustion, such as the test on LUBM_5K
(containing about 691.1M triples) with 32 threads being allocated. The main reason is the algorithm leads
to the memory usage increasing with the number of threads.

Reasoning on Spark in Kim and Park (2015) (RSPARK henceforth) is a system that was designed to
perform forward-chaining reasoning on the Spark, presented in Zaharia et al. (2010), ecosystem. The goal
and functioning of this system are very similar to WebPIE and the only difference relates to the used
infrastructure (Hadoop for WebPIE, and Spark for RSPARK).

Target formalism Like WebPIE, also this system targets the rules in the RDFS and OWL Horst
fragments.

Supported reasoning tasks The system performs a full materialization of the KB.

Algorithm The system performs TBox reasoning (i.e. executes only rules that derive new schema), and
then performs ABox reasoning (i.e. executes all other rules). RSPARK executes the rules one-at-the-time.
Before doing so, it re-orders the execution order of the rules to reduce the possibility that inference derived
at a later stage can serve as input of rules already executed. The rules that perform TBox reasoning are
executed only once. This means that the reasoner can potentially be incomplete because it will be unable to
produce TBox inference which required some ABox inference first.

Implementation In order to execute the rules, the system represents the triples into < key, value pairs
which are then stored in resilient distributed data sets (RDDs). RDDs are the data structures which are
manipulated by the Spark’s operators. Overall, the functioning is similar than the one proposed in Web-
PIE, with the only difference that Spark is a more efficient framework. Interestingly, it appears that this
system does not perform dictionary encoding and works directly on raw strings.

Figure 4 Parallelizing materialization of a datalog program

G . A N T O N I O U E T A L .20

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Reported scalability The system was evaluated using a KB of about 860 million triples and its perfor-
mance on this input was compared with WebPIE. The results show that the system is about three times
faster. Unfortunately, the evaluation in Kim and Park (2015) was conducted with only five machines. It is
not clear how the system would scale either with a larger cluster or with larger data sets.

Large Knowledge Graphs. In Thirtieth AAAI Conference on Articial Intelligence. The last system that
we cover in this section is VLog presented in Urbani et al. (2016). VLog is a recent reasoner which was
designed to perform datalog evaluation on large knowledge graphs. The principal characteristic of VLog is
that is uses relatively fewer resources than the other engines to compute the derivation. This allows its
usage on machines equipped with commodity hardware. For instance, the authors showed that it is
possible to compute the materialization of 0.5B LUBM triples using a normal laptop.

Target formalism VLog implements standard datalog reasoning. Therefore, it can execute rules in the
RDFS fragment or OWL RL.

Supported reasoning tasks VLog performs a full materialization of the KB.

Algorithm The main novelty of VLog is that it adopts a columnar storage strategy to store the inferenced
tuples. With such approach, the tuples are stored column-by-column rather than row-by-row. This strategy
is good for compression since the system can apply well-known database techniques like runtime length
encoding (RLE) or standard delta encoding. Furthermore, in some cases columns can be reused for
different predicates. These optimizations effectivily reduce the space required to store the inference. One
major problem of this approach is that columnar stores perform poorly with updates. To overcome this
limitation, VLog avoids the insertion of new elements in existing tables and creates new tables instead.
This causes a problem during the rules execution since multiple tables must be merged: To reduce the
number of merges, the system performs a sort of back-tracking reasoning to infer whether a table can lead
to new inference. The merge is avoided whenever the system determines this is not the case.

Implementation VLog is implemented in C ++ . The system is neither parallel nor distributed. It can
interface to several backend to retrieve the input for the datalog computation. So far, it can interface with
Trident (an in-house graph engine), MySQL and MonetDB—two popular DBMS.

Reported scalability VLog is superior to the other competitors in terms of main memory consumption. In
Urbani et al. (2016), the author compare the performance with RDFox on fairly large KBs (up to 0.5B
triples) and show how the system uses much less main memory. In its current version, VLog has two main
limitations: First, reasoning is sequential and hence the scalability is limited only to the speed of the CPU,
while parallel approaches can scale on two dimensions—CPU and number of CPUs. Second, the system
performs only a limited indexing on the materialized inference, which means that data might need further
processing before it can be efficiently queried.

5.3 Description logics

The authors in Liebig and Müller (2007) propose a parallel tableaux algorithm for SHN reasoning and
extend the work to SHIQ in Liebig et al. (2010).

Target formalism The DL SHIQ is studied in this work.

Supported reasoning tasks The main reasoning task is to check concept satisfiability. On the other hand,
most reasoning tasks can be reduced to the task of checking satisfiability.

Algorithm Tableaux algorithm plays an important role in solving the problem of concept satisfiability. A
tableau prover tries to create a model for a given ABox. The proving is actually a procedure of building a
tree with different expanded ABoxes being as the tree nodes, while the original given ABox being as the
root node. In each node, reasoning rules are being applied to create new branches. For example, we use the
following figure to show the work of the disjunction rule (Figure 5).

A survey of large-scale reasoning on the web of data 21

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

The above disjunction rule says, if for an individual a the assertion a : C t D is in the ABox, then there
are two possible ABoxes: either with C or with D. Thus the two possible ABox candidates (in this case, A'

and A'′) are created as the successors.
The branching procedure in tableaux proofs naturally indicates a parallel schema: processing different

branches concurrently. Since the ABox candidates at the same level of the tree are independent from each
other, such a parallelism is theoretically reasonable. However the parallelism of this method strongly
depends on the given cases. In other words, the number of rule applications determines the degree of the
parallelism. Thus, it is also possible that, if no other ABox candidate is generated, the proving is then
actually a serial procedure.

Implementation A reasoning implementation is proposed in Liebig and Müller (2007) and extended in
Liebig et al. (2010), which is coded using C ++ .

Reported scalability Experimental evaluation was performed on several hardware settings showing good
speedups for systems consisting of up to 4 cores. However, results on a server with 24 cores did not
provide significantly higher speedups. Testing maximum cardinality restriction generated high number of
alternatives, thus revealing that the overhead coming from synchronization may constitute a bottleneck.
Similar speedup patterns were observed for the case of a realistic ontology. The evaluation of a disjunction
of eight concepts showed step-wise speedups for increasing number of workers.

In Schlicht and Stuckenschmidt (2008), a distributed resolution technique for DL ALC is proposed.

Target formalism The target DL is ALC.

Supported reasoning tasks Distributed resolution technique is used to decide satisfiability.

Algorithm Ordered resolution is used, where literals are ordered and only one sequence of derivation is
executed instead of trying all the possible literal sequences for resolving a clause. The given DL KB is
assumed to be in the form of first order clauses. These clauses are grouped into modules based on an
allocation function. Every module is saturated separately and newly derived clauses are propagated based
on the allocation function. The procedure stops when an empty clause is derived in one of the modules or
all the modules are saturated.

Implementation Implementation details are not provided.

Reported scalability Evaluation results are not provided.
The distributed resolution technique used for DLALC in Schlicht and Stuckenschmidt (2008) has been

extended to ALCHIQ in Schlicht and Stuckenschmidt (2009).

Target formalism The target DL is ALCHIQ.

Supported reasoning tasks Satisfiability check and subsumption check are the supported reasoning tasks.

Algorithm The ordered resolution calculus used forALC cannot handle the equality literals introduced by
number restrictions. Basic superposition, which is an extension of ordered resolution, was used here for
ALCHIQ. In order to make it distributed, input clauses are partitioned across the cluster. A first order

Figure 5 The disjunction rule

G . A N T O N I O U E T A L .22

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

theorem prover runs on each machine of the cluster and it works only on the assigned clauses. Newly
derived clauses are propagated to other provers if necessary.

Implementation Implementation is based on first order prover SPASS10. In order to make this a dis-
tributed reasoner, support for sending and receiving clauses has been added. All the reasoners are con-
nected at startup and the clause communication is handled by separate processes. This helps to avoid
blocking of the local reasoner after sending a clause.

Reported Scalability 13 ontologies from chemical, earth and environmental domain were used for testing.
They contain 480 classes and 99 individuals. Translation to first order logic yields 930 clauses. Satisfia-
bility check and subsumption check are performed on a group of 13 connected reasoners. The runtime for
satisfiability checking is decreased by one third when compared to a single machine reasoner and
answering a positive subsumption query takes only a quarter of time.

The use of the MapReduce framework to scale classification of EL + ontologies has been attempted in
Mutharaju et al. (2010) and Zhou et al. (2016). Forward chaining rules from Baader et al. (2005) are used
for classification. Ontologies are normalized, where axioms are reformulated to one of the fixed forms.

Target formalism EL + is the DL that is supported in this work.

Supported reasoning tasks This work is about classification of EL + ontologies.

Algorithm All axioms are represented as key-value pairs so that they are suitable for MapReduce
implementation. The completion rules are also remodelled such that they can easily be represented in the
form of map and reduce functions. All completion rules for classification involve either two-way joins or
joins involving more than two operands. Rules involving more than two operands are split into two rules
such that there are only two join operands. The algorithms for applying the rules are based on two
functions: map and reduce. Map function gives out a key-value pair where the key is the join operand and
reduce function groups all the key-value pairs that share the same key in order to perform the join.

Implementation Hadoop MapReduce was used for the implementation. Each rule corresponds to a
MapReduce job. These jobs are run iteratively until no new output is produced. A separate MapReduce job
takes care of removal of duplicate axioms.

Reported Scalability Experiments were run on a 14 node cluster with each node having 16GB RAM and
two quad-core processors. Copies of Galen and SNOMED CT ontologies were used to test the scalability
of the system. The biggest ontology that the system can handle is 3-SCT (three copies of SNOMED CT)
which has around 3.5 million axioms and this can be classified in 1589 min (26 hours).

The MapReduce approach from Mutharaju et al. (2010) has been extended to EL + + in Maier et al.
(2010).

Target formalism EL + + is supported in this work.

Supported reasoning tasks This work is about classification of EL + + ontologies.

Algorithm In addition to the constructs provided by EL + , nominals and bottom concept are supported.
So, in addition to the classification rules fromMutharaju et al. (2010), rules corresponding to nominals and
bottom concept are included here. Some of the classification rules have been split to facilitate the division
and distribution of work across machines. These rules are applied repeatedly on the axioms until no new
output is generated.

Implementation Algorithms are described in terms of Hadoop MapReduce but concrete implementation
details are not provided.

Reported Scalability Theoretical analysis of the best and worst case scenario for the speed-up gained by
the use of a distributed framework such as MapReduce is discussed. However, no evaluation results are
provided.

10 http://www.spass-prover.org

A survey of large-scale reasoning on the web of data 23

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

http://www.spass-prover.org
https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

MapResolve in Schlicht and Stuckenschmidt (2011) analyzes the challenges of scalable reasoning that
is based on the MapReduce framework.

Target formalism This method is focused on the satisfiability of ALCHI . However, the authors report
that the same method can be applied to first order theories as well.

Supported reasoning tasks MapResolve studies the satisfiability of the DL ALCHI .

Algorithm The main challenge is the fact that in order to compute the closure, a sequence of MapReduce
jobs is required as newly derived knowledge must be fed back to the system for further derivations, thus
leading to repeated inferences. This issue is identified in existing approaches, for RDFS and OWL Horst
materialization, and EL + classification, which are based on MapReduce. Authors present a distributed
resolution method for checking the satisfiability ofALCHI , while the same method can be applied to first
order theories as well. The provided naive approach for distributed DL resolution points out the problem of
repeated inferences.

Implementation In order to overcome arising challenges, the authors follow a method where separate sets
are maintained for clauses that have already been evaluated and clauses that still require rule application.
At each MapReduce job, usable clauses are allocated during the map phase, while already evaluated
clauses are loaded to each reducer for resolution. The reducer also deletes duplicate clauses and clauses
that are subsumed by other clauses so as to further improve efficiency. At the end of the resolution process,
both sets are stored for the next job. Authors deal with load balancing by distributing the set of usable
clauses evenly among reducers. In addition, the number of usable clauses that are assigned to each reducer
is adjusted after each job by taking into account the predicted and the actual runtime.

Reported scalability No experimental evaluation was provided, thus it is unclear if the minimization of
repeated inferences is able to amortize the cost of storing and parsing the sets of clauses in every job.

Different from the conventional Tableau algorithms, the classification of OWL EL ontologies can
proceed by applying a set of completion rules and has a polynomial complexity. A parallel, thread-safe
classification implementation, ELK, for OWL EL is proposed in Kazakov et al. (2011).

Target formalism The authors of this work do not consider role chains. The target DL is ELHR + where R +

represents that transitive roles are allowed.

Supported reasoning tasks Classification of OWL EL ontologies are studied. Specifically, a set of
completion rules are given. The task of classification is then transformed to the procedure of iteratively
applying the completion rules.

Algorithm Classification is performed on a set of completion rules that avoids normalization and as well
reduces the number of inferences compared to the rules in Baader et al. (2005). Two main optimization
strategies are applied for enhancing efficiency: (1) Some rules are modified to eliminate redundant
applications (specifically aiming at R ∃); (2) For a special subsumption query F v G, the rule applications
are performed on a limited set of the axioms (so called reachable axioms) w.r.t. F v G.

The authors introduce a notion of “context” to implement a parallel saturation-based algorithm. The
“context” in ELK means that different axioms (original or derived) may participate in different reasoning
parts. For example, in context1, all rule applications are performed on the joins with A as the joint. Thus the
axioms X v A or A v 9r:C should be imported into this context, but not for X v B. Thus this parallel
strategy is actually a joint-based partition (it also includes the cases of applying the rules with only one
premise, since such premise can be treated as the one with a pseudo joint). Since each context is inde-
pendent of any other, such a method on memory-based framework is thread safe.

Implementation The above algorithm is implemented on an in-memory server. The current version of
ELK is an in-memory system.

Reported scalability Efficiency and scalability of ELK is evaluated. The test data sets are real-world
ontologies expressed in OWL 2 EL. The experimental results show that it has the best performance on
almost all ontologies. For example, it can classify SNOMED CT (containing nearly 300,000 axioms) in 10
s including loading time.

G . A N T O N I O U E T A L .24

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Deslog presented inWu and Haarslev (2012) is a parallel tableau-based DL reasoner forALC, designed
for thread-level parallelism.

Target formalism Deslog deals with the DL ALC.

Supported reasoning tasks Deslog performs TBox classification for the DL ALC.

Algorithm The algorithm is based on a multithread DL tableux algorithm. The description of Deslog is
based mainly of its technical details in terms of implementation.

Implementation The inherent non-determinism of DL tableaux is utilized for parallel TBox classification
on a shared-memory setting. Such non-determinism comes from disjunctions and qualified cardinality
restrictions. The system consists of several components such as the pre-processing layer that translates the
given OWL ontology into the internal representation, the reasoning engine layer that performs DL rea-
soning, the post-processing layer that processes the results and the infrastructure layer that supports
auxiliary operations.

The system is implemented in Java and allows parallelization by introducing optimized data structures.
The authors point out the fact that naive tree structures are not well placed for a shared-memory setting.
Thus, a list-based structure called stage and a queue-based structure called stage pool are used for the
storage of each non-deterministic branch and all branches in the tableau, respectively. Several optimiza-
tion techniques, such as lazy-unfolding, axiom absorption, semantic branching, dependency directed
backtracking and model merging, were studied for their suitability for a parallel implementation and were
incorporated into the system. The authors discuss the introduced overhead due to thread management and
highlight the need for efficient data structures that allow reasoning while minimizing the frequency of
simultaneous access to shared data by multiple threads.

Reported scalability Experimental results indicate good scalability properties for TBox classification
based on a multi-threading shared-memory model that is implemented in Java on a 16-core computer.
Various data sets, of relatively small size, were considered with the number of axioms in each tested data
set ranging from 45 to 1140. It is shown that for small inputs the overhead coming from parallelization due
to threads manipulation and access to shared data affects significantly the performance. However, for
larger inputs parallelization shows linear performance for up to 16 threads, while the authors stress the fact
that reasoning performance remains stable for up to 32 threads, indicating that the system could potentially
utilize a larger hardware setting. Opposite to the results for the shared-memory setting, the system did not
perform well on a distributed setting as the maximum speedup was below 3 even when 16 processors were
assigned on a high-performance computing cluster.

The parallel ABox classification described in Ren et al. (2012) is an extension to the procedure used to
classify TBox in parallel by ELK in Kazakov et al. (2011).

Target formalism The target DL is ELH?;R +

Supported reasoning tasks ABox materialization is supported in this work.

Figure 6 A joint-based partition example

A survey of large-scale reasoning on the web of data 25

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Algorithm Classification rules similar to the ones in Baader et al. (2005) are used. But, normalization of
ontologies is not required here. Axioms are assigned to contexts, in which inferences can be derived
independently in parallel. ABox axioms can be internalized to TBox axioms and the procedure from
Kazakov et al. (2011) can be used. But this is inefficient due to unnecessary computations. So the authors
propose additional rules to cover the bottom concept and individuals.

Implementation Algorithms suitable for a parallel shared-memory machine were proposed and the
implementation is in Java.

Reported Scalability Evaluation was done on an Amazon EC2 high-memory instance with 8 virtual cores
and 60GB allocated to JVM. ABox axioms were generated for the TBox of NotGalen ontology. For
around 1 million individuals and 9 million axioms, executiom time is about 3 min.

The classical DL cannot represent fuzzy information, which is available in some applications, such as
multimedia and bioinformatics. Thus extending DL with the ability to handle fuzzy information is another
way to enrich the expressive power. In Stoilos et al. (2008), the authors propose a language fuzzy-EL +

that is a fuzzy extension of OWL EL by adding fuzzy values to the axioms. For example, an axiom
pyrexia v complication is not a precise description since pyrexia is not always caused by a complication.
Then we add a fuzzy value to this axiom like hpyrexia v complication; 0:6i to describe that under the
possibility of the degree 0.6, pyrexia is caused by a complication.

Based on this extension, the classification of a fuzzy ontologies also includes the computation of fuzzy
values. For example, the following rule is based on Gödel fuzzy logic in Stoilos et al. (2008) (giving the
minimum fuzzy value in the pre-conditions to the conclusion):

If hX v Y ; ni, hY v 9r:Z;mi,thenhX v 9r:Z;minðn;mÞi.
Since the applications on fuzzy-EL + faces the issue of handling large-scale data sets as well, devel-

oping a parallel classification algorithm has also become an appealing topic. In Zhou et al. (2012) and
Zhou et al. (2013), the authors propose a classification algorithm of fuzzy-EL + based on MapReduce, and
evaluate it on real-world data sets such as SNOMED CT.

Target formalism A fuzzy extension of OWL EL, called fuzzy-EL + , is studied in this work.

Supported reasoning tasks The proposed methods in this work aim at parallelizing classification of
fuzzy-EL + ontologies.

Algorithm The parallel strategy is joint-based partition. We use the above rule as an example (see
Figure 6): the corresponding axioms (original or derived) are distributed among different nodes (or
machines), and all the axioms sharing the same joint (Y in the rule) are grouped to the same node and
matched according to the rule to derive new axioms.

The algorithm is designed based on MapReduce. Parallelizing axioms corresponds to the map phase,
while grouping relative axioms corresponds to the reduce phase. Since one MapReduce job can only
perform one 2-way join, some rules should be equally split into several 2-way joins.

Implementation A system is implemented based on Hadoop MapReduce.

Reported scalability The test data sets are two real-world ontologies, Galen and SNOMED CT. The
authors run their prototype system on a small cluster with eight nodes (all have basic configurations of 2
GB memory and 2 physical cores), and evaluate it on different copies of the original ontologies. A linear
time speedup trend is shown by the tests on Galen. For SNOMED CT, the classification time cannot be
consider acceptable even on a few copies of SNOMED CT. This also throws a question: is it necessary to
classify TBoxes through distributing computation? Since TBoxes remain of fairly constant size in practice,
the in-memory environment might be sufficient to meet the demand.

DistEL inMutharaju et al. (2013) andMutharaju et al. (2015) is a distributed EL + classifier, which uses
a P2P model and rules from Baader et al. (2005) for classification.

Target formalism EL + is the DL that is supported in this work.

G . A N T O N I O U E T A L .26

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Supported reasoning tasks Ontology classification is the supported reasoning task.

Algorithm There is a one-to-one correspondence between the classification rules and the type of axioms in
the ontology. For example, only a particular rule can be applied on axioms of type A v B. The basic idea
is the following: (i) split the ontology based on the axiom type among the machines in the cluster and (ii)
let each machine apply the corresponding rule on the axioms local to it. There is no shared memory and the
processes on different machines communicate by message passing. Classification task terminates when
each of the processes running on the machines does not produce any new axiom. Barrier synchronization
mechanism, where each process waits for the rest of the processes at the end of each iteration, is used to
simplify termination detection. There is an uneven load distribution and due to barrier synchronization,
there will be some busy nodes and several idle nodes. Work stealing is used to address this—idle nodes
take some axioms from the busy nodes and process them locally.

Implementation Axioms are represented as key-value pairs and Redis11 is used as the key-value store.
The corresponding source code is available from https://github.com/raghavam/DistEL. A P2P archi-
tectural model is used here.

Reported Scalability DistEL is evaluated on a cluster ranging from 8 nodes to 64 nodes. Biomedical
ontologies such as GO and SNOMEDCT, along its duplicates (SNOMEDx2, SNOMEDx3, SNOMEDx5)
are used to test the scalability of the system. Traffic ontology from Dublin city is also used. The perfor-
mance of DistEL is compared to single machine reasoners such as Pellet, ELK, jCEL, Snorocket, HermiT
and FaCT++ . On small to medium sized ontologies such as GO and SNOMED, the performance of the
single machine reasoners is better. For rest of the large ontologies, single machine reasoners run out of
memory but DistEL can classify them and it also shows reasonable speedup with increasing number
of nodes.

Apart from the MapReduce and fixpoint iteration approach (DistEL), another approach is described in
Mutharaju et al. (2014). A more detailed description of all the distributed EL + reasoning approaches is
given in Mutharaju (2016).

Target formalism EL + DL is supported in this work.

Supported reasoning tasks The reasoning task that is supported in this work is ontology classification.

Algorithm This is a queue based approach, where each concept in the given input ontology is assigned a
queue. The rule to be applied depends on the next entry in the queue. The possible entries of the queues are
the different axiom types of the ontology obtained after normalization. On single machine reasoners, this
approach is more efficient than the fixpoint iteration method followed by the previous two approaches.
But, this is not the case in a distributed setup. Axioms are distributed randomly across the machines in the
cluster. Then, each machine follows the queue approach and communicates with other machines whenever
necessary.

Implementation This approach, named DQuEL, is implemented in Java and a key-value store named
Redis is used for storage. Source code is available from https://github.com/raghavam/DQuEL. Except for
the termination process, the rest of the system follows a P2P model. A centralized termination process,
known as termination controller, checks the queues on all the machines and if they are empty, the rea-
soning process on each machine is terminated.

Reported Scalability A cluster of 13 nodes is used for evaluation. Bio-medical ontologies such as GO,
NCI, SNOMED CT along with 2-SNOMED were used as input ontologies. For larger ontologies such as
SNOMED CT and 2-SNOMED, this approach turns out to be inefficient. One of the primary reasons for
the inefficiency in this approach is that, unlike in distributed fixpoint iteration, batch processing of axioms
is not possible in this approach.

11 http://redis.io

A survey of large-scale reasoning on the web of data 27

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://github.com/raghavam/DistEL
https://github.com/raghavam/DQuEL
http://redis.io
https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

5.4 Nonmonotonic reasoning

The majority of proposed approaches is mainly focused on monotonic reasoning. However, there has been
work on nonmonotonic reasoning as well. In Tachmazidis et al. (2012b) authors presented the first step
towards scalable nonmonotonic reasoning, focusing on defeasible reasoning.

Target formalism The proposed method takes into consideration reasoning over defeasible logic with the
restriction that each rule may have only one variable.

Supported reasoning tasks Materialization using forward-chaining is the main task of this approach.

Algorithm The main idea lies on the fact that there is only one variable in the body of the rule. Thus, all
predicates of the body have a common argument on which they can be joined in order to decide on the
applicability of the rule.

Implementation This method is implemented on MapReduce in order to facilitate large-scale grouping of
facts that will lead to rules applicability. However, grouping facts is not sufficient for defeasible reasoning,
and thus, an external reasoner implementing the defeasible logic algorithm is applied on each group of
facts. The used reasoner implements propositional defeasible logic. Thus, deriving conclusions in order to
compute the closure requires a combination of reasoner’s results for each group and the value of the
variable for the corresponding group. Full closure can be derived with only one MapReduce job.

∙ Theoretical properties: Sound and complete for defeasible logic with one variable.
Reported scalability Experimental evaluation was carried out showing that defeasible reasoning is
feasible over billions of facts. More specifically, experiments were performed on a cluster with 16
nodes using the MapReduce framework. The method was evaluated using a synthetic data set based
on uniform distribution, ranging the number of facts from 1 to 8 billion facts over an artificial rule set
that had been used in literature. The method showed good scalability properties, with linear speedup
over increasing number of facts, reaching data throughput of approximately 2.2 million facts
per second. Scaled speedup, namely speedup per utilized node, highlighted the performance
improvement attributed to large amounts of main-memory as well as the performance decline due to
platform overhead.
In Tachmazidis et al. (2012a) authors extended their abovementioned initial approach (see
Tachmazidis et al., 2012b), by relaxing the restriction that each rule may have only one variable.
Target formalism The extended approach enables scalable defeasible reasoning where rules are
allowed to have more than one variable. Authors discuss the use of predicate dependency graph,
categorizing rule sets into stratified and non-stratified. The proposed method deals with stratified
rule sets.
Supported reasoning tasks This approach is based on materialization using forward-chaining.
Algorithm A previously existing method (Tachmazidis et al., 2012b) was not applicable for rule sets
that contain more than one variable since in this case all applicable rules for a specific literal need to
be recorded prior to the computation of the defeasible logic algorithm. However, the same literal may
be supported by a set of rules that may be computed on different nodes as joins are not guaranteed to
be performed on the same variable value. Thus, there is a need to differentiate between rule
applicability and defeasible reasoning.
Implementation The calculation of fired rules and defeasible reasoning are performed separately
resulting in multiple MapReduce jobs. As only stratified rule sets are allowed, there is a clear
reasoning sequence where rules are processed in groups utilizing previously computed knowledge.
Fired rules are computed as a set of join operations, matching existing knowledge in order to define
rule applicability. Once applicable rules are computed, the available knowledge (facts, applicable
rules) for each literal are grouped on a single node allowing the application of the defeasible logic
algorithm. After processing all rules, the full closure is computed for the given data set and rule set.

∙ Theoretical properties: Sound and complete for defeasible logic over stratified rule sets.
Reported scalability Experimental results indicate that defeasible reasoning, under the assumption of
stratification, can be performed over 500 millions of facts and has the potential to scale up to billions

G . A N T O N I O U E T A L .28

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

of facts. Specifically, experiments were performed on a cluster of 16 nodes, using manually generated
data sets that resemble real-world data sets, which follow a highly skewed distribution. An artificial
rule set was used in order to evaluate the method’s scalability. Ranging the number of rules from 2 to
16 showed linear speedup, while despite the skewed nature of the used data sets, the implementation
on MapReduce allowed a well-balanced distribution of the workload. However, the method’s
performance over increasing number of nodes indicate overheads that are introduced by the platform.
A different to the abovementioned nonmonotonic approach is presented in Tachmazidis and
Antoniou (2013), which is focused on the logic programming.
Target formalism Opposite to the previous methods (Tachmazidis & Antoniou, 2013) allows rules
that contain negative subgoals, namely a conclusion may be derived provided that part of the rule is
determined as true while another part of the rule is determined as false. Such computation allows
processing over missing information. However, the presented approach deals only with the stratified
semantics of logic programs.
Supported reasoning tasks Forward-chaining materialization is computed by the proposed
approach.
Algorithm The approach is tailored for stratified semantics of logic programs. Thus, it allows only
rule sets whose predicates can form a hierarchy and subsequently be assigned to ranks. However,
such constraint provides a pre-defined reasoning sequence, namely performing reasoning from lower
to higher ranks, which constitutes the closure.
Implementation A rule containing both positive and negative subsets is computed as a sequence of
join and anti-join operations, using MapReduce. In particular, the positive part is computed through
joins resulting in a temporary literal (positive goal) containing all required arguments. Subsequently,
positive goal is filtered through a sequence of anti-joins, which retain results from positive goal that
do not match the negative subgoal on their common arguments. Once all anti-joins are applied, the
remaining results are transformed into the set of conclusions. Various special cases are covered such
as the transformation of rules with nested subgoals into a set of rules that provide equivalent results.

∙ Theoretical properties: Sound and complete for stratified semantics of logic programs.
Reported scalability Experimental evaluation is reported showing that the proposed approach is able
to scale up to billions of facts. Specifically, the experiments are based on a proposed benchmark for
rule engines that perform in-memory reasoning. The volume of data sets was adjusted accordingly to
evaluate large amounts of facts, while various evaluation metrics, applicable to the MapReduce
implementation, were chosen. Experiments were run on a cluster of 9 nodes with data sets modeling
both uniform and zipf distribution. Join and anti-join operations were evaluated for both distributions
for up to 1 billion facts showing fairly linear speedup. The method is also showed to scale linearly
when the number of rules is ranging from 16 to 128.
In Tachmazidis et al. (2014) authors extended their approach from the stratified semantics of logic
programs (see Tachmazidis & Antoniou, 2013) to the full WFS.
Target formalism (Tachmazidis et al., 2014) proposed a method for performing reasoning over
missing information dealing with the full WFS, and thus, allowing recursion through negation.
Supported reasoning tasks This approach computes the materialization using forward-chaining.
Algorithm This work highlighted the fact that reasoning and storing the Herbrand base is infeasible
for large inputs. This method captures a significantly wider range of logic programs compared to
Tachmazidis and Antoniou (2013), with which it shares the notion of computing rules with negative
subgoals as a sequence of join and anti-join operations. However, Tachmazidis et al. (2014) deals
with three-valued models meaning that the closure consists of true, undefined and false literals.
Processing and storing all three values is prohibitive for large inputs. Nevertheless, it is shown that
performing reasoning over true and undefined literals is feasible for large programs.
Implementation In order to overcome the scalability barrier authors follow the alternating fixpoint
procedure where reasoning is performed by computing two estimation sets, highlighting the
computational impact of performing reasoning over safe (range restricted) programs. The first set
contains true literals while the second contains potentially true and undefined literals. The process
guarantees that eventually the two sets represent the model of the program. Thus, the final KB

A survey of large-scale reasoning on the web of data 29

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

consists of true and undefined literals, while literals that are not contained in the KB are considered
false. The approach is designed and optimized for the MapReduce framework. Optimizations come
from monotonicity properties of the WFS, utilizing previously derived knowledge, and thus, reducing
reasoning time, minimizing the storage of overlapping knowledge and speeding-up the decision
process of determining whether the complete closure is computed.

∙ Theoretical properties: Sound and complete for the full WFS.

Reported scalability Experimental results showed that the proposed method can be applied to billions
of facts. Specifically, an available benchmark, describing various test programs, was used and a new
test program was introduced in order to evaluate the results of the proposed optimizations. Experiments
were performed on a cluster of 8 nodes, evaluating default negation over synthetic data sets, following
uniform distribution, of up to 1 billion facts resulting in fairly linear speedup. The advantages of
optimizations follow a clear pattern, higher percentages of pre-computed knowledge result in higher
speedups of the optimized over the naive implementation. For constant percentages of pre-computed
knowledge, fairly constant speedups of optimized over the naive implementation are observed for
various data sets.

This ends the presentation of the state of the art. Next we will critically evaluate this state of the art.

6 Summary and critical analysis

In this section a critical analysis of the state of the art on large-scale reasoning on the Web of Data
is presented. The analysis is based on the detailed presentation of related systems and approaches in
Section 5. A summary of systems and their properties presented in this section is the following (Table 1):

6.1 RDFS

A large part of the work introduced in the previous section focuses on the problem of parallel reasoning on
RDFS ontologies using centralized or distributed platforms. The experimental results generally show a
positive performance of RDFS reasoning with utilizing parallel techniques. This is mainly due to RDFS
being a relatively simple language in terms of expressivity. On the other hand, RDFS has some special
properties that can be used to improve the performance of parallel reasoning.

Rule Application Order The materialization of RDFS ontologies (or forward chaining reasoning) can be
performed by exhaustively applying the completion rules (Hayes 2004) until the termination condition is
satisfied. It is costly to check the termination condition, in particular in a distributed environment. The
authors in Urbani et al. (2009) have found that there exists a rule application order that leads to complete
results, under certain assumptions (see the exchange on this matter in Patel-Schneider (2012a) and Urbani
et al. (2012a). In this order, most of the rules can be applied once. The remaining rules are actually used to
compute the transitive closure of subsumptions among classes and properties. Thus, the problem of
materialization on RDFS ontologies can be reduced to the problem of computing transitive closure, which
is in the complexity class NC, where each problem can be solved effectively in parallel.

Balanced Data Partition The triples in RDFS ontologies can be categorized into two parts: schema (or
ontological) triples and instance (or assertion) triples (see Figure 3). As shown in Hayes (2004), each
RDFS rule contains a unique instance triple pattern in preconditions. Schema triples tend to be small in
size. Thus, the instance triples can be independently parallelized to different processors by replicating the
schema triples across the cluster as discussed in Weaver and Hendler (2009). This method leads to
embarrassing parallelism of materialization on RDFS ontologies. For schema triples, a term-based parti-
tion method is also proposed in Kotoulas et al. (2010) to deal with the problem of load balancing. This
method works well in the case that the frequency of some terms is significantly higher than others. Such
issues have also been discussed as part of the development of the Marvin platform in Oren et al. (2009),
where a random approach is proposed to tackle the problem of the skew of data, and a deterministic
approach is given to achieve non-redundant reasoning. Thus, Marvin actually achieves a balance between
random and deterministic approaches.

G . A N T O N I O U E T A L .30

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Encoding of Triples Different approaches for encoding RDFS triples have been discussed in Oren et al.
(2009), Goodman et al. (2011), Hoeksema and Kotoulas (2011), Heino and Pan (2012). These approa-
ches can yield a significant throughput improvement and optimize the query answering. In summary, the
in-memory reasoning on the Cray XMT supercomputer can scale up to 512 processors while handling 20
billion triples. Marvin is shown to scale to up to 64 nodes when processing data sets of 14.9 billion
triples. The system proposed in Kotoulas et al. (2010) can run on 64 computing nodes and handle data
sets with near 200 million triples and resulted in an overall throughput of 450 thousand triples
per second.

Query Answering There is work that deals with the problems of RDFS data query answering in Goodman
et al. (2011) and Hoeksema and Kotoulas (2011), stream reasoning in Hoeksema and Kotoulas (2011) and
backward chaining processing in Salvadores et al. (2011). There are some special optimizations that can be
used in these tasks. For example, a graph-based representation is proposed in Goodman et al. (2011).
Based on this representation, a query can be transformed to graph operations that improve the performance
of joins. To handle stream data, the authors in Hoeksema and Kotoulas (2011) propose a window-based
method, which creates a window comprising of either a fixed number of triples or a fixed period of time
during which triples are entering the stream.

Although the discussed RDFS reasoning approaches are scalable and efficient, they have certain
limitations.

Lack of Benchmarks There are several RDF benchmarks and data generators such as LUBM presented in
Guo et al. (2005), SP2Bench presented in Schmidt et al. (2009), DBPSB presented in Morsey et al. (2011),
BSBM in Bizer and Schultz (2009), SRBenchin (Zhang et al., 2012) etc. All of them focus on bench-
marking the SPARQL query processing performance and not on reasoning performance. At best, the
scalability of an RDFS reasoner can be tested using these benchmarks. Further investigation is required to
identify performance hotspots in RDFS reasoning similar to the efforts such as the work presented in Kang
et al. (2014) and WatDiv in Aluç et al. (2014) which are for identifying performance hotspots in ontology
reasoning and stress testing the SPARQL query performance respectively. Data generators that focus on
such performance hotspots for RDFS reasoning should be developed. The effect of these hotspots on
distributed RDFS reasoning can be studied.

Profile Specific Algorithms Several reasoners such as Pellet presented in Sirin et al. (2007), HermiT in
Glimm et al. (2014), Konclude in Steigmiller et al. (2014) and RDFox in Motik et al (2014) can be used on
ontologies of different profiles including RDFS, OWL 2 EL, OWL 2 RL etc. But the scalable reasoning
algorithms discussed so far for RDFS and other profiles are very much dependent on the reasoning rules of
that particular profile. Similarly, performance optimizations are also dependent on the ruleset and the
corresponding data of a particular profile. Instead, it would be beneficial to have a single scalable reasoner
that can support several profiles such as RDFS, OWL 2 EL, OWL Horst and OWL 2 RL. A proposal has
been put forth in Mutharaju et al. (2015) but an implementation is not available. In such cases, end users
with large ontologies need not restrict the expressivity of their ontologies to a particular profile. Notice that
this comment applies to OWL reasoning of Sections 6.2 and 6.3 and not only to RDFS. Since RDFS
reasoning is less complex than generic OWL reasoning, RDFS is one of the main target formalisms that
reasoning over a generic reasoner can be used as well, with proper parameterization.

Large TBox One of the primary assumptions in most of the scalable RDFS reasoning approaches is
that the number of schema triples are typically fewer compared to the instance triples. This is in
general a safe assumption and allows for the duplication of schema triples across the nodes in the
cluster. However, with the ongoing research efforts in the field of automated KB construction and
population as discussed in Niu et al. (2012), Dong et al. (2014), Mahdisoltani et al. (2015), Mitchell
et al. (2015), it could be reasonably expected that KBs with large number of schema triples can be
built. In such cases, the assumption on schema triples needs a reconsideration and alternate approa-
ches need to be studied.

A survey of large-scale reasoning on the web of data 31

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Table 1 Summary of Semantic Reasoning systems

System Target formalism
Supported reasoning

Tasks Algorithm Implementation Scalability

Kaoudi et al. (2008) RDFS Forward chaining and
backward chaining
reasoning

Encoding RDFS triples and
performing reasoning based on
distributed hash tables

Implementing algorithms
based on a platform of P2P
networks

Reasoning time increases exponentially
with the tree-depth of the manually
generated data sets

Marvin (2009) RDFS Closure Distributed (partition, compute,
repartition)

Combining random and
deterministic reshuffling

Up to 200M triples and 450K triples
per second

Weaver & Hendler
(2009)

RDFS Forward chaining
reasoning

A parallel algorithm based on the
property of ABox Partition Safe

Implementing algorithms
using C\MPI interface

Linear trend of reasoning time on LUBM
data sets up to 650M triples

Goodman et al.
(2011)

RDFS Closure computation,
SPARQL querying

Multi-threading Global hash table on Cray
XMT

20 billion triples

Salvadores et al.
(2011)

RDFS query driven inference
(incomplete)

Distributed TBox fully replicated on
all nodes

Java, 4Store engine Up to 138M triples and 150K-300K
per second

Hoeksema &
Kotoulas (2011)

RDFS Stream reasoning, query
answering

Distributed stream reasoner Yahoo S4 system Throughput 160 000 triples per second

Heino and Pan
(2012)

RDFS Materialization Forward chaining multi-threading Multicore CPU and GPU Linear speedup up to 16 cores

DynamiTE (2013) RDFS (pdf fragment) Materialization Datalog-based multicore Java, multicore, B-trees
indexing

1 billion triples

Soma & Prasanna
(2008)

OWL Horst Materialization Rule partitioning, data partitioning Java, Jena Millions of triples

WebPIE (2010,
2012)

RDFS OWL Horst Materialization (full) Rule parallelism, MapReduce Hadoop with hardcoded rules 100 billion triples

SAOR (2010) RDFS, pD* (OWL Horst)
OWL 2 RL

Forward reasoning Rule partitioning Distributed platform Linear speedup

Kolovski et al.
(2010)

OWL 2 RL Forward chaining
reasoning

Dynamic semi-naive algorithm based
on relational operations

Implementing algorithms
based on Oracle Databases

Linear performance on real ontologies

Bonatti et al. (2011) OWL 2 RL/RDF (part) Forward reasoning Distributed controlled by master node Distributed shared-nothing 1.11 billion triples
QueryPIE (2011,
2014)

Datalog pD* OWL 2 RL Query-driven
evaluation

Tabling of terminological knowledge
and parallel variant of QSQ algorithm

Java and distributed
computing framework Ajira

10 billion triples

Aslani & Haarslev
(2012)

SHIQ Classification (TBox) Multithread (Concept based
partitioning)

Multithreading classification of SNOMED CT ontology

Martínez-Angeles
et al. (2013)

Datalog Forward chaining
materialization

Datalog evaluation algorithm based on
selection, join and projection

Implementing algorithms
based on a platform of GPU

Performance on a GPU has significant
improvement compared to that on a single
CPU

RDFox (2014) Datalog, RDFS, OWL 2
RL

Forward chaining
materialization

Optimization of semi-naive algorithm
based on a global index

Implementing the core
algorithm based on a multi-
core system

Degree of parallelism ranges from 88% to
98% with 32 threads allocated

G
.
A
N
T
O
N
I
O
U

E
T

A
L
.

32

https://doi.org/10.1017/S0269888918000255
D

ow
nloaded from

 https://w
w

w
.cam

bridge.org/core. Vrije U
niversiteit, on 06 N

ov 2020 at 15:50:01, subject to the Cam
bridge Core term

s of use, available at https://w
w

w
.cam

bridge.org/core/term
s.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

RSPARK (2015) RDFS OWL Horst Materialization (full) TBox and then ABox parallel
reasoning

Implementetion in Spark 860 Million triples (initial), three times
faster than WebPie

Vlog (2016) RDFS OWL RL Materialization (full) Columnar storage in tables C ++ and Trident Graph
engine and RDBMS

0.5 billion triples

Liebig et al. (2007,
2010)

SHIQ Concept satisfiability A tableaux algorithm based on parallel
techniques

Reasoning implementation is
coded based on C+ +

Efficient speedup for up to 4 cores reduced
performance for 24 cores

Schlicht &
Stuckenschmidt
(2008)

ELC Satisfiability Distributed resolution No implementation No evaluation (experimental)

Schlicht &
Stuckenschmidt
(2009)

ACCUIQ Satisfiability,
subsumpion checking

Ordered resolution (distributed) SPASS prover based Tested on 13 ontologies (480 classes)

Mutharaju et al.
(2010), Zhou et al.
(2016)

EL + Classification MapReduce based Hadoop Galen and 3-SCT classification

Maier et al. (2010) EL + + Classification Distributed (MapReduce) No implementation No evaluation (experimental)
MapResolve (2011) ALCHI Satisfiability Distributed resolution on MapReduce Even load balancing on

MapReduce
No evaluation (experimental)

ELK (2011) OWL 2 EL Rule-based
classification

Thread-safe parallel algorithm based
on a group of completion rules

Implementing algorithms
based on a multi-core platform

Classifying SNOMED CT (containing
nearly 300,000 axioms) in 10 seconds

Deslog (2012) ALC TBox classification Tableaux based Java, multithreading,
parallelism of non-
deterministic tableau rules

Linear speedup (on small data sets)

Ren et al. (2012) ELH?;R + Materialization Rule parallelization Java, parallel, shared memory 9 million axioms
Zhou et al. (2012,
2013)

Fuzzy OWL EL Rule-based
classification

MapReduce algorithm is designed
based on joint-based partition

System is implemented based
on Hadoop

Linear time trend is shown by the tests on
Galen

DistEL (2013,
2015)

EL + classification Distributed (message passing) Redis based Go and 5xSNOMED CT classification

DQuEL (2014) EL + Classification Queue based (one queue per concept) Java and Redis GO, NCI ontologies, inefficient for
SNOMED CT

Tachmazidis et al.
(KR2012)

Defeasible logic (single
variable per rule)

Materialization MapReduce Grouping of facts, external
defeasible reasoner

Throughput 2.2 million facts per second

Tachmazidis et al.
(ECAI2012)

Defeasible logic (stratified
rule sets)

Materialization MapReduce Rule applicability, defeasible
reasoning

500 million facts (total)

Tachmazidis and
Antoniou (2013)

Defeasible logic (stratified
rule sets with negative
goals)

Materialization MapReduce Sequence of joins, anti-joins 1 billion facts

Tachmazidis et al.
(2014)

Defeasible logic (well-
founded semantics)

Materialization MapReduce Alternating fix-point
procedure

1 billion facts

RDBMS=relational database management system.

A
survey

oflarge-scale
reasoning

on
the

w
eb

of
data

33

https://doi.org/10.1017/S0269888918000255
D

ow
nloaded from

 https://w
w

w
.cam

bridge.org/core. Vrije U
niversiteit, on 06 N

ov 2020 at 15:50:01, subject to the Cam
bridge Core term

s of use, available at https://w
w

w
.cam

bridge.org/core/term
s.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

6.2 Datalog, OWL Horst and OWL 2 RL

Datalog. In this survey, there is also work on parallel materialization of datalog programs. Compared to
ontology languages, datalog is a GP language, so corresponding reasoning systems have to allow user-
defined rules as input. On the other hand, the less expressive ontology languages can also be translated to
datalog programs as discussed in Motik et al. (2014). Compared to RDFS reasoning, a key challenge of
implementing datalog is that one cannot initially give a specific strategy for parallel materialization
according to the rules, and cannot easily tackle the problem of data skew either.

Parallelism Strategies One intuitive strategy is to parallelize the application of a rule. Specifically,
different processors select different facts of a predicate and perform joining with other ones. This method
is adopted in Martínez-Angeles et al. (2013) by means of the natural power of parallelism of GPU.
However this method cannot control the skew of data, and may give rise to a large amount of redundant
rule applications in some cases.

To tackle the above problems, the authors of Motik et al. (2014) propose an approach where each fact
has a global order including the derived ones. A unique order ensures that the applications of some rule
would not be performed repeatedly. On the other hand, all processors (threads in the case of Motik et al.,
2014)) work on the global order, such that the distribution of the whole materialization is relatively fair. In
this way, the fraction of the computation performed in parallel on the implemented system trends up to
98% according to Amdahl’s law. This means that, in most cases, parallelism can significantly improve the
performance of materialization.

Current Limitations These two approaches proposed in Martínez-Angeles et al. (2013), Motik et al.
(2014) are both implemented based on in-memory systems. Thus the performance is restricted by the
utilized memory. For the work of Motik et al. (2014), performing materialization on data sets of 690M
triples with 32 threads allocated leads to the exhaustion of memory. The authors in Martínez-Angeles et al.
(2013) propose some methods for memory management, and evaluate their system on data sets with
million facts. The authors of these two papers did not discuss whether their approaches can be used in
distributed platforms.

OWL Horst and OWL 2 RL. More recently, the general research focus moved on to performing rule-
based reasoning using rules that go beyond the ones in the RDFS set. So far, the results have been
moderately successful, with distributed approaches like WebPIE that can scale to RDF data sets with a
hundred billion triples, and centralized ones that can compute the closure of data sets of up to hundred of
million of triples in a few minutes. These results are certainly encouraging. However, there are still two
major problems that remain unsolved: We call them the completeness and worst-case problems.

Completeness If we look at the compliance of current reasoners w.r.t. the expressivity of the supported
ontological languages, then we notice that none of the current approaches is evaluated w.r.t. to a complete
inference. The problem is that many of the rules in complex ontological languages like OWL RL require
the execution of complex joins, whose execution might be very time-consuming on large data sets.
Furthermore, several constructs require the materialization of a large number of statements which encode
“trivial” knowledge. For example, in OWL RL, a complete materialization engine would need to state that
any pair of concepts that is not equal should be considered as different. Furthermore, another important
complication that is induced by the rules in expressive fragments like OWL RL, is that ABox data might
generate TBox data. Emblematic of this is the case described in Patel-Schneider (2012b), where somebody
could define a property that is a subproperty of rdfs:subPropertyOf. In this case, the ABox collection
effectively causes an expansion of the TBox. These cases are fortunately quite rare, yet they might occur
and a complete reasoner is called to address them. What is the performance of complete OWL RL
reasoning on a large RDF input is a question which still has not found any empirical answer, to the best of
our knowledge.

Worst-case Currently, large KBs use only a subset of the features that are offered by the ontological
languages. In general, the TBox is significantly smaller than the ABox (in terms of number of statements),
and this allow the applications of ad-hoc techniques to improve the performance. For example, WebPIE

G . A N T O N I O U E T A L .34

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

replicates the (needed) TBox on each node in order to perform almost all joins locally. Another important
feature of current KBs is that the inferred TBox is rather small (again, in terms of statements) and can be
quickly inferred. This heuristic was exploited in various systems to improve the performance. In QueryPIE
this is used to effectively prune the search tree during the query execution. In RDFox, the evaluation in
Motik et al. (2014) used a particular technique to “unfold” the ontology in several rules. This unfolding is
doable if the ontology (and corresponding inference), is such that the number of rules remains small. Also,
in this case, there is no evidence on the performance of current reasoners in case the input exploit larger
and richer ontologies.

Critical Analysis. For datalog and OWL (including OWL RL and OWL Horst), current research effort
focuses on tractable variants of these languages. Compared to RDFS, these languages have higher
expressivity. Accordingly, more complicated rules are needed for reasoning tasks. In other words, there
exist tighter interrelations among rules and data. This makes it hard to completely parallelize rule appli-
cations. Furthermore, a fixed-point strategy (using numerous iterations to check termination condition) is
inevitable. In this setting, some specialized methods are applied in implementations, for example, sacri-
ficing completeness to avoid complex joins, and maintaining global order to capture load balance.

The experimental results are encouraging for parallel reasoning of datalog and tractable OWL profiles.
One reason is that the evaluated data sets typically have small size ontological data (TBoxes) . One can
improve performance by utilizing this feature, that is, replicating ontological data on each processor. On
the other hand, the evaluated data sets do not fully use the expressive power of target languages. This is
another reason for the encouraging results. To make current methods more practical, it is necessary to
study the cases with larger and more complex ontological data being involved.

6.3 Description Logics

OWL EL. The complexity of classification with OWL EL ontologies is PTime-complete. This positive
complexity is also the reason why OWL EL stands out in the DL family and is widely used in many
applications.

In-memory Systems The first polynomial-time reasoner for classification in OWL EL is CEL presented in
Krötzsch (2011), which is based on a refined classification algorithm. This algorithm is designed by
considering the optimizations used in the linear-time algorithm for checking satisfiability of propositional
horn clauses. Since CEL is essentially a serial reasoner, it does not perform very well on large ontologies,
like SNOMED CT. The PTime-complete complexity also indicates that in the worst case the classification
is inherently a serial procedure. However, the methods utilizing parallel techniques have verified that
parallelism can significantly improve the performance of OWL EL classification on real ontologies.

ELK presented in Kazakov et al. (2011) is the first attempt to use multi-core techniques and other
optimizations to enhance the efficiency of reasoning in OWL EL. It classifies the SNOMED CT ontology
in less than half a minute (the classification time of CEL is 15 min). Although some preliminary experi-
ments show that ELK can be scalable to some extent, it is restricted to the main memory of the utilized
machines. Ren et al. further proposed a distributed ABox materialization algorithm in Ren et al. (2012),
which can be exploited to support OWL 2 DL, with the syntactic approximate reasoning algorithm (see
Ren et al., 2010) used in TrOWL, presented in Thomas et al. (2010).

Distributed Systems Another line of work on parallel reasoning in OWL EL is based on the distributed
computation platforms to deal with the scalability problem. These works are based on MapReduce as
discussed in Mutharaju et al. (2010) or Redis as discussed in Mutharaju et al. (2015). The proposed
experiments show that reasoners based on such platforms have good scalability. However, these reasoners
are typically not efficient due to the inherent overhead of the platforms. We briefly analyze the reasons as
follows; On the one hand, this work implements distributed reasoning based on the CEL calculus, which is
actually a normalization-based approach. The CEL calculus introduces redundant and unnecessary con-
cepts to rename complex concepts, such that the classification can be performed based on a set of simple
formed rules. However this treatment would lead to a large amount of unnecessary results. In the work of
ELK, the authors propose an approach to avoid normalization and directly handle complex concepts. Since

A survey of large-scale reasoning on the web of data 35

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

the method of ELK requires several global operations, it can hardly be used on distributed platforms. On
the other hand, the rules in CEL presented in Baader et al. (2005) are closely interdependent. Thus, there is
no rule application order that avoids the fix-point checking. Furthermore, some rules give rise to multi-way
joins which are costly on distributed platforms.

6.4 Nonmonotonic Reasoning

The study of nonmonotonic reasoning revealed several challenges that come from the more complex
knowledge structures. In the following, we discuss some of the issues that were revealed in the literature.

Excessive Generation of Literals Nonmonotonic reasoning that is based either on defeasible logic or the
WFS comes with a significant overhead in terms of the number of generated literals. More specifically,
both approaches are based on three-valued logics, where literals are classified as true, false or undefined.
Thus, in order to keep a complete KB, literals for at least two of the three values should be kept in the KB.
However, that could potentially lead to an excessive number of stored literals.

In particular, the proof theory of the defeasible logic requires the representation of the so called “not
provable” literals, which generates large numbers of literals even for small theories. Thus, the current
approach is based on a two-valued subset of the defeasible logic, namely the stratified rule sets as dis-
cussed in Tachmazidis et al. (2012a), while a scalable solution for the full defeasible logic remains an open
question. The initial definition of the WFS did not provide an efficient reasoning process that could
generate a manageable amount of literals. Thus, the first step towards the WFS was based of stratified rule
sets as discussed in Tachmazidis and Antoniou (2013). However, more recent work in Tachmazidis et al.
(2014) showed that by computing and storing true and undefined literals, the closure of the full WFS can
be computed while avoiding the generation of excessive number of literals.

Computing Conclusions: Monotonic Vs Nonmonotonic Reasoning Moving from monotonic to non-
monotonic reasoning reveals fundamental differences in terms of conclusion computation. In monotonic
reasoning, rules contain only positive subgoals while the application of a rule also implies a new con-
clusion. On the other hand, nonmonotonic reasoning could contain both positive and negative subgoals as
discussed in Tachmazidis et al. (2014), or after the computation of applicable rules, an additional step
could be required in order to apply the proof theory and derive new conclusions as discussed in Tach-
mazidis et al. (2012a). Thus, while nonmonotonic reasoning can benefit from lessons learnt from mono-
tonic reasoning, it might also require certain adjustments in order to handle the more complex knowledge
structures.

Lack of Benchmarks The lack of benchmarks is reflected in the evaluation of the existing work. More
specifically, the evaluation of Tachmazidis et al. (2012b) is an adjustment of a previous work on an in-
memory reasoner. The work in Tachmazidis et al. (2012a) builds on an existing evaluation and studies
several aspects of the proposed method. Both the work in Tachmazidis and Antoniou (2013) and in
Tachmazidis et al. (2014) evaluate parts of the WFS, while this evaluation is inspired by an existing
benchmark for in-memory reasoners. Thus, there is clearly no benchmark for nonmonotonic reasoning that
could access critical parts of a reasoner such as scalability and performance in terms of data volume, data
distribution, rule set size and rule set structure.

This concludes the critical analysis of the state of the art in large-scale reasoning on the Web of Data.
Notice that without running the experiments across different approaches on the same hardware using the
same data sets, it would be difficult to claim that a particular approach to be state-of-the-art or the most
scalable compared to all others. Thus in the Table of Section 6 reported scalability is presented without an
ordering of systems based on performance since the advancement in hardware and the variation in the time
span of the approaches (e.g. in the case of RDFS reasoning, the earliest paper cited is from 2008 whereas
the latest is from 2016) is an important factor in achieved performance. In the following and final section
we summarize the content and findings of this review, and discuss some areas of future research.

G . A N T O N I O U E T A L .36

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

7 Conclusion and future work

The reasoning approaches that have been studied in this survey all fall under more or less tractable cases.
The question arises about whether the advantages of large-scale reasoning can spread to more complex
reasoning approaches, such as logic programming under answer-set semantics as discussed in Gelfond
(2008), ontology evolution as discussed in Flouris et al. (2013) and ontology repair. It is not a straight-
forward conclusion that massive parallelization will have positive effects similar to simpler reasoning
algorithms for the following reason: the best algorithms for solving complex reasoning tasks rely heavily
on sometimes very elaborate heuristics which would not necessarily work under mass parallelization. It is
an open research question whether mass parallelization is able to outperform these heuristics.

From the standpoint of an integrated Web-scale system, some complex (or nonstandard) reasoning
tasks, like finding justification and ontology repair, also play important roles in different cases. These
tasks face the same problem of staying at an acceptable performance with large-scale data. To tackle this
problem, one way is to optimize the algorithms. For example, a modularization-based approach is pro-
posed in Suntisrivaraporn et al. (2008) to find all justifications with OWL DL ontologies. This method has
also been proved to be applicable on large ontologies, like SNOMED CT presented in Baader and
Suntisrivaraporn (2008). The other way is to parallelize the algorithms based on the similar strategies that
are used for reasoning. There are also some attempts on handling the related problems in RDFS as
discussed in Wu, Qi, and Du (2011) and EL in Zhou et al. (2013). However some issues exist when using
mass parallelization to handle complex reasoning: (1) the computational complexity of the complex
reasoning problems is naturally high, and cannot be reduced by just applying parallelization strategies; (2)
in many cases, the structure of such problems is also not suitable for parallelism. Thus, one should pay
more attention on how to optimize the algorithms, or introduce some incomplete methods, and then
enhance the capacity of systems by parallel strategies. These are all open topics left to researchers in this
domain.

In order to test any tool such as the ones discussed in this paper, good benchmarks are necessary.
Benchmarks test different aspects of a tool such as its scalability, performance and robustness. For RDF,
not only are there large number of triples, close to 90 billion (http://stats.lod2.eu/), on the LOD cloud
(http://lod-cloud.net/), but there are several benchmarks such as LUBM presented in Guo et al. (2005),
BSBM in Bizer and Schultz (2009), SP2Bench in Schmidt et al. (2009), DBSB in Morsey et al. (2011) and
SRBench in Zhang et al. (2012). In the case of OWL, there is a benchmark called UOBM presented in Ma
et al. (2006) for OWL Lite and OWL DL, which are fragments of an older version of OWL. But, there are
no benchmarks for the newer version of OWL, that is, OWL 2 and its profiles as well as for other DL. Since
efficient reasoning over the LOD cloud depends on support for new standards and OWL profiles this is an
important issue. Ongoing projects such as HOBBIT12 and LDBC13 are efforts towards this direction.
Although there are repositories of existing ontologies as discussed in Matentzoglu et al. (2013), there are
currently no real-world ontologies that are large enough and can be parameterized in such a way as to be
considered as benchmarks for tools that focus on scalability. So there is a need for benchmarks that can
generate synthetic ontologies of arbitrary size. Following features can be considered while developing a
benchmark—(i) option to select the DL constructs that are of interest (ii) option to specify the number of
axioms or the size of the ontology file that should be generated and (iii) reflect the interconnections among
the concepts/relationships that are present in real-world (smaller) ontologies. Benchmarks should con-
centrate on including the ontology features that stress tests the reasoners as discussed in Gonçalves et al.
(2012), Kang et al. (2014), Alaya et al. (2015).

The Web is highly dynamic—new information is constantly being added from sensor networks and
social media, among others, and existing information is continuously changed or removed. In the presence
of frequently changing data and time constraints for response time, it is not computationally feasible to
repeatedly apply static reasoning algorithms over the entire information base; instead we need incre-
mental reasoning techniques that only focuses on data that is affected by changes. As Margara et al.

12 https://project-hobbit.eu/
13 http://ldbcouncil.org/industry/origins

A survey of large-scale reasoning on the web of data 37

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

http://stats.lod2.eu/
http://lod-cloud.net/
https://project-hobbit.eu/
http://ldbcouncil.org/industry/origins
https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

(2014) states, “research in this area is of primary importance, since it aims at reducing the gap between the
frequency of changes that characterizes many application domains and the amount of time demanded by
complex reasoning techniques”.

The problem of updating derived information upon changes in the information base has been widely
studied by the database community in the context of view maintenance and deductive databases. Recent
works following this direction include (Volz et al., 2005) and (Urbani et al., 2013), focusing on RDFS
entailment, as well as (Ren & Pan 2011) and (Kazakov & Klinov, 2013), focusing on OWL 2 EL.
Furthermore, TrOWL makes use of the EL stream reasoning algorihtm presented in Ren and Pan (2011)
and syntactic approximation in (Ren et al., 2010) to perform stream reasoning for OWL 2DL. Furthermore
there are specialized solutions, for example, for C-SPARQL queries as discussed in Barbieri et al. (2010).
A precise analysis of various types of reasoning is necessary to determine whether, and to what extent, they
can be tailored towards limiting the amount of knowledge that is being materialized; Liu et al. (2015) is a
recent work in this direction. As stated in Margara et al. (2014), future research should develop guidelines
regarding the right balance between precomputed derived information and on-demand reasoning.

Acknowledgements

This work was supported by the EC-funded SemData Marie Curie project under FP7. Part of this work was
done by Raghava Mutharaju when he was a PhD student at Wright State University during which time he
acknowledges the support of the National Science Foundation under award 1017225 “III: Small: TROn—
Tractable Reasoning with Ontologies.”

References

Abiteboul, S., Hull, R. & Vianu, V. 1995. Foundations of Databases. Addison-Wesley.
Alaya, N., Yahia, S. B. & Lamolle, M. 2015. What makes ontology reasoning so arduous?: unveiling the key

ontological features. In Proceedings of the 5th International Conference on Web Intelligence, Mining and
Semantics, WIMS ‘15, 4:1–4:12. ACM.

Aluç, G., Hartig, O., Özsu, M. T. & Daudjee, K. 2014. Diversified stress testing of RDF data management systems. In
The Semantic Web—ISWC 2014—13th International Semantic Web Conference, Riva del Garda, Italy, October
19-23, 2014. Proceedings, Part I, volume 8796 of Lecture Notes in Computer Science, Mika, P., Tudorache, T.,
Bernstein, A., Welty, C., Knoblock, C. A., Vrandecic, D., Groth, P. T., Noy, N. F., Janowicz, K. & Goble, C. A.
(eds). Springer, 197–212.

Antoniou, G. & Williams, M.-A. 1997. Nonmonotonic reasoning. MIT Press.
Aslani, M. & Haarslev, V. 2012. Concurrent classification of OWL ontologies—an empirical evaluation. In Pro-

ceedings of the 2012 International Workshop on Description Logics, DL-2012, Rome, Italy, June 7–10, 2012,
CEUR Workshop Proceedings 846. CEUR-WS.org.

Baader, F. & Suntisrivaraporn, B. 2008. Debugging SNOMED CT using axiom pinpointing in the description logic
EL+ . In Proceedings of the Third International Conference on Knowledge Representation in Medicine, Phoenix,
Arizona, USA, May 31st–June 2nd, 2008.

Baader, F., Brandt, S. & Lutz, C. 2005. Pushing the EL envelope. In Proceedings of IJCAI, 364–369. Professional
Book Center.

Baader, F., Brandt, S. & Lutz, C. 2008. Pushing the EL envelope further. In Proceedings of OWLED. CEUR-WS.org.
Baader, F., Lutz, C. & Suntisrivaraporn, B. 2005. Is tractable reasoning in extensions of the description logic EL useful

in practice? In Proceedings of the 2005 International Workshop on Methods for Modalities (M4M-05).
Baader, F., Lutz, C. & Suntisrivaraporn, B. 2006. Efficient reasoning in EL+ . In Proceedings of DL.
Barbieri, D. F., Braga, D., Ceri, S., Valle, E. D. & Grossniklaus, M. 2010. Incremental reasoning on streams and rich

background knowledge. In The Semantic Web: Research and Applications, 7th Extended Semantic Web Con-
ference, ESWC 2010, Heraklion, Crete, Greece, May 30 - June 3, 2010, Proceedings, Part I, volume 6088 of
Lecture Notes in Computer Science, Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H.,
Cabral, L. & Tudorache, T. (eds). Springer, 1–15.

Bazoobandi, H. R., Urbani, J., van Harmelen, F. & Bal, H. E. 2017. An empirical study on how the distribution of
ontologies affects reasoning on the web. In The Semantic Web—ISWC 2017—16th International Semantic Web
Conference, Vienna, Austria, October 21–25, 2017, Proceedings, Part I, 69–86. Springer.

Benedikt, M., Konstantinidis, G., Mecca, G., Motik, B., Papotti, P., Santoro, D. & Tsamoura, E. 2017. Benchmarking
the chase. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, 37–52. ACM.

G . A N T O N I O U E T A L .38

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Billington, D., Antoniou, G., Governatori, G. & Maher, M. 2010. An inclusion theorem for defeasible logics. ACM
Transactions on Computational Logic 12, 6:1–6:27.

Bizer, C. & Schultz, A. 2009. The Berlin SPARQL benchmark. International Journal on Semantic Web and Infor-
mation Systems 5, 1–24.

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R. & Hellmann, S. 2009. DBpedia—A
crystallization point for the Web of data. Journal of Web Semantics 7, 154–165.

Bonatti, P. A., Hogan, A., Polleres, A. & Sauro, L. 2011. Robust and scalable linked data reasoning incorporating
provenance and trust annotations. Journal of Web Semantics 9, 165–201.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M. & Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. Journal of. Automated Reasoning 39, 385–429.

Dean, J. & Ghemawat, S. 2004. MapReduce: simplified data processing on large clusters. In OSDI'04: Proceedings of
the 6th Symposium on Operating Systems Design and Implementation. USENIX Association.

Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S. & Zhang, W. 2014.
Knowledge vault: a Web-scale approach to probabilistic knowledge fusion. In The 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ‘14, New York, NY, USA—August 24 - 27,
2014, Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W. & Ghani, R. (eds). ACM, 601–610.

Fensel, D., van Harmelen, F., Andersson, B., Brennan, P., Cunningham, H., Valle, E. D., Fischer, F., Huang, Z.,
Kiryakov, A., Lee, T. K., Schooler, L., Tresp, V., Wesner, S., Witbrock, M. & Zhong, N. 2008. Towards larkc: a
platform for web-scale reasoning. In Proceedings of the 2th IEEE International Conference on Semantic Com-
puting (ICSC 2008), August 4–7, 2008, Santa Clara, California, USA, 524–529. IEEE Computer Society.

Flouris, G., Konstantinidis, G., Antoniou, G. & Christophides, V. 2013. Formal foundations for RDF/S KB evolution.
Knowledge and Information Systems. 35, 153–191.

Gelder, A. V., Ross, K. A. & Schlipf, J. S. 1991. The well-founded semantics for general logic programs. Journal of
the ACM 38, 620–650.

Gelfond, M. 2008. Chapter 7 answer sets. In Handbook of Knowledge Representation, volume 3 of Foundations of
Artificial Intelligence, F. van Harmelen, V. L. & Porter, B. (eds). Elsevier, 285–316.

Glimm, B., Horrocks, I., Motik, B., Stoilos, G. &Wang, Z. 2014. HermiT: an OWL 2 reasoner. Journal of Automated
Reasoning 53, 245–269.

Gonçalves, R. S., Parsia, B. & Sattler, U. 2012. Performance heterogeneity and approximate reasoning in description
logic ontologies. In The Semantic Web—ISWC 2012—11th International Semantic Web Conference, Boston, MA,
USA, November 11-15, 2012, Proceedings, Part I, volume 7649 of Lecture Notes in Computer Science, Cudré-
Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J. X., Hendler, J., Schreiber,
G., Bernstein, A. & Blomqvist, E. (eds). Springer, 82–98.

Goodman, E. L., Jimenez, E., Mizell, D., al Saffar, S., Adolf, B. & Haglin, D. 2011. High-performance computing
applied to semantic databases. In Proceedings of the 8th Extended Semantic Web Conference on The Semanic Web:
Research and Applications Part II, ESWC'11, 31–45. Springer-Verlag.

Gottlob, G., Manna, M. & Pieris, A. 2014. Polynomial combined rewritings for existential rules. In Proceedings of the
14th International Conference on the Principles of Knowledge Representation and Reasoning, KR 2014. AAAI
Press.

Guo, Y., Pan, Z. &Heflin, J. 2005. LUBM: a benchmark for OWL knowledge base systems. Journal of Web Semantics
3, 158–182.

Gupta, A., Mumick, I. S. & Subrahmanian, V. S. 1993. Maintaining views incrementally. ACM SIGMOD Record 22,
157–166.

Hayes, P. 2004. Rdf semantics. In W3C Recommendation. https://www.w3.org/TR/rdf-mt/.
Heino, N. & Pan, J. Z. 2012. Rdfs reasoning on massively parallel hardware. In Proceedings of the 11th International

Conference on The Semantic Web, Part I, ISWC'12, 133–148. Springer-Verlag.
Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F. & Rudolph, S. (eds). 2009. OWL 2 Web Ontology

Language: Primer. W3C Recommendation. Available from http://www.w3.org/TR/owl2-primer/.
Hoeksema, J. & Kotoulas, S. 2011. High-performance distributed stream reasoning using S4. In Proccedings of the 1st

International Workshop on Ordering and Reasoning.
Hogan, A., Pan, J. Z., Polleres, A. & Decker, S. 2010. SAOR: template rule optimisations for distributed reasoning

over 1 billion linked data triples. In Proceedings of the 9th International Semantic Web Conference on The
Semantic Web Part I, ISWC'10, 337–353. Springer-Verlag.

Horrocks, I. 2008. Ontologies and the semantic web. Communications of the ACM 51, 58–67.
Huang, S. S., Green, T. J. & Loo, B. T. 2011. Datalog and emerging applications: an interactive tutorial. In Pro-

ceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2011, Athens,
Greece, June 12–16, 2011, 1213–1216. ACM.

Kang, Y., Pan, J. Z., Krishnaswamy, S., Sawangphol, W. & Li, Y. 2014. How long will it take? Accurate prediction of
ontology reasoning performance. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,
July 27–31, 2014, Québec City, Québec, Canada., Brodley, C. E. & Stone, P. (eds). AAAI Press, 80–86.

A survey of large-scale reasoning on the web of data 39

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

http://www.w3.org/TR/owl2-primer/
https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Kaoudi, Z., Miliaraki, I. & Koubarakis, M. 2008. RDFS reasoning and query answering on top of DHTs. In Pro-
ceedings of the 7th International Semantic Web Conference, ISWC 2008, Karlsruhe, Germany, October 26–30,
2008, Lecture Notes in Computer Science 5318, Sheth, A. P., et al. (eds). Springer, 499–516.

Kazakov, Y. & Klinov, P. 2013. Incremental reasoning in EL + without bookkeeping. In Informal Proceedings of the
26th International Workshop on Description Logics, 294–315. CEUR-WS.org.

Kazakov, Y., Krötzsch, M. & Simancik, F. 2011. Concurrent classification of EL ontologies. In 10th International
Semantic Web Conference, Bonn, Germany, October 23–27, Lecture Notes in Computer Science 7031, 305–320.
Springer.

Kim, J.-M. & Park, Y.-T. 2015. Scalable owl-horst ontology reasoning using spark. In 2015 International Conference
on Big Data and Smart Computing (BIGCOMP), 79–86. IEEE.

Kolovski, V., Wu, Z. & Eadon, G. 2010. Optimizing enterprise-scale OWL 2 RL reasoning in a relational database
system. In International Semantic Web Conference (1), Lecture Notes in Computer Science 6496, Patel-Schneider,
P. F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J. Z., Horrocks, I. & Glimm, B. (eds). Springer, 436–452.

Kotoulas, S., Oren, E. & van Harmelen, F. 2010. Mind the data skew: distributed inferencing by speeddating in elastic
regions. In Proceedings of the 19th International Conference on World Wide Web, WWW ‘10, 531–540. ACM.

Krötzsch, M. 2011. Efficient rule-based inferencing for OWL EL. In Proceedings of IJCAI, 2668–2673. IJCAI/AAAI.
Lécué, F., Tallevi-Diotallevi, S., Hayes, J., Tucker, R., Bicer, V., Sbodio, M. L. & Tommasi, P. 2014. Smart traffic

analytics in the semantic web with STAR-CITY: scenarios, system and lessons learned in dublin city. Journal of
Web Semantics 27, 26–33.

Lembo, D., Santarelli, V. & Savo, D. F. 2013. A graph-based approach for classifying OWL 2 QL ontologies. In
Informal Proceedings of the 26th International Workshop on Description Logics, Ulm, Germany, July 23–26,
2013, 747–759.

Liebig, T. & Müller, F. 2007. Parallelizing tableaux-based description logic reasoning. In On the Move to Meaningful
Internet Systems 2007: OTM 2007, volume 4806 of Lecture Notes in Computer Science, Meersman, R., Tari, Z. &
Herrero, P. (eds). Springer, 1135–1144.

Liebig, T., Steigmiller, A. & Noppens, O. 2010. Scalability via parallelization of OWL reasoning. In Proceedings of
the 4th International Workshop on New Forms of Reasoning for the Semantic Web: Scalable and Dynamic
(NeFoRS 2010).

Liu, B., Huang, K., Li, J. & Zhou, M. 2015. An incremental and distributed inference method for large-scale ontologies
based on mapreduce paradigm. IEEE Transcations on Cybernetics 45, 53–64.

Ma, L., Yang, Y., Qiu, Z., Xie, G. T., Pan, Y. & Liu, S. 2006. Towards a complete OWL ontology benchmark. In The
Semantic Web: Research and Applications, 3rd European Semantic Web Conference, ESWC 2006, Budva, Mon-
tenegro, June 11-14, 2006, Proceedings, Lecture Notes in Computer Science 4011, Sure, Y. & Domingue, J. (eds).
Springer, 125–139.

Mahdisoltani, F., Biega, J. & Suchanek, F. M. 2015. YAGO3: a knowledge base from multilingual wikipedias. In
CIDR 2015, Seventh Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 4–7,
2015, Online Proceedings. www.cidrdb.org.

Maier, F., Mutharaju, R. & Hitzler, P. 2010. Distributed reasoning with EL+ + using MapReduce. Technical report,
Department of Computer Science, Wright State University, USA. http://knoesis.wright.edu/
pascal/resources/publications/elpp-mapreduce2010.pdf.

Margara, A., Urbani, J., van Harmelen, F. & Bal, H. 2014. Streaming the web: reasoning over dynamic data. Web
Semantics: Science, Services and Agents on the World Wide Web 25, 24–44.

Martínez-Angeles, C. A., Dutra, I., Costa, V. S. & Buenabad-Chavez, J. 2013. A datalog engine for GPUs. In
Proceedings of the 22nd International Workshop on Functional and (Constraint) Logic Programming (WFLP
2013), Hanus, M. (ed). 239–253.

Matentzoglu, N., Bail, S. & Parsia, B. 2013. A snapshot of the OWL Web. In The Semantic Web—ISWC 2013—12th
International Semantic Web Conference, Sydney, NSW, Australia, October 21–25, 2013, Proceedings, Part I,
volume 8218 of Lecture Notes in Computer Science, Alani, H., Kagal, L., Fokoue, A., Groth, P. T., Biemann, C.,
Parreira, J. X., Aroyo, L., Noy, N. F., Welty, C. & Janowicz, K. (eds). Springer, 331–346.

Meditskos, G. & Bassiliades, N. 2010. Dlejena: A practical forward-chaining OWL 2 RL reasoner combining jena
and pellet. Journal of Web Semantics 8, 89–94.

Mitchell, T. M., Cohen, W. W., Jr., E. R. H., Talukdar, P. P., Betteridge, J., Carlson, A., Mishra, B. D., Gardner, M.,
Kisiel, B., Krishnamurthy, J., Lao, N., Mazaitis, K., Mohamed, T., Nakashole, N., Platanios, E. A., Ritter, A.,
Samadi, M., Settles, B., Wang, R. C., Wijaya, D. T., Gupta, A., Chen, X., Saparov, A., Greaves, M. & Welling, J.
2015. Never-ending learning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA., Bonet, B. & Koenig, S. (eds). AAAI Press, 2302–2310.

Morsey, M., Lehmann, J., Auer, S. & Ngomo, A. N. 2011. DBpedia SPARQL benchmark—performance assessment
with real queries on real data. In The Semantic Web—ISWC 2011—10th International Semantic Web Conference,
Bonn, Germany, October 23–27, 2011, Proceedings, Part I,Lecture Notes in Computer Science 7031, Aroyo, L.,
Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N. F. & Blomqvist, E. (eds). Springer, 454–469.

G . A N T O N I O U E T A L .40

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

www.cidrdb.org
http://knoesis.wright.edu/pascal/resources/publications/elpp-mapreduce2010.pdf
http://knoesis.wright.edu/pascal/resources/publications/elpp-mapreduce2010.pdf
https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Motik, B., Nenov, Y., Piro, R. & Horrocks, I. 2014. Parallel materialisation of datalog programs in main-memory RDF
databases. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27–31, 2014,
Qébec City, Qébec, Canada. AAAI Press.

Motik, B., Nenov, Y., Piro, R. & Horrocks, I. 2015. Incremental Update of Datalog Materialisation: the Backward/
Forward Algorithm. AAAI Press.

Muñoz, S., Pérez, J. & Gutierrez, C. 2009. Simple and efficient minimal rdfs. Web Semantics: Science, Services and
Agents on the World Wide Web 7, 220–234.

Mutharaju, R., Hitzler, P., Mateti, P. & Lécué, F. 2015. Distributed and scalable OWL EL reasoning. In The Semantic
Web. Latest Advances and New Domains—12th Extended Semantic Web Conference, ESWC 2015, Portoroz,
Slovenia, May 31–June 4, 2015. Proceedings, Lecture Notes in Computer Science 9088, Gandon, F., Sabou, M.,
Sack, H., d’Amato, C., Cudré -Mauroux, P. & Zimmermann, A. (eds). Springer, 88–103.

Mutharaju, R., Hitzler, P. & Mateti, P. 2013. DistEL: a distributed EL+ ontology classifier. In Proceedings of the 9th
International Workshop on Scalable Semantic Web Knowledge Base Systems, Sydney, Australia, CEURWorkshop
Proceedings 1046, Liebig, T. & Fokoue, A. (eds). CEUR-WS.org, 17–32.

Mutharaju, R., Hitzler, P. & Mateti, P. 2014. Distributed OWL EL reasoning: the story so far. In Proceedings of the
10th International Workshop on Scalable Semantic Web Knowledge Base Systems, Riva Del Garda, Italy, volume
1261 of CEUR Workshop Proceedings, Liebig, T. & Fokoue, A. (eds). CEUR-WS.org, 61–76.

Mutharaju, R., Maier, F. & Hitzler, P. 2010. A MapReduce algorithm for EL + . In Proceedings of the 23rd Inter-
national Workshop on Description Logics (DL 2010), Waterloo, Ontario, Canada, May 4–7, 2010, CEUR
Workshop Proceedings 573. CEUR-WS.org.

Mutharaju, R., Mateti, P. & Hitzler, P. 2015. Towards a rule based distributed OWL reasoning framework. In
Ontology Engineering—12th International Experiences and Directions Workshop on OWL, OWLED 2015, co-
located with ISWC 2015, Bethlehem, PA, USA, October 9–10, 2015, Revised Selected Papers, Lecture Notes in
Computer Science 9557, Tamma, V. A. M., Dragoni, M., Gonçalves, R. & Lawrynowicz, A. (eds). Springer,
87–92.

Mutharaju, R. 2016. Distributed Rule-Based Ontology Reasoning. PhD Dissertation, Wright State University.
Niu, F., Zhang, C., Ré, C. & Shavlik, J. W. 2012. Elementary: large-scale knowledge-base construction via machine

learning and statistical inference. International Journal on Semantic Web and Information Systems 8, 42–73.
Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A. & van Harmelen, F. 2009. Marvin: distributed reasoning

over large-scale semantic Web data. Web Semantics: Science, Services and Agents on the World Wide Web 7,
305–316.

Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E. & Phillips, J. C. 2008. GPU Computing. Proceedings of
the IEEE 96, 879–899.

Patel-Schneider, P. 2012a. Comments on WebPIE. Web Semantics: Science, Services and Agents on the World Wide
Web 15, 69–70.

Patel-Schneider, P. F. 2012b. Reasoning in RDFS is inherently serial, at least in the worst case. In Proceedings of the
ISWC 2012 Posters & Demonstrations Track, Boston, USA, November 11–15, 2012, CEUR Workshop Proceed-
ings 914, Glimm, B. & Huynh, D. (eds). CEUR-WS.org.

Ren, Y. & Pan, J. Z. 2011. Optimising ontology stream reasoning with truth maintenance system. In Proceedings of
the ACM Conference on Information and Knowledge Management (CIKM 2011), 831–836. ACM.

Ren, Y., Pan, J. Z. & Lee, K. 2012. Optimising parallel ABox reasoning of EL ontologies. In Proceedings of the 2012
International Workshop on Description Logics, DL-2012, Rome, Italy, June 7–10, 2012, CEUR Workshop Pro-
ceedings 846. CEUR-WS.org.

Ren, Y., Pan, J. Z. & Zhao, Y. 2010. Soundness preserving approximation for TBox reasoning. In the Proceedings of
the 25th AAAI Conference Conference (AAAI2010). AAAI Press.

Salvadores, M., Correndo, G., Harris, S., Gibbins, N. & Shadbolt, N. 2011. The design and implementation of RDFS
backward reasoning in 4Store. In Proceedings of the 8th Extended Semantic Web Conference on The Semanic Web:
Research and Applications—Part II, ESWC'11, 139–153. Springer-Verlag.

Schlicht, A. & Stuckenschmidt, H. 2008. Distributed resolution for ALC. In Proceedings of the 21st International
Workshop on Description Logics (DL2008), Dresden, Germany, May 13–16, CEUR Workshop Proceedings 353.
CEUR-WS.org.

Schlicht, A. & Stuckenschmidt, H. 2009. Distributed resolution for expressive ontology networks. In Proceedings of
the Third International Conference on Web Reasoning and Rule Systems, RR 2009, Chantilly, VA, USA, October
25–26, 2009, Lecture Notes in Computer Science 5837, 87–101. Springer.

Schlicht, A. & Stuckenschmidt, H. 2011. MapResolve. In Web Reasoning and Rule Systems—5th International
Conference, RR 2011, Galway, Ireland, August 29–30, 2011, Lecture Notes in Computer Science 6902, 294–299.
Springer.

Schmidt, M., Hornung, T., Meier, M., Pinkel, C. & Lausen, G. 2009. Sp2bench: a SPARQL performance benchmark.
In Semantic Web Information Management, — A Model-Based Perspective, Virgilio, R. D., Giunchiglia, F. &
Tanca, L. eds). Springer, 371–393.

A survey of large-scale reasoning on the web of data 41

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Schollmeier, R. 2001. A definition of peer-to-peer networking for the classification of peer-to-peer architectures and
applications. In First International Conference on Peer-to-Peer Computing, 101–102. IEEE Computer Society.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A. & Katz, Y. 2007. Pellet: a practical OWL-DL reasoner. Journal of Web
Semantics 5, 51–53.

Soma, R. & Prasanna, V. K. 2008. Parallel inferencing for OWL Knowledge Bases. In Proceedings of the 2008 37th
International Conference on Parallel Processing, ICPP ‘08, 75–82. IEEE Computer Society.

Steigmiller, A., Liebig, T. & Glimm, B. 2014. Konclude: system description. Journal of Web Semantics (JWS) 27,
78–85.

Stoilos, G., Stamou, G. B. & Pan, J. Z. 2008. Classifying fuzzy subsumption in fuzzy-EL+ . In Description Logics.
CEUR-WS.org.

Suntisrivaraporn, B., Qi, G., Ji, Q. & Haase, P. 2008. A modularization-based approach to finding all justifications for
OWL DL entailments. In The Semantic Web, 3rd Asian Semantic Web Conference, ASWC 2008, Bangkok, Thai-
land, December 8–11, 2008. Proceedings, 1–15. Springer.

Tachmazidis, I. & Antoniou, G. 2013. Computing the stratified semantics of logic programs over big data through
mass parallelization. In Theory, Practice, and Applications of Rules on the Web—7th International Symposium,
RuleML 2013, Seattle, WA, USA, July 11–13, 2013. Proceedings, Lecture Notes in Computer Science 8035,
Morgenstern, L., Stefaneas, P. S., Lévy, F., Wyner, A. & Paschke, A. (eds). Springer, 188–202.

Tachmazidis, I., Antoniou, G. & Faber, W. 2014. Efficient computation of the well-founded semantics over big data.
TPLP 14, 445–459.

Tachmazidis, I., Antoniou, G., Flouris, G., Kotoulas, S. & McCluskey, L. 2012a. Large-scale parallel stratified
defeasible reasoning. In ECAI 2012—20th European Conference on Artificial Intelligence. Including Prestigious
Applications of Artificial Intelligence (PAIS-2012) System Demonstrations Track, Montpellier, France, August 27-
31 , 2012, volume 242 of Frontiers in Artificial Intelligence and Applications, Raedt, L. D., Bessière, C., Dubois,
D., Doherty, P., Frasconi, P., Heintz, F. & Lucas, P. J. F. (eds). 738–743. IOS Press.

Tachmazidis, I., Antoniou, G., Flouris, G. & Kotoulas, S. 2012b. Towards parallel nonmonotonic reasoning with
billions of facts. In Principles of Knowledge Representation and Reasoning: Proceedings of the Thirteenth
International Conference, KR 2012, Rome, Italy, June 10–14, 2012, Brewka, G., Eiter, T. &McIlraith, S. A. (eds).
AAAI Press.

ter Horst, H. J. 2005. Combining RDF and part of OWL with rules: semantics, decidability, complexity. In The
Semantic Web—ISWC 2005, 4th International Semantic Web Conference, ISWC 2005, Galway, Ireland,
November 6-10, 2005, Proceedings, 668–684.

Thomas, E., Pan, J. Z. & Ren, Y. 2010. TrOWL: tractable OWL 2 reasoning infrastructure. In the Proceedings of the
Extended Semantic Web Conference (ESWC2010). Springer.

Ullman, J. D. 1989. Principles of Database and Knowledge-Base Systems, II. Computer Science Press.
Urbani, J. & Jacobs, C. 2015. RDF-SQ: Mixing Parallel and Sequential Computation for Top-Down OWL RL

Inference. Springer International Publishing, 125–138.
Urbani, J., Kotoulas, S., Oren, E. & van Harmelen, F. 2009. Scalable distributed reasoning using mapreduce. In The

Semantic Web—ISWC 2009, 8th International Semantic Web Conference, ISWC 2009, Chantilly, VA, USA,
October 25–29, 2009. Proceedings, 634–649.

Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F. & Bal, H. E. 2010. OWL reasoning with WebPIE: calculating
the closure of 100 billion triples. In Proceedings of the 8th Extended Semantic Web Conference (ESWC2010),
Heraklion, Greece, May 30–June 3, 2010. Springer.

Urbani, J., van Harmelen, F., Schlobach, S. & Bal, H. E. 2011. QueryPIE: backward reasoning for OWL Horst over
very large knowledge bases. In 10th International Semantic Web Conference, Bonn, Germany, October 23–27,
2011, Lecture Notes in Computer Science 7031, 730–745. Springer.

Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F. & Bal, H. 2012a. Response to comments on WebPIE. Web
Semantics: Science, Services and Agents on the World Wide Web 15, 71–72.

Urbani, J., Kotoulas, S., Maassen, J., Van Harmelen, F. & Bal, H. 2012b. WebPIE: a Web-scale parallel inference
engine using MapReduce. Journal of Web Semantics 10, 59–75.

Urbani, J., Margara, A., Jacobs, C. J. H., van Harmelen, F. & Bal, H. E. 2013. DynamiTE: parallel materialization of
dynamic RDF data. In International Semantic Web Conference (1), Lecture Notes in Computer Science 8218,
Alani, H., Kagal, L., Fokoue, A., Groth, P. T., Biemann, C., Parreira, J. X., Aroyo, L., Noy, N. F., Welty, C. &
Janowicz, K. (eds). Springer, 657–672.

Urbani, J., Margara, A., Jacobs, C., Voulgaris, S. & Bal, H. 2014. AJIRA: a lightweight distributed middleware for
MapReduce and stream processing. In Distributed Computing Systems (ICDCS), 2014 IEEE 34th International
Conference on, 545–554. IEEE.

Urbani, J., Piro, R., van Harmelen, F. & Bal, H. 2014. Hybrid reasoning on OWL RL. Semantic Web 5, 423–447.
Urbani, J., Jacobs, C. & KrÂ¶tzsch M. 2016. Column-oriented datalog materialization for large knowledge graphs. In

Thirtieth AAAI Conference on Artificial Intelligence. AAAI Press.
Volz, R., Staab, S. & Motik, B. 2005. Incrementally maintaining materializations of ontologies stored in logic

databases. Journal of Data Semantics 2, 1–34.

G . A N T O N I O U E T A L .42

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Vrandečić, D. &Krötzsch, M. 2014.Wikidata: a free collaborative knowledge base.Communications ACM 57, 78–85.
Weaver, J. & Hendler, J. A. 2009. Parallel materialization of the finite RDFS closure for hundreds of millions of triples.

In 8th International Semantic Web Conference, ISWC 2009, Chantilly, VA, USA, October 25–29, 2009, Lecture
Notes in Computer Science 5823, 682–697. Springer.

Wu, K. & Haarslev, V. 2012. A parallel reasoner for the description logic ALC. In Proceedings of the 2012 Inter-
national Workshop on Description Logics, DL-2012, Rome, Italy, June 7–10, 2012, CEURWorkshop Proceedings
846. CEUR-WS.org.

Wu, G., Qi, G. & Du, J. 2011. Finding all justifications of OWL entailments using TMS and mapreduce. In Pro-
ceedings of the 20th ACMConference on Information and Knowledge Management, CIKM 2011, Glasgow, United
Kingdom, October 24–28, 2011, 1425–1434. ACM.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S. & Stoica, I. 2010. Spark: cluster computing with working
sets. In Proceedings of the 2nd USENIX conference on Hot topics in cloud computing, 10–10. USENIX
Association.

Zhang, Y., Pham, M., Corcho, O. & Calbimonte, J. 2012. SRBench: a streaming RDF/SPARQL Benchmark. In The
Semantic Web—ISWC 2012—11th International Semantic Web Conference, Boston, MA, USA, November 11–15,
2012, Proceedings, Part I Lecture Notes in Computer Science 7649, Cudré-Mauroux, P., Heflin, J., Sirin, E.,
Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J. X., Hendler, J., Schreiber, G., Bernstein, A. & Blomqvist, E.
(eds). Springer, 641–657.

Zhou, Z., Qi, G., Liu, C., Hitzler, P. &Mutharaju, R. 2012. Reasoning with fuzzy-EL + ontologies using MapReduce.
In Proceedings of the 20th European Conference on Artificial Intelligence (ECAI 2012), Frontiers in Artificial
Intelligence and Applications 242, 933–934. IOS Press.

Zhou, Z., Qi, G., Liu, C., Hitzler, P. & Mutharaju, R. 2013. Scale reasoning with fuzzy-EL + ontologies based on
MapReduce. In Proceedings of the IJCAI-2013 Workshop on Weighted Logics for Artificial Intelligence,
WL4AI-2013, Beijing, China, August 2013, 87–93.

Zhou, Z., Qi, G., Liu, C., Mutharaju, R. & Hitzler, P. 2016. Reasoning with large scale OWL 2 EL ontologies based on
MapReduce. In Proceedings of the 18th Asia Pacific Web Conference, Suzhou, China. Springer.

Zhou, Z., Qi, G. & Suntisrivaraporn, B. 2013. A new method of finding all justifications in OWL 2 EL. In 2013 IEEE/
WIC/ACM International Conferences on Web Intelligence, WI 2013, Atlanta, GA, USA, November 17–20, 2013,
213–220. IEEE Computer Society.

A survey of large-scale reasoning on the web of data 43

https://doi.org/10.1017/S0269888918000255
Downloaded from https://www.cambridge.org/core. Vrije Universiteit, on 06 Nov 2020 at 15:50:01, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888918000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

	A survey of large-scale reasoning on the Web of data
	1Introduction
	2Background
	2.1RDF schema
	2.1.1ρdf

	2.2Ontology Web langage (OWL)
	2.2.1OWL 2 profiles

	2.3Datalog
	2.4Nonmonotonic reasoning

	3Computing models
	3.1MapReduce framework
	3.2GPU computing

	Figure 1Map and reduce operations
	3.3Peer-to-peer model
	3.4Multithreading

	Figure 2GPU architecture
	4Classification and evaluation criteria
	5State of the art in large-scale reasoning
	5.1RDFS

	Figure 3The ABox partition schema
	5.2Datalog, OWL Horst and OWL 2 RL

	Figure 4Parallelizing materialization of a datalog program
	5.3Description logics

	Figure 5The disjunction�rule
	Figure 6A joint-based partition example
	5.4Nonmonotonic reasoning

	6Summary and critical analysis
	6.1RDFS

	Table 1Summary of Semantic Reasoning systems
	6.2Datalog, OWL Horst and OWL 2 RL
	6.3Description Logics
	6.4Nonmonotonic Reasoning

	7Conclusion and future work
	Acknowledgements
	ACKNOWLEDGEMENTS
	References

