4,032 research outputs found

    Interoperable services based on activity monitoring in ambient assisted living environments

    Get PDF
    Ambient Assisted Living (AAL) is considered as the main technological solution that will enable the aged and people in recovery to maintain their independence and a consequent high quality of life for a longer period of time than would otherwise be the case. This goal is achieved by monitoring human’s activities and deploying the appropriate collection of services to set environmental features and satisfy user preferences in a given context. However, both human monitoring and services deployment are particularly hard to accomplish due to the uncertainty and ambiguity characterising human actions, and heterogeneity of hardware devices composed in an AAL system. This research addresses both the aforementioned challenges by introducing 1) an innovative system, based on Self Organising Feature Map (SOFM), for automatically classifying the resting location of a moving object in an indoor environment and 2) a strategy able to generate context-aware based Fuzzy Markup Language (FML) services in order to maximize the users’ comfort and hardware interoperability level. The overall system runs on a distributed embedded platform with a specialised ceiling- mounted video sensor for intelligent activity monitoring. The system has the ability to learn resting locations, to measure overall activity levels, to detect specific events such as potential falls and to deploy the right sequence of fuzzy services modelled through FML for supporting people in that particular context. Experimental results show less than 20% classification error in monitoring human activities and providing the right set of services, showing the robustness of our approach over others in literature with minimal power consumption

    Detection of visitors in elderly care using a low-resolution visual sensor network

    Get PDF
    Loneliness is a common condition associated with aging and comes with extreme health consequences including decline in physical and mental health, increased mortality and poor living conditions. Detecting and assisting lonely persons is therefore important-especially in the home environment. The current studies analyse the Activities of Daily Living (ADL) usually with the focus on persons living alone, e.g., to detect health deterioration. However, this type of data analysis relies on the assumption of a single person being analysed, and the ADL data analysis becomes less reliable without assessing socialization in seniors for health state assessment and intervention. In this paper, we propose a network of cheap low-resolution visual sensors for the detection of visitors. The visitor analysis starts by visual feature extraction based on foreground/background detection and morphological operations to track the motion patterns in each visual sensor. Then, we utilize the features of the visual sensors to build a Hidden Markov Model (HMM) for the actual detection. Finally, a rule-based classifier is used to compute the number and the duration of visits. We evaluate our framework on a real-life dataset of ten months. The results show a promising visit detection performance when compared to ground truth

    Exploring The Responsibilities Of Single-Inhabitant Smart Homes With Use Cases

    Get PDF
    DOI: 10.3233/AIS-2010-0076This paper makes a number of contributions to the field of requirements analysis for Smart Homes. It introduces Use Cases as a tool for exploring the responsibilities of Smart Homes and it proposes a modification of the conventional Use Case structure to suit the particular requirements of Smart Homes. It presents a taxonomy of Smart-Home-related Use Cases with seven categories. It draws on those Use Cases as raw material for developing questions and conclusions about the design of Smart Homes for single elderly inhabitants, and it introduces the SHMUC repository, a web-based repository of Use Cases related to Smart Homes that anyone can exploit and to which anyone may contribute

    Inferring Complex Activities for Context-aware Systems within Smart Environments

    Get PDF
    The rising ageing population worldwide and the prevalence of age-related conditions such as physical fragility, mental impairments and chronic diseases have significantly impacted the quality of life and caused a shortage of health and care services. Over-stretched healthcare providers are leading to a paradigm shift in public healthcare provisioning. Thus, Ambient Assisted Living (AAL) using Smart Homes (SH) technologies has been rigorously investigated to help address the aforementioned problems. Human Activity Recognition (HAR) is a critical component in AAL systems which enables applications such as just-in-time assistance, behaviour analysis, anomalies detection and emergency notifications. This thesis is aimed at investigating challenges faced in accurately recognising Activities of Daily Living (ADLs) performed by single or multiple inhabitants within smart environments. Specifically, this thesis explores five complementary research challenges in HAR. The first study contributes to knowledge by developing a semantic-enabled data segmentation approach with user-preferences. The second study takes the segmented set of sensor data to investigate and recognise human ADLs at multi-granular action level; coarse- and fine-grained action level. At the coarse-grained actions level, semantic relationships between the sensor, object and ADLs are deduced, whereas, at fine-grained action level, object usage at the satisfactory threshold with the evidence fused from multimodal sensor data is leveraged to verify the intended actions. Moreover, due to imprecise/vague interpretations of multimodal sensors and data fusion challenges, fuzzy set theory and fuzzy web ontology language (fuzzy-OWL) are leveraged. The third study focuses on incorporating uncertainties caused in HAR due to factors such as technological failure, object malfunction, and human errors. Hence, existing studies uncertainty theories and approaches are analysed and based on the findings, probabilistic ontology (PR-OWL) based HAR approach is proposed. The fourth study extends the first three studies to distinguish activities conducted by more than one inhabitant in a shared smart environment with the use of discriminative sensor-based techniques and time-series pattern analysis. The final study investigates in a suitable system architecture with a real-time smart environment tailored to AAL system and proposes microservices architecture with sensor-based off-the-shelf and bespoke sensing methods. The initial semantic-enabled data segmentation study was evaluated with 100% and 97.8% accuracy to segment sensor events under single and mixed activities scenarios. However, the average classification time taken to segment each sensor events have suffered from 3971ms and 62183ms for single and mixed activities scenarios, respectively. The second study to detect fine-grained-level user actions was evaluated with 30 and 153 fuzzy rules to detect two fine-grained movements with a pre-collected dataset from the real-time smart environment. The result of the second study indicate good average accuracy of 83.33% and 100% but with the high average duration of 24648ms and 105318ms, and posing further challenges for the scalability of fusion rule creations. The third study was evaluated by incorporating PR-OWL ontology with ADL ontologies and Semantic-Sensor-Network (SSN) ontology to define four types of uncertainties presented in the kitchen-based activity. The fourth study illustrated a case study to extended single-user AR to multi-user AR by combining RFID tags and fingerprint sensors discriminative sensors to identify and associate user actions with the aid of time-series analysis. The last study responds to the computations and performance requirements for the four studies by analysing and proposing microservices-based system architecture for AAL system. A future research investigation towards adopting fog/edge computing paradigms from cloud computing is discussed for higher availability, reduced network traffic/energy, cost, and creating a decentralised system. As a result of the five studies, this thesis develops a knowledge-driven framework to estimate and recognise multi-user activities at fine-grained level user actions. This framework integrates three complementary ontologies to conceptualise factual, fuzzy and uncertainties in the environment/ADLs, time-series analysis and discriminative sensing environment. Moreover, a distributed software architecture, multimodal sensor-based hardware prototypes, and other supportive utility tools such as simulator and synthetic ADL data generator for the experimentation were developed to support the evaluation of the proposed approaches. The distributed system is platform-independent and currently supported by an Android mobile application and web-browser based client interfaces for retrieving information such as live sensor events and HAR results

    Combining ontological and temporal formalisms for composite activity modelling and recognition in smart homes

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Activity recognition is essential in providing activity assistance for users in smart homes. While significant progress has been made for single-user single-activity recognition, it still remains a challenge to carry out real-time progressive composite activity recognition. This paper introduces a hybrid ontological and temporal approach to composite activity modelling and recognition by extending existing ontology-based knowledge-driven approach. The compelling feature of the approach is that it combines ontological and temporal knowledge representation formalisms to provide powerful representation capabilities for activity modelling. The paper describes in detail ontological activity modelling which establishes relationships between activities and their involved entities, and temporal activity modelling which defines relationships between constituent activities of a composite activity. As an essential part of the model, the paper also presents methods for developing temporal entailment rules to support the interpretation and inference of composite activities. In addition, this paper outlines an integrated architecture for composite activity recognition and elaborated a unified activity recognition algorithm which can support the recognition of simple and composite activities. The approach has been implemented in a feature-rich prototype system upon which testing and evaluation have been conducted. Initial experimental results have shown average recognition accuracy of 100% and 88.26% for simple and composite activities, respectively
    • …
    corecore