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Abstract. Activity recognition is essential in providing activity assistance for users in smart homes. 
While significant progress has been made for single-user single-activity recognition, it still remains a 

challenge to carry out real-time progressive composite activity recognition. This paper introduces a 
hybrid ontological and temporal approach to composite activity modelling and recognition by 

extending existing ontology-based knowledge-driven approach. The compelling feature of the 
approach is that it combines ontological and temporal knowledge representation formalisms to 

provide powerful representation capabilities for activity modelling. The paper describes in details 
ontological activity modelling which establishes relationships between activities and their involved 

entities, and temporal activity modeling which defines relationships between constituent activities of a 
composite activity. As an essential part of the model, the paper also presents methods for developing 

temporal entailment rules to support the interpretation and inference of composite activities. In 
addition, this paper outlines an integrated architecture for composite activity recognition and 

elaborated a unified activity recognition algorithm which can support the recognition of simple and 
composite activities. The approach has been implemented in a feature-rich prototype system upon 

which testing and evaluation have been conducted. Initial experimental results have shown average 
recognition accuracy of 100% and 88.26% for simple and composite activities, respectively.  

 Keywords. Composite activities; interleaved activities; concurrent activities; activity recognition; activity 

modelling; ontologies; smart homes. 

1 INTRODUCTION 

Smart Homes (SH) have been widely viewed as a promising paradigm for technology-driven assistive living 

for aging population [1]. A SH can be described as a home setting augmented with a diversity of multi-modal 

sensors, actuators and devices along with Information and Communication Technology (ICT) based services and 

systems [2]. By monitoring environmental changes and inhabitant’s activities, an assistive system within a SH 

can process sensor data, infer an inhabitant’s needs and take appropriate actions to help the inhabitant perform 

daily living activities.  As such, a SH can help older people prolong their independent living and enhance quality 

of life within their own homes. Generally, two types of daily living activities exist, namely, activities of daily 

living (ADL), and instrumental activities of daily living (IADL). ADL refers to activities concerned with taking 

care of one’s own body. Essentially, it relates to activities that involve functional mobility (called basic ADL), 

and personal care (called personal ADL) [3]. IADL refers to activities concerned with interacting with the 

environment and as such they can be delegated and performed by other people in the environment [3]. In the rest 

of this paper, we will use ADL or activity to refer to both ADL and IADL for ease of reference. 

SH inhabitants typically perform ADLs in complex patterns. For instance, an inhabitant may perform two (or 

more) activities in sequence or in parallel. Whenever activities are performed sequentially or in parallel, there 

will be underlying inter-activity dependencies among the activities involved. These inter-activity dependencies 

should be encoded during activity modelling so as to support activity recognition in the presence of complex 

activity patterns, e.g. composite activities. Applications that provide SH inhabitants with services, e.g. assistive 

services, should be able to correctly identify both simple and composite activities. Activity recognition is the 

process of tracking users and identifying the activities they are performing. It involves activity sensing, activity 
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modelling, and activity inference. Activity sensing is responsible for monitoring users and their situated 

environment to obtain sensor data streams. Activity modelling creates computational activity models that are 

used to analyze and classify collections of sensor data into activities. Activity inference uses relevant algorithms 

to process sensor data against computational activity models to identify the ongoing activity. 

In this paper we categorise activities as actions, simple activities, and composite activities. An action is an 

atomic (or indivisible) activity, e.g. grasping the fridge door. A simple activity is an ordered sequence of actions, 

e.g. preparing coffee. Finally, a composite activity is a collection of two or more simple activities occurring 

within a given time interval, e.g. preparing dinner and washing dishes. Composite activities can be further 

categorised as sequential or multi-task activities. A sequential activity is a sequence of activities that occur in 

consecutive time intervals, i.e., there is temporal dependency between constituent activities. A multi-task 

activity occurs when a single user performs two or more activities simultaneously or when multiple residents 

occupy a smart environment and perform activities concurrently. 

Activity recognition has been widely investigated using three categories of approaches, namely, data-driven 

(DD) [4-8], knowledge-driven (KD) [9-13], and hybrid [14-16] activity recognition approaches. In data-driven 

activity recognition, activity models are learnt from pre-existing datasets using existing well-developed machine 

learning techniques. Activity inference is then performed against the learnt activity models whenever sensor data 

is obtained. In knowledge-driven activity recognition, knowledge engineers and domain experts specify activity 

models using a knowledge engineering process. The activity models capture commonsense and domain 

knowledge about activities. Artificial intelligence-based reasoning techniques are then used to infer activities 

from the models whenever sensor data is obtained. Hybrid activity recognition approaches combine data-driven 

and knowledge-driven techniques.  

Simple activity recognition has been widely explored in DD [6, 17-20], KD [9-11, 21-23] , and hybrid [13, 

24, 25] activity recognition. However, composite activity recognition is only investigated to a limited extent in 

DD [4, 6, 8, 26-28] and hybrid [14-16] activity recognition communities. In the KD activity recognition research 

community, the recognition of composite activities still remains largely unexplored. This challenge can be 

attributed to the two tasks of activity modelling and activity inference. Composite activity modelling is a 

challenge because activity models must capture and reason with inter-activity dependencies that are typically 

encoded as temporal knowledge [29]. Moreover, mechanisms are needed to process sensor data against the 

resulting composite activity models to infer the ongoing activities [30].  

The use of ontologies in activity modelling and activity recognition has spurred interest but the focus has 

largely been on simple activities [9, 10, 31]. Ontological activity modelling can be used to define activity 

ontologies that describe activities and their characteristics [9, 10]. The resulting activity ontologies represent 

activity models for mostly simple activities and support semantic reasoning for activity recognition. To support 

composite activity modelling and recognition, we have developed a novel activity modelling approach that 

combines ontologies and temporal knowledge to create activity models that represent inter-activity 

dependencies using temporal relationships. The approach enhances ontological activity models by adding 

qualitative temporal knowledge based on Allen’s temporal logic relations [32].  It is worth pointing out that the 

study presented in this paper is contextualised in a single-resident SH environment within which the user 

performs both simple and composite activities. 

In this paper we make a number of knowledge contributions. Firstly, we introduce a novel hybrid approach to 

composite activity modelling and recognition. The combination of ontological and temporal knowledge 

representation formalisms provides a more expressive representation formalism required for representing and 

modelling the complex ontological and temporal relationships of composite activities. Secondly, we develop   

generic activity models for composite activities based on the presented approach. This includes three core 

elements, namely ontological activity models, temporal activity models and entailment rules; each element 

models a specific aspect of composite activities. The generic models can be applied to modelling composite 

activities in different application scenarios. In this paper we create reusable activity models for ADLs in the 

context of smart homes for the purpose of illustration, testing and evaluation. Thirdly, we develop an integrated 

system architecture for composite activity recognition and a unified activity recognition algorithm. The 

algorithm can reason over sensor data streams against composite activity models to perform real-time 

progressive activity recognition for both simple and composite activities. In addition, we have developed a 

system prototype and well-designed experiments for testing and evaluation. The presented approach and 

associated models and methods have not been seen in related research communities.  

The remainder of the paper is organised as follows. Section 2 discusses related works. Section 3 presents the 

hybrid approach for activity recognition. In Section 4, activity models, inference rules, and recognition 

algorithms are described. Section 5 presents the system prototype. The experiments and evaluation results are 

provided in Section 6. Finally, Section 7 concludes the paper and outlines future work.  



 
 

2 RELATED WORK 

In the DD activity recognition community, existing approaches capable of both simple and composite activity 

modelling and recognition include  hidden Markov models (HMM) [6], interleaved HMM [4], factorial 

conditional random fields (FCRF) [26], skip-chain conditional random fields (SCCRF) [8, 28] [27] and mining 

of emerging patterns [5]. DD approaches have the ability to handle uncertain knowledge and are based on well-

explored machine learning based techniques. They also have the advantage to handle temporal information that 

can capture short- and long-term temporal dependencies, e.g. inter-activity relationships and activity history, 

thereby making them suited to composite activity recognition. The main drawback is that large amounts of 

initial training data are needed to learn the activity models. As users perform activities in a variety of ways, all 

these activity variants must be present in the data set if they are to be successfully learnt, modeled and 

subsequently recognized. In most cases it is difficult to obtain representative and sufficient data sets to be used 

for learning activity models, thus leading to the “cold start” problem. In addition, users perform activities in 

different manners; as a result models learnt from one user’s datasets would not be reused by another user, which 

results in reusability problem.   

KD activity recognition approaches use knowledge representation formalisms to provide explicit activity 

models which can be processed by artificial intelligence-based inference for activity recognition. The KD has a 

number of strengths. For instance, it is grounded in logic theory making it possible to capture the semantics of a 

domain and support automated reasoning. It also allows common sense domain knowledge and heuristics 

associated with activities to be incorporated into activity models. Domain knowledge is especially important in 

modelling complex real-world activity scenarios, e.g. interleaved and concurrent activities. Moreover, it can 

support reuse and knowledge sharing between applications. Domain knowledge and common sense knowledge 

is essentially common across applications, hence the ability to encode and share it would make application 

development easier through reuse. The KD approach has been used for simple activity modeling and 

recognition, but little work has been done in composite activity recognition. Saguna et al. [33] addressed both 

simple and composite activity recognition by combining ontological and spatio-temporal modelling and 

reasoning. It uses the notion of context-driven activity theory (CDAT) to encode context information in order to 

model both primitive actions and simple activities. The resulting models are combined with ontological situation 

models and used to infer interleaved and concurrent activities. The authors derive models of situations, based on 

spatio-temporal information, from the context spaces theory [34], and use the resulting situations in activity 

inference. Essentially, it uses a layered approach to activity recognition consisting of atomic activity recognition 

(using machine learning techniques), simple activity recognition (using ontological inference), and finally 

interleaved and concurrent activity recognition (using rule-based inference).  

Hybrid approaches to activity recognition combine techniques from data-driven and knowledge-driven 

activity recognition. So far, only Markov logic networks (MLN) [15] and HMMs with Allen logic [16] have 

been used to support activity recognition of simple activities, and interleaved and concurrent activities. Both 

approaches encode and use temporal knowledge but rely on automatically extracting the relevant temporal 

patterns from data sets. The main strength of the hybrid approaches is that they can model and recognize a range 

of simple and composite activities due to their ability to encode rich domain knowledge, e.g. temporal 

knowledge, and still utilize well-developed learning and probabilistic models. However, they suffer the “cold 

start” problem just like the DD approaches. Since our approach requires activity models to be specified based on 

domain knowledge, it overcomes the “cold start” problem.  

Our work follows the KD approach but differs from Saguna’s work, in two main aspects. First, the latter 

requires the training of atomic activity recognition models from data sets. Secondly, it uses an ad-hoc method to 

encode both temporal and spatial knowledge into activity ontologies. Basically, it simply captures temporal and 

spatial knowledge as properties of ontology concepts, a strategy that ignores reasoning and querying challenges 

arising from processing temporal or spatial knowledge in ontologies. Our work adopts a systematic and clear 

method for encoding and reasoning with temporal knowledge based on 4D-fluents [35] and therefore provides a 

clear mechanism for seamlessly integrating and exploiting qualitative temporal knowledge in activity 

recognition for both simple and composite activities.  

3 THE HYBRID APPROACH TO COMPOSITE ACTIVITY MODELLING 

ADLs possess several unique characteristics that make activity modelling a difficult task.  Firstly, there are 

over 20 categories of ADLs [36] [37] [38]. These include dental care, hygiene, bathing, dressing, using the 

toilet, drinking, transferring, mobility, orientation to time, driving/ using public transport, managing finances, 

drink preparation, use of the telephone, food preparation, housework, communication, shopping, eating, 

orientation to space, and games and hobbies [38-40]. Furthermore, each category can be classified to activities at 

multiple levels of granularity. For example, the activity Food Preparation can be broken down to child activities 

such as ‘Prepare Coffee’, ‘Prepare Toast, etc. Also, ‘Prepare Coffee can further be classified into its child 

activities ‘Prepare Espresso, ‘Prepare Latte’, etc. Thus Food Preparation is coarse grained, whereas ‘Prepare 



 
 

Coffee is fine grained. Therefore, activity modelling approaches should support the different categories and 

granularities of activities. Secondly, most ADLs involve performing a number of actions, with the ordering of 

actions dependent on an individual’s preferences or abilities leading to a large number of ADL variants. Activity 

models should encode this activity diversity. Thirdly, the performance of activities may continuously change, 

e.g. activity duration or the sequence of objects can change, based on the users’ abilities or preferences. Activity 

models, therefore, should be flexible to accommodate these variations. Fourthly, users also perform activities 

using complex patterns, such as interleaved and concurrent activities. Therefore, activity models should encode 

such complex relationships. Fifthly, activities are performed under different contexts, e.g. specific locations, 

objects, time, space, and goals. This is even more evident in composite activities. The resulting contextual 

information should be used to characterize activities. For instance, composite activities can be described by 

specifying inter-activity relationships using temporal or spatial information. In general, activities are 

characterized by rich temporal information, e.g. repetitive time patterns, temporal sequences, temporal duration, 

and time instants or intervals. For example, the occurrence of two activities A and B within the same time 

interval can represent a temporal inter-activity dependency that signals the occurrence of a composite activity.  

The range of characteristics discussed above constitutes domain knowledge and heuristics upon which we 

have built a high-level conceptual activity model, as shown in Figure 1, for composite activities based on the 

conceptual activity model that was proposed by Chen and Nugent [10]. The conceptual activity model in [7] 

describes an activity based on contextual elements (i.e., identity, time, space, actor, related activities, resources, 

environment elements, and goals) and properties that support inference (i.e., conditions and effects). However, 

its main limitation is that it does not explicitly provide a means to encode temporal inter-activity dependencies 

that typically characterize composite activities. This is because it ignored the important role that the model of 

change plays in composite activity modelling.  Therefore, to support both simple and composite activity 

modelling, we have added two properties to the Time concept, i.e., temporal reference and model of change, to 

produce the revised model. The temporal reference is needed for both simple and composite activities, whereas 

the model of change is only mandatory for composite activity modelling. The temporal reference indicates the 

time interval or time instant that a given simple or composite activity occurs. The model of change represents 

the property that within a given temporal inference, a composite activity consists of two or more simple 

activities, whereby each simple activity can be identified by its respective temporal reference.  

  

 

Figure 1: Revised conceptual activity model 

Ontological activity modelling has been used to create simple activity models as ADL ontologies [9, 41].  In this 

case, ADL activities are structured in a hierarchical tree with the most specific ADL descriptions represented as 

leaf concepts - all leaf concepts have no child classes. Each concept is associated with a number of role 

(property) restrictions. All child concepts inherit all the roles of their parent concepts but may specify further 

constraints. A generic activity refers to an ADL class that has associated descendant classes; whereas, a specific 

activity (the so-called leaf activity) is an activity with no descendant classes in the ontology. For instance, 

‘Bathroom ADL’ is a generic activity, while its descendants ‘Have Bath’ and ‘Brush Teeth’ can be specific 



 
 

TABLE 2: THIRTEEN INTERVAL RELATIONS 

Relation Symbol Inverse 

Symbol 

Pictorial 

Illustration 

X before Y < > XXX YYY 

X equal Y = = XXX 
YYY 

X meets Y m mi XXXYYY 

X overlaps Y o oi XXX 

  YYYYY 

X during Y d di   XXX 
YYYYYYY 

X starts Y s si XXX 

YYYYYYY 

X finishes Y f fi     XXX 

YYYYY 

 

activities. Nevertheless, the aforementioned approach does not work for modelling composite activities. Despite 

capturing temporal information, e.g. time and duration, pure ontological modeling does not support temporal 

inference. For instance OWL DL [42] only allows ontologies to capture temporal knowledge but does not 

support temporal reasoning and querying. To model composite activities, the approach to activity modelling has 

to be able to capture and model temporal inter-activity dependencies, and further support temporal reasoning. 

For this purpose we have proposed the ontological and temporal approach to activity modelling, which are 

described in details below.  

3.1 Representing temporal knowledge in ontologies 

Description logics (DL) [43] provide a mechanism that uses concepts, relations, and axioms for representing 

and reasoning with domain knowledge. Web ontology language (OWL) [42], a semantic web ontology language 

based on DL, provides a set of constructors and axioms for creating ontologies. In addition, it allows axioms for 

specifying subsumption, equivalence, disjointness, as well as property characteristics to be defined. The 

constructors, axioms, and DL equivalents are shown in Table 1 [43] . The symbols used in DL formulas are C 

and D for concepts; ri for role or property names; xj for an instances; and n a non negative integer. 

On the other hand, temporal logic allows representation of and reasoning with temporal knowledge. 

Qualitative temporal knowledge naturally occurs in humans’ activities, e.g. the user performs two activities, one 

after the other. Such qualitative temporal knowledge can be used to model complex relationships between 

activities that represent composite activities, e.g., sequential, and interleaved and concurrent relationships. In 

essence, each composite activity can be viewed as an activity that has changing relationships with other simple 

or composite activities. For instance, a composite sequential activity relates to two activities that occur in 

consecutive time intervals. In general, temporal knowledge allows knowledge at a particular moment of time 

and the notion of change in knowledge to be encoded and reasoned with. Therefore, a temporal representation 

specifies a temporal reference and model of change. The temporal reference captures order in the sequence of 

events using either point-based or interval-based time representation. The model of change captures the 

changing relationships between individuals relative to the temporal reference. The two aspects (i.e. change and 

temporal reference) can be used to capture complex relationships between activities, e.g., sequential, and 

interleaved and concurrent relationships. This can be achieved by using an appropriate temporal knowledge 

representation mechanism to encode qualitative temporal knowledge that naturally occurs in humans’ activities, 

e.g. the user performs two activities, one after the other.  

TABLE 1: OWL CONSTRUCTORS, AXIOMS AND DL SYNTAX 

OWL 

Constructor 

DL 

Syntax 

OWL Axiom DL Syntax 

intersectionOf C⊓D subClassOf C⊑D 

unionOf C⊔D equivalentClass C≡D 

complementOf ¬C subPropertyOf r1⊑r2 

one of {x1…xn} equivalentProperty r1≡r2 

allValuesFrom      disjointWith C⊑¬D 

someValuesFrom      sameAs {x1}≡{x2} 

hasValue  r.{x1} differentFrom {x1}⊑¬{x2} 

minCardinality (≥n r)   

maxCardinality (≤n r)   

inverseOf r-   

 



 
 

3.2 A hybrid ontological and temporal approach 

Representing temporal knowledge in OWL is a challenge because OWL only supports unary and binary 

relations, while adding a temporal dimension requires at least a ternary relation. Therefore, we adopt the 4D-

fluents approach [35, 44] to add a temporal model as a layer on top of the underlying DL. The 4D-fluents 

approach uses two fundamental building blocks, namely, time slices and fluents, to provide a vocabulary to 

represent dynamic temporal parts of individuals. It represents concepts that have a temporal extent as 4-

dimensional objects, with the fourth dimension being the time, captured as time slices. The time slices represent 

the temporal parts of a specific entity at specific moments of time and the concept itself is then defined as an 

aggregate of all of its time slices. Time instances and time intervals are represented as instances of a time 

interval class. The instances are then associated with time slices to relate them with concepts varying in time. 

On the other hand, fluents are properties that hold at specific moments in time, whether interval or instant. In 

essence, the fluent property holds among two time slices. Changes occur on the properties of the temporal part 

of the ontology while keeping the entities of the other parts of the ontology unchanged. The 4D-fluents approach 

is chosen because it preserves OWL semantics when incorporating temporal knowledge into OWL ontologies 

and can therefore exploit existing OWL reasoning support. By combining ontological and temporal 

representation we can obtain a hybrid representation that not only encodes temporal knowledge but also 

supports inference with such knowledge. 

The main idea that the hybrid approach uses for composite activity modelling is that within a time interval (a 

temporal reference), a composite activity can be characterised by one or more simple activities, and the simple 

activities involved can vary within sub-intervals of the main interval (model of change). We refer to models in 

which it is not mandatory to represent the model of change as static activity models, whereas those that encode 

both the temporal reference and change are denoted as dynamic activity models.  

When the 4D-fluents approach is extended with qualitative relations [44], e.g. Allen temporal logic relations 

[32], it can model relations that are necessary for encoding composite activities. Allen’s temporal logic [32] 

refers to a constraint-based representation that uses a temporal interval as a primitive to support qualitative 

temporal knowledge representation and reasoning. It is based on the idea that much of the temporal knowledge 

is relative and so can be mapped into relations between intervals. The approach uses thirteen interval relations 

(shown in Table 2) that are considered adequate to express any relationship that can hold between two time 

intervals [32].  

In this work we combine ontologies and temporal knowledge representation to create activity models for both 

simple and composite activities. To enable the resulting models to be exploited in composite activity 

recognition, interval relations and inference rules are used to provide procedural inference. In the next section, 

we apply this approach to generate activity models of simple and composite activities. 

4 COMPOSITE ADL ACTIVITY MODELLING 

4.1 Definitions 

This section provides a set of definitions for concepts that are used to specify activity models in 
subsequent sections. 

4.1.1 Characterization of the contextual information of smart environments 

To model smart environments, we identify and define the following sets and transformations between sets: 

environmental entities (O), sensors (S), sensor observations (SO), and associated context information (C).  

Definition 1- The set of all sensors, S, lists all physical sensors installed in the environment. It is defined in 

(1). 
S: {s1, s2,...,sq}          (1) 

Definition 2- The set of all possible sensor observations, SO, lists all sensor observations that are made in 

the environment. Each physical sensor can generate one or more sensor observations over time. It is defined in 

(2). 
SO :{so1, so2, ..., soz}        (2) 

Definition 3- The set of all objects, O, lists all objects that the user can interact with in the smart 

environment. It is defined in (3). 
O :{o1, o2,...,om}         (3) 

Definition 4- The set of all context elements, C, lists all context elements that are monitored during activity 

recognition. For example, it can include temporal or spatial context. It is defined in (4). 
C: {c1,c2,...,cp}          (4) 

Definition 5- The function, f, maps a sensor observation to the corresponding object that the user just 

interacted with. By iteratively applying the function, f, to the set of sensor observations, the list of objects that 

the user has interacted with in a given time interval can be derived and used to describe a user activity. It is 

defined in (5). 



 
 

f: soi oj, soi∊SO, oj∊O         (5) 

4.1.2 Characterization of activities of daily living 

To help understand and characterize the human activities, we introduce various terminologies, namely, 

action, activity description, simple activity, and static and dynamic composite activities. These terms are used to 

derive composite activity models in the next section.  

Definition 6- Primitive action (a): A single indivisible activity preformed by the user. A primitive action is 

specified as a 2-tuple consisting of a collections of sensor observations and context information as provided in 

(6). 
a:<SOa,Ca>, SOa⊆SO, Ca⊆         (6) 

Definition 7- Activity description (AD): A collection of primitive actions, ai, over a specific time interval. An 

activity description may fully or partially describe an activity and is specified using a set as shown in (7). 
AD: {a1, a2,...,am}         (7) 

Definition 8- ADL: This is the set that lists all activities of daily living (ADL) concepts, Ai , for defining 

simple activities in the activity model and is specified in (8). 
ADL: {A1, A2,... An}         (8) 

Definition 9- lADL: This set provides a list of all leaf ADL concepts, i.e., ADL concepts with no child 

concepts. It is defined in (9). 
lADL: {lA1, lA2, ...,lAk}, k≤n, lADL⊆ADL       (9) 

Definition 10- Simple Activity (lAi): An ordered sequence of primitive actions. It is specified in (10). 
lAi: <ADL,L>          (10) 

Where L is a text string to act as the label for the ongoing activity and ADL is an activity description for 

activity L. 

Definition 11- Composite activity: A collection of two or more simple activities occurring within a given 

time interval. 

Definition 12- Dynamic composite activities (dCA) set: lists a collection of all sequential, or interleaved and 

concurrent activities. It is specified in 11. 
dCA: {dcA1, dcA2, ..., dcAd}        (11) 

Definition 13- Single dynamic composite activity (dcAi):  A composite activity that has properties whose 

values vary in time, implying the notion of change. It is defined in (12). 
dcAi: < Φ ,τ, L >, dcAi∊dCA        (12) 

Where L is a text string to act as a label for the pattern and Ф is a collection of leaf ADLs or a collection of 

dynamic composite activities such that ф⊆lADL ⋃ dCA. In addition,  τ . a subset of C, is the union of temporal 

contexts for all activities in dcAi. 
To illustrate a dynamic composite activity, consider the activity labelled ‘make dinner and watch television’. 

We can specify ф as ф= {make dinner, watch television}. In addition, τ can be specified by τ = {time-interval-of-
make-dinner, time-interval-of-watch-television}. 

Definition 14- Static composite activity (sCA) set:  defines a set of all sequential, or interleaved and 

concurrent activities as shown in (13). 
sCA: {scA1,scA2,...,scAg}         (13) 

Definition 15: A single static composite activity (scAi): This is a composite activity whose properties take 

values that do not change in time. It is specified as a 3-tuple in (14). 
scAi: < Φ , Ѳ, L> , scAi∊sCA        (14) 

Where, ф is a collection of leaf ADLs or a collection of static composite activities such that ф⊆lADL ⋃ sCA. 

Ѳ is an aggregate of task contexts associated with contained activities and it is a subset of C. 

To illustrate a static composite activity, given the activity ‘make dinner and watch television’, we have ф = 

{make dinner, watch television}. Also, Ѳ is specified by task context given by descriptions, i.e., ‘make dinner 

begins’; ‘as make dinner continues watch television begins’; ‘make dinner continues and ends’ and the 

relationship is parallelism. 

4.2 Ontological activity modelling 

Based on the definitions in the previous sub-section and the revised conceptual activity model, we have 

developed ontological concepts for specifying simple and composite activity models. The key concepts are 

discussed below and their properties are provided in Table 3. In addition, the DL formulas for selected concepts 

are provided in Table 4.   

4.2.1 General concepts for representing activities, context, and the environment 

Activity: This concept is the overall concept for all types of activities. 

MonitoredEntity: This is a general concept to represent the set of all entities in the environment occupied by 

an actor. Each MonitoredEntity relates to sub-concepts of Activity using the hasMonitoredEntity property. 

Location: This is a context concept that is used to indicate the location of interest to the actor. For instance, in 



 
 

a SH environment, it can be used to represent locations like the kitchen, bedroom, bathroom, living room, 

lounge, etc. Each Location concept can relate to the MonitoredEntity and Activity concepts using the 

hasLocation property. 

Sensor: This concept is used to denote the class of all sensors that are deployed in a smart environment.  To 

link sensors to environment entities and objects, instances of Sensor are associated with instances of 

MonitoredEntity using the hasSensor property. Instances of the Sensor concept are used to encode the runtime 

state of the SH environment when the user is performing activities. Such runtime information can be used to 

derive contextual information.  

TimeInterval: This concept defines a time interval and indicates the moment of time that a time slice refers 

to.  

TimeSlice: This encodes the temporal extent of activities as a collection of time slices. The temporal extent is 

specified by associating Activity concept with TimeSlice using timeSliceOf property. In addition, instances of 

TimeSlice relate to instances of TimeInterval through the hasTimeInterval property.  

4.2.2 Concepts for simple activities 

ADLActivity: This concept is the parent concept to all simple activity concepts. All simple activities are 

defined as subclasses of the ADLActivity concept. In general, given that the hypothetical ADL, SimpleADL, is a 

subclass of ADLActivity, it can be declared in DL as: 
SimpleADL ⊑ADLActivity⊓  property1.Range1⊓  property2.Range2…⊓  propertyN.RangeN 

TABLE 3: PROPERTIES FOR THE CONCEPTS IN THE ACTIVITY MODELS 

Name Domain Range Other 

properties 

Description 

hasMonitoredEntity ADLActivity MonitoredEntity  Indicates the entities used 
by an ADLActivity 

hasLocation Activity, 
MonitoredEntity 

Location  Associates Activity and 
MonitoredEntity with their 
spatial context. 

hasSensor MonitoredEntity Sensor  Attaches environment 
entities to be monitored to 
the respective sensors.  

timeSliceOf TimeSlice, 
BasicActivityTS, 
CompositeActivityTS 

StaticCompositeActivity , 
ADLActivity, 
DynamicCompositeActivity  

Functional Indicates temporal extent of 
activity concepts 

hasTimeInterval TimeSlice TimeInterval Functional Associates TimeSlice to 
TimeInterval 

hasOngoingActivity CompositeActivityTS ADLActivityTS,  
CompositeActivityTS 

Irreflexive A dynamic (fluent) property 
that captures the notion of 
change. 

has Activity StaticCompositeActivity ADLActivity, 
StaticCompositeActivity 

Irreflexive Provides components of a 
composite activity 

startedBy StaticCompositeActivity ADLActivity, 
StaticCompositeActivity 

Irreflexive Indicates starting activity of 
a composite activity 

endedBy StaticCompositeActivity ADLActivity, 
StaticCompositeActivity 

Irreflexive Indicates activity that marks 
the end of composite 
activity. 

entailsCompositeActivity StaticCompositeActivity DynamicCompositeActivity  Used to indicate if a given 
DynamicCompositeActivity 
has a corresponding 
StaticCompositeActivity in 
the model 

relationshipType StaticCompositeActivity String Functional Indicates whether a 
SEQUENCE or PARALLEL 
relation exists 

 

TABLE 4: DL FORMULAS FOR A SELECT SET OF CONCEPTS USED IN ACTIVITY MODELS 

 MonitoredEntity ⊑  hasSensor.Sensor ⊓   hasLocation.Location 

 Activity ⊑  hasLocation.Location ⊓ (ADLActivity ⊔ CompositeActivity) 

 ADLActivity ⊑Activity ⊓   hasMonitoredEntity.MonitoredEntity  

 TimeSlice⊑ timeSliceOf. Activity⊓=1 timeSliceOf⊓  hasTimeInterval.Interval⊓=1 hasTimeInterval  

 BasicActivityTS⊑TimeSlice⊓  timeSliceOf.ADLActivity⊓=1 timeSliceOf 

 CompositeActivityTS⊑TimeSlice⊓  timeSliceOf.DynamicCompositeActivity ⊓=1 timeSliceOf ⊓  
hasOngoingActivity.TimeSlice⊓≥2 hasOngoingActivity 

 StaticCompositeActivity≡ hasActivity. (ADLActivity⊔ StaticCompositeActivity) ⊓≥2 hasActivity⊓ startedBy. (ADLActivity⊔ 

StaticCompositeActivity) ⊓ endedBy. (ADLActivity⊔ StaticCompositeActivity) ⊓  entailsCompositeActivity. 

DynamicCompositeActivity⊓ relationshipType.string  

 



 
 

   

In the above example, property1…propertyN are sub-properties of hasMonitoredEntity, and 

Range1…RangeN are sub-concepts of MonitoredEntity associated with SimpleADL. The sensor observations 

and context specified in Definitions 2 and 4 are realized by property restrictions that are defined on ADLActivity. 

For example, a typical observation, e.g. ‘using the kettle’ can be represented by a hasKettle property restriction 

that is defined on the relevant subclasses of ADLActivity. In this example, hasKettle is a sub-property of 

hasMonitoredEntity; whereas the concept for kettle is a sub-concept of MonitoredEntity. Further details on 

simple activity concepts will be provided in Section 5.1 since the concepts are dependent on the  application 

domain.    

 BasicActivityTS: This is a sub-class of TimeSlice and is used to add a temporal dimension to instances of 

ADLActivity. 

4.2.3 Concepts for composite activities 

CompositeActivity: This concept represents a dynamic or static composite activity. It is used to denote 

sequential and interleaved or concurrent activities. 

DynamicCompositeActivity: This is a sub-concept of CompositeActivity and represents a dynamic composite 

activity corresponding to Definition 13. Property restrictions to encode change are defined on this concept. For 

instance the notion of change is represented by implications derived from the fluent property 

hasOngoingActivity. The instances of this concept are intended to be derived at runtime.  

CompositeActivityTS: This is a subclass of TimeSlice that relates to DynamicCompositeActivity. It explicitly 

captures the notion of change by defining a restriction on the fluent property hasOngoingActivity. Essentially, 

objects of CompositeActivityTS associate with objects of BasicActivityTS or another CompositeActivityTS 

through the fluent property hasOngoingActivity to denote change. Each composite activity can be derived from 

the activities whose TimeSlice objects have been associated with the hasOngoingActivity over a given time 

interval. It associates with DynamicCompositeActivity using the timeSliceOf property. 

DynamicConcurrentActivity: Sub-concept of DynamicCompositeActivity whose instances are dynamic 

concurrent or interleaved activities. 

DynamicSequentialActivity:  Sub-concept of DynamicCompositeActivity whose instances are dynamic 

sequential activities. 

StaticCompositeActivity: This is a sub-concept of CompositeActivity and defines a static composite activity 

as per Definition 15. It simply captures the activities (whether simple or composite) that constitute a composite 

activity. It typically captures inter-activity relations using the hasActivity property to specify the activities that 

constitute the composite activity. It associates with DynamicCompositeActivity through the 

entailsCompositeActivity property. This concept can specify a time slice but does not encode the notion of 

change, hence, it relates to TimeSlice concept using timeSliceOf property. 

StaticConcurrentActivity:  Sub-concept of StaticCompositeActivity whose instances are static concurrent or 

interleaved activities. 

StaticSequentialActivity:  Sub-concept of StaticCompositeActivity whose instances are static sequential 

activities.  

Figure 2 illustrates how the various concepts relate to obtain activity models for simple and composite 

 

Figure 2: Part of the activity models showing concepts and their inter-relationships 

 



 
 

activities. 

4.3 Interval logic-based temporal activity modelling  

In addition to ontological modelling of relationships between activities and entities described above, we use 

Allen interval relations to model temporal relationships between simple activities of composite activities. The 

models show how to relate temporal intervals of composite activities to the temporal intervals of their 

composing activities. The resulting models can be used to infer composite activities from temporal intervals of 

simple activities or other composite activities.  

4.3.1 Models of sequential composite activities 

Sequential activities are modelled by associating their respective intervals using the Allen relations 

before/after and meets/met-by. The relation before/after signifies that there is a gap between the two intervals, 

while meets/met-by indicates that the two intervals follow each other with no gap between them. These two 

relations (marked by solid arrows) and their implications (marked by dotted arrows) are represented in Figure 3 

(a). 

4.3.2 Models of interleaved and concurrent composite activities 

The models of interleaved and concurrent activities encode the notion that activities can occur simultaneously 

only if their time intervals overlap fully or partially. The models of interleaved and concurrent activities are 

created using nine temporal relations, i.e., overlaps/overlapped-by, during/contains, starts/started-by, finishes 

/finished-by and equals as described below. The resulting temporal models are shown in Figure 3 (b)-(f): 

i) Overlaps/overlapped-by- this shows that two activities have components of their intervals that are shared, 

but with one interval starting or ending before the other interval.   

ii) Contains /during- this models a composite activity made up of simple activities, e.g. ‘prepare meal’ that 

contains ‘prepare soup’ and ‘prepare vegetable’. The longer interval encloses the shorter one.  

iii) Starts/started-by-shows the simple/composite activity that starts another simple/composite activity. 

iv) Finishes /finished-by- shows the simple/composite activity that finishes another simple/composite activity. 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

  

 
(e) 

 
(f) 

Figure 3: Temporal relationship models of composite activities (a) before/after and meets/met-by; (b) 
overlaps/overlapped-by; (c) during/contains; (d) finishes/finished-by; (e) starts/started-by;(f) equals models 



 
 

v) Equals- Theoretically, this scenario only applies to concurrency by parallelism. The two intervals start and 

end at the same time.  

4.4 Entailment rules for activity modelling 

The previous section describes interval-based temporal interrelationships between simple activities of a 

composite activity using ontological concepts. Nevertheless, the mechanism for interpreting the temporal 

relationships is still missing, which is required in order to infer composite activities. To this end, we have 

defined a set of entailment rules as an essential part of the composite model, based on Semantic Web Rule 

Language (SWRL) [45], which can infer complex dependencies among activities and therefore the ongoing 

composite activities. These rules can be used to derive the ongoing composite activities by identifying the 

existing relationships between temporal intervals of ongoing activities. Three categories of entailment rules have 

been designed, namely, rules to derive interval relations and assert dynamic composite activities; rules to assert 

instances of fluent property; and rules to derive and assert static composite activities. Due to limitation of space, 

in the following we use three entailment rules based on the overlaps/overlapped-by relationship to illustrate the 

development of rules and their use for activity inference. 

 

ProperInterval(?x), ProperInterval(?y), before(?a, ?c), before(?b, ?d), 

before(?c, ?b), hasBeginning(?x, ?a), hasBeginning(?y, ?c), hasEnd(?x, ?b), 

hasEnd(?y, ?d) -> intervalOverlaps(?x, ?y) 

(a) 

ADLActivity(?ax), ADLActivity(?ay), ComplexActivityTS(cplxConcurrentTS), 

DynamicConcurrentActivity(dynConcurrentActivity), TimeSlice(?tsx), 

TimeSlice(?tsy), Interval(dynConcurrentInterval), ProperInterval(?x), 

ProperInterval(?y), hasTimeInterval(?tsx, ?x), hasTimeInterval(?tsy, ?y), 

hasTimeInterval(cplxConcurrentTS, ?w), timeSliceOf(?tsx, ?ax), 

timeSliceOf(?tsy, ?ay), timeSliceOf(cplxConcurrentTS, dynConcurrentActivity), 

hasBeginning(?x, ?a), hasEnd(?y, ?d), intervalOverlaps(?x, ?y) -> 

hasOngoingActivity(cplxConcurrentTS, ?tsx), 

hasOngoingActivity(cplxConcurrentTS, ?tsy), hasBeginning(?w, ?a), hasEnd(?w, ?d), 

intervalFinishes(?y, ?w), intervalStarts(?x, ?w) 

(b) 

ComplexActivityTS(?tsw), ConcurrentActivity(?sa), DynamicConcurrentActivity(?aw), 

TimeSlice(?tsx), TimeSlice(?tsy), endedBy(?sa, ?ay), hasActivity(?sa, ?ax), 

hasActivity(?sa, ?ay), hasOngoingActivity(?tsw, ?tsx), 

hasOngoingActivity(?tsw, ?tsy), hasTimeInterval(?tsw, ?w), 

hasTimeInterval(?tsx, ?x), hasTimeInterval(?tsy, ?y), startedBy(?sa, ?ax), 

timeSliceOf(?tsw, ?aw), timeSliceOf(?tsx, ?ax), timeSliceOf(?tsy, ?ay), 

intervalFinishes(?y, ?w), intervalOverlaps(?x, ?y), intervalStarts(?x, ?w), 

relationshipType(?sa, "PARALLEL") -> entailsCompositeActivity(?aw, ?sa). 

(c) 

Figure 4: Entailment rules for inferring composite activities 

4.4.1 Derive interval relations and assert dynamic composite activity intervals 

Given two existing intervals for a pair of primary activities that have a qualitative temporal relationship, the 

rules in Fig 4(a) and (b) are used to assert interval end-points of a dynamic composite activity. The rule in Fig. 

4(a) derives the interval relation intervalOverlaps by using the interval end-points of two primary activities. Fig. 

4(b)  provides the rule for obtaining the inferred values of intervalOverlaps property. The left hand side (LHS) 

of the rule in Fig. 4(b) obtains three TimeSlice objects, and determines the beginning and ending points for each 

primary activity’s interval. Finally, it derives the existing interval relationship for the primary activities. The 

right hand side (RHS) of the rule uses the facts established on LHS to assert the beginning and ending points of 

the time interval for the dynamic composite activity.  

4.4.2 Assert instances of fluent property 

This is based on Fig. 4(b), and the rule allows the TimeSlice objects linked to the ongoing primary activities 

to be related with the TimeSlice object of the DynamicCompositeActivity through the fluent property, 

hasOngoingActivity. The LHS obtains three TimeSlice objects, i.e., the two for primary activities and one for 

the dynamic composite activity, checks for the temporal dependency between the primary activities, and asserts 

instances of the fluent property. If two TimeSlice objects share a temporal relation, then they are associated with 

the TimeSlice object of the dynamic composite activity using the fluent property. 



 
 

4.4.3 Derive and assert static composite activities 

This is based on Fig. 4(c) above and the rule’s LHS checks that there exists an instance of 

DynamicCompositeActivity, an instance of StaticCompositeActivity, as well as instances of the fluent property 

that are defined on the former’s instance. The RHS then uses the facts established by the LHS to assert instances 

of the entailsCompositeactivity that is defined as a property of the concept StaticCompositeActivity (see Table 

3). Essentially, this rule is used to infer and validate the ongoing composite activity that is subsequently reported 

to the user. Validation fails if instances of DynamicCompositeActivity do not have corresponding instances of 

StaticCompositeActivity. Whenever validation fails the resulting composite activity described by the instance of 

DynamicCompositeActivity should be suggested for addition into the static model of activities. 

Similar rules are defined for other qualitative temporal relations (i.e., equals, during/contains, starts/started-

by, finishes/finished-by, before/after, and meets/met-by) but due to space limitations we do not provide them 

here. 

5 SIMPLE AND COMPOSITE ACTIVITY RECOGNITION 

5.1 ADL Ontology 

To support SH-based activity recognition, we have aggregated the models created above including concepts 

and properties for simple and composite activities, and the entailment rules to form the ADL Ontology. The 

ADL ontology is constructed based on common ADL activities related to food preparation, recreation, and 

hygiene. Table 5 shows a list of simple ADL activity models, namely ADL concepts, their properties, and the 

range concepts representing the objects used by the users to perform respective ADLs. All the Range concepts 

are sub-concepts of MonitoredEntity. The super concepts are listed in the order from the immediate super-

concept to the most general super-concept. These simple activities can form composite activities if a user 

performs them in sequence or concurrently, as discussed in Section 6.  

TABLE 5: SUMMARY OF ADL CONCEPTS IN THE ADL ONTOLOGY 

Concept Super Concept Property Range Concepts 
HaveBath BathRoomADL, BasicADLActivity, ADLActivity, 

Activity 
hasHygieneItem BathBrush, BathSoap, BodyWash, 

Towel 
hasHygieneAppliance BathTap 
hasLocation BathRoom 

BrushTeeth BathRoomADL, BasicADLActivity, ADLActivity, 
Activity 

hasHygieneAppliance Toothbrush, WashingSinkTap 
hasHygieneItem Toothpaste, MouthWash 
hasLocation BathRoom 

WashHands BathRoomADL, BasicADLActivity, ADLActivity, 
Activity 

hasHygieneAppliance WashingSinkTap 
hasHygieneItem Towel, HandWash 
hasLocation BathRoom 

MakeTea MakeHotDrink, MakeDrink, KitchenADL, 
FunctionalADLActivity, ADLActivity, Activity 

hasFlavoring Milk, Sugar 
hasContainer Cup 
hasHotDrinkType Tea 
hasLocation Kitchen 

MakeChocolate MakeHotDrink, MakeDrink, KitchenADL, 
FunctionalADLActivity, ADLActivity, Activity 

hasFlavoring Milk, Sugar 
hasContainer Cup 
hasHotDrinkType Chocolate 
hasLocation Kitchen 

MakeCoffee MakeHotDrink, MakeDrink, KitchenADL, 
FunctionalADLActivity, ADLActivity, Activity 

hasFlavoring Milk, Sugar 
hasContainer Cup 
hasHotDrinkType Tea 
hasLocation Kitchen 

MakePasta MakeHotMeal, MakeMeal, KitchenADL, 
FunctionalADLActivity,ADLActivity,Activity 

hasFlavoring Salt 
hasContainer Plate 
hasCookingAppliance Cooker 
hasHygieneAppliance KitchenSinkTap 
hasMaterial Pasta 
hasUtensil Drainer, Pan 
hasLocation Kitchen 

WatchTelevision LoungeADL, RecreationalADLActivity, 
ADLActivity, Activity 

hasEntertainmentAppliance TV 
hasEntertainmentAppliance TVRemote 
hasFurniture Sofa 
hasLocation Lounge 

5.2 Activity recognition architecture 

Whenever a user performs activities along a timeline, the sensor data stream can be analyzed to recognize the 

ongoing activities based on the extracted contextual information. A sensor data stream can be partitioned to 



 
 

obtain segments of sensor data and associated contextual information. To partition a sensor data stream, the time 

window based segmentation method described in [46] has been used to support dynamic segmentation. The 

segmentation approach uses information from the activity ontologies, e.g. activity duration, and feedback from 

activity inference. It generates segments from streaming sensor data that can be further analyzed to infer the 

ongoing activities.  

We propose the architecture shown in Figure 4 to support both simple and composite activity recognition. 

The architecture supports three main tasks, namely, activity modelling, activity recognition, and sensor data 

stream segmentation. In activity modelling, two types of models (i.e., static and dynamic models as previously 

described) are created as described in Section 4. To create the two models, activity modelling involves two 

processes, i.e., static activity modelling and dynamic activity modelling. Static activity modelling involves 

creating static models of simple and composite activities. Dynamic activity modelling is used to create the 

dynamic model of composite activities. Activity recognition is modeled as three interdependent tasks, namely, 

action recognition, simple activity recognition, and composite activity recognition. The action recognition task 

is tightly coupled with and subsumed in the simple activity recognition task. By separating activity recognition 

into interdependent tasks, it is possible to use different techniques for each task. In this work, instance retrieval, 

subsumption reasoning and equivalence reasoning are used for action and simple activity recognition. For 

composite activity recognition, rule-based inference techniques are exploited. Finally, segmentation is used to 

aid real-time processing by supporting online segmentation of streaming sensor data. The resulting segments are 

processed during activity recognition and mapped to corresponding simple or composite activities.  

 

Figure 5: Architecture for activity modelling and recognition 

5.3 Activity recognition algorithm 

  Given a segment of sensor data stream, we describe the algorithm that derives the corresponding simple or 

composite activities. The steps described here are summarized in the algorithm listing in Figure 5.  

In the first step, the enclosed observations are converted into primitive actions by checking property 

restrictions specified in the ADL Ontology through ontological reasoning. The second step groups primitive 

actions into one or more activity descriptions corresponding to the simple activities that are defined in the ADL 

Ontology. Each activity description is constructed such that it contains only sensor data and context information 

that can be mapped to a single specific simple activity or to a general class of simple activities. For instance an 

activity description can match the definition of the general class ‘MakeHotDrink’ (a super activity for ‘MakeTea, 

‘MakeCoffee’, and ‘MakeChocolate’) or that of the simple class ‘MakeTea’. Therefore, an activity description is 

considered more general if it corresponds to a general class of activities and more specific otherwise. A more 

general activity description signifies that more sensor data and context information is still needed to identify the 

correct sub-activity. To group primitive actions, the algorithm checks the ontology to determine the ADL 

concepts that are in the domain of the corresponding property restriction. For instance, given the knowledge that 

the user is in the kitchen, the algorithm can obtain the triples <MakeTea, hasLocation, kitchen>, <MakeCoffee, 

hasLocation, kitchen>, and <MakeChocotate, hasLocation, kitchen>, and so on, for all the activities that can 

take place in the kitchen. As a result it will form a number of partial activity descriptions with one description 

per possible activity and each activity will be associated with the primitive action representing ‘in the kitchen’. 

Since each activity description contains only sensor data and context information corresponding to an activity or 

class of activities, several activity descriptions can be generated for a given segment of the sensor data stream. 

As more sensor data is obtained new activity descriptions will be created or the existing ones will be modified 

and enriched. For example, if the next sensor observation relates to the user using the tea bag, only the partial 

activity description corresponding to MakeTea will be updated to accommodate the new primitive action. 

During this process, a few partial activity descriptions will become complete when all the relevant primitive 



 
 

actions have been executed. However, all the existing partial or complete activity descriptions will remain valid 

until sensor observations within a given segment are discarded. 

INPUT: sensor data stream (Ω), ADL ontology (ADL-O), inference rule base (RB) 

OUTPUT: Composite activity (CA) or simple activity (SA) 

RECOGNIZE-ACTIVITY (Ω, ADL-O, RB) 
BEGIN:  

WHILE data stream is active DO  

Segment data stream (Ω) into a set of segments S={s1, s2, ..., sn} 
/*for each segment map observations to activities*/ 
FOR each si∊S DO  

/*Create activity descriptions to form set AD={AD1, AD2,...ADk}*/ 
Extract observations from segment si, O={o1,o2,...oh} 
FOR each oi∊O DO //for each observation  

Retrieve all activities described by oi,  A(oi)={A1, A2, ...An}  
ENDFOR 
Create a set of all activities A=A(o1)⊔ …A(oi)⊔ … A(oh) 
FOR each x∊A DO/*for all activities*/ 

Collect all observations constituting the definition of x as activity descriptions ADx 
Add ADx to AD  

ENDFOR  
/*classify activity*/ 
FOR each ADj∊AD DO  

Map ADi to a simple activity /*use ontological inference*/ 
IF a leaf activity is returned THEN  

Report it (SA)  
ELSE   

IF goal is still valid THEN  
Wait for updated activity description (go to start of current loop) 

ELSE Communicate status report and terminate  
ENDIF 

ENDIF 
Update classification status into recognition status RS= {st1,st2,...stm} 

ENDFOR 
/*to help aggregate results for composite activities*/ 
Define the set of time intervals TI  
FOR each sti∊RS DO   

Obtain temporal interval Ii and add it to TI  
ENDFOR 
IF only one interval is present THEN  

Report it (SA) /*SA-activity in interval I*/  
ELSE  

Infer interval relations using RB  
Derive ongoing composite activity relationships 
Check corresponding instances of static composite activities 
IF instance in static model THEN  

Report it (CA) 
ELSE   

Recommend the activity ontology be updated to accommodate it  
ENDIF   

ENDIF 
IF results are conclusive THEN  

Convey results (SA or CA) 
ELSE  

Update segment and window   
ENDIF  

ENDFOR  
ENDFOR  

ENDWHILE 
END 

Figure 6: Algorithm for composite activity recognition 



 
 

In the third step, simple activity recognition is performed to map activity descriptions into activity labels. To 

perform simple activity recognition, we adopt and modify the ontological reasoning approach described in [9, 

10]. The original approach progressively aggregates sensor data within a data stream segment and performs 

subsumption and equivalence reasoning to infer the entailed activity. In the modified approach, the algorithm 

processes each activity description obtained as previously described against the ADL Ontology. Basically, it 

compares each activity description with activity models in the ADL Ontology using semantic reasoning and the 

activity label for the model that is closest to the activity description is reported as the ongoing simple activity. 

The activity model returned by instance retrieval is considered the closest model. In the absence of a model 

returned by instance retrieval, then the model returned by equivalence reasoning is taken as the closest. 

Otherwise, the model returned by subsumption is the closest. Given the possibility of multiple activity 

descriptions per data stream segment, parallel simple activity recognition processes can be initiated with each 

process dedicated to a single activity description. 

The fourth and last step performs composite activity recognition by using the inference rules to aggregate the 

results of simple activity recognition. The strategy is to progressively aggregate the results of simple activity 

recognition in order to recognize composite activities. If only one simple activity has been identified for a sensor 

data segment, this can be reported to the user. Alternatively, if more than one simple activity is identified from 

corresponding activity descriptions, the results are processed to determine if ongoing simple activities share 

qualitative temporal relationships. The simple activities that share qualitative temporal relationships are inferred 

as components of a composite activity. However, before the composite activity is reported to the relevant 

applications, the ontology is checked for a corresponding instance in the static activity model. If a corresponding 

instance exists, it is reported to the user; otherwise, it is considered a novel composite activity and recommended 

for inclusion in the ontology. To perform this analysis, the approach uses temporal inference rules. The rules can 

infer qualitative temporal relationships and derive corresponding composite activities from the activity models 

using the temporal inference mechanism.  

6 EXPERIMENTS AND EVALUATION 

6.1 System prototype 

To support experiments and evaluation, we developed a system prototype for simple and composite activity 

recognition. The prototype consists of the ADL Ontology and a multi-agent system. The multi-agent system 

consist is built using Java Agents Development Framework (JADE) [47]. Overall, four types of agents were 

implemented as follows: a) an agent to receive sensor input and to segment the sensor data stream; b) an agent 

to manage action inference, generate activity descriptions, and to oversee summarization of activity 

information; c) an agent to manage inference rule execution to aggregate the results from simple activity 

recognition to infer composite activities and, finally; d) multiple agents to infer simple activities. The benefit of 

choosing agent as an implementation artefact is because agents provide the different components with autonomy 

needed to perform their respective tasks. In addition, each component can continuously review and react to 

changes in its goals. Also, there is massive parallelism involved in executing the various tasks involved in the 

framework and these tasks are implemented as agent behaviours. The ADL Ontology was built using OWL 

2[48] constructs in Protégé [49] ontology editor. The prototype implements Java-based code interacting with the 

Pellet [50] OWL reasoner to provide ontological reasoning support.  The inference rules were implemented as 

Semantic Web Rule Language (SWRL) [45] rules. To facilitate the execution of the inference rules we translated 

the activity ontology and the SWRL rules to Java Expert System Shell (JESS) [51] fact and rule bases, 

respectively. We used the OWL2Jess and SWRL2Jess translators based on [52]. In the prototype, the JESS fact 

and rules bases are accessed and processed by a JESS rule engine. The engine is accessed by behaviours in the 

JADE agent responsible for aggregating the results of simple activity recognition. A segment of the activity 

ontology and a runtime snapshot of the agent system are shown in Figure 6. 



 
 

 

Figure 7: Snapshot of activity ontology and runtime agent system 

6.2 Experiment design 

To evaluate and demonstrate the feasibility of the proposed approach, we used the synthetic data generator 

developed and described in [46] to generate synthetic ADL data. To generate the synthetic ADL data, seven 

typical simple ADLs related to meals (e.g. MakeTea, MakeCoffee, MakeChocolate, and MakePasta), hygiene 

(e.g. HaveBath, WashHands) and recreation (e.g. WatchTelevision) were used. The synthetic ADL data possesses 

the necessary temporal information and allows us to evaluate the feasibility of the developed approach. To 

generate synthetic ADL data, we specified ‘seed’ ADL patterns for both simple activities (e.g. MakeTea, 

HaveBath) and composite activities (e.g. MakePastaAndMakeTea).  The synthetic ADL data generator then 

derives different permutations of these patterns. To select the permutation to use, it uses a random number 

generator to guarantee fairness in pattern selection.  The transition time (in seconds) between ADLs is specified 

for each ADL pattern. For example, the pattern WashHands-0, MakePastaAndMakeTea-600, implies that 

WashHands is the first ADL in the pattern, while the ADL MakePastaAndMakeTea will occur 600 seconds after 

WashHands is completed. As described in [46], one or more patterns of sensor activations is provided for each 

simple ADL with each sensor in the pattern activated after a specific amount of time. It is therefore possible to 

derive the approximate activity duration from the temporal information associated with the sensor 

activations.We generated eight weeks of synthetic ADL data consisting of 56 episodes of simple or composite 

activities. A total of 104 activities were generated consisting of 23 interleaved and concurrent activities (46 

simple activities), 25 sequential activities (50 simple activities), and eight standalone simple activities to provide 

the ground truth. Table 6 presents an analysis of all simple activities while Table 7 provides a summary of 

composite activities.  

TABLE 6. SUMMARY OF SIMPLE ACTIVITIES IN SYNTHETIC DATA SET 

Simple activity #in parallel #in sequential #standalone Sub-total 

MakeTea 8 18 0 26 

MakeCoffee 1 0 2 3 



 
 

MakeChocolate 1 0 6 7 

MakePasta 18 7 0 25 

HaveBath 8 7 0 15 

WashHands 0 10 0 10 

WatchTelevision 10 8 0 18 

Total    104 

TABLE 7. SUMMARY OF COMPOSITE ACTIVITIES IN SYTHETIC DATA SET 

Concurrent and interleaved # of 
occurrences 

Sequential # of occurrences 

MakePasta and MakeTea (a) 3 MakePasta then HaveBath(g) 6 

MakePasta and WatchTelevision(b) 5 MakeTea then WashHands(h) 4 

MakePasta and HaveBath(c) 8 WashHands then MakeTea(i) 6 

WatchTelevision and MakeTea (d) 5 MakeTea then WatchTelevision (j) 3 

MakePasta and MakeChocolate (e) 1 WatchTelevision then MakeTea(k) 5 

MakePasta and MakeCoffee(f) 1 HaveBath then MakePasta(l) 1 

Total 23 (46 simple 
activities) 

Total 25 (50 simple activities) 

6.3 Experiments and results 

To test the approach and associated algorithms for activity recognition, we use the simulation tool presented 

in [46] to play back the synthetic ADL data described above. The sensor data is then fed to the activity 

recognition system as if the sensor activations are occurring in real-time. As the data is played back, the 

recognition system will attempt to identify the ongoing simple or composite activities.  A total of 104 activities 

were played back in real-time and processed by the system prototype for activity recognition. The overall 

accuracy value obtained for simple activities is 100% since all 104 simple activities were successfully 

recognized. Figure 7 shows the precision, recall, and accuracy values for composite activities. An overall 

accuracy value of 88.26% was obtained. 

 

 

Figure 8: Summary of results for composite activities 

6.4 Discussion 

 We observed with interest that the accuracy for simple activities was 100%. We attribute this to the decision 

we made to derive all possible activity descriptions for each data stream segment. By deriving activity 

descriptions as presented by the algorithm in Figure 5, the approach guarantees that only sensor observations 

that are relevant to a particular type of activity are included in its activity recognition. Essentially, primitive 

actions are used to derive activity descriptions before mapping the resulting descriptions to activity labels. As a 

result each simple activity recognition unit can correctly classify its activity based on the sensor observations 

that it obtains.  

The overall recognition accuracy for composite activities is 88.26% which is quite encouraging. It is 

important to note that recognition accuracy is lower when the composite activity consists of activities that are 



 
 

executed in sequence. This can be attributed to the transitions between activities and how well the system keeps 

track of the previously recognized activities. We believe that this can be increased by using feedback from 

composite activity recognition in segmentation. On the other hand, impressive accuracy results for concurrent 

and interleaved activities can be attributed to the absence of temporal transitions between the activities involved.  

7 CONCLUSIONS AND FUTURE WORK 

This paper presented a hybrid approach and associated system architecture, models, methods and algorithms 

for composite activity modelling and recognition. The approach combines ontological and temporal knowledge 

representation formalisms to provide required modelling and representation capabilities for composite activity 

modelling. In this paper, we have developed a generic conceptual activity model that encodes the characteristics 

of simple and composite activities and from which activity models can be specified. We have developed a 

unified activity recognition algorithm that processes streaming sensor data against composite activity models to 

support the identification of both simple and composite activities, e.g. interleaved and concurrent activities. We 

have described an integrated system architecture for composite activity recognition in smart homes and further 

developed a system prototype that was used to evaluate the approach. Using the prototype we have conducted 

well-designed experiments which have observed average accuracy values of 100% and 88.26% for simple and 

composite activities, respectively. To the best of our knowledge, this is the first effort in related research 

communities that uses a purely knowledge-driven approach that addresses both temporal representation and 

reasoning requirements to recognize both simple and composite activities. We believe this research enriches the 

literature and advances the research frontiers of the knowledge-driven approach to activity recognition. 

Future work should involve extending the conceptual activity model with additional spatial features to 

enhance the quality of context information used in activity inference. The use of spatial features is intended to 

increase the ability to use spatial context to discern activity relationships. Also, we will perform further 

experiments to assess the computational performance of the recognition algorithms in terms of complexity and 

soundness, completeness, and decidability of reasoning.   
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