6 research outputs found

    Using Intelligent Prefetching to Reduce the Energy Consumption of a Large-scale Storage System

    Get PDF
    Many high performance large-scale storage systems will experience significant workload increases as their user base and content availability grow over time. The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) center hosts one such system that has recently undergone a period of rapid growth as its user population grew nearly 400% in just about three years. When administrators of these massive storage systems face the challenge of meeting the demands of an ever increasing number of requests, the easiest solution is to integrate more advanced hardware to existing systems. However, additional investment in hardware may significantly increase the system cost as well as daily power consumption. In this paper, we present evidence that well-selected software level optimization is capable of achieving comparable levels of performance without the cost and power consumption overhead caused by physically expanding the system. Specifically, we develop intelligent prefetching algorithms that are suitable for the unique workloads and user behaviors of the world\u27s largest satellite images distribution system managed by USGS EROS. Our experimental results, derived from real-world traces with over five million requests sent by users around the globe, show that the EROS hybrid storage system could maintain the same performance with over 30% of energy savings by utilizing our proposed prefetching algorithms, compared to the alternative solution of doubling the size of the current FTP server farm

    A Comparison of Prediction Algorithms for Prefetching in the Current Web

    Full text link
    [EN] This paper reviews a representative subset of the prediction algorithms used for Web prefetching classifying them according to the information gathered. Then, the DDG algorithm is described. The main novelty of this algorithm lies in the fact that, unlike previous algorithms, it creates a prediction model according to the structure of the current web. To this end, the algorithm distinguishes between container objects and embedded objects. Its performance is compared against important existing algorithms, and results show that, for the same amount of extra requests to the server, DDG always outperforms those algorithms by reducing the perceived latency up to 70% more without increasing the complexity order.This work has been partially supported by the Spanish Ministry of Science and Innovation under Grant TIN2009-08201, the Generalitat Valenciana under Grant GV/2011/002 and the Universitat Politecnica de Valencia under Grant PAID-06-10/2424.Josep Domenech; Sahuquillo Borrás, J.; Gil Salinas, JA.; Pont Sanjuan, A. (2012). A Comparison of Prediction Algorithms for Prefetching in the Current Web. Journal of Web Engineering. 11(1):64-78. http://hdl.handle.net/10251/44349S647811

    Evaluation, Analysis and adaptation of web prefetching techniques in current web

    Full text link
    Abstract This dissertation is focused on the study of the prefetching technique applied to the World Wide Web. This technique lies in processing (e.g., downloading) a Web request before the user actually makes it. By doing so, the waiting time perceived by the user can be reduced, which is the main goal of the Web prefetching techniques. The study of the state of the art about Web prefetching showed the heterogeneity that exists in its performance evaluation. This heterogeneity is mainly focused on four issues: i) there was no open framework to simulate and evaluate the already proposed prefetching techniques; ii) no uniform selection of the performance indexes to be maximized, or even their definition; iii) no comparative studies of prediction algorithms taking into account the costs and benefits of web prefetching at the same time; and iv) the evaluation of techniques under very different or few significant workloads. During the research work, we have contributed to homogenizing the evaluation of prefetching performance by developing an open simulation framework that reproduces in detail all the aspects that impact on prefetching performance. In addition, prefetching performance metrics have been analyzed in order to clarify their definition and detect the most meaningful from the user's point of view. We also proposed an evaluation methodology to consider the cost and the benefit of prefetching at the same time. Finally, the importance of using current workloads to evaluate prefetching techniques has been highlighted; otherwise wrong conclusions could be achieved. The potential benefits of each web prefetching architecture were analyzed, finding that collaborative predictors could reduce almost all the latency perceived by users. The first step to develop a collaborative predictor is to make predictions at the server, so this thesis is focused on an architecture with a server-located predictor. The environment conditions that can be found in the web are alsDoménech I De Soria, J. (2007). Evaluation, Analysis and adaptation of web prefetching techniques in current web [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1841Palanci

    Rule-assisted prefetching in Web-server caching

    No full text
    Web servers manage large number of documents of widely variable sizes. Moreover, the access patterns on the documents may also c hange over time. While some documents are highly popular over a prolonged period of time, we expect newly added documents to increase in popularity while demand for most older documents decreases. It is therefore important to design e ective caching strategy at the web server. In this paper, we present our approach to the problem. Our main contribution lies in the design of a novel prefetching strategy, called RAP. RAP identi es a set of association rules from the Web server's access log. Unlike existing mining strategy, RAP's miner values recently added log records more than earlier log records. Based on the rules, RAP predicts and prefetches documents from users initial requests. We conducted extensive study to evaluate RAP

    AUGURES : profit-aware web infrastructure management

    Get PDF
    Over the last decade, advances in technology together with the increasing use of the Internet for everyday tasks, are causing profound changes in end-users, as well as in businesses and technology providers. The widespread adoption of high-speed and ubiquitous Internet access, is also changing the way users interact with Web applications and their expectations in terms of Quality-of-Service (QoS) and User eXperience (UX). Recently, Cloud computing has been rapidly adopted to host and manage Web applications, due to its inherent cost effectiveness and on-demand scaling of infrastructures. However, system administrators still need to make manual decisions about the parameters that affect the business results of their applications ie., setting QoS targets and defining metrics for scaling the number of servers during the day. Therefore, understanding the workload and user behavior ¿the demand, poses new challenges for capacity planning and scalability ¿the supply, and ultimately for the success of a Web site. This thesis contributes to the current state-of-art of Web infrastructure management by providing: i) a methodology for predicting Web session revenue; ii) a methodology to determine high response time effect on sales; and iii) a policy for profit-aware resource management, that relates server capacity, to QoS, and sales. The approach leverages Machine Learning (ML) techniques on custom, real-life datasets from an Ecommerce retailer featuring popular Web applications. Where the experimentation shows how user behavior and server performance models can be built from offline information, to determine how demand and supply relations work as resources are consumed. Producing in this way, economical metrics that are consumed by profit-aware policies, that allow the self-configuration of cloud infrastructures to an optimal number of servers under a variety of conditions. While at the same time, the thesis, provides several insights applicable for improving Autonomic infrastructure management and the profitability of Ecommerce applications.Durante la última década, avances en tecnología junto al incremento de uso de Internet, están causando cambios en los usuarios finales, así como también a las empresas y proveedores de tecnología. La adopción masiva del acceso ubicuo a Internet de alta velocidad, crea cambios en la forma de interacción con las aplicaciones Web y en las expectativas de los usuarios en relación de calidad de servicio (QoS) y experiencia de usuario (UX) ofrecidas. Recientemente, el modelo de computación Cloud ha sido adoptado rápidamente para albergar y gestionar aplicaciones Web, debido a su inherente efectividad en costos y servidores bajo demanda. Sin embargo, los administradores de sistema aún tienen que tomar decisiones manuales con respecto a los parámetros de ejecución que afectan a los resultados de negocio p.ej. definir objetivos de QoS y métricas para escalar en número de servidores. Por estos motivos, entender la carga y el comportamiento de usuario (la demanda), pone nuevos desafíos a la planificación de capacidad y escalabilidad (el suministro), y finalmente el éxito de un sitio Web.Esta tesis contribuye al estado del arte actual en gestión de infraestructuras Web presentado: i) una metodología para predecir los beneficios de una sesión Web; ii) una metodología para determinar el efecto de tiempos de respuesta altos en las ventas; y iii) una política para la gestión de recursos basada en beneficios, al relacionar la capacidad de los servidores, QoS, y ventas. La propuesta se basa en aplicar técnicas Machine Learning (ML) a fuentes de datos de producción de un proveedor de Ecommerce, que ofrece aplicaciones Web populares. Donde los experimentos realizados muestran cómo modelos de comportamiento de usuario y de rendimiento de servidor pueden obtenerse de datos históricos; con el fin de determinar la relación entre la demanda y el suministro, según se utilizan los recursos. Produciendo así, métricas económicas que son luego aplicadas en políticas basadas en beneficios, para permitir la auto-configuración de infraestructuras Cloud a un número adecuado de servidores. Mientras que al mismo tiempo, la tesis provee información relevante para mejorar la gestión de infraestructuras Web de forma autónoma y aumentar los beneficios en aplicaciones de Ecommerce
    corecore