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Abstract

Over the last decade, advances in technology together with the increasing use of the

Internet for everyday tasks, are causing profound changes in end-users, as well as in busi-

nesses and technology providers. The widespread adoption of high-speed and ubiquitous

Internet access, is also changing the way users interact with Web applications and their

expectations in terms of Quality-of-Service (QoS) and User eXperience (UX). To remain

competitive in this environment, online businesses need to adapt their applications in an

agile-way to service demand and market changes. These rapid and unstructured changes

often result in rich UX, but complex Web applications, with high server resource require-

ments. Moreover, Web traffic is not only composed of end-user clicks, but is a mix of

Business-to-Business (B2B) Web services, crawler and other automated requests, where

less than 2% correspond to sessions with the intention to purchase a product. Therefore,

understanding the workload and user behavior —the demand, poses new challenges for

capacity planning and scalability —the supply, and ultimately for the success of a Web

site.

Recently, Cloud computing has been rapidly adopted to host and manage Web appli-

cations, due to its inherent cost effectiveness and on-demand scaling of infrastructures.

However, system administrators still need to make manual decisions about the param-

eters that affect the business results of their applications i.e., setting QoS targets and

defining metrics for scaling the number of servers during the day. Additionally, not

understanding the workload and how users and applications behave under load —the

resource consumption, may result in an ineffective or even destructive scaling configu-

ration i.e., when requests come from automated crawlers. This scenario opens a new

range of challenges in order to understand how resources are consumed in the Web, and

how to relate demand with supply to sales. In regards to this, Machine Learning (ML)

research field offers an attractive approach to learn models i.e., user behavior, revenue,

and cost models; such models that can be trained offline, from log data already collected

by most Web sites. ML trained models can be leveraged later to make real-time predic-

tions of future behavior; thus, be applicable for automating infrastructure management

according high-level policies.
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This thesis contributes to the self-configuration of Web infrastructures according to prof-

its by providing: i) a methodology for predicting Web session revenue; ii) a methodology

to determine high response time effect on sales; and iii) a policy for profit-aware resource

management, that relates server capacity to QoS and sales. The approach leverages ML

techniques on Web datasets, and it is divided into three contributions:

First, a methodology to produce a revenue model for Web sessions, which is trained

from past HTTP navigational information. The resulting model can be used to tell

apart, the type of user and whether a session will lead to purchase starting from the

first click. We show how such information can be leveraged to provide a per-class QoS

and admission control when scalability is not possible, resources are limited, or it is not

cost effective. Second, a per-application method to determine high response time effect

on sales. Here, we introduce a non-intrusive technique to characterize response times

and predict the volume of sales that would be lost at each service response time during

different hours of the day. Using such technique, we can quantify the impact of different

response times to sales and automatically set the best performance targets. We show

how user behavior changes according to date and time, and what are the different user

satisfaction thresholds per application. And third, a policy is presented for profit-aware

Web infrastructure management. This policy leverages revenue and costs metrics from

the online classification of sessions and predicts the impact of each possible response time

target for a workload. We show how such economical metrics enable profit-aware re-

source management, allowing the self-configuration of cloud infrastructures to determine

an optimal number of servers. In this way, hosting costs for an incoming workload are

minimized under a variety of conditions i.e., server costs, performance targets, available

capacity, budget-constraints, and high-level policies of business expectations.

Our approach is tested on custom, real-life datasets from a Ecommerce retailer repre-

sentative of the aforementioned Web scenario1. The datasets contain over two years of

access, performance, and sales data from popular travel Web applications. The results

obtained show how ML trained, user behavior and server performance models can be

built from offline information to determine how demand and supply relations work as

resources are consumed. This thesis contributes to the current state-of-art in Web In-

frastructure management, as well as provides several insights applicable for improving

Autonomic infrastructure management and the profitability of Ecommerce applications.

1The presented work derives from a technology-transfer collaboration with a Online Travel and Book-
ing Agency. For which, we have introduced a custom module in their production systems to generate
detailed application performance datasets. The datasets are used both in the experiments of this thesis
and in the company’s production systems to monitor and improve the performance of their application.
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Chapter 1

Introduction

1.1 Motivating scenario

Over the last years, high-speed, Internet access has become commodity both at home

and work in many countries, with numbers reaching 91% in the US [1], similar num-

bers in Europe [2] at the workplace, and increasingly in mobile devices [3]. High speed,

ubiquitous, Internet access is changing the way users interact with websites, their expec-

tations in terms of performance —response time— and patience levels [4] to slowness or

crashes. A current consumer report by Forrester Research [1], shows that users expect

Web sites to load faster than in previous years; that about 23% of dissatisfied online

shoppers attribute their dissatisfaction to slow Web sites, while 17% to crashes or errors.

Web industry leaders such as Google, Bing, AOL, and Amazon have been releasing

results on how performance affects their business: Google reports that by adding half

a second to their search results, traffic drops by 20% [5]; AOL reports that the average

pageviews can drop from 8 to 3 in the slower response time decile [6]; Amazon reports

that by adding 100ms, sales drop by 1% [7]. Furthermore, Google has announced [8] that

it takes into account response time in their page ranking algorithm affecting positioning

on search results, a major income source for online retailers. Web site performance has

become a key feature in determining user satisfaction, and finally a decisive factor in

whether a user will purchase on a Web site or even return to it.

At the same time, with the Internet at around two billion users [9], Web applications

are becoming richer and more dynamic to enhance User eXperience (UX) and privacy,
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they also become more resource-intensive on the server side [10]. Moreover, events such

as world news and promotions, social linking i.e., flash crowd effect, and increasing

popularity can create a capacity surge within seconds. These short-term variations in

the workload and rapid Web site growth call for automated policies of infrastructure

configuration [11] to reduce the complexity of managing systems. This situation makes

crucial the understanding of Web workloads for devising cost effective infrastructures,

preventing denial of service, improving users QoS across the application, and ultimately

the success of the Web site [11].

Due to the rising complexity of these systems, an attractive solution is to try to make

the system components able to manage themselves. The Autonomic Computing research

area, in its essence aims for self-management, and to free system administrators from

operation details while the service runs at top performance [12]. However, the large

number of potential visitors to a site makes scalability and capacity planning still a

manual, complex, and costly task, while system overload incidence is growing along [11,

13]. A recent survey of 1,780 data center managers in 26 countries by Symantec [14]

shows that data center management is still increasing in complexity, and that reducing

the cost of managing data centers and Web applications is one of their most critical

objectives.

From a business perspective, the most important metric for an Ecommerce application

is profitability [15]. However, conversion rates, the ratio of users that reach a certain

goal such as buying a product on the site are decreasing —less than 2% of visits result

in a purchase on most sites [16, 17]. A low conversion rate is influenced by factors in-

cluding affiliation programs, lowering advertising returns, changes in user habits such as

comparing different sites at the same time, and meta-crawling. For example, Kayak.com

and similar meta-crawlers present the user the best results gathered from several sites,

thereby lowering the visits to each site and the conversion rate for those searches. There-

fore, Web sites have to increasingly support more users, that expect a high QoS, for less

revenue. This scenario opens a new range of challenges to understand how resources are

consumed in the Web, and how to relate demand with supply and to sales [18]. Under

this situation, Machine Learning techniques offers an attractive approach to learn from

log data collected by most Web sites, revenue and cost models of user, sales, and server

behavior; that can be leveraged to automate infrastructure management and increase

profits.
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In recent years, the Cloud Computing paradigm has been rapidly adopted to host Web

applications due to its inherent cost effectiveness [19, 20]. It has also proven effective in

scaling dynamically the number of servers according to simple performance metrics and

the incoming workload for Infrastructure-as-a-Service (IaaS) consumers. However, not

understanding the workload and how users and applications behave under load —the

resource consumption, may result in an ineffective or even destructive scaling configu-

ration i.e., when requests come from automated crawlers. Additionally, for applications

that are able to scale horizontally [21], system administrators still need to make manual

decisions about the different parameters that affect the business results of their applica-

tions such as: what is the best performance goal in response time for each application?

What metrics for dynamic scaling will warranty user satisfaction and high sales? What

is the maximum number of servers that the company may afford on peak hours or surges,

and for how long? What would be the effect, in business terms, of limiting the resources

and degrading its performance slightly to reduce the bill of the hosting?

1.2 Thesis Approach

To answer the questions about dynamic scaling presented in the previous section, this

thesis contributes to the self-configuration of Web infrastructures according to profits by

providing: first, a methodology for predicting Web session revenue, second, a methodol-

ogy to determine high response time effect on sales, and third, a policy for profit-aware

resource management, that relates server capacity to QoS and sales.

The approach leverages Machine Learning (ML) techniques to learn from past log data

revenue and cost models that enables Cloud resource provisioners self-configure them-

selves to the most profitable IaaS configuration according to the incoming workload,

available resources, and high-level policies of business expectations.

The approach it is divided into three contributions detailed below:

C1.) A methodology to produce a ML model for predicting Web session revenue. Based

on the analysis of Web server logs, to classify the type of user at each Web request

and predict the intention of the current visit e.g., its intention to purchase a product

(Chapter 4).
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Figure 1.1: Overview of the thesis contributions

C2.) A methodology to determine high response time effect on sales. By performing a

detailed workload characterization identifying the causes of performance degrada-

tion, quantifying the effect of server load and response time degradation to sales

and user satisfaction. Producing a QoS-to-Sales model (Chapter 5).

C3.) A dynamic policy for profit-aware resource management, by producing economical

metrics from C1, C2, along with the current Cloud costs. Where the metrics

are integrated in an autonomic resource provisioner prototype, AUGURES, that

maximizes profits for incoming Web workloads according to system defined policies

i.e., server costs, performance targets, available capacity, budget-constraints, and

high-level policies (Chapter 6).

A diagram of the general process followed by the thesis is presented in Figure 1.1. Where

the first contribution (C1 ) uses as input a user navigation log, and studies the demand

of the website. The second contribution (C2 ), uses the input of C1, a sales log, and a

performance dataset and studies how server resources are consumed by the demand, and

how QoS affects sales as response time increases. Both C1 and C2 represent the offline

learning phase of the thesis. While the third contribution (C3 ), leverages the models

produced in C1 and C2, along with system defined policies and the current Cloud costs,

to produce an online, profit-aware policy for server resource allocation optimizing the

supply. The three contributions are complimentary to reach the goal of the thesis:

automation and improved profits for Web infrastructures.
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Obtained results have led to publications following the three main contributions, as well

as several insights applicable for improving autonomic infrastructure management and

the profitability of Ecommerce applications. The contributions are presented in detail

the following section.

1.3 Contributions

1.3.1 Predicting Web session revenue

Web sites might become overloaded by certain events such as news, events, or promo-

tions, as they can potentially reach millions of users. Scaling their infrastructure might

not be simple; for cost reasons, scalability problems, or because some peaks are in-

frequent, websites may not be able to adapt rapidly in hardware to user fluctuations.

When a server is overloaded, most infrastructures become stalled and throughput is

reduced. System administrators might get warnings from resource-monitoring services,

but in general they get to the problem when the situation has already occurred, and

controlling the arrival of users is out of their reach.

To address this issue, session-based admission control systems [22, 23] are used to keep

a high throughput in terms of properly finished sessions and QoS for limited number of

sessions. However, as most users navigate anonymously, by denying access unclassified,

excess users, the website loses potential revenue from customers.

To overcome this situation, the first contribution of the thesis proposes a novel ap-

proach that consists in learning, from past data, a model for anonymous Web user

behavior from a real, complex Web site. The approach consists in using the Web server

access log files to learn models that make predictions about each class of user future be-

havior. With the objective of assigning a priority value to every customer based on the

expected revenue that it will generate, which in our case essentially depends on whether

it will make a purchase and if the user might be an automated crawler.

The learning method combines static information i.e., time of access, URL, session ID,

referer; and dynamic information, the Web graph of the path followed by the user, in

order to make predictions for each incoming Web request. The learning phase captures in

a model the features that make a customer more likely to make a purchase, and therefore
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more attractive — from the point of view of maximizing revenues — to maintain, even

in the case of a severe overload. The learner is also trained to predict if the user might

be a Web scraper or content-stealing crawler to ban such requests to avoid non-user Web

Services costs (see 6.7.5).

Results from experimentation show that the method can be used to tell apart, with non-

trivial probability, whether a session will lead to purchase from the first click. Using

models of user navigation, we have been able to show that in overload situations we

can restrict the access to a Web application to only a proportion of all the demanding

customers while only reducing the revenue that they generate by a factor significantly

lower. In this way, the maximum number of allowed users to the site can be regulated,

according to the infrastructure’s capacity and goal specification, by placing a threshold

over the predicted buying probability of incoming transactions.

Using the proposed technique to prioritize customer sessions can lead to increased rev-

enue in at least two situations: one, when overload situations occur; that is, the incoming

transaction load exceeds the site’s capacity and some sessions will have to be queued,

redirected to a static site, or dropped; these should be mostly non-buying and crawler

sessions, while it admits most buying ones. The second scenario is that in which keeping

extra servers running has a quantifiable cost; in this case, one could try to group buying

sessions a small number of servers, possibly shutting down those other servers that would

produce little or no revenue e.g., for crawler and bot traffic, or to provide differentiated

QoS per server.

The work performed in this area has resulted in the publications listed below, as well as

the extensions and collaborations found in [20, 24–26]:

• Nicolas Poggi, Toni Moreno, Josep Lluis Berral, Ricard Gavaldà, and Jordi Torres.

Web Customer Modeling for Automated Session Prioritization on High

Traffic Sites. Proceedings of the 11th International Conference on User Modeling,

pages 450–454, June 25-29, 2007

• Nicolas Poggi, Toni Moreno, Josep Lluis Berral, Ricard Gavaldà, and Jordi Tor-

res. Automatic Detection and Banning of Content Stealing Bots for

E-commerce. NIPS 2007 Workshop on Machine Learning in Adversarial Envi-

ronments for Computer Security, December 8, 2007
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Figure 1.2: Sales prediction process

• Nicolas Poggi, Toni Moreno, Josep Lluis Berral, Ricard Gavaldà, and Jordi Tor-

res. Self-Adaptive Utility-Based Web Session Management. Computer

Networks Journal, 53(10):1712–1721, 2009. ISSN 1389-1286

1.3.2 Response time effect on sales

Web site performance has become a key feature in determining user satisfaction, and

finally a decisive factor in whether a user will purchase on a Web site or even return

to it. However from a business perspective, conversion rates, the fraction of users that

reach a certain goal such as buying a product on the site are decreasing —less than 2% of

visits result in a purchase on most sites [16, 17]. Furthermore, as competition, affiliation,

lower advertising returns, and new user habits tend to lower the conversion rates the

marginal gains for each visit, in this way, having to increasingly support more users, that

expect a high QoS, for less revenue. This situation makes crucial the understanding of

Web workloads for devising cost effective infrastructures, preventing denial of service,

improving users QoS across the application, and ultimately the success of the Web

site [11].

During the preliminary workload characterization of the supplied datasets (see Sec-

tion 3.2), we have found that the full effect of response time degradation can be hidden

by the fact that peak load times can coincide with high conversion rates, e.g., when a

higher fraction of visitors have the intention to purchase. To overcome this effect, the

second contribution of the thesis introduces a novel method for studying what is the
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total volume of sales lost in an online retailer due to performance degradation without

modifying its application in production.

The proposed technique starts with a study and characterization of the sales log, to

identify user purchasing patterns for the different applications of the site, by time and

date, as well as seasonal trends from a 7 years sale history dataset. Then, leveraging

Machine Learning techniques constructs a model of sales that allows for an accurate

prediction of expected sales in short time frames. The model is then used to contrast

actual sales with expected sales over time, and determine the impact in sales of overload

periods with QoS degradation over the 2 years performance datasets for each of the

different applications of the site. An overview of the process is shown in Figure 1.2.

Results from this contribution show that the user’s tolerating response time thresholds

are higher for most applications of the site that from previous literature, especially indus-

try reports. Where our response times are in line with Miller’s 1968 work on “Threshold

Levels of Human Interaction and Attention with Computers” [30] . Furthermore, we

have found that user tolerating times are different for each application, e.g., the events

application has exclusive content that cannot be purchased in online competitors, mak-

ing it more inflexible to performance degradation than other applications i.e., flights,

that has multiple competitors.

Having different conversion rates and thresholds per application poses new challenges

for dynamic, per-application QoS management during the day. The process to obtain

response time thresholds for each application enables online retailers set QoS below the

point where sales start to be affected by the application’s response time. Where re-

sulting values can be applied on autonomic resource managers to optimize the number

of servers and reduce infrastructure costs in cloud computing environments. Most im-

portantly, optimizations should not be made to accommodate all load, but to provide

the best QoS when conversion rates are higher, generally at peak loads. Considering

the current trend in Web ecosystem to observe lower conversion rates, online retailers

will progressively support more traffic for less direct revenue by visit, increasing the

importance of optimizing the number of servers without sacrificing sales.

The work performed in this area has resulted in the publications listed below.
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• Nicolas Poggi, David Carrera, Ricard Gavaldà, Jordi Torres, and Eduard Ayguadé.

Characterization of Workload and Resource Consumption for an Online

Travel and Booking Site. IISWC - 2010 IEEE International Symposium on

Workload Characterization, December 2 -4, 2010

• Nicolas Poggi, David Carrera, Ricard Gavaldà, and Eduard Ayguadé. Non-

intrusive Estimation of QoS Degradation Impact on E-Commerce User

Satisfaction. In Network Computing and Applications (NCA), 2011 10th IEEE

International Symposium on, pages 179–186, 2011. doi: 10.1109/NCA.2011.31

• Nicolas Poggi, David Carrera, Ricard Gavaldà, Eduard Ayguadé, and Jordi Torres.

A methodology for the evaluation of high response time on E-commerce

users and sales. Information Systems Frontiers, pages 1–19, 2012. ISSN 1387-

3326

1.3.3 Policies for Profit-Aware resource management

A problem that arises with dynamic server provisioning or elastic scaling as it is referred

by Amazon Web Services (AWS) [32], is deciding when to scale in number of servers

and to what number. Web applications can be served at different response times de-

pending on the number of concurrent users by Web server. One of the main obstacles

to automate dynamic scaling is selecting the appropriate metrics for scaling. In AWS

this is especially a problem, as the only usable metric by default is CPU utilization [33],

which for Web applications is not a good indicator of QoS or server load as the CPU

is rarely a bottleneck [10]. Furthermore, not understanding how an application behaves

under load, or what the true limiting factors of the application are, may result in an

ineffective or even destructive auto scaling configuration [33] e.g., when malicious or

spurious bot traffic creates the load. Under this situation, system administrators still

need to make manual decisions about the parameters that affect the business results

of their applications such as: what is the best performance goal in response time for

each application? What metrics for dynamic scaling will warranty user satisfaction and

high sales? What is the maximum number of servers that the company may afford on

peak hours or surges, and for how long? What would be the effect, in business terms,

of limiting the resources and degrading its performance slightly to reduce the bill of the

hosting?
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As third and final contribution, to answer the questions of dynamic scaling, we pro-

pose a profit-driven policy to automatically find the best performance targets and server

configuration that will maximize profits. The approach is based on custom economical

metrics from user behavior and server performance models, by extending the results of

the previous contributions. We apply the technique into an autonomic resource provi-

sioner prototype, AUGURES, to maximize profits for the incoming Web workload in our

production datasets under a varying of conditions i.e., server costs, performance targets,

available capacity, and high-level policies.

The prototype uses as inputs a server capacity model to determine the maximum con-

current sessions per server to offer a specific response time, and also the current Cloud

costs. From the online classification of sessions and by predicting the impact of each

possible response time target for a workload, we are able to produce revenue and costs

metrics. We then apply these metrics in the prototype by re-running the workload of

the available datasets. In addition, Web sessions are also classified by predicting their

revenue potential for the site from previously learnt navigational models in order to

provide a finer-grain of optimization. We then compare the profits to be obtained un-

der different response time thresholds referenced by the literature, and present our own

strategy to vary the thresholds along the day.

On the one hand, AUGURES outperforms the baseline policy of maintaining two-second

response time as performance target in profits. On the other hand, we also show that

if the company had a policy of keeping the lowest possible response time for users, this

policy would reduce profits as it will require 40% more servers without producing signif-

icantly more sales. Our profit-aware policy changes the target response times along the

day according to the expected conversion rates. The effect of session admission control

was also studied, and applied to the classification of unwanted scraper bot traffic, which

in the case of the presented dataset and prediction technique prevented a significant

portion of total requests. Session admission control can improve profits, as it saves the

costs of extra servers in our experiments.

Results from our prototype implementation enables profit-aware resource management

allowing the self-configuration of IaaS to an optimal number of servers. In this way,

potentially reducing hosting costs for an incoming workload following high-level policies

of business expectations.
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The work performed in this area has resulted in the following publications:

• Nicolas Poggi, David Carrera, Eduard Ayguadé, and Jordi Torres. Profit Ori-

ented Fine-Grain Web Server Management. Technical Report: UPC-DAC-

RR-2013-60, November, 2013

• Nicolas Poggi, David Carrera, Eduard Ayguadé, and Jordi Torres. Profit-Aware

Cloud Resource Provisioner for Ecommerce. Sent for consideration, 2013

1.4 Collaboration and datasets

The presented work derives from a technology-transfer collaboration with a popular

Online Travel Agency (OTA), Atrapalo.com. We have introduced a custom module in

their production systems to generate detailed application performance datasets. The

datasets are used both in the experiments of this thesis and in Atrapalo.com production

systems to monitor and improve the performance of their application. The Ecommerce

scenario of Atrapalo.com is presented along Chapter 3 and the datasets in Section 3.2.

As an additional contribution, results from this thesis had led Atrapalo.com to make

important changes in their infrastructure to avoid high response times, especially at

peak times, producing positive results. Also, to reduce unwanted bot traffic, saving in

server resources and extra Web Services costs.

1.5 Thesis structure

The rest of this thesis is organized as follows:

• Chapter 2 presents review of the current state-of-art and related work.

• Chapter 3 presents the Ecommerce scenario and execution environment of the mod-

eled application, the provided datasets, preliminary work to process the datasets,

and a characterization of the workload.

• Chapter 4 the first contribution: Predicting Web session revenue

• Chapter 5 the second contribution: Response time effect on sales
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• Chapter 6 the third contribution: Policies for Profit-Aware resource management

• and finally, Chapter 7 the conclusions and future work



Chapter 2

State-of-Art

The following chapter presents the current state-of-art as well, the relevant related work

of the thesis.

2.1 Autonomic Computing

Due to the rising complexity of these systems, an attractive solution is to try to make

the system components able to manage themselves. This can be solved using proposals

from the Autonomic Computing research area [36], that draw in an enormous diversity of

fields within and beyond the boundaries of traditional research in computer science. The

essence of Autonomic Computing is self management, and to free system administrators

from operation details while the service runs at top performance. Figure 2.1 summarizes

the framework and approach of Autonomic Computing.

This thesis is within the framework of Autonomic Computing. The objective is to

provide metrics that relates server capacity to QoS and sales, to be used as a foundation

layer of adaptive self-configuration according to the workload, available resources, costs,

and business objectives. This trend towards more autonomic Web applications has

two major implications on workload characterization. On the one hand, user modeling

techniques must be enriched and adapted to use the data generated and logged by

dynamic websites, and to capture relevant features in order to properly account for

the actual behavior or the user in the site. On the other hand, the increased demand

for CPU processing and other resources in this type of applications presents a scenario
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Figure 2.1: Autonomic Computing summary

where workload characterization can be applied in order to make a more efficient use of

the available resources.

2.2 Session-based Admission Control

Scaling the infrastructure of a website might not be simple; for cost reasons, scalability

problems, or because some peaks are infrequent, websites may not be able to adapt

rapidly in hardware to user fluctuations. When a server is overloaded, it will typically not

serve any of the connections, as resources get locked and a race condition occurs. System

administrators might get warnings from resource-monitoring services, but in general they

get to the problem when the situation has already occurred, where controlling the rate

of users that try to access the site is out of their reach.

Server overload has another undesirable effect, especially in Ecommerce environments

where session completion is a key factor. As shown in Figure 2.2, which shows the number

of sessions completed successfully when running with different numbers of processors,

when the server is overloaded only a few sessions can finalize completely. Consider the

great revenue loss that this fact can provoke for example in an online store, where only

a few clients can finalize the acquisition of a product [22].

To prevent loss in sales due to overloads several techniques have been presented such as

Session-Based Admission Control (SBAC) systems [22, 23, 37–39] used to keep a high

throughput in terms of properly finished sessions and QoS for limited number of sessions.



State-of-Art 15

Figure 2.2: Completed sessions as new clients arrive to the system for different num-
bers of processors

Guitart et al. in [22], presents a session based adaptive mechanism for SSL as negotiating

a new SSL connection involves generating a set of asymmetric keys for the new session;

while resuming one is basically authenticating the user, which is less resource intensive.

In case of an overload, Guitart et al. propose to prefer resumed connections over new ones

as: it is less resource intensive and resumed sessions have been for longer on the site, thus

closer to an eventual purchase. Figure 2.3 show the sustained throughput delivered by

the server under unmodified workload conditions in replies per second, and user session

completions respectively. While Abdelzaher et al. [39] describe performance control of

a Web server using feedback control theory to achieve overload protection, performance

guarantees, and service differentiation in the presence of load unpredictability.

The reviewed approaches present mechanisms to prevent session throughput degrada-

tion, allowing servers to work at top performance even when there are more users than

resources. However, by denying access to excess users, the Web site still loses potential

revenue from customers. In Chapter 4, the first contribution, we are proposing to go

a level further, automating session prioritization, to pick most profitable sessions on

overloads, using a prediction process based on Web mining.
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Figure 2.3: Throughput with overload control with different numbers of processors

2.3 Web Mining

Most online businesses rely on free Web analytic tools to inform their Web market-

ing campaigns and strategic business decisions. However, these tools currently do not

provide the necessary abstracted view of the customer’s actual behavior on the site.

Without the proper tools and abstractions, site owners have a simplified and incorrect

understanding of their users’ real interaction patterns on the site, and how they evolve.

In the context of Web mining, there are few published studies based on real Ecommerce

data, as the datasets presented in this thesis, mainly because companies consider Web

logs as sensitive data and for privacy and competitive concerns. Web mining is the

technique to extract information primarily from Web server log files. The main purpose

of structure mining is to extract previously unknown relationships between Web pages.

Sharma et al. [40] classifies Web mining into usage, content, and structure Web mining.

While this thesis falls within the scope of structure Web mining, most of the literature

in this topic focus on recommendation systems and Web personalization [41, 42].
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Figure 2.4: Methodology to obtain a CBMG

2.3.1 User Modeling

Works on Web user behavior prediction and profiling [43–46] have focused on Web

caching or prefetching of Web documents, to reduce latency of served pages and im-

prove the cache hit rate. Another studied approach is to model users for link prediction

generating navigational tours and next-link suggestions to users as well as path analy-

sis [47, 48]. The mentioned approaches are best suited for large and mostly static Web

pages, where users navigate vast information such as an encyclopedia. Prefetching a

dynamic page that includes database or external transactions might be too costly in the

case of a miss or user exit.

Other authors [43, 49] focus on dynamic content adaptation, where the page adapts

to the type of user; it could include images, colors an even products or links. The

user prediction approach presented in Chapter 4, to predict user intentions could be

applicable for dynamic content adaptation too, as we would be characterizing users;

although this thesis focuses on resource management and QoS.

2.3.2 Customer Behavior Model Graphs

Customer Behavior Model Graphs (CBMG) can be used to provide an abstracted view

on Web navigation. Menascé et al. [50] propose to build the CBMG using k-means

clustering algorithm, creating a probability matrix for the possible path transitions from

a state. Figure 2.4 presents the methodology to produce a CBMG.

CBMG represents an improvement over Session Based Admission Control (SBAC), fre-

quent buyers are expected to have a higher combined probability of quickly transitioning
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Figure 2.5: CBMG for our datasets

into the final stages of the session and the unconvinced users may leave the site from

any state. In terms of session valuation, CBMGS allows user classification i.e., frequent

buyer, regular visitor, and information seeker, and provides a framework for predicting

the value of a particular session [15]. While Totok et al. [51] presents a similar and later

approach to Menascé’s, performing predictions from CBMGs. CBMGs i.e., [50] are sim-

ilar to the dynamic part of the approach of the first contribution of this thesis, presented

in Section 4.3.2 — we use the closely related Markov chain model (See Section 2.4.2).

Figure 2.5 shows a CBMG basing on Menascé’s technique presented from our datasets.

In contrast to works on CBMGs, in this thesis, we do not focus on predicting the user’s

next click, but seek to extract the most relevant critical paths occurring in the site and

build the process model of customers. In particular, we are interested in the important

events and workflows that lead to a user buying a product, presented briefly in the next

subsection.



State-of-Art 19

Figure 2.6: Abstracted process model of Web navigation including customer interac-
tions

2.3.3 Process analytics

Unlike Web analytics [52], process analytics is concerned with correlating events [53],

mining for process models [54–56], and predicting behavior [57]. Process mining algo-

rithms are designed to extract the dominant behavior observed and filter out noise to

keep the resulting mined process manageable.

In our preliminary work [26], we proposed treating a user’s Web clicks as an unstructured

process, and use process mining algorithms to discover user behavior as an improvement

to CBMGs. The mined process model captures the causality and paths of user interac-

tions that lead to certain outcomes of interest, such as buying a product. Such insights

can be difficult to extract from traditional Web analytic tools. Figure 2.6 presents a

sample process model from the Atrapalo dataset. More details in Section 3.3.

2.4 Machine Learning

Machine learning [58] is a broad subfield of artificial intelligence concerned with the

design and development of algorithms to allow computers “learn”. The McGraw Hill

technological dictionary defines Machine Learning as:

“The process or technique by which a device modifies its own behavior as

the result of its past experience and performance”.

Machine Learning is a well-established and studied science, in this project we are not

proposing new algorithms, but to implement them for the applicability of resource man-

agement.
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On the topic of cost based resource management, one approach by Littman et al. [59]

uses Näıve-Bayes for cost classification and a Markov chain feedback approach for failure

remediation. Other works such as [60] also take into account costs and resource alloca-

tion; in contrast with previous approaches, in this thesis we are focusing on the actual

revenue that is lost by denying access to purchasing users, and not resource allocation

costs as the mentioned works.

2.4.1 WEKA

WEKA [61] (Waikato Environment for Knowledge Analysis) is an open source project

written in Java at the University of Waikato, which implements numerous machine

learning algorithms. WEKA is currently the defacto application for Machine Learning

in academic and even some commercial projects (under a commercial licence). For our

experimentation, we have used WEKA to compare the performance of the different

algorithms adapted to our data.

In WEKA, a predictor model is trained using a specially formatted training dataset

that should contain the most relevant available variables to predict sales. After training

the predictor with the training dataset, a test dataset with the same format is used

to perform predictions. The predictor reads the test dataset, ignoring the class —the

unknown variable, in our case the number of sales— if present, and according to the

training and the algorithm used, outputs a prediction of the class.

Other tested algorithms for the data include:

• Nı̈ve-Bayes, a simple classifier based on Bayes’ rules

• BayesNet, a more sophisticated Bayesian classifier

• LogisticRegression, using linear functions for classification

• C4.5 (WEKA’s J48), a decision-tree based classifier

• RandomForest, a classifier of several decision-trees simultaneously

• NearestNeighbors, a lazy similarity-based technique

• M5P, numerical, M5 Model trees and rules

• RepTree, numerical, fast decision tree learner.
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2.4.2 Markov-chains

Since most machine learning algorithms are not well adapted to dealing with variables

that are themselves sequences, and the path followed by a user in a session being a

sequence, we have explored the performance of using Markov-chains. A Markov-chain

is a series of states where each future state is conditionally independent of every prior

state, given the current state. Markov-chains have been previously used for Web Mining,

Sarukkai [47] used an implementation for Markov-chains to dynamically model URL

access patterns for link prediction and obtaining navigational tours. More details on

how we use Markov-chains in Section 4.3.2.

2.5 Workload and resource characterization

Evaluation of Web application resource consumption requires realistic workload sim-

ulations to obtain accurate results and conclusions. In the context of Web workload

analysis, there are few published studies based on real Ecommerce data, mainly because

companies consider Web logs as sensitive data. Moreover, most works are based on static

content sites, where the studied factors were mainly: file size distributions, which tend

to follow a Pareto distribution [62]; and file popularity following Zipf’s Law [63][62].

Some works such as [64] have studied logs from real and simulated auction sites and

bookstores; there are no studies that we know about intermediary sites, like the one

we obtained, where most of the information comes from B2B providers which have a

different behavior as shown in Section 3.4.

Recent studies have performed similar workload characterizations as the one presented

in Section 3.4. In [65] Benevenuto et al. characterize user behavior in Online Social

Networks and Duarte et al. in [66] characterize traffic in Web blogs. Previous work on

the characterization of collaborative Web applications was conducted in [67]. Although

both the blogosphere and the OTA application used in our work are similar in the sense

that they are user-oriented, user behavior is different in these scenarios. Moreover a

more detailed analysis is presented in this thesis, as the site is multi-application, and

applications are further subdivided to perform a separate analysis by day, type of request,

applications, as well as the resource consumption by each.
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Other works come to the same conclusions as presented in Section 3.4, but from the

point of view of generating representative workload generators, such as [68] for static

workloads and [69, 70] for dynamic applications. None of these studies looked in detail

at a complex multi-product Web 2.0 application in production of the scale of what is

studied in this thesis, with over 2 billion requests for 2 year of datasets. Similar work was

conducted in [71] but following a black box approach for the enterprise applications, not

exclusively Web workloads, meaning that they show no information about the nature and

composition of the studied applications. Their work was data-center provider oriented,

while our work is application-centric.

While [72–75] discuss about the need of stationarity of arrival processes to study and

characterize workload burstiness, in [76] the authors work on non-stationary properties

of the workloads to improve performance prediction. In Section 3.4.2, we have leveraged

the techniques presented in some of these studies to characterize workload burstiness in

stationary periods, but have not extended this work.

Few studies present both a characterization of workload and resource consumption. In

[77] Patwardhan et al. perform a CPU usage breakdown of popular Web benchmarks

with emphasis on networking overhead, identifying that network overhead for dynamic

applications is negligible, while not for static content. In [78] Ye and Cheng present a

similar characterization of resource utilization as the one presented here, but for Online

Multiplayer Games. In this thesis we also cover how response time affects user behavior

in session length and number of clicks, validating results from previous studies [79, 80].

2.5.1 Response times

Response time effect on user behavior has been studied as long as 1968, where Miller [30]

describes the “Threshold Levels of Human Interaction and Attention with Computers”.

In 1989, Nielsen [81] re-validated Miller’s guidelines and stated that the thresholds are

not likely to change with future technology. These thresholds being: 0.1 to 0.2 seconds,

instantaneous; 1-5 seconds the user notices the delay but system is working; and 10

seconds as the threshold for user attention. Other authors [79, 80] adhere to what they

call the 8 seconds rule, where no page should take longer than 8 seconds to reply. While

the APDEX standard [82] sets the threshold for frustrated users at 4 seconds.
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Menasce et al. [11], perform an assessment on how QoS of Ecommerce sites plays a crucial

role in attracting and retaining customers, where they propose a workload manager

using predictive queuing models of computer systems based on a hill-climbing method.

Authors perform admission control based on the response time of the system. However,

their work is based on a popular but synthetic workload, the TPC-W, and does not have

sales into account in contrast to this thesis.

2.5.2 Workload prediction

The topic of workload prediction has been extensively studied, including works such as

[83–85]. In [83] Zhang et al. make the use of statistical analysis and queuing theory

to propose a framework for traffic prediction and monitoring, COMPASS. Andreolini

et al. in [84] show that in the context of Web based systems it is inappropriate to

predict workload solely on load resource monitors. For this reason, they propose a two-

phase strategy that first tries to obtain a representative view of the load trend; then

applies load change and load prediction to the trend representation to support online

decision systems. In [85], authors propose to use time series analysis as it offers a broad

spectrum of methods to calculate workload forecasts based on history monitoring data.

In a previous work [86], we have used the CUSUM (cumulative sum) algorithm as well

as Machine Learning to perform workload prediction. In this thesis we do not aim to

provide a new method for prediction, but rather focus on Cloud resource management.

2.6 Cloud Computing

Cloud computing is primarily driven by economics [19, 20] and it has been rapidly

adopted due to its inherent cost effectiveness. For this reason, there are a number of

studies on the topic of market-based resource allocation for Grid and Cloud computing.

Most noticeable on scheduling mechanisms including: FirstPrice [87], FirstProfit [88],

and proportional-share [89]. However, as Cloud computing has first evolved out of Grid

computing, where jobs to be executed where mostly batch, rather than having real-

time requirement. Therefore, most of these works therefore targeted supercomputing

workloads with a fixed number of resources and Service Level Agreements (SLA).
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Currently cloud platforms are used to host almost any type of application, and in par-

ticular it has become the most popular platform for new Web applications presenting a

very different, transactional based, workloads.

Frequently scalability terms used to define cloud activities include: scale out, scale-down,

and scale-up. Scale-out refers to the ability to scale horizontally by adding more nodes

to the system. Scale-down, the opposite, to reduce the number of servers in a cloud

defined cluster. While scale-up refers to the vertical scalability, adding more resources

to a system such as memory or CPUs and can include replacing instances to a different

one with better resources. As with any architecture, scaling-up has limits depending on

available resources, while scaling-out is not usually a limit on large cloud deployments.

However there can still be some limitations on application scalability, cloud resources

offering, and budget constraints.

Since applications cannot scale indefinitely, Majakorpi [21] presents a new metric to

measure the quality of elasticity of applications to horizontal (scale-out) vertical scal-

ability (scale-up). For this work we are considering perfect scalability, however the

user prediction techniques can be used to compensate to resource limitations while still

keeping a high profit as presented in our previous works [28, 29].

2.7 Utility-functions

Utility functions are well known as a form of preference specification [12]. Therefore,

utility functions have been applied on the topic of profits and customer satisfaction.

Chen et al. [90] argues that existing SLA based approaches are not sufficient to address

performance variation and customer satisfaction. They present a model of customer

satisfaction, leveraged by a utility-based SLA to balance performance and the cost of

running services and two scheduling to make trade-offs between profit and customer

satisfaction. In [7], Mazzucco proposes the use of utility functions to optimize auto-

provisioning of Web servers.

In previous works [29, 91], we have also evaluated the use of utility functions to set SLA

targets, however this work differentiates in two ways: first, we base our approach on

real user satisfaction, while [90] based their approach on an synthetic satisfaction metric
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based in utility; second, our experimentation is done to a production Web Ecommerce

workload, while [90] is on video encoding workloads.

2.8 Profit-aware provisioning

Work related to improving the performance of Ecommerce servers has largely focused

on providing better response times and higher throughput [22]. However, the most

important performance metric from a business perspective is profitability [15, 28, 51].

Profitability of clouds has recently got attention; Liu et al. [92] propose a cost-aware

approach to maximize the net profits that service providers may achieve when operating

distributed cloud data centers in multi-electricity market environments. By capturing

the relationship between SLA, cost on energy consumption, service request dispatching

and resource allocation. Choon Lee et al. [19] introduces a pricing model to Cloud

scheduling algorithms where profits are bound to a customer SLA specification. While

most works [11, 19, 87, 92, 93] have focused on SLAs as a measure of optimization, in

practice, from the IaaS consumer and business perspective, it is the final user satisfaction

what finally leads to profits in Online businesses as we show along this thesis.

Xi Chen et al. [93] propose a profit-driven provisioning technique to maximize profits in

the Cloud, by using auto-regressive performance model to predict the expected demand

curve and determine when and how much resource to allocate and to maximize profits

based on SLA specifications and costs generated by leased resources. While similar

to our approach, there are also main differences: first, the workload employed for the

study is the popular FIFA ’98 dataset; composed of static requests, without customers

in the workload; and second, it also uses static SLAs to calculate profits, while have

demonstrated that the QoS that Web users expect varies during the day and is different

by application, being one of the primary benefits of our approach.

Hong et al. [94] explores two different techniques to reduce further the cost of IasS

consumers. They propose to scale vertically down servers according to the load to pay

for cheaper servers when it is not needed (ShrinkWrap) and a combination of reserved

vs. on-demand servers to benefit from lower costs of reserved instances. In our work we

consider same-size instances, the approach provided by the authors is complementary to

our technique, and can potentially drive costs further down. However, from the traces
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Figure 2.7: Costing Continuum

we have, night traffic is very low compared to day traffic, so having all-day reserved

instances and hinders profitability in our scenario presented in the next chapter.

2.8.1 Costing Continuum

From a business accounting perspective, Cokins et al. [18] define 12 levels of cost ma-

turity ; the general overview is presented in Figure 2.7. Each costing technique level is

distinguished by how more effectively an organization incorporates both demand with

supply and the nature of cost as resources are consumed. In which the last 5 levels

of cost maturity are defined as demand driven planning with capacity ; while Level 11

representing resource consumption accounting and Level 12 simulation. Cokins et al.

argues that organizations that plan at Level 12 have arguably attained the highest level

of cost planning, as simulation can lead to optimization. This thesis deals first, with

the accounting of consumed resources by Web visitors, while we use this information to



State-of-Art 27

later perform simulations based on a real-life workload. The aim of this thesis is to au-

tomate demand driven planning with capacity for online businesses, this way obtaining

the maximum level of cost planning, optimizing resources according to profits.



Chapter 3

Preliminary study of the scenario

and datasets

Evaluation of Web application resource consumption requires realistic workload simu-

lations to obtain accurate results and conclusions. The presented work derives from a

technology-transfer collaboration, where we take the case of Atrapalo.com, a top na-

tional Online Travel Agency (OTA) and Booking Site. Atrapalo.com features popular

Ecommerce applications found in the Web and its representative of the OTA industry.

We have introduced a custom module in their production systems to generate detailed

application access and performance datasets captured over a period of more than 2 years.

Each dataset, featuring several million HTTP requests, from 2011 to 2013. The datasets

are used both in the experiments of this thesis, as well for the company’s production

systems to monitor and improve the performance of their application. We have also

been given access to a 7-year sales dataset of the OTA, including time and volume of

each operation.

Section 3.1 describes the preliminary study of the Ecommerce scenario of Atrapalo.com

and of Online Travel Agencies (OTA) in general. An in-depth analysis is necessary as

there are not previous literature on intermediary Web sites such as the one presented

in this thesis. As well as to understand the driving factors and particularities of the

industry in order to assess its current problematic, and to obtain suitable and more

applicable results. It also presents some domain knowledge how the inventories of the
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different products work, the reasons for the variability of the traffic, as well as presenting

computing infrastructure and the general concepts of the trade e.g., Conversion Rates.

Section 3.2 presents the different datasets used throughout the thesis, and how to classify

the large number of URLs to make them usable for analysis and prediction.

Section 3.3 presents some general techniques to be able to tell apart customer sessions

from regular visits. Three different techniques are presented as preliminary work to the

fist contribution in Chapter 4.

And Section 3.4 presents a characterization of the workload. The analysis is necessary

to understand how the workload is composed and to extract the main characteristics

and insights, that motivated the second contribution detailed in Chapter 5.

3.1 Ecommerce Scenario

3.1.1 Online Travel and Booking in figures

Online Travel Agencies (OTA) are a prominent sector in the online services market:

according to the 2008 Nielsen report on Global Online Shopping [95], Airline ticket

reservation represented 24% of last 3 month online shopping purchases, Hotel reservation

16%, and Event tickets 15%; combined representing 55% percent of global online sales

in number of sales.

3.1.2 Products

Online Travel Agencies such as Atrapalo.com, present a wide range of products i.e.,

flights, hotels, cars, restaurants, activities, vacation packages (or ’trips’), and event

booking. For this purpose they rely on a wide range of technologies to support them:

dynamic scripting, Javascript, AJAX, XML, SSL, B2B Web services, high-definition

multimedia, Caching, Search Algorithms and Affiliation; resulting in a very rich and

heterogeneous workload. While these technologies enhance users’ experience and privacy,

they also increase the demand for CPU, databases, and other resources on the server

side. Furthermore, as Web applications become more resource-intensive and the large

number of potential visitors on the Web, system overload incidence is growing along [13].
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The workload of OTAs is not only dependent on their own user base and promotions,

but to promotions of the products through the wholesalers. For example, when an

airline company lowers their ticket prices, they generally mass announce their offers,

without much notice probably for competition reasons. Another common situation is

when a certain event opens their ticket sales such as a concert or football match, and

users flock to the offering sites; this case is analogous to long queues on opening days

for tickets. Visits to travel sites might not depend only on their popularity but to

current year season, holidays, search engine ranking (SEO), linking and the proximity

of an event, such as a concert (see Section 5.6.1). The variability of the traffic creates

a bursty workload, making workload characterization and modeling crucial for devising

cost effective infrastructures, preventing denial of service, and improving users Quality

of Service (QoS) across the application.

These events make capacity planning and resource management a complex task: it is

difficult to predict when these user peaks are going to occur before they start happening.

For an OTA, these situations of large traffic fluctuations are frequent and not serving

users is a loss in revenue.

For Atrapalo.com, some of the above mentioned products inventories are maintained

internally e.g., restaurant booking, some are completely external e.g., flights, and some

other products e.g., hotels are mix of internal and external providers. Access to the

external providers is performed via B2B Web services, which causes QoS to be dependent

on external sites for some operations. The company itself is also a B2B provider for some

customers and meta-crawlers, acting as their provider via a Web Service API.

As an example of external B2B requests, to offer search results, e.g., flight availability,

several providers are queried and results are offered according to different algorithms of

product placement in a resource intensive operation. As some of this searches are costly

—not only in terms of resources— but by contract of the Global Distribution Systems

(GDS) services.

The application relies on state-of-art caching rules, to reduce request times and load

generated by the external transactions. Although the company’s main presence and

clientele is in Europe, about 20% percent of the visits are from South America where

it has offices, and few more visits from the rest of the world. Mobile traffic is growing
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rapidly, representing about 10% of the total user traffic at time of writing. It is im-

portant to remark that the site is a multi-application Web site. Each product has its

own independent application code base and differentiated resource requirements, while

sharing a common programming framework.

3.1.3 Conversion Rates

In Internet marketing, the conversion rate (CR) can be generally defined as the ratio

between the number of ’business goal’ achievements and the number of visits to a site.

In the scope of this thesis, a goal is achieved when a customer purchases a product

offered by the OTA during a browsing session. The CR is one of the most widely used

indicators of business efficiency on the Web. A high CR indicates that a high number of

visitors purchase on the site on each visit, while a low CR indicates that most visits use

server resources without returning value in terms of direct revenue. Many factors can

affect the conversion rate, e.g., type of product, content, brand, SEO ranking, affiliation,

availability, and QoS measured in response time. Values for CRs are different for each

Web site, and are part of their marketing strategy and business nature; however values

should remain within the same range over time for similar products on different sites.

A low CR is influenced by factors including affiliation programs, changes in user habits

such as comparing different sites at the same time [10], and meta-crawling. For example,

Kayak.com and similar meta-crawlers present the user the best results gathered from

several sites, thereby lowering the visits to each site and the CR at least in 10 times.

The next subsection presents content-stealing bots, another reason of lowering CRs.

3.1.4 Content Stealing Bots

Content stealing in the Web is becoming a serious concern for information and Ecom-

merce websites. In the practices known as Web fetching or Web scraping [96], a stealer

bot simulates a human Web user to extract desired content off the victim’s website.

Stolen content is then normally stripped of copyright or authorship information and

rendered as belonging to the stealer, on a different site. The incidence of Web scraping
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is increasing for several reasons: the simplicity to simulate human navigation, the diffi-

culty to tell bots apart, the grey area on its legal status [96] and, most importantly, the

profitability of the business.

As in the case of spam and domain redirection, Web scraping is part of the breed of

most common Internet abuses. During the years, Web scraping has shifted from simple

plagiarism to profit-making using Web advertising techniques. Non-profit sites such as

the Wikipedia have been particularly prone to scrapping for plagiarism [97], moreover,

Ecommerce sites are increasingly being affected directly by their actions.

Meta-crawling sites such as Kayak and Travel Fusion, scrap travel websites simulating

real user navigation in order to compare results from different sites. This situation

creates the necessity to automatically identify and sometimes ban such crawlers [28], as

the conversion rates for this requests are more than 10 times lower than direct visits.

3.1.5 Caching

One commonly used strategy across the industry is to heavily rely on caching to prevent

excessive searches from meta-crawlers and speedup results for users. However, caching

can result in changed availability, referred as bookability or even in increased prices,

where the user finds about these changes in the moment of booking, sometimes after

completing forms, compromising user satisfaction. So caching has to be used effectively

to lower response times while providing accurate results.

Looking at the interaction between the OTA and external information providers from

the datasets, it has been observed that the probability of accessing an external provider

follows a Binomial distribution with parameters n = 1, 125, 969; p = 0.1306 for the

flights product. For those requests that did involve access to an external site, Figure 3.1

shows the CDF of the time spent waiting and processing the information provided by

the external source. As it can be derived from this information, caching techniques are

effectively used for this application, avoiding in many cases (more than 75%) the cost

of gathering information from external providers. For the cases in which accessing an

external provider is required, the process is usually completed in less than 20s. Further

discussion on CDFs in Section 3.4.
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Figure 3.1: CDF of external providers time

We have identified that for every requested dynamic page, about 13 static resources

are accessed in average. There are several caching mechanisms in place, for Web con-

tent: there is a reverse-proxy running Squid caching static content generated by the

dynamic application ; there is a per-server caching Web template caching; distributed

memory key-value storage (Redis), database query cache and scheduled static HTML

page generators.

3.1.6 Computing Infrastructure

At the time of writing, Atrapalo.com infrastructure is composed of about 40 physical

servers running Debian GNU/Linux, connected via Gigabit switches, including: a set of

redundant firewall and load-balancer servers acting as entry points and SSL decoders;

about 15 dynamic Web servers; 5 static content servers; 2 redundant file servers, 8 high-

end database servers including masters and replicas running MySQL; plus auxiliary

servers for specific functions such as monitoring and administrative purposes.

Web servers characterized in this study are equipped with 2x dual core Xeon processors,

16G RAM and SATA hard disks. The Web application runs on the latest version of PHP

on Apache Web servers; load is distributed using a weighted round-robin strategy by

the firewalls according to each server capacity. Database servers are equipped with 2x

dual core Xeon processors, 32G RAM and SCSI hard disks with RAID 10 configuration.

Access to databases is balanced by using DNS round-robin rules for replica slave servers,



Preliminary study of the scenario and datasets 34

most of the READ/WRITE strategy and data consistency is performed in the appli-

cation itself, which also caches some queries in memory and local disc. Static content

such as images and CSS is mainly served by Content Distribution Networks (CDNs), to

reduce response time on the client end; the rest of the static content is served by servers

running ngineX ; notice that static content is not part of this study.

There are several caching mechanisms in place, for Web content: there is a reverse-

proxy caching static content generated by the dynamic application running Squid ; there

is a per-server caching Web template caching; distributed memory key-value storage,

database query cache and scheduled HTML page generators. The dataset file use in this

study is produced by the PHP dynamic application.

3.2 Datasets

Evaluation of Web application resource consumption requires realistic workload simu-

lations to obtain accurate results and conclusions. This section presents the different

datasets provided by Atrapalo.com from their production environment to characterize

their most relevant features on Web user sessions and their resource usage. We categorize

datasets in: Sales datasets, which present sales over the last 7 years; and Performance

datasets, custom generated performance logs of 2 years of detailed per request perfor-

mance measurements.

3.2.1 Performance datasets

Performance datasets are used for evaluation of high response time effects both in user

behaviour and sales; they were produced through existing probes in the PHP dynamic

application and provided by Atrapalo.com. The datasets used for experimentation con-

sists of two years of requests to Atrapalo site, from February 2011 to February 2013. The

data is composed of over 2.1 billion requests, representing around 480 million sessions.

Where the average server response time from all of the dynamic requests is 1.36 seconds,

the average database service time is 0.13 seconds, and for requests that involved external

Web services the average is 0.64 seconds per request.
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These performance datasets are generated by the PHP dynamic application; at the

end of each executing script code was added to record regular HTTP data: access time,

URL, referring URL, client IP address, HTTP status code, user-agent (type of browser),

replying server. Data from the application itself: total processing time, exact user

session id, real page processed by the server (some URLs might be ambiguous or perform

different actions), accessed product(s), type of request (regular, AJAX, Administrative,

API, batch, etc), CPU percentage, memory percentage and peak memory, CPU time

both in system and user mode, total database time, total external request time. As well

as current server load (load average) and number of opened Apache processes.

3.2.2 Sales datasets

For the purpose of this study, we were given access to sale history datasets for the

OTA’s different products. For each product we have the exact date and time for each

purchase that was made. However, we did not have given access to sales amounts or

margins, just the moment of a user sale. Sales datasets range from 01/01/2007 to

31/01/2013, comprising a period of close to 7 years. There is a great variation of sales

between products and times of the year due to seasonality effects (see Section 5.6.1).

Vacation products suffer from great variation of sales and visits according to high and

low seasons, day of the week, or the proximity of a holiday; while ticket sales varies

according to the availability of the event on competing sites and the limited availability,

sometimes causing rush periods.

Sales datasets are used studying conversion rate variation, as well as our sales predictor

in Chapter 5. Sale volumes for these datasets are not reported due to confidentiality

limitations.

3.2.3 Other Datasets

We also had access to the Apache logs and monitoring system access for the days covered

in the performance dataset and other random weeks of 2009, 2010 and 2011 used in

previous works. These auxiliary logs have been used to validate and explain obtained

results from the workload. Notice that the studied datasets do not include pages that

were cached by the reverse proxy or by the user’s browser.
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3.2.4 URL classification

The first challenge when analyzing Web logs is to classify the URLs of the site. Website

URLs used to indicate the location of the file on the server directory system. The server

path gave an indication of the classification, and the page name and type of content for

that page. With time, static pages were replaced by dynamic pages produced by Web

applications and several URL rewriting techniques were implemented for security, search

engine optimization, and localization. With dynamic page generation, it became more

convenient for security and organizational reasons to point all requests to a single page

with internal rewrite rules and redirects, and the concept of the front-controller was

developed. The front-controller presents a single point of entry to the Web application,

and with it, URLs left being directly related to files on the server. At first, most

front controller implementations relied on query string parameters (variables after the

question mark in a URL) to indicate the action that the page would perform and its

corresponding output. However, mainly for Web search engine positioning, URLs were

changed to be descriptive. Most Web application frameworks implement URL rewriting

engines to generate “friendly URLs”, and delegate control to the application of what

content is served by each URL. With Search Engine Optimization (SEO) friendly URLs,

URLs started to be more descriptive to aid search engine positioning, making URLs more

unique in the process. Furthermore, current frameworks support localization of pages, so

not only are URLs more descriptive, but URLs are also translated to different languages,

even if the same piece of code will produce the content. Some sites even implement a mix

of static page URLs, query string base for non-indexable pages, and rewrite engines, or

even a combination. To exemplify this situation, Atrapalo website implements a variety

of strategies including legacy application code and code written by different teams. For

the dataset used in the experimentation, there are 949 532 unique URLs. If we take the

query string out of the URL, the number of distinct pages reduces to 375 245. Atrapalo

URLs are also localized, and there are a few examples of static HTML pages that point

to a file in the file system.

3.2.4.1 Classifying URLs into Logical Tasks

For the dataset used in the experimentation several URL rewriting techniques were

implemented, which resulted in 949 532 unique URLs. If we take the query string out of
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Table 3.1: Classification of URLs into logical tasks

Tag Description

Home Main home page
ProductHome Home page for each product
Landing Search engine landing pages
Promo Special promotional pages
Search General site search
Results Product search and results
Details Product detailed information
Opinions Opinions about a product
Info Site help or general information
CartDetails Shopping cart details
CartPurchase Shopping cart purchase forms
Confirmation Confirmation page of a sale
UserAdmin User self-reservation management

the URL, the number of unique pages reduces to 375 245.

In order to extract the action —type of process and output of a page— from a URL

in Atrapalo dataset, we had to implement the rewrite engine used for the page clas-

sification. Rewrite engines usually perform regular expression matching to URLs. In

Atrapalo URLs, the first element in the URL path indicates the name of the product,

such as flights, hotels, cars, or events. Each product had custom implementations of the

rewrite engine and how regular expressions were performed. About 20% of the URLs

did not match any regular expression, and for these URLs query string classification

was performed by looking for a custom parameter ”pg”, which specified the page action.

Using the query string approach we were left with 5% of unclassified URLs that were

manually analyzed and classified using string search and replace.

After the URLs where translated we were left with 533 different page actions or type of

pages. However some of the page names occurred only once, a problem we attribute to

noise and errors in the rewrite engine implementation. We then filtered the pages that

did not have more than one occurrence, and ended with 233 page names. This means

that across the products of the site there were 233 different types of pages. Some of

the pages serve the same logical function, such as the search page for hotels, flights or

cars, or the different home pages for each product. After a manual analysis on the site

structure and URLs, we decided to classify them in 14 logical types of pages detailed in

Table 3.1.

Although the classification in Table 3.1 is particular to Atrapalo dataset, many Ecom-

merce sites share similar structures especially for sites implementing travel and booking
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Table 3.2: Classifier Evaluation

Algorithm Clusters Error

SimpleKmeans 14 39.90%
EM 14 41.88%
EM Automatic 76.93%

products. It is important to remark that through the classification of pages no data is

lost. Page classification is added as extra columns to the dataset. The URL and page

types are kept in the dataset, so we can later use them to filter or to extract better path

predictions. The next section presents a proposal for automating page classification.

3.2.4.2 Automating page classification

Classification of types of pages into logical groups is necessary to map user clicks occur-

ring in a website to abstracted logical tasks to be consumed both by mining algorithms

and final reports to humans. We noticed while reviewing the results that many page

actions had similar names. There was at least a search page per product and different

types of search pages, including flightsSearch, hotelsSearch, flightsCalendarSearch, ho-

telsSearchCity. To aid classification, we have tested the clustering of the page names

using the WEKA open source machine learning framework (see Section 2.4.1). WEKA

contains several popular ready to use algorithms for classification and clustering among

other tools. As we had previously decided that the classification has 14 logical types

of pages, K-means clustering was our first natural choice to test, as it performs in gen-

eral scenarios with known number of clusters. We have used WEKA SimpleKMeans

implementation and setting the number of clusters to 14 and the “classes to clusters”

evaluation option. SimpleKMeans yielded an error of 39.90% in classifying the 233 names

into 14 clusters. We have also experimented with the EM (Expectation-Maximisation)

algorithm both with automated and manual numbers of clusters yielding 76.93% and

41.88% of classification errors, respectively. Table 3.2 summarizes the clustering results.

If the number of classifications is known, K-means clustering can reduce the manual

work needed to simplify page classification.
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3.3 Mining for customers

This section details our preliminary experiments mining the business processes of cus-

tomers in Atrapalo dataset, with the page classification from the previous section. For

a full description on process mining algorithms please refer to [26]. As mentioned in

Section 3.1.3, only a small fraction of visits to the site ended buying a product. The

conversion rate for the site is less than 2% of the total number of visits. Having such a

small percentage is a problem for most mining algorithms, as these low-frequency traces

(Web sessions) will be filtered out by most implementations producing an incomplete

model. In our study we present three different approaches to this problem creating three

new different datasets: saturating the data set (saturated), clustering (clustered), and

biasing toward a previously set model with the knowledge-based miner. We call the

original dataset the normal dataset.

3.3.1 Saturating the dataset with customers

The first strategy to mine customer models was saturating the dataset. This entailed

producing a new dataset where the percentage of buying customers is higher by removing

sessions that did not purchase. We have chosen the ratio 1/3 of customers to just visitors.

This ratio is chosen as customer sessions are longer in average, leaving us with and even

dataset of about half of the entries belonging to customer sessions. With this ratio, we

have created a new dataset including the entire customer sessions present in the normal

dataset, and 2/3 more sessions from regular visits from the top of the dataset. This

dataset having about 8% of the total entries of the normal dataset, but including all the

purchasing sessions.

Figure 3.2 shows the resulting models by applying the knowledge based miner [26] with

default noise and window parameters to the normal (Figure 3.2(a)) and saturated (Figure

3.2(b)) datasets. The general workflow of events can be seen from the figures, with the

main distinction being that the normal dataset does not contain the Confirmation and

BuyerEnd events and edges. The CartDetails event is present in both. This means

that while there are many users that add a product to the shopping cart and see its

details, few ultimately purchase the product. In these cases the buying events are being

discarded as noise, while on the saturated dataset they are being kept. Loops can also
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(a) Process model for the normal dataset

(b) Process model for the buyers saturated dataset

Figure 3.2: Process models for the normal and saturated datasets

be seen in both models, but the loops are from the same originating event to itself, such

as users iterating over the Results event.

Another insight from the models is that the Promo event is not linked to any other

event; almost all users that get to the site through a promotional page leave the site

without any further navigation. On the normal dataset, some users from the Landing

event get to the results. In the saturated dataset, however, the landing page event does

not have any outbound links. The same can be observed with the Search event in the

normal dataset: its only link is a self-loop. The Search event is not present in the

saturated model, because it is a low frequency event and not used by most customers.

We have verified that most results pages were directly reached from each product home

pages. Search events represent the general site search feature that searches all products

at the same time, and results show they are not very effective and were reported back

for optimization.
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Figure 3.3: Process model of a customer cluster

3.3.2 Clustering sessions

The next tested approach to mine for customer sessions was clustering, using a string

distance algorithm to cluster imported traces. By clustering similar sessions, we can

run the process mining directly on individual clusters. This feature is very helpful as

clustering can help remove noise and allows the ability to mine specific customer clusters

or target groups without the need to saturate the dataset.

Figure 3.3 shows the model produced by the miner to a specific small cluster of cus-

tomers, representative of the most common buying process. It shows the critical path

(the most important pages) for buyers on the website, and thus, the most important

pages to keep optimized. It also shows that the most typical buying process consists

of three main pages: Details, specific product information; CartDetails, final costs de-

tails and payment options; and Confirmation, the reservation confirmation page. This

would mean that most buying sessions go straight to purchasing without much searching,

probably performed at a previous time and different session.

The disadvantage of clustering, besides not having the complete process in the out-

put model, is that models cannot be combined directly without manual work. The

knowledge-based miner allows us to use prior knowledge, such as the model produced

by clustering as shown in Figure 3.3, to assign more weight for these events and edges.

This particular feature is detailed in the next subsection as a different strategy. Further

details on clustering sessions can be found in [98].

3.3.3 Prior knowledge

The knowledge-based miner [26], besides being able to keep longer paths and be parame-

terized by the amount of noise (fitting) and window size, can use another model as prior

knowledge with a tunable confidence. This feature can be used not only to mine for

customer models without saturating the dataset, but also to include certain clusters or

behavior, such as the effect of improving the promotional page, or a marketing campaign

targeting a certain product.
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Figure 3.4: Knowledge-based miner process models on the normal dataset

Figure 3.4 shows both the model produced by the knowledge-based miner on the normal

dataset, and the output when the model from Figure 3.3 is applied to the knowledge-

based miner. Results are the same in both, except that when the prior knowledge is

applied, the output includes the CartPurchase, Confirmation, and BuyerEnd events.

Figure 3.4 also shows the use of the knowledge miner parameters. Compared to Fig-

ure 3.2 it shows the UserAdmin event and more edges and loops between events. The

reason is that both figures were executed with lower window and noise parameters.

This shows how models can be abstracted and fitted using these parameters in the

knowledge-based miner algorithm.

The above classification of URLs allowed Web logs to be mined for processes that repre-

sent the navigation behavior of users. Process mining algorithms are designed to extract

the dominant behavior observed and filter out noise to keep the resulting mined process

manageable. However, in our case study the interesting behavior—those that result in

a user buying a product—seldom occur. We expect this to be the case in many Web

applications. To avoid losing this behavior, we took the approach of saturating the

dataset with more traces that result in the outcome of interest. This simple strategy

worked well in producing a complete process model that includes both the most common

behavior on the site, and also includes the behavior of users that buy a product. Since

our first results and feedback, the company redesigned the general site search, improving

the conversion rate of visitors using the search feature by up to 46%, and lowering the

bounce rate by 22% for a particular product.
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3.4 Workload characterization

This section presents the general characteristics of the performance dataset. This char-

acterization was performed as preliminary work for the thesis, on a one-week version of

the dataset. From it, many insights have taken for the realization of the contributions.

It can also serve the reader as reference for the performance dataset. From the dataset

we characterize user sessions, their patterns and how response time is affected as load

on Web servers increases. We provide a fine grain analysis by performing experiments

differentiating: types of request, time of the day, products, and resource requirements

for each.

The characterization of the workload is approached from two different perspectives:

firstly, the client workload pattern is studied, considering the request arrival rate, ses-

sion arrival rate and workload pattern in a representative and generic one week access

log. Secondly, the same one week log is studied from the point of view of resource con-

sumption. The outcome is the complete characterization of both user access pattern

and non-simulated resource consumption of a Web application. Moreover, the studied

dataset presents several features not present in most Web workload characterizations,

such as the dependency of external providers, database access and mix of differentiated

products (multi-application site). Results from this section can support the building

of a workload generator that is able to simulate the real life characteristics of complex

workloads such as the one presented here.

3.4.1 Workload decomposition

Figures 3.5 and 3.6 show the traffic pattern for the studied dataset, including number of

hits (Figure 3.5) and number of user sessions started (Figure 3.6) over one week, grouped

in 30-minute periods. Notice that data has been anonymized through being normalized

to the peak load observed for each metric. As it can be observed that a problem with

the logging infrastructure caused a short period of no information that can be clearly

observed in Figure 3.6.

As it can be observed in Figure 3.5, the traffic decreases over the night, until it starts

growing again soon after 7am in the morning. It keeps growing until noon, when it
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Figure 3.5: Traffic volume intensity (relative to peak load). - 1 week
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Figure 3.6: New user sessions intensity (relative to peak load). - 1 week

slightly decreases. Finally the workload intensity starts increasing again over the af-

ternoon until it reaches its maximum around 9pm. Over the night, the traffic volume

decreases until it finally reaches the beginning of the cycle again. Notice that client

requests are conditioned by the response time delivered by the Web application (next

request in a user session is not issued until the response corresponding to the previous

request is not received). For this reason, we made sure that the while logs were collected

no severe overload conditions took place in the Web infrastructure, but still capturing

the a representative volume of traffic for a normal day in the online travel agency. We

followed the same approach to characterize not client requests, but new Web sessions in

the system, that is, the number of new clients connecting to the system. The relevance
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i a b c

1 8.297 0.002157 1.134
2 8.072 0.002325 4.232
3 0.1572 0.009136 1.542
4 0.04958 0.01732 2.356
5 0.02486 0.02197 2.045

R-Square: 0.9701

Table 3.3: Variables of the Normalized Request Rate Function

of this measure, when taken in non-overloaded conditions, is that reveals the rate at

which new customers enter the system. We also grouped data into 1 minute period,

which can be seen in Figure 3.6. As expected, per-session data follows the same trends

observed for the per-request study, but with a smoother shape.

The mean pageview for the whole week is 6.0 pages per session, with 6:48 minutes spent

on the site, an average of 3.0s response time for dynamic page generation, and 8MB of

RAM memory consumption. Recall that the highest traffic is on Mondays and decreases

to the weekend. The opposite effect is observed on average pageviews as well as the

time spent on the site; they both increase during the week, peaking at the weekend,

from: 5.82 and 6:40 on Mondays to 6.27 and 7:31 on Sundays, pageviews and time spent

respectively.

The characterization of the normalized shape of the mean request rate for a 24h period, in

1 minute groups can be done following the Sum of Sines expression found in Equation 3.1,

with the parameters described in Table 3.3.

f(x) =

5∑
i=1

ai ∗ sin(bi ∗ x+ ci) (3.1)

3.4.2 Workload mix and intensity

The workload is composed of several different request types, and for each pageview that

the user finally sees on his browser, several dynamic requests may have been executed.

In the studied dataset we have identified the following request categories: Regular user

page 46.8%, AJAX 19.8%, dynamically generated Javascript 16.6%, HTTP redirect page

9.1%, Administrative 4.5%, internal scheduled batch 3.1%, API Web Service 0.04%, and
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Figure 3.7: Traffic mix over time (transaction type) - 1 week

Extranet 0.02%. It is an important feature of this dataset (and probably other real-life

logs) that less than 50% of the total dynamic requests correspond to user clicks on their

browsers.

Figure 3.7 shows the fraction of dynamic traffic volume that corresponds to different

types of request categories, focusing on most relevant ones: Regular, AJAX, Redirects

and JavaScript contents. As it can be observed, AJAX content fraction is mainly cor-

related to site’s load, as such traffic is usually generated by human-generated actions

(e.g., auto-completion of forms when indicating flight origin and destination airports

during a search). During low traffic periods, basically overnight, most of the traffic is

identified as regular pages. Night traffic also involved most of the internal batch and

crawler activities.

A brief analysis on the number of crawler requests and meta-crawlers by analyzing the

agent field (the reported browser type) identifying themselves as such; our findings

indicate that the number of bot requests is about 15% of the total traffic. This is

consistent with previous work on a similar dataset 3 years before [28], which identified

between 10% and 15% total bot content. Even more traffic may correspond to crawlers

and meta-crawlers assuming that some might simulate being a real user when accessing

the site, that would show a growing trend in the proportion of automated bot traffic.
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Application Percentage

App 1 27%

App 2 17%

App 3 15%

App 5 6%

App 6 5%

Other 23%

Table 3.4: Percentage of the number of requests per application

Table 3.4 shows traffic distribution across anonymized products (applications) offered

by the OTA. As it can be observed, almost 60% of the overall traffic come from only

three applications, representing the most popular products of the company. Although

each application is implemented independently, they share a common code base (e.g.,

user logging and shopping cart). Such common activity is not included in the specific

per-application traffic volume, and is considered as a separate application by itself,

corresponding to App 3, 15% of the total requests; this distribution is site specific.

3.4.3 Session characteristics

Next step in the workload characterization is to study the per-session characteristics of

the OTA visitors. Each session is started when a new visitor comes into the system,

and is identified through a single identifier in the workload trace. We will look at four

different session-specific characteristics: number of different products visited during the

session, number of different pages visited per session, number of hits per session (notice

that a hit can be initiated by a user click or by Javascript events such as auto-complete

controls), and the session length. For each one of these characteristics, we construct a

CDF chart as shown in Figure 3.8. Each CDF is built from the information collected

during the lifetime of all the sessions started within a 30 minutes period. Recall that the

completion time of a session can be much later than the end of the 30 minutes period.

We have explored 4 different time ranges for each property, selecting time ranges cor-

responding to 4 points of time with different traffic characteristics, including night,

morning, afternoon and evening traffic. The selected time ranges are 5:00am to 5:30am,

11am to 11:30am, 4:00pm to 4:30pm, and 10:00pm to 10:30pm. It can be seen from the
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Figures that all properties remain unchanged for all time ranges except for the night

one.

Session characteristics are approximately the same for morning, afternoon and evening

time ranges, but a clear difference can be seen for the night (5am) traffic. Notice that

the OTA is international, most of the traffic comes from European countries located

within the time zones with a maximum of 2h of difference. Obviously, the different

characteristics of the nightly traffic comes from the fact that the many sessions are

initiated by non-human visitors (bots), including crawlers and meta-crawlers. This result

supports the results presented before in Figure 3.7. Daytime (10pm) CDFs can be

approximated using the probability distributions and parameters listed in Table 3.5.

Our study concluded that 75.03% of the sessions only contained 1 hit, that is, the

user only accessed 1 page, and then just quit the OTA site. This is mainly due to many

visitors reaching the site through external banners that redirect them to especial landing

pages, and many of these users do not continue browsing the OTA site after this initial

page. In the building of the CDFs, 1-click sessions were excluded as we want to study

customer’s characteristics; 1-click sessions are included in the rest of the experiments.

Figure 3.8(a) shows number of different pages visited per session (notice that a page is

a unique URL here). Most users visit few pages during a session, and they may remain

in one single page running searches or browsing the OTA catalog. Some users visit up

to 14 pages in one single session, but that is the least of them.

Figure 3.8(b) shows number of hits per session, with half of the visitors producing 10 or

less requests to the OTA site. Notice that a request can be initiated by a user click, or by

an AJAX action, such as field auto-completion in search forms. A significant percentage

of visitors produce many more requests, reaching a few tenths in many cases.

Figure 3.8(c) shows number of products visited per session. As the OTA site contains

several different products, each one associated to a particular Web application, we were

interested in studying how many different products were visited by each individual ses-

sion. It can be seen that around 50% of the customers are interested in only two different

products, but in some cases 8 or even more products may be visited in one single session.

Figure 3.8(d) shows session length CDF, showing that while most visitors sessions last

only a few minutes, some of them may be active for several hours. That may be explained
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Figure 3.8: Session properties - grouped according to session start time in 30-minute
bins

Pages per Session

Log-normal µ = 1.37536;σ = 0.60544

Hits per Session

Log-normal µ = 2.05272;σ = 1.00659

Products per Session

Log-normal µ = 1.01541;σ = 0.457558

Table 3.5: Per session CDF Fits

by users coming back to the OTA site quite often over a long period of time, or by the

presence of crawlers that periodically poll the OTA site contents.

Finally, we look at the burstiness properties of the workload, paying special attention

to the session arrival rate and its changes over time. For such purpose, we have charac-

terized the Index of Dispersion for Counts (IDC) of the entire workload as well as for a

shorter time period which presents stationary properties. The IDC was used for arrival

process characterization in [72], and has been leveraged to reproduce burstiness proper-

ties in workload generators in [73]. IDC was calculated by counting sessions started in

1 minute periods In a first step, we characterized the IDC for session arrival rate for the

full dataset, covering one week period. The result for this step is shown in Figure 3.9(a).



Preliminary study of the scenario and datasets 50

Metric Model Parameters

DB Time Weibull a = 30141.4; b = 0.251286

DB Queries Generalized Pareto k = 0.61979;σ = 4.65092;µ = −0.1

Ext. Provider Time Logistic µ = 6.17049e+ 07, σ = −191940

Table 3.6: DB and External time CDF Fits for most popular product

In a second step we picked the stationary period shown in Figure 3.9(c), corresponding

to a 500 minutes high-load period, and characterized its burstiness through its IDC, as

shown in Figure 3.9(b). Both figures indicate, given the high value of IDC observed, that

the workload shows a high degree of burstiness as it is expected for any Web workloads.

And it remains true at both scales, including one week of processed data and a short

and clearly stationary period of logged data.

3.4.4 Resource consumption

Figure 3.10 shows resource consumption distribution across anonymized applications.

When modeling sessions and requests they also have different characteristics and resource

requirements. Figure 3.11 shows the different resource percentage used by each type of

requests.

In Figure 3.12 we pick the most popular product of the OTA company and characterize

the interaction of its code with both the database tier and external providers of infor-

mation. The characterization is done by building the CDF of each metric, what can be

approximated using the functions seen in Table 3.6.

All the services related to this product require accessing at least once at the DB tier.

Figures 3.12(a) and 3.12(b) show the CDF of the number of DB queries per request

and the time spent per request waiting for the result of DB queries. Recall that this

information corresponds only to the most popular product of the OTA. As it can be

observed, 50% of the requests issue 1 or 2 queries to the DB tier, and around 80%

of the requests require less than 10 queries to complete. But a significant fraction of

the requests produce complex results and require a large number of DB queries to be

completed, reaching more than one hundred DB requests in some cases. Looking at the

time spent waiting for data from the DB tier, most of the requests exhibit just a couple
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Figure 3.10: Percentage of Resources by Application

Figure 3.11: Percentage of resource usage by request type

of seconds of DB query waiting time, but some cases can reach up to nearly 40s of DB

time. Notice that some OTA operations may require complex optimization operations,

as well as may provide a long list of results based on user search parameters.

3.4.5 Characterization results

Results from the characterization have been grouped into two categories: workload char-

acterization, including transaction mix, intensity and burstiness; and resource consump-

tion, distinguishing between applications, putting emphasis to databases and external
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providers. Results show that the workload is bursty, as expected, that exhibit different

properties between day and night traffic in terms of request type mix, that user session

length cover a wide range of durations, that response time grows proportionally to server

load, that response time of external data providers also increase on peak hours, and that

automated crawler traffic is increasing and can represent more than 15% of total traffic,

amongst other results that have influenced the development of the thesis.



Chapter 4

Predicting Web session revenue

4.1 Introduction

In this Chapter we propose a new approach to the system overload problem, which is

learning from past data, a model for anonymous Web user behavior in a real, complex

website that does experience the overload situations. The model is then used to support

decisions regarding the allocation of the available resources, based on utility-related

metrics. The learning phase captures in a model the selected features according to a

utility goal. As a proof of concept, we have selected the features make a customer more

likely to make a purchase, and therefore more attractive — from the point of view of

maximizing revenues — to keep in the system in the case of a severe overload.

We describe the architecture of the prototype we have developed, and the simulation

experiments we have performed on dataset in Section 3.2. The experiments indicate

that using our prototype to prioritize customer sessions can lead to increased revenue

in at least two situations: one, when overload situations occur; that is, the incoming

transaction load exceeds the site capacity and some sessions will have to be queued,

redirected to a static site, or dropped; for this study, these should be mostly non-buying

sessions, while we try to admit most buying ones. The second scenario is that in which

keeping a server running has a quantifiable cost; in this case, one could try to group

buying sessions in a small number of servers, possibly shutting down those other servers

that would produce little or no revenue.
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4.1.1 Methodology

In this section we present a method for learning, from the analysis of session logs,

how to assign priorities to customers according to some metric – in this study, to their

purchasing probability in the current session. Our approach consists in using the Web

server log files to learn models that make predictions about each class of user future

behavior, with the objective of assigning a priority value to every customer based on

the expected revenue that s/he will generate, which in our case essentially depends on

whether s/he will make a purchase. Our learning methods combines static information

(time of access, URL, session ID, referer, among others) and dynamic information (the

Web graph of the path followed by the user), in order to make predictions for each

incoming Web request.

We have developed a prototype which includes: a script that preprocesses access logs

to remove non-user generated actions and rewrites the log in a more convenient format;

a program that generates two higher-order Markov chains: one for purchasing users

and another for non-purchasing users; an offline learning module that produces a Näıve

Bayes classifier or predictor given the log with both static and the dynamic information

from the Markov chains; and a real-time module which passes each user click through

both Markov models and asks the classifier for a purchase probability. In this way, for

every incoming request on the server, the prototype outputs its purchase probability,

so that the session manager can prioritize it according to its current load and business

rules.

4.2 Progress beyond the State-of-Art

In the context of Web workload analysis, there are few published studies based on

real Ecommerce data, mainly because companies consider HTTP logs as sensitive data.

Moreover, most works are based on static content sites, where the studied factors were

mainly: file size distributions, which tend to follow a Pareto distribution [62]; and file

popularity following Zipf’s Law [62, 63]. Also, works such as [64] have studied logs from

real and simulated auction sites and bookstores; there are no studies that we know about

which are concerned with intermediary sites, like the one studied here, where most of
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the information comes from B2B providers and which can potentially have a different

behavior.

Related works on Web user behavior prediction and profiling [43–46] have focused on

Web caching or prefetching of Web documents, to reduce latency of served pages and

improve the cache hit rate. The mentioned approaches are best suited for large and

mostly static Web pages, where users navigate through a vast amount of information

such as an encyclopedia. Prefetching a dynamic page that includes database transactions

might be too costly in the case of a miss or user exit.

Path analysis [47, 48] and Customer Behavior Model Graphs (CBMG) such as [50] are

similar to the dynamic part of our approach — we use the closely related Markov chain

model. Menascé et al. [50] propose to build the CBMG using the k-means clustering

algorithm, creating a probability matrix for the possible path transitions from a state.

What we try to accomplish in this chapter is not predicting what the next click will

be; rather, we want to foresee the user’s ultimate intentions for visiting the site, and in

particular whether s/he will eventually buy.

Session-based admission control has been widely studied [23, 37, 38]; the work presented

here is an extension to these aproaches. Related works on resource management, i.e. by

Littman et al. [59] uses Näıve-Bayes for cost classification and a Markov chain feedback

approach for failure remediation. Other works such as [60] also take into account costs

and resource allocation; in contrast with previous approaches, in this chapter we are

focusing on the actual revenue that is lost by denying access to purchasing users, and

not resource allocation costs.

In the topic of session revenue, in [15] authors present MyQoS, a framework for exploit-

ing session prioritization by comparing known profitable user behavior against individual

queries issued by sessions and retrieved results. While[51] presents a similar and later

approach making prediction from Customer Behavior Model Graphs. Our session eval-

uation technique is previous to the presented work [28], it is based on Machine Learning

techniques to predict if a user is going to buy or not a particular session. In particular,

we predict session profitability from the first click, this way being able to discriminate

sessions, and improve precision for each user click.
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Figure 4.1: Prototype architecture

4.3 Prototype implementation

In this section we describe the architecture of the prototype we have implemented to

perform the experiments. The prototype currently has two subsystems: an offline com-

ponent (the learner) that takes the historical log file and produces a predictive model or

predictor, and a real-time component, the selector, implemented as a service that runs

along the session manager of the firewall. The selector analyses the incoming requests,

runs them through the predictor, and outputs the priority along with other static in-

formation for the session. These two subsystems are presented graphically in Figure

4.1.

The input to the offline component is the log file produced by the site’s dynamic ap-

plication. It contains non-ambiguous session and page actions (tags) as historical data,

which is first cleaned and reorganized by a preprocessor. The preprocessor produces an

intermediate file with one line for each transaction. These lines are largely computed

independently from each other, so they do not contain information about the user nav-

igational pattern; that is why we call the information in this file static. Next, this file

is enriched with dynamic information reflecting the user navigation sequence, relating

the different transactions of the same session. This is done by computing a Markov

model for each value of the class, in our case buying and non-buying; the prediction

of these models for each individual request is added as extra information to each line

of the preprocessed file. Finally, this enriched dataset is passed to a learning module
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that produces a predictor, some mathematical function that, given a request, assigns it

a buying probability. More details are given in the following subsections.

The real-time component, the selector, runs side-by-side with the session manager of

the firewall. When an incoming HTTP/S request arrives, the selector reads the entry

produced by the firewall, retrieves from a database existing information about the user

and session (if any), and then evaluates the request through the predictor, the (offline

built) model. The result is a predicted probability of purchase, which is written to

the firewall’s active session table along with other useful information such as: current

load, server conditions, and enterprise policies. This information can then be used

by the firewall (in ways outside the scope of this thesis) to prioritize and even block

some of the sessions according to the current load and policies. We remark that the

firewall is not a part of the prototype: it is often a complex, and very sensitive, part of

the infrastructure so we do not aim at replacing it. The prototype, however, provides

additional information to the firewall which helps it in taking informed decisions rather

than blind or random ones.

In contrast to the selector, which has a real-time requirement, the offline component can

be executed at scheduled intervals to rebuild the predictor (daily, weekly, etc.) at periods

of low load, and even in an off-site machine. Therefore the requirements of speed and

low memory use are not a limitation for this component, while the real-time part needs

to be as efficient as possible. As future work we are considering running the learning

module incrementally and in real time, so that the predictor is always as accurate as

possible. In this case, the computational requirements of the learning method would

also be of importance.

The cleaned data contained 218 different “tags”, “pages” or user request types and

about 3.7 million transactions, grouped in 452,939 sessions. Of these sessions, about 3%

ended in purchase after it was cleaned, and 234,261 corresponded to returning users.

The average session length was 8.2 transactions, increasing to 18.5 for buying sessions.

Because buying sessions are longer, the percentage of transactions labeled as “buying”

is larger than the percentage of buying sessions, namely about 6.7% rather than 3%.

From the cleaned dataset we prepared training and testing datasets. To force the learn-

ing algorithm to pay attention to the buying class, the training dataset was built by
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randomly selecting about 25% of the buying sessions, and about three times as many ran-

dom non-buying sessions. This way, we made sure that buying sessions were sufficiently

visible while training as most machine learning algorithms tend to ignore underrepre-

sented classes. The training dataset finally consisted of 25,331 sessions, corresponding

to approximately 200,000 transactions. The rest of the sessions were included in the

testing set, which thus contained 427,608 sessions and 3.5 million transactions.

We also noticed that there were transactions produced by automated bots, i.e., crawlers

or Web fetching from other sites, of course never ending in purchase. We kept them in

the dataset as it is important that our system learns to identify these as non-buyers.

Related works on resource management, i.e. by Littman et al. [59] uses Näıve-Bayes

for cost classification and a Markov chain feedback approach for failure remediation.

Other works such as [60] also take into account costs and resource allocation; in contrast

with previous approaches, in this thesis we are focusing on the actual revenue that is

lost by denying access to purchasing users, and not resource allocation costs. Since

search queries to B2B providers have a cost and the bots could be abusive or even

malicious, they should be assigned low priority or denied access. We have extended

the experiments described in this chapter, to also detect automatically and ban content

stealing bots. The traffic caused by content stealing bots represents up 12% of the total

traffic in the analyzed dataset; in case of an overload, these sessions should be the first

to be discarded and have be correctly identified.

4.3.1 Generating static information

The goal of the preprocessor is two-fold: First, it should clean the log file of static

content i.e., images, CSS, javascript or other media files. It should also be cleaned

of irrelevant and non-user-initiated transactions, such as AJAX autocomplete controls,

background checks and offsite requests via Web services (B2B communication). The

second goal is to add information that cannot be derived from the log file only, such

as background information on previous sessions and, if available, user details form the

company’s customer database.

The preprocessor reads the log and produces one output line for each input transaction,

producing a dataset relevant to learning containing the following fields:
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• Date and time.

• The tag, action performed by the page or non-ambiguous URL.

• Whether the user has already logged in the system during this session.

• Whether the customer is a returning customer, retrieved from cookies or matching

IP address.

• Whether the customer has purchased in the past, and if so how far back.

• Session length so far, in number of transactions (clicks).

• The referer tag, the tag of the previously visited page; this is an external page for

the first click of each session.

• The class assigned to this session, that is, what the “correct” prediction should be

for this log entry. In our case, there are two class values: buyer and non-buyer.

Note that all fields except for the class can be computed from information in the previous

entries of the log, or from separately stored information. The class, however, can only

be computed by looking forward in the same session, and checking whether it contains

any tag indicating purchase. Clearly, this is not possible in the online process, since

this information is precisely what we are trying to predict. Thus, the class can only be

computed in datasets with past information, those used for offline learning.

4.3.2 Generating dynamic information

We use the information obtained from the user’s navigation sequence as the dynamic

information of the session; it is the sequence of URLs followed by the user. Unfortu-

nately, most machine learning algorithms are not well adapted to dealing with variables

that are themselves sequences. In the prototype we propose to use high-order Markov

chains to address this issue.

A Markov chain describes (is) a probability distribution on the set of all finite paths

along a finite set of states S. In general, for a path s1s2 . . . sn and any probability

distribution we have the following rule

Pr[s1s2s3 . . . sn] = Pr[s1] · Pr[s2 | s1] · Pr[s3 | s1s2] · · ·Pr[sn | s1 . . . sn−1].
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For general distributions these probabilities can be all distinct. The assumption in a kth

order Markov chain is that, given any previous history, only the k most recently visited

states affect the future transitions, formally

Pr[sn | s1 . . . sn−1] = Pr[sn | sn−k . . . sn−1], for n− k ≥ 1.

As an example, in a Markov chain with k = 2 the rule above simplifies to

Pr[s1s2s3 . . . sn] = Pr[s1] · Pr[s2 | s1] · Pr[s3 | s1s2] · Pr[s4 | s2s3] · · ·Pr[sn | sn−2sn−1].

Therefore, a k-th order Markov chain is described by giving, for each state s ∈ S and

path p of length at most k, a probability that the next state is s given that the k last

visited states are those in path p. This implies that the distribution given by the Markov

chain can be specified by giving at most |S|k+1 numbers, rather than infinitely many.

Furthermore, given a set of data consisting of paths along S, one can build a kth order

Markov chain that approximates their distribution as follows: compute all the empirical

probabilities Pr[si+1 | s1 . . . si] for 0 ≤ i ≤ k on the data. By the discussion above, these

figures are enough to approximate Pr[p] for each path p of every length. Of course,

whether the figure computed in this way approaches the real probability of p in the

source of the data depends on 1) the amount of training data available (the more data,

the better approximation), and on 2) the degree to which the Markovian assumption is

valid for the source.

In our methodology, we define the set of states S to be the set of tags in our log data.

Then, for some parameter k, we create a k-th order Markov chain for each of the classes,

each one modelling the typical sequences of tags (requests) for that class. In our case, we

train two models: one for buyers and one for non-buyers. Given the path followed in the

current session, these two chains can be used to compute probabilities Pr[p | buyer] and

Pr[p |nonbuyer], where p is the sequence of previous k tags in the session. Using Bayes’

rule, we can then estimate the converse probabilities Pr[buyer | p] and Pr[nonbuyer | p].

For example,

Pr[buyer | p] = Pr[p | buyer] · Pr[buyer]/Pr[p]

where we approximate Pr[buyer] as the fraction of buyers in the data, and Pr[p] can be

ignored because what matters really is the ratio of Pr[buyer | p] to Pr[nonbuyer | p]. That
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is, given that the user has followed this path, the Markov chains guess the probabilities

that later in the future s/he buys or does not buy. At training time, these two figures (the

buying and non-buying probabilities) are added as new variables to the line describing the

current transaction in the training set. At prediction time, these two figures are added

as new variables to the information passed to the predictor for the current transaction.

We have used k = 2 (second-order Markov chains) for the experiments reported in the

next sections. After some experimentation, this value seemed to provide the best results

ono our attemps. It is intuitively clear that remembering the last two visited pages

gives more information than remembering only the last one. On the other hand, as

k grows, each individual path is less frequent in the data, the approximations of the

probabilities are coarser, and predictive accuracy is reduced (i.e., overfitting tends to

appear). This effect is especially harmful on buying patterns which are rare on our

datasets. In particular, k = 3 gave results comparable to k = 2, and predictions were

significantly worse for k > 3. This conclusion may, of course, be different in other

contexts.

4.3.3 Learning module

The resulting sequence of transformed and enriched log entries can be treated as a

dataset where the order of examples is irrelevant and each example is a tuple of simple

values (numerical or categorical values). This is what is needed to apply most machine

learning algorithms in the literature.

In this first prototype we have chosen the Näıve Bayes classifier as a learning algorithm,

for a number of reasons: 1) it is easy to understand, has no user-entered parameters,

and has very low CPU time and memory requirements, both for training and for pre-

diction; 2) in preliminary experiments, it performed about as well as more sophisticated

methods, such as decision trees and boosting; and 3) it assigns probabilities to its pre-

dictions, rather than hard buy/non-buy decisions, and this is essential for our prototype.

Naturally, there is ample room for trying other and more advanced prediction methods

in later versions, which administrators can choose according to their data and available

resources.
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We recall very briefly how the Näıve Bayes predictor works. In the training phase, the

dataset is used to estimate all the conditional probabilities of the form Pr[var = x |

class = c], for all predictive variables var, all their possible values x, and all class

values c. These probabilities are stored and constitute the predictor. At prediction

time, the probability Pr[class = c | variables] can be estimated, using Bayes rule,

by multiplying out a few of the probabilities above. This process takes time linear in

the number of variables, i.e.,, very low.

4.4 Results and evaluation

In this section we describe the data, our experiments with the prototype, and discuss

the results obtained. We want to remark that our goal was to test a generic approach

without fine tuning the experiments with domain knowledge, rather than obtaining the

best possible figures for this particular dataset.

4.4.1 The Dataset

The data consisted of the transactions collected over approximately 5 days, from 01/22/2007

1am to 01/26/2007 11pm, consisting of 3.7 million transactions. We distinguish “trans-

action” and “request”; a transaction in this chapter is a user-initiated action (click)

to the site that s/he views as an atomic operation. Internally, each transaction in the

dataset corresponds to an average of 13 requests (hits) to the server, including media

files, CSS, Javascript and the final HTML output. To log user actions only, the dataset

was produced by the site’s dynamic application; additional code was added at the end

of each executing script to log the transaction data after the actions were executed. By

doing so, the data is already cleaned and more accurate, as opposed to the access log

from a Web server where URL actions might be ambiguous. Furthermore, the applica-

tion can log directly the user session, not only its IP address, allowing us to correctly

differentiate NAT/firewalled users. A session is a sequence of transactions initiated by

a user in a definite amount of time.
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j48 classifier NB classifier Logistic

%accuracy 76.5 78.1 72.7
%admitted 25.7 22.9 29.8

%recall 66.9 57.5 68.9
%precision 17.2 16.6 15.3

Figure 4.2: Models built by different classifiers with static information only

4.4.2 Quantities of interest in Admission Control

After building a classifier using the training dataset, we can compute for each transaction

in the testing set a “true” buying/non-buying label and a “predicted” label. Thus, we

can divide them into the four typical categories of true positives (tp), false positives

(fp), true negatives (tn), and false negatives (fn). For example, false positives are the

transactions that are predicted to be followed by purchase but that in fact are not.

We observed the classical recall and precision measures, as well as one that is specific to

our setting, which we call %admitted.

• %admitted is (tp+fp)/(tp+fp+tn+fn), or the fraction of incoming transactions

that the system admits.

• the recall is tp/(tp+fn), the fraction of admitted buyers over all buyers.

• the precision is tp/(tp+fp), the fraction of admitted buyers over all admitted

transactions.

Our ultimate goal is to use these predictions for prioritizing sessions, so that low priority

sessions can be queued, redirected to a static page, or even dropped when the server is

under heavy load condition. The meaning of a false positive and a false negative in this

context is very different. Rejecting a false negative (fn) session implies a substantial loss

(in revenue), so it is preferable to accept it even at the cost of keeping many false positives

(fp) in the system. Therefore, these two figures should be examined and evaluated

separately.

In our case, since we are using the Näıve Bayes classifier, we have good control over the

%admitted quantity. Indeed, this classifier provides a probability of buying p(t) for each

transaction t. Set some threshold value T ∈ [0, 1], then we can decide to admit those
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Figure 4.3: %admitted vs. recall

Figure 4.4: %admitted vs. precision

transactions t such that p(t) > T . By increasing T , we will make it more difficult for a

transaction t to pass this test, hence we will admit less transactions. Conversely, if we

lower T , more transactions will be admitted. Once the Näıve Bayes classifier is built,

we use the training set to tabulate the function of T to the actual %admitted, for future

use.
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4.4.3 Classifier performance

A first set of results was obtained applying the learned Näıve Bayes classifier (containing

the Markov models prediction) on the testing dataset. Figures 4.3 and 4.4 present the

evolution of recall and precision as we vary the percentage of admissions from 100% (no

rejections) to 10%.

As predicted, there is a nontrivial relation between %admitted, recall, and precision.

Naturally, as we become more restrictive in the number of admissions, we lose true

customers, but at a rate smaller than if we were choosing at random. For example, if we

choose to admit 50% of the transactions, the prototype will still admit 91% of those that

will end in purchase (rather than 50% as we would if we were selecting them randomly).

Similarly with precision: no matter the percentage of admissions we fix, if we choose

transactions randomly, we will choose buying ones in the same proportion as there are

buying transactions in the dataset, namely about 6.7%. By using the prototype strategy,

when we are admitting say 50% of all transactions, about 12% will end in a purchase,

an improvement by a factor of almost 2.

These figures become even more interesting as we restrict %admitted more and more:

when admitting only 10% of transactions, the prototype will still admit 76% of all real

buyers and 35% of admitted users will really buy. This means an increase by a factor

of over 5 in precision over random selection. The results demonstrate the potential of

the predictor module in a self-adaptive system: as more users arrive and the capacity of

the infrastructure is exceeded, the proportion of admitted sessions that will end up in

a purchase increases. In other words, the system prioritizes the most profitable sessions

when it becomes most necessary.

In Table 4.1 we present the recall and precision for clicks 1 through 3. Recall repre-

sents the fraction of real buyers that are admitted by the predictor, while precision is

the fraction of predicted buyers. With this experiment we wanted to show that there

is enough information to prioritize sessions right from their first access to the site, im-

proving predictions with the number of clicks. For the first access, we detected 15% or

better of buying sessions, in contrast with a random strategy which would pick only 3%

of buyers.
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First Click Second Click Third Click

%recall 47.6 51.1 53.0
%precision 15.2 18.6 21.0

Table 4.1: Recall and precision for clicks 1 to 3.

4.4.4 Performance in real-time prediction

Our next experiments test the prototype under a simulated environment over a 24-hour

period. This dataset belonged to different dates for the same system, and contained

112,000 transactions. Figure 4.5 presents the evolution of the rate of transactions/hour

in this workload, sampled every 5 minutes. It averaged about 4,600 transactions/hour

and has a peak of about 13,000.

Figure 4.5: Transactions/hour rate in the workload

More precisely, we compared the number of transactions that would end up in purchase

if admitted with the prototype and if admitted with a random selection strategy. For the

simulation we chose different values of a parameter MAX denoting the maximum rate

of transactions/hour a given infrastructure can accept without throughput degradation.

We also chose some time unit T in minutes; the results we report are for T=5 minutes,

but results did not vary significantly in the range T=[1 minute, 60 minutes]. We fed

the prototype with the workload corresponding to the reference day, sequentially. Every

T minutes, the prototype computes the rate transactions/hour from the current load

and, with this figure, it recomputes ton to these aproaches. Related works on resource

management, i.e. by Littman et al. [59] uses Näıve-Bayes for cost classification and a
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MAX %admitted %recall %precision %improve

13500 100 100 6.61 0
9000 99.31 99.97 6.65 0.66
7500 98.56 99.82 6.69 1.28
6000 90.65 97.26 7.09 7.29
4500 75.46 92.82 8.13 23.01
3000 63.81 88.27 9.14 38.32
1500 39.11 77.20 13.04 97.36

Table 4.2: Results of simulation on real workload

Markov chain feedback approach for failure remediation. Other works such as [60] also

take into account costs and resource allocation; in contrast with previous approaches,

in this thesis we are focusing on the actual revenue that is lost by denying access to

purchasing users, and not resource allocation costs. The threshold of the classifier that

it admits at most (approximately) MAX transactions/hour during the next T minutes.

That is, if the current rate is less than MAX, it sets the threshold to 0 so that all

transactions are admitted. Otherwise, if the instantaneous load L is greater than MAX,

it sets the threshold so that a fraction of about MAX/L of the transactions are admitted.

The results of this simulation are presented in Table 4.2. Rows correspond to the different

values of MAX tried, ranging from one exceeding the peak (in which no transaction is

rejected) to one where MAX is almost 1/10 of the peak. Columns correspond to

• % of transactions admitted,

• % of recall obtained, i.e., % of all buying transactions that are admitted,

• % of precision, i.e., % of admitted transactions that lead to purchase,

• and %improvement over the random strategy (e.g., if the random strategy admits

1,000 buying transactions and the prototype admits 1,200, % improvement is 20%).

Thus, for example, when the maximal load MAX is set to 6,000 (about 50% of the

peak), we still accept 90.65% of transactions, miss less than 3% of the buying ones

(recall=97.26%), and all in all we accept 7.3% more buying transactions than the random

strategy. When setting MAX to 3,000 (i.e.,, assuming an infrastructure able to handle

less than 25% of the peak), we still accept 63.8% of transactions, reject only 12% of the

buying ones, and do about 40% better than the random strategy.
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Figure 4.6: Admitted buys by the prototype and random selection

Another view of the process is presented in Figure 4.6, which presents the absolute

numbers of buying transactions accepted by the prototype and by the random strategy.

Here we chose T=1 hour as time unit and MAX=3,000. It can be seen that, as expected,

at times when the workload is low, the prototype did not act, so the curves for both

strategies coincide. On the other hand, when the workload exceeds MAX, the prototype

chose better and admitted a substantially higher number of buyers. In other words, the

area between both curves is the %improvement column of Table 4.2.

4.5 Automatic detection of content stealing Bots

As an example, we take the online travel sales industry. Online travel agents contract

services from Global Distribution Systems (GDS) (see Section 3.1) under specific SLAs

and look-to-book ratios (number of searches per reservation). When a user makes a flight

search, the request is sent via Web services to the GDS, which in most cases forwards

petitions to airline companies to produce the final flight availability result.

Recently, flight comparison sites are appearing that operate by scraping in real-time

several travel sites and combining results in their own page. Although they might be

useful for users, they are becoming a problem for real travel agencies and the rest of

the supply chain, as each search is resource-intensive and costly. Flight comparison

sites also increase the look-to-book ratio, therefore the derived costs of travel agents,
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while operating basically at zero cost. Detection and banning of such sites is generally

performed manually by administrators by blocking their IP address; nevertheless, as

in the case of spammers, Web scrapers are continuously introducing new techniques to

bypass detection, such as IP proxies or IP pools [96].

As the prototype presented in this chapter prioritizes users according to their expected

revenue, and most Web scrapers never purchase, we have detected that they were sys-

tematically being assigned a very low priority, and thus the firewall could discontinue

these sessions in case system resources where scarce. As a proof of concept, we have

expanded the mechanism from only detecting purchasing users, to also detect Web bots,

in a travel agency dataset presented in 3.2 that we use again here.

4.5.1 Experiments Bots

We wanted to test whether it was possible to identify with reasonable certainty bots ac-

cessing a Web site for automated banning. For this we have classified each session in the

training dataset, as either a buying (human) user, a non-buyer user, or a bot. To classify

a session as content stealing bot we have used the following criteria: the total number

of searches, time average between searches, and the number of origins/destinations in

all searches, for each Web session or IP addresses. The approach has been manually

sampled to validate bot classifications to minimize false positives; once training models

are generated further classification can be performed automatically. In this way, about

15% of the traffic in the training set ended up being marked as due to content stealing

bots.

In particular, 74% of bot accesses were predicted as such, and among all accesses pre-

dicted as bots, 81% truly corresponded to bots. We regard these figures as quite good.

In particular, they indicate that the system could potentially be used to filter out at

least 10% of total traffic by banning bots.

4.5.2 Summary Bots

Content stealing on the Web is proliferating rapidly as it becomes more profitable,

affecting not only content sites, but also Ecommerce sites that rely on paid transactions

for product availability. We have extend the prototype to show promising results on the
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applicability of machine learning techniques for automatic detection and banning of bots.

Results obtained can free administrators from manually performing these operations

while leveraging revenue loss from the spurious transactions.

4.6 The effect of dynamic server provisioning

In the next experiment we wanted to simulate the benefit of our technique in an environ-

ment where not all servers have to be active at all times, but where they can be turned on

and shut down dynamically. This possibility is today routinely used in all centers having

a reasonable number of in-site servers: in this case, shutting down unnecessary servers

results in immediate savings in power (both for the server itself and for cooling), hence

lower costs. Also, dynamic provisioning of external servers is becoming mainstream too.

Services such as Amazon’s Elastic Computing, Sun’s Grid, or Google’s Cloud, enable

Ecommerce sites to be configured at a minimum number of server resources and provi-

sion according to the incoming load, with a de facto unlimited number of servers. We

phrase the rest of the section in terms of dynamic provisioning for clarity.

For this experiment, we used the 24-hour dataset in the previous section and studied

the number of servers that would be needed at different times of the day to serve the

incoming load at that time. Then, we compared the number of servers that would

be needed if our only interest was to serve all (or most) buyers, possibly dropping

many nonbuyers. The prototype implementation makes a big difference between both

situations: using the predictions from the prototype, the most promising customers can

be allocated to server 1, the next most promising ones to server 2, etc. At some point,

the highest-numbered active servers are likely to be receiving mostly non-buyer sessions.

If the number of buyers in a server is sufficiently low with respect to the cost of having

the server running, it is beneficial to the company to shut it down, maybe failing to

serve a few buyers, but mostly discarding non-buying traffic. Conversely, if all servers

are receiving a non-negligible number of buyers, it may be time to request a new server

to the dynamic provisioner.

While we did not simulate this mechanism strictly speaking, we carried out an experi-

ment to let us visualize its potential benefits. Note that the intention of the experiment

was not solving the problem of deciding when acquiring or releasing a new server. There
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Figure 4.7: Evolution of load and number of dynamically provisioned servers

is extensive literature on the topic, but we used a simple yet effective approach: we

average the load change in the last 10 minutes of requests, and multiply it by the time

it would take to start a new server (chosen to be 10 minutes for the experiments); we

request a new server if the expected load is higher than the current capacity. The same

mechanism was applied to release a server, but with the constraint that a newly added

server must stay on for at least 15 minutes.

In the experiment, we assumed that each server can handle 50 requests per minute. This

would mean, in our dataset, that 10 servers would be needed to serve the peak load.

Figure 4.7 shows the evolution of the number of active servers when the strategy above

was used to acquire/release servers dynamically. It can be seen that it closely parallels

the evolution of the load, and it fact it over provisions by a slight amount. The area

between the plot and the 10-server line above the peak represents the savings in server

cost with respect to keeping all 10 servers up at all times.

So far, this is independent of the usage of the prototype. To see the potential benefit of

combining dynamic server activation (or dynamic provisioning) and server prioritization,

one has to study the amount of buyers served at different servers. Table 4.3 shows some

figures for analysis, accumulated over the 24-hour period in the dataset. It compares

three strategies: the “static” strategy, in which a fixed number of servers (from 1 to 10)

are permanently active, and each new session is assigned to the least-numbered server

with available capacity; the “dynamic” strategy, in which servers are turned on and off
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#servers Buyers Static Buyers Benefit Benefit Benefit
& Dynamic Prototype Static Dynamic Prototype

1 3166 12961 2355 2355 12150
2 5968 13812 4345 4512 12361
3 8624 14606 6190 6612 12593
4 11131 15361 7886 8575 12805
5 13474 16064 9417 10391 12982
6 15465 16659 10597 11888 13083
7 16703 17026 11024 12665 12988
8 17115 17146 10624 12700 12700
9 17157 17157 9855 12422 12422
10 17157 17157 9044 12323 12323

Table 4.3: Buyers served and benefits of different strategies

as the load requires, and sessions are assigned to servers as above; and the combination

of the dynamic strategy which the prototype, in which incoming sessions are assigned

to servers 1, then 2, etc. in order of purchase probability (so most promising sessions

are assigned to server 1). Each table row represents a number of servers, from 1 to

10. For each number of servers i, the five columns list: how many buyers are served by

servers 1. . . i in the static and dynamic strategies (note they have to be the same); how

many buyers are served by servers 1. . . i in the prototype strategy; and the actual benefit

generated by servers 1 to i in each of the three strategies. To compute this benefit, we

have assumed that each (served) buyer produces a benefit of 1 and each server a cost

of 0.33 per minute, a ratio which approximates the average benefit per buyer in our

dataset’s agency and the actual cost of Amazon’s Elastic Computing current prices.

From the table one can observe a number of phenomena: first, even in the static strategy,

server 10 serves no buyers. This is because our strategy for predicting future load tends

to overestimate, so server 10 is basically over provisioning and serves no load. Also,

as is to be expected, in the static and dynamic strategies, server 1 gets about 19% of

the buyers (i.e., more than 1/10): this is because the session assignment strategy tries

to keep it fully busy, so it receives the largest share of the load. In contrast, in the

prototype strategy, lower-numbered servers get a fraction of buyers larger than their

fraction of load share. In particular, server number 1 alone serves 75% (=12961/17157)

of the buyers.

For the three strategies, the benefit grows with the number of servers up to 6-8 servers, at

which point each new server produces more cost than benefit. However, the prototype’s
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maximum benefit (13082) exceeds slightly that of the dynamic strategy (12699), and

both exceed by far that of the static one. The point to note here is that the actual

figures depend on the values we have assumed on the ratio of benefit per buyer / server

costs. In a situation where the ratio is much lower (e.g., server time is expensive), the

prototype’s benefit could potentially exceed the dynamic strategy by far. In the extreme

case, the company could serve 75% of its buying customers with just 1 server, while the

dynamic strategy would need at least 5 servers for the same effect.

Admittedly, there is a strong practical consideration that we have not taken into account

in this simulation: companies are reluctant to losing not only buyer, but also non-

buyer sessions because that means a loss in user satisfaction and prestige (hence, future

revenue). On the other hand, marketing techniques produce estimates of the value of a

lost session, which could be incorporated into the computations above.

4.7 Other potential applications

This section describes other potential applications to the techniques described in the

chapter. We summarize as using machine learning techniques to characterize individual

anonymous Web sessions in real time from available session information and past data.

A first approach to extended the experiments presented in this chapter, is to use other

metrics than if the session will end up in a purchase, to prioritize it. Two that we plan

to investigate in the immediate future are:

• Expected purchase value and profit margin for the session, in case not all purchases

have the same value or profit.

• Number of served sessions. This is an important metric, applicable to sites that

do not sell products, yet user satisfaction is important. The idea is the following:

Assume that resources used by a session i.e., computing time, memory, bandwidth,

database searches, among others that can be predicted with some accuracy in the

way we predicted purchases; preliminary experiments indicate that this is indeed

the case. Then the system could prioritize sessions that use fewer resources and

penalize resource-consuming ones. This way, more sessions per time unit could
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be served, increasing the number of served users. This is important since being

served at all is probably the most important factor for user satisfaction.

For Ecommerce sites, features that we have not considered but that could be taken

into account are: magnitude of the transaction, type of product, profit margins, type of

customer (new, returning, gold), demographic group, and a combination of these features

according to the type of site and path. The idea is that by predicting the benefit to be

obtained from the session, it could be contrasted with infrastructure costs, and shape

QoS accordingly.

Information, media streaming, or social-networking sites can definitely benefit from pre-

dictions about session costs and user contribution to the network, to change the QoS of

the session. Users that contribute more, or that seem to be impatient in information

sites, could automatically be granted more bandwith and better response times. On

the other hand, leachers and content stealing bots [28] should see their QoS lowered if

system resources are low, and even denied access in case of overloads. For sites that do

not rely on external providers or pages that are mainly static or cacheable prefetching

can be used as in [44–46]. Predicting user intentions can be used in the field of dynamic

content adaptation [43, 49], where the page content, layout, links, and banners change

according to the predictions about the user.

4.8 Summary

Websites might become overloaded by certain events such as news events or promotions,

as they can potentially reach millions of users. When a peak situation occurs most in-

frastructures become stalled and throughput is reduced. To prevent this, load admission

control mechanisms are used to allow only a certain number of sessions, but as they do

not differentiate between users, users with intentions to purchase might be denied access.

As a proof of concept, we have taken data from a high-traffic online travel agency and

learned to predict users’ purchasing intentions from their navigational patterns.

In our experiments, we are able to train a model from previously recorded navigational

information that can be used to tell apart, with nontrivial probability, whether a session

will lead to purchase from the first click. The maximum number of allowed users to the
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site can be regulated, according to the infrastructure’s capacity and goal specification, by

placing a threshold over the predicted buying probability of incoming transactions. That

is, the model can adapt itself dynamically to the workload while maintaining reasonable

recall and precision.



Chapter 5

Response time effect on sales

5.1 Introduction

Capacity planning techniques and service management for online Web sites are living

a period of changes: the cloud computing paradigm and the appearance of advanced

service management products that dynamically adapt provisioned resources pose new

challenges at deployment time. System administrators need to make important decisions

about the different parameters that seriously affect the business results of any online

Web site such as: what is the best performance goal for each online application, usually

presented in the form of a response time objective? What is the highest number of

servers that the company may afford on peak hours and other workload surges? What

would be the effect, in business terms, of limiting the resources for an application and

degrading its performance slightly to reduce the bill of the hosting? In this chapter

we propose a methodology that provides answers to these questions without the need

to manipulate the systems in production, as it only requires offline information usually

collected by most online Web sites.

Determining the impact of high response time on sales and business volume is something

that can be studied injecting delay on pages and using A/B testing methodology to

measure, but this approach is not always feasible. Very large companies can intentionally

degrade the performance delivered by a fraction of their servers with minimal impact for

their business to study the effects of performance degradation on their business balance.

The same process may have a strong impact for small companies and thus, they hardly
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Figure 5.1: Comparison of Response Time and Predictions in Normal and Overload
Operation for Two Days

decide to use such approach. Therefore, new methods must be developed to carry on

such studies with minimal interference on the systems.

In this chapter we introduce a novel methodology for studying what is the total volume

of sales lost for an online retailer during performance degradation periods. We use

Machine Learning techniques to predict the expected sales volume over time and look for

deviations over the expected values during overload periods that introduce performance

degradation. Using such technique, we can estimate the total impact of high response

time in the business activities of an online service in a non-intrusive way. The proposed

methodology starts with a study and characterization of the sales dataset presented in

Section 3.2, that leveraging Machine Learning techniques constructs a model of sales.

Such model allows for an accurate prediction of expected sales in short time frames. The

model is then used to contrast actual sales with expected sales over time, and determine

the impact in sales of overload periods that caused degraded QoS —measured in the

response time— by the online applications.
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5.1.0.0.1 High Response Time Example For the sake of clarity, we include here

a simple example that shows the use of the methodology presented in this chapter to a

real Web application. Figure 5.1(a) shows response time for the same application over

a 8h period for two different days, where Day2 corresponds to a day in which some

overload was observed, and as a consequence, performance degradation resulted in a

response time surge; on the other hand, Day1 corresponds to a regular day. A question

one may want to answer after observing such performance degradation is: what is the

volume of sales that was lost due to response time surge? The result of applying the

proposed technique to the previous example can be seen in Figure 5.1(b), where relative

error between real sales and the predicted sales volume is shown. As it can be seen, the

expected sales would be higher than what was observed, and it can be even quantified by

what margin. In the following sections we will further elaborate on how to systematically

build the sales model that helps estimating the loss of sales during the overload period.

Where the model needs to capture conversion rate variability of every time and date

in small time frames, as QoS on servers changes by the minute and sales are prone to

seasonality effects.

5.1.1 Methodology

This chapter first presents the study of conversion rates for a real OTA, that brings

results not previously reported in the literature about peak load periods; and second, the

use of a sales model built using machine learning technologies with the goal of quantifying

sales loses due to overload periods and response time surges. To our knowledge, such

application of a sales model has not been previously reported in the literature. We

have classified the contribution as a four steps methodology that can be systematically

followed to understand the sales characteristics of any online business, and to build and

use the sales model mentioned above. In particular, the proposed steps are:

• Step 1: Workload and performance characterization of the supplied datasets to

understand user behavior and the causes high response time. (Section 3.2).

• Step 2: Study the conversion rate variation during the day for the OTA based on

sales datasets (Section 5.5).
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• Step 3: The construction of a model for sales prediction through Machine Learning

techniques and its validation (Section 5.7).

• Step 4: Characterize response time thresholds of user satisfaction (satisfied, toler-

ating, frustrated) for the OTAs applications (Section 5.8).

The output of Step 4 is suitable to be used for building autonomic resource managers that

dynamically adjust the resources allocated to each different online application in cloud-

like environments while observing conversion rates, performance, and energy constraints.

Such use of the proposed methodology is our current subject of research.

5.2 Progress beyond the State-of-Art

Response time effect on user behavior has been studied as long as 1968, where Miller [30]

describes the “Threshold Levels of Human Interaction and Attention with Computers”.

In 1989, Nielsen [81] revalidated Miller’s guidelines and stated that the thresholds are

not likely to change with future technology. These thresholds being: 0.1 to 0.2 seconds,

instantaneous; 1-5 seconds the user notices the delay but system is working; and 10

seconds as the threshold for user attention. Other authors [79, 80] adhere to what they

call the 8 seconds rule, where no page should take longer than 8 seconds to reply. While

the APDEX standard [82] sets the threshold for frustrated users at 4 seconds. The are

several industry reports stating that users expect faster response times than previous

years, specially the younger generation [1, 4].

To prevent loss in sales due to overloads several techniques have been presented such

as session-based admission control systems [22, 23] used to keep a high throughput in

terms of properly finished sessions and QoS for limited number of sessions. However,

by denying access to excess users, the Web site loses potential revenue from customers.

Later works include service differentiation to prioritize classes of customers, in [99, 100]

authors propose the use of utility functions to optimize SLAs for gold, silver and bronze

clients. In Chapter 4 we propose the use of Machine Learning to identify most valuable

customers and prioritize their sessions.

Menasce et al. [11], perform an assessment on how QoS of Ecommerce sites plays a crucial

role in attracting and retaining customers, where they propose a workload manager
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Figure 5.2: Number of requests and sessions for 24hr period

using predictive queuing models of computer systems based on a hill-climbing method.

Authors perform admission control based on the response time of the system. However,

their work is based on a popular but synthetic workload, the TPC-W, and does not have

sales into account in contrast to this thesis. In [7], Mazzucco proposes the use of utility

functions to optimize auto-provisioning of web servers. None of this works however,

explore the effects of higher conversion rates a peak loads, and by ignoring this fact,

QoS of service is no optimized and potential sales are lost. Nowadays, Cloud computing

enables enable sites to be configured at a minimum number of server resources and

provision according to the incoming load, with a de facto unlimited number of servers,

enabling autonomic resource managers to auto-configure server numbers [7, 101]. In

Chapter 6, we show how the methodology presented in this chapter can be extended to

produce a QoS-to-sales model to be applied to Cloud environments.

5.3 Workload characteristics

For the dataset, the mean pageview for the whole dataset is 5.1 pages per session,

with 6:45 minutes spent on the site, an average of 1.5s response time for dynamic page

generation, and 10MB of RAM memory consumption. Recall that the highest traffic is

on Mondays and decreases to the weekend. The opposite effect is observed on average

pageviews as well as the time spent on the site; they both increase during the week,

peaking at the weekend, from: 5.82 and 6:40 on Mondays to 6.27 and 7:31 on Sundays,
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products

pageviews and time spent respectively. An interesting feature of the dataset is that

mobile devices represent over 6% of the visits at the end of the dataset, while the

previous year represented less than 2% of the total visits, showing a growing trend.

Figure 5.2 presents the number of requests and sessions for an averaged 24hour day from

the full dataset. As it can be observed, traffic starts growing from 8 to 14 hours, lunch

time in Spain, where most of the traffic comes from, then it decreases until 16, return

to office hours, and continues to grow peaking around 22 hours. After midnight, traffic

volume decreases until it finally reaches the beginning of the cycle again.
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5.4 Response time analysis

In the following section we perform an analysis on response time: how it varies during

the day, how it is affected by server load, how it affects the different applications, and

finally it effects on user behavior. While studying the dataset, we have noticed that

there was a great variation of response time during the day for the different applications

of the OTA, as shown in Figure 5.3. We have identified for the OTA that response time

increase was directly related to: the number of concurrent user sessions at a given time

at the site, database response time, and external providers response time. Database and

external providers response time also increased at peak hours of the OTA as can be seen

in Figure 5.3, causing part of the slowdown. Some resource contention is also present at

peak load times, from Figure 5.3 there is contention between 18 and 23 hours.

As a note, most of the requests in our dataset have a response time below two seconds as

shown in Figure 5.4, so even in peak times periods, the system is generally in a normal

state. Total response time for a request is the time it takes Web servers to start sending

the reply over the network to the user’s browser. It is important to notice that in the

OTA’s application, output buffering is turned on for all requests, so no data is sent over

the network until the full request is processed and gzipped, if supported by the user’s

browser. There is an additional time for the browser to render the final webpage, but

it is not present in our dataset and is not part of this study as it deals with the actual

HTML and media content.

5.4.1 Response time decomposition

From the available dataset, response time can be decomposed into: CPU time in system

mode, CPU in user mode (including I/O times), database wait time, and external request

wait time. Figure 5.3 presents the total response time for the complete dataset grouped

by hour of the day. If we contrast it with Figure 3.5, by each daily period it can be

seen clearly that response time increases with the total number of requests. Figure

5.3 also divides total time by the different resources, where the database response time

also increases at peak hours. External request response time is not affected in the

same proportion. CPU in system mode is not plotted on the graph as it was too low

in comparison to the rest of the features; however it also presented noticeable higher



Response time effect on sales 85

 0

 1

 2

 3

 4

 5

 6

03/01 03/02 03/03 03/04 03/05 03/06 03/07 03/08

L
o
a
d
 A

v
e
ra

g
e

Day of the Week (M/D)

Load Average

Figure 5.5: Load Average values for the week

response times at peak load. At peak time, from 18 to 22hrs, as Web server process more

requests, they also present some resource contention due to high load average detailed

in the next section.

5.4.2 Response time and server load

The next section analyzes how response time is affected as the load on the Web servers

increases. To measure server load, we take the load average system value present in most

UNIX systems [102], recall that the value of the load average is related to the number of

scheduled jobs pending to be processed by the CPU. Load average is a very extended,

simple, but accurate value for measuring current load on a server; in this study we use

load averaged to 1 minute —opposed to 5 or 15 minutes— to have higher detail. To

understand how busy is a server by the load average, it is important to notice that

each Web server has 2 CPUs with 2 cores each (described in 3.1.6), giving a total of 4

cores per server; as a rule of thumb, after 4 units of load average servers are considered

overloaded (1 for each core).

Figure 5.5 presents the load average of the servers during the one week dataset. If we

compare Figures 3.5 and 5.5 we can correlate how load average is affected directly by

the number of concurrent requests on a given time, and that it follows the daily request

pattern.
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Figure 5.6: Response Time by Load for different Apps

In Figure 5.6 we plot response time (Y axis) and load average (X axis) for the most

popular applications, Apps 1 through 6 and the average ALL for all applications. Load

average starts from 0, being the least busy value, to 10, the maximum value recorded on

our dataset. From Figure 5.6 it can be appreciated that response time increases almost

linearly as server load increases. From load 0 to 10, it increases almost to 10x in ALL

for all applications, and up to 25x for App 2.

Response time increases with server load for three main reasons: server resource star-

vation (less dedicated system resources for a request), external B2B requests increased

response time (low QoS), and contention between resources (jobs waiting for blocked

resources).

For server resource starvation, Figure 5.7 shows how the percentage of CPU assigned by

the OS to a specific Apache thread (request) reaches a maximum at load 2 (saturation

point), and then starts decreasing leading to higher response time values. The same

effect happens with the percentage of assigned memory, Figure 5.8, plots how memory

percentage to Apache threads decreases very steeply from load 2.

As for external resource QoS, Figures 5.9 and 5.10 shows the response time for database

queries and external B2B requests respectively. In Figure 5.9 we can see how the

database response time also increases 3x in average for all applications, and up to 8x

for App 2, which has a higher database usage. Figure 5.10 shows the average response

time to external requests, we can see that App 2 is affected highly by the QoS of the
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Figure 5.8: Percentage of Memory Assignation by Load for Different Apps

external provider(s), while for App 1 it stays constant. The effect on App 2 is caused by

the external providers getting overloaded at similar day times, than the analyzed site;

while the QoS for App 1 is stable at the sites peak hours.

It is important to notice that the less affected application by server load, is App 3, it is

clear from Figures 5.9 and 5.10 that it does not rely on database or external requests,

having the lowest response time increase, 2.5x. The other extreme, App 2, is heavily

affected by both the database and external request times. An important feature from

the last figures, if we zoom into the graph, is that the best response time is not at load

0, but is between load 0 and 1, as at load 0 (mainly at night time) cache hit rate is lower



Response time effect on sales 88

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  2  4  6  8  10

D
a
ta

b
a
s
e
 R

e
s
p
o
n
s
e
 T

im
e
 i
n
 S

e
c
o
n
d
s

Load Average

ALL
App1
App2
App3
App4
App5
App6

Figure 5.9: Database Response Time by Load for Different Applications
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Figure 5.10: External Request Time by Load for Different Applications

which leads to slightly higher times, although not comparable to high load average.

5.5 Conversion rate study

The main concepts of Conversion Rates, CRs, where briefly introduced in Section 3.1.3.

The following section provides and analysis of the CR of each product of the OTA during

the 6 month period of the performance datasets. CRs are calculated from the number

of sessions in the performance datasets and the number of sales for each product in the

sales datasets for the corresponding period of time. The objective of such analysis is to
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Figure 5.11: Conversion Rate by hour for different applications

understand how selling hotspots are distributed over time for the studied business. Such

study is very relevant to measure and quantify the effects of QoS on the sales volume

observed for the OTA. Notice that the CR does not necessarily change with oscillations

in volume of traffic that can be observed for any Web site (e.g., Figure 5.2), as CR has

to do with the fraction of visitors purchasing products, and not with the overall volume

of visitors.

5.5.1 Conversion rates by product

Figure 5.11 presents the CR of the different products of the site; averaged and grouped

in a 24 hour period. Figure 5.11(a) shows the CR of ALL the products combined;

Figure 5.11(b) groups products with similar CRs; while Figures 5.11(c) and 5.11(d),

events and trips (vacation packages) respectively.

In average for all products of the site, the conversion rate is higher at the site’s peak

traffic time in number of requests. The CR of the averaged application follows very
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closely the daily patterns of the number of sessions in the system (compare to Figure 5.2)

during a 24 hour period: from 1am to 8am there is a low CR, sleep time and also higher

percentage of bots and crawler activity; from 8am until 14hrs, lunch time in Spain where

most of the traffic comes from, the CR increases progressively during the morning as

the number of sessions increases; from 14hrs until 16hrs, the CR lowers during lunch

time, then continues to grow in the afternoon along with sessions, until 18hrs where the

CR decreases due to end of office hours; it increases again from 20hrs peaking around

22hrs. A remarkable conclusion must be pointed from the observation of these figures:

the CR for all the products available from the OTA follow a pattern that is strongly

correlated to the traffic pattern observed in Figure 5.2. The interpretation of this fact is

that the hours at which the traffic volume is the highest, the fraction of customers that

are actually purchasing products is also higher, resulting in still higher sales periods.

Recall that such a result indicates that the relation between volume and sales is not

constant over time, and leads to a very important increase of sales over peak periods

were not only traffic volume grows but also the average CR; most users buy at similar

time-frames.

Notice that it is a usual case that many infrastructures are not dimensioned for sustaining

QoS at peak hours, as they are considered surges in the traffic and static provisioning

of resources to manage punctual very high traffic volumes is unaffordable. Of course,

such decision results in worse response time and QoS in general during peak periods.

Looking at the charts for Atrapalo.com, it can be observed that these are not only surges

in traffic, but also the best-selling periods of the day. Although industry and consumer

studies (see Section 5.1) reports that a high response time has a direct effect on sales, as

conversion rates are higher at peak times, the total loss in sales might not be apparent in

most cases. Figure 5.11(b), shows the CR for products with similar magnitudes: flights,

hotels, and restaurants. The flights application has similar CR during day, while hotels

has a higher peak than the other applications between 21 and 23hrs. Restaurants in the

other hand have subtle differences, has a morning peak at 13hrs, just before lunch time

at 14hrs; the same happens at 18hrs before dinner time.

Figure 5.11(c), show the CR for events which has a distinct pattern it grows fast in the

morning and peaks at 12hrs then decreases throughout the day. For events the most

important time frame to provide a high QoS is between 10 and 13hrs, while for hotels is

between 19 and 22hrs. Another interesting feature of the CR of events, is the magnitude
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of the CR, which is twice as high compared to applications in Sub-figure 5.11(b). This

might be due to the fact that certain events are sold exclusively by the site. This fact

makes this product more inflexible to loss in sales due to poor performance.

5.6 Conversion Rates as a function of response time

It has been shown above that, in general terms and for most products, high conversion

rate times coincide with the rest of the product peak hours and worst response times.

This can be seen by comparing Figures 5.2, 5.3, 5.11(b), and 5.12. Notice that for each

application, its CR will inherently exhibit a different behavior in result of changing QoS,

which is caused by the nature of the application.

Figure 5.12 explores the conversion rate as a function of average response time by com-

bining data fom the long-term sales dataset and data from the short-term performance

logs (see Section 3.1) grouped in 10 minutes intervals from the performance dataset. By

analyzing the figure there is no clear indication that a high response time yields fewer

sales. On the contrary, most applications are able to maintain CR and sales even in the

periods of higher response times. For instance, flights usually involve complex search

it would indicate that a high response time maintains or improves sales. To study this

effect further, the next section presents our methodology for forecasting expected sales

in short time frames for each application; in order to measure how a low QoS during

peak times affects more sales than previously reported.

5.6.1 Seasonality

Vacation products such as flight and hotel reservation vary greatly during the year

according to season. During spring there is a high season for reservations before sum-

mer; the opposite effect is appreciated during fall, where the number of sessions drops

significantly. Holidays and school vacation periods also affect touristic products, e.g.,

Christmas and New Year’s Eve also creates peak time during the first days of December.

A similar but more condensed effect is seen in ticket booking and as tickets for certain

events tend to be limited, a rush of users might flock the site to get hold of the tickets,

also creating peak loads. Moreover, as users are a click away from any site on the Web,
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Figure 5.12: Conversion Rate as a function of response time

certain events such as mail promotions, high-impact banners, social linking can create

peak loads in the workload within minutes.

5.7 Predicting sales with Machine Learning

Most traditional sales forecasting techniques involve some form of linear or multiple re-

gression analysis. In our preliminary work we have tried several methods i.e., linear,

quadratic, and cubic regressions to predict expected sales for different weeks in short

periods of time bins, e.g., 10 minutes, using the sales dataset. We found that pre-

dictions were too general and not precise enough for the short time frames we wanted

to measure response time in. To overcome this situation and improve predictions, we

have built a sales forecasting prototype implementing Machine Learning numerical al-

gorithms. The prototype implementation learns from the different CRs during the day

and across seasons, with training from the five years of the sales dataset to overcome

the effects described in the previous section about peak loads and seasonality effects.
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Figure 5.13: Sales prediction process

To forecast sales, we have built a prototype based on the WEKA open-source Machine

Learning package (see Section 2.4.1), which contains several ready to use classifier algo-

rithms. As we want to predict expected sales for short time bins, representative of the

response time (QoS) in the system at that moment, while also having precise prediction

results, which depend on the volume of sales per time bin in the sales dataset. We have

tested predictions for 30, 15, 10 and 1 minute bin intervals. One minute bins turned

out to be too low to have accurate prediction results, and as Web sessions for buying

visits are longer [27], it only partially reflected the response time for the session. Thirty

minute proved to be too high, as server status might have changed drastically in this

time frame. After some experimentation, we have decided to use ten minutes as the

time frame for the rest of the experiments: it is low enough to represent the current QoS

on the system and high enough to cover most of the Web session with accurate sales

predictions in our sale dataset.

In WEKA, a predictor model is trained using a specially formatted training dataset

that should contain the most relevant available variables to predict sales. After training

the predictor with the training dataset, a test dataset with the same format is used

to perform predictions. The predictor reads the test dataset, ignoring the class —the

unknown variable, in our case the number of sales— if present, and according to the

training and the algorithm used, outputs a prediction of sales —the class— for each of

the time bins.

Figure 5.13 presents the general process of our prototype implementation. It begins by
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preprocessing the historic sales dataset provided by the OTA, by aggregating entries into

the specified time-bin length —10 minutes in our case— then exporting the aggregated

dataset in a format compatible with the sales learner. Following, the sales learner

implements the specified machine learning classifier and trains itself to produce the

predictor model as an offline process. After the predictor model is trained, for every

10-minute bin from the period corresponding to the performance dataset, the prototype

performs a sales prediction. From this moment two things happen: first, the data on

the period corresponding to the time bin, is fed back to the learner module; second,

actual and predicted sales are compared and the difference in number of sales is stored

along with the current system response time. The following sections detail the prediction

process and prototype implementation.

5.7.1 Prediction methodology

For the training dataset, we have preprocessed the 7 year long sales history dataset

(see Section 3.2) into 10 minute bins, each day containing 144 bins; creating a training

and test datasets for each application of the OTA, and one for ALL the applications

combined. As resulting predictions should be as-close-as-possible to the actual number,

but not necessarily predicting the exact number, for this purpose we have implemented

in the prototype several numerical classifiers available in WEKA, that predict values

within an error percentage range.

5.7.1.1 Attribute selection

After some experimentation selecting attributes the training dataset contains the fol-

lowing attributes:

• Number of sales for the 10 minute bin. The class being predicted.

• Year of the sale.

• Month of the sale.

• Day of the year.

• Day of the week.
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• Hour of the day.

• The 10 minute bin for the day, from 1 to 144.

The goal is that each attribute adds valuable information when building the predictor

model. For example, the month of the year should add information on whether we are in

low or high season. Each day of the week has differentiated sales volume: Mondays have

more sales and decreases through the weekend for most applications, except for events

which is higher on Fridays. The same goes for the time of the day, which has different

conversion rates for each application (Figure 5.11(b)). It is important to remark that

the training dataset only contains data previous to the test dataset.

More attributes could be added to improve predictions, especially to cover seasonality

effects e.g., of holidays, where the numbers of days to a vacation period could have been

added. However the purpose of the prototype is to provide representative predictions and

a proof-of-concept of the method. As a note, most numerical algorithms can improve

predictions by using nominal values instead of numerical ones, e.g., hour of the day

as a category not as a number, however resource requirements are higher and default

parameters for the algorithms needed to be tuned to improve predictions; we found only

negligible improvements using nominal attributes and the combination of numerical and

nominal attributes at the same time.

5.7.1.2 Prototype Implementation

For our prototype implementation we have used the 7 year long sale history dataset to

create the training dataset, we cut the dataset the day before we want to apply the

predictions, in this case at the beginning of the performance dataset so no information

of the future known when building the model. Our prototype implementation has as a

parameter how long (in days) the test dataset should be and creates several training and

test datasets incrementally. As an example, setting as input 7 days to the prototype,

the first training dataset would contain data from the beginning of the sales dataset,

to the date where the performance dataset starts —the first week of February 2011.

The second training dataset would contain same data as the previous training dataset

plus the first week of February, the second test dataset would be for the second week of

February, and so on.
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LinearR M5P REPTree Bag(M5P) Bag(REPTree)

Correlation coefficient 0.7215 0.9515 0.9465 0.9571 0.9556
Mean absolute error 16.8619 5.892 5.8393 5.6465 5.6517

Root mean squared error 19.9969 8.1515 8.067 7.8087 7.8263
Relative absolute error 64.3319% 24.6382% 24.418% 23.6116% 23.6333%

Root relative squared error 65.8654% 29.9866% 29.6757% 28.7257% 28.7904%

Table 5.1: Classifier evaluation

We have tested predictions with different lengths, as the shorter the time frame, the

better predictions should be, as behavior from previous days is learned by the model

and should improve predictions. However, we have noticed that since the sales dataset

covers a great time span, for the tested classifiers previous days do not influence or

improve results significantly. Moreover, if on the previous day there was a surge, we

do not want the model to predict lower values for the next day, but what would be

the expected sales taking into account the conversion rate for this product. In a real-

time online implementation, the model will be up to date to the previous time bin. 7

days (1 week) was used as test dataset time span for the presented results in the next

sub-section.

5.7.2 Prediction results

The first training dataset used by the prototype to build the predictor contained 214,849

instances, while the first test dataset contained 1008 instances, for a total of 24,192

tested instances for the full length of the performance dataset. We present results

for the following numerical classifiers found in WEKA: LinearRegression, REPTree,

Bagging(M5P), and Bagging(REPTree). More complex classifiers could have been used

e.g., neural networks, but the processing time required for training seems too high to

consider them in a real-time applications and were discarded for the time being.

Table 5.1 presents accuracy for the different selected classifiers: LinearRegresion is the

least performing classifier with a Relative Absolute Error of 64.33%, while M5P and

REPTree have 24.63% and 24.41% Relative Absolute Errors respectively, REPTree being

faster to train. The Bagging meta-classifier was also tested implementing both M5P

and REPTree, improving precision for both algorithms to 23.6% for both Bagging(M5P)

and Bagging(REPTree). Meta-classifiers split the training dataset in instances, testing

different parameters of the selected classifier and selecting the most precise ones, they
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Figure 5.14: Classifier Precision by App for an Averaged 24hour Day

perform several iterations of the regular classifiers with different attributes and selecting

the best for each case, but take longer to train. As a note, all experiments were performed

using default values in WEKA. Linear regression has essentially no parameters. RepTree

and M5P, like all decision tree methods, have a parameter controlling the size of the

tree; we verified that, in our case, optimizing over that parameter gave only negligible

advantage over the default value. Figure 5.14 presents the averaged class results for a

24hr day of actual sales vs. predictions.

Although LinearRegression was the least performing algorithm, the model is simple

enough to illustrate how classifiers work:

10minute sales = 1.48× year + 0.17×month+−0.03× day +

0.43× day of week + 1.08× hour + 0.08× 10minute+ k

Where k is a constant not disclosed for confidentiality limitations. Parameters for each

variable are dependent on the training dataset values, and in this case specific for the

OTA and presented as an example.

Apart from linear regression, the rest of the classifiers have less than± 2% error difference

compared to actual sales when average response time for the 10 minute time bin falls
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within 2 seconds. Between 2 and 4 seconds, the classifiers are less precise and under-

perform up to -4%, this might indicate that the site sells more than expected at this

QoS. After 4 seconds, classifier error rate starts increasing positively, over predicting

results, with milestones at 6, 8, and 10 seconds. From 10 seconds, classifier error starts

to grow steeply from an average of +3% errors to 40% at 14 seconds. When response

time is above 10 seconds, classifiers over predict indicating that sales should have been

higher, and deviate from actual sales results.

In this section we have presented our methodology for predicting future sales for short, 10

minutes, time bins by implementing and testing different Machine Learning classifiers on

the sales dataset. Tree classifiers —M5P and REPTree— as well Bagging meta-classifier

implementing both algorithms, offer high accuracy predicting sales for normal Web site

operation. In the next section we perform an evaluation of a high response time effect

on predictions and user satisfaction.

5.8 Response time effect on users

In Section 5.6 we have shown that the workload peak times coincide with high conversion

rate for most applications of the OTA. Therefore, a loss in sales due to high response

time is not apparent (Figure 5.12) as the fraction of buyers in the workload is also

higher at these times. To counter-measure this effect, on the previous section, we have

presented our prototype implementation to forecast expected sales for short time bins of
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the workload with great accuracy results. However, as response time increases, classifiers

over-predict sales; this section analyses this effect further.

In section 3.2, we have seen how Load on the Web servers increases with the concurrent

number of requests and sessions. High load on servers usually translates into an increase

in response time, which increases for three main reasons: server resource starvation, less

dedicated system resources for a request; external B2B requests and database increased

response time, low QoS on dependencies; and contention between resources, jobs waiting

for blocked resources. Details of these reasons are further developed in [10]. Further-

more, not all applications response time increases in the same proportion with server

load, as each application has differentiated resource requirements, especially for external

resources. Going back to Figure 5.3, we can appreciate how Hotels, is the most affected

application by server load, as it has a higher number of database queries compared to

other applications, and its peak time coincides with external providers worst QoS. While

events is the least affected application as it has no external dependencies besides the

database.

Notice that, as it was shown in Section 5.6, peak load times coincide with high conversion

rate periods for most applications of the OTA, where we have shown that all of the

analyzed applications have a corresponding high CR when there are more users on the

system and the QoS is worst. Therefore, a loss in sales due to high response time may

not be apparent as the fraction of buyers in the workload is also higher at these times.

Figure 5.12, exemplifies this situation where a high response time seems to maintain

or even improve sales for most applications and the loss in sales might be undetected

by system administrators, and most importantly, by management on high level reports.

Comparing the actual sales with predicted sales (based on mostly non-overloaded system

state) will highlight the net loss of sales due to surges in response time.

5.9 Response time thresholds and user satisfaction

A drop in sales might not be evident due to low QoS, especially at peak times, as it

might coincide with a high conversion rate (CR) moment or the product might have

slow search pages, increasing averages to buying customers. To overcome this situation

without modifying the OTAs infrastructure (Section 5.7), and intentionally adding delay
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to users like in [5, 7], we have proposed the use of Machine Learning classifiers to predict

expected sales for short time bins, in our case 10 minute bins.

Figure 5.14 plots the relative percentage difference between actual sales and predicted

sales as response time increases for each product of the OTA. It can be read as fol-

lows: the Y-axis is the percentage difference from 0% to -100% representing the loss in

sales; and the X-axis plots the response time from 0 to 30 seconds. Notice that some

applications do not start with values at 0 seconds, as their response might not be that

low.

To produce the predicted data for this experiment, we have selected the M5P classifier,

as it has less performance requirements than bagging meta-classifiers and the output

tree model for predictions is more complete than REPTree from a human perspective.

The output model is used for validation and to understand what features in the training

dataset are the most relevant for predicting sales (See Section 5.7.1.1). Recall that each

application has differentiated response time averages and also different conversion rates

for each time bin.

For ALL products, actual sales start to deviate from expected values at about 3 to 7

seconds, and from 11 seconds have a huge drop compared to the expected sales. Next

is the flights product, sales start to drop significantly between 4 and 8 seconds, and a

huge drop after 14 seconds. For hotels, the first drop is between 3 and 7 seconds and

the second drop after 10 seconds. The events product registers only one drop, after 7

seconds; recall that this product is more inflexible due to exclusivity and also has its

peak CR during the morning contrary to the rest of the products. Restaurants on the

other hand, has a very low first drop, between 2 and 4 seconds, and then also a low

second drop after 7 seconds.

Table 5.2 summarizes inflection times for each application, where we have separated

inflection points in two thresholds in accordance to the APDEX standard [80]: tolerating

and frustration. At the tolerating, 1st threshold, some sales are lost, but most users

remain on the site until the frustration, 2nd threshold, where a high percentage of sales

is lost and more users abandon the site. Also, an average of sales loss is presented for

each range. The rest of the users with response time lower than the thresholds are

considered to be satisfied. For the analyzed OTA, there is a tolerating response time

threshold between 3 to 11 seconds, where some sales are lost. In average the frustration
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Figure 5.16: Percentage Difference of Sales and Predictions by Response Time

threshold for the analyzed OTA is at 11 seconds, where each increase in 1 seconds

increases total sale loss by 3%. Even within the same Web site, each application has

differentiated thresholds, and as products exhibit different flexibility, they also show

different tolerating and frustration times and each should be treated separately from

one another.

5.10 Experiments Validation

To validate the model and the methodology we have compared results for different days

in the dataset where overload was not present as shown in Figure 5.1. Machine learning

predictions are needed as sales are prone to seasonality effects and volumes for different

times of the day cannot be fully predicted by linear tendencies. Results indicate that

the prediction technique is valid to countermeasure conversion rate effects on peak times

as models capture conversion rate variability by hour of the day, day of the week, and

season.

5.10.1 Response time effect on user clicks

User clicks and session length are also affected by response time. Figure 5.17 plots the

average number of clicks per session as response time increases for each product. As it

can be seen for most products, there is a huge drop in the average session number of
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clicks after 2 seconds. For sites that do not sell products, the average session number of

clicks or session length can be used to determine abandon times for users. However, as

we have explained in Section 5.3, average session length is different by day of the week,

a learning and prediction approach would be recommended to capture these features

more precisely, but it is out of the scope of this study. These results are consistent

with previous works on user behavior [79, 80]. The next sub-section continues with the

discussion of results.

5.11 Discussion of Results

Results from this section show that the user’s tolerating response time thresholds are

higher for most applications of the OTA from previous literature, especially industry re-

ports. Where our response time numbers are in line with Miller’s [30] work on “Threshold

Levels of Human Interaction and Attention with Computers”. We believe that most of

industry reports take static pages as a base measurement, which might not be repre-

senting the reality of many Ecommerce sites. Some Ecommerce sites such as the OTA

presented here, have pages that usually take a long time to be generated, e.g., flight

availability search, that have a especial waiting page from which users assume a high

complexity of the search, and thus are more patient on the results. The same can be ob-

served for pages that involve external transactions, such as booking a restaurant, where
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Appl 1stthresh. 1stdrop 2ndthresh. 2nddrop

ALL 3-7s 5% 11-22s 55%
Flights 4-8s 28% 14-30s 55%
Events - - 7-25s 50%
Hotels 3-7 20% 10-18s 45%

Restaurants 2-4s 10% 7-18s 60%

Table 5.2: Percentage of sale loss by increasing response time: two incremental re-
sponse time thresholds, and corresponding drop of sales in percentage

many checks need to be performed i.e., credit card fraud, availability, re-check rates,

Web Service calls, before the booking is made.

Furthermore, tolerating and frustration times are different for each application. For

example the events application has exclusive content that cannot be purchased in online

competitors, making it more inflexible than other applications such as flights, that has

multiple competitors. Having different conversion rates and thresholds per application

poses new challenges for differentiated and dynamic per-application QoS management

during the day. Considering the current trend in Web ecosystem to observe lower con-

version rates due to different factors (e.g., rising competition, affiliation, meta-crawling,

and changes in user habits such as multi-tabs[28]), online retailers will progressively sup-

port more traffic for less direct revenue by visit, increasing the importance of optimizing

the number of servers without sacrificing sales.

The presented methodology enables online retailers to determine inflection points where

sales start to be affected by the current application response time. Where resulting

values can be applied on autonomic resource managers to optimize the number of servers

and reduce infrastructure costs in cloud computing environments. Most importantly,

optimizations should not be made to accommodate all load, but to provide the best

QoS when conversion rates are higher, generally at peak loads. Our model could have

benefited from more overload periods in the dataset to improve precision, however, even

at the low number of samples of high response time for the less popular products, main

inflection points and loss of sale tendencies can be obtained from it. As an additional

contribution, results from this study had led the presented OTA to make important

changes in their infrastructure to avoid high response times, especially at peak times

with positive results.
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5.12 Summary

We have argued that the effect of response time degradation can be hidden by the fact

that peak load times can coincide with high conversion rates, i.e., when higher fraction

of visitors have intention to purchase. To overcome this effect we have introduced a

novel methodology for studying what is the volume of sales lost in an online retailer due

to performance degradation without modifying its application. We use machine learning

techniques to predict the expected sales volume over time and look for deviations over the

expected values during overload periods that may introduce performance degradation.

Using such technique, we can quantify the impact of response time in the business

activities of an online service without modifying production system.

We have tested the approach on logs from a top Online Travel Agency, using a 5 year long

sales dataset, HTTP access log, and resource consumption logs for 6 months of 2011.

From the obtained results we are able to identify inflection points where sales start to

drop for different applications when response time is high. For the OTA, there is a

tolerating response time threshold from 3 to 11 seconds, where some sales are lost, and

a frustration threshold at 11 seconds, where each increase in 1 second interval increases

total sale loss by 3%.



Chapter 6

Policies for Profit-Aware resource

management

6.1 Introduction

During the last years, the Cloud Computing paradigm has been rapidly adopted to

host Web applications due to its inherent cost effectiveness [19, 20]. It has also proven

effective in scaling dynamically the number of servers according to simple performance

metrics and the incoming workload. However, while some applications are able to scale

horizontally [21], hosting costs and user satisfaction are currently not optimized.

A problem that arises with dynamic server provisioning or elastic scaling as it is referred

by Amazon Web Services (AWS) [32], is deciding when to scale in number of servers and

to what number. This is especially a problem as the only usable metric by default in

AWS is CPU utilization [33]. For Web applications, CPU usage is not a good indicator

of QoS or server load, as the CPU is rarely a bottleneck e.g., for the datasets that we

perform the experimentation, when the servers are overloaded, less than 45% of the CPU

is being utilized [10].

The question of how many servers to keep at any given time it is currently an open

question [32], as Web applications can be served at different response times depending

on the number of concurrent users by Web server. However, this decision has an impact

on user satisfaction and is directly linked with sales [17]. Not understanding how an
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Figure 6.1: Execution environment of AUGURES

application behaves under load, or what the true limiting factors of the application are,

may result in an ineffective or even destructive auto scaling configuration [33] e.g., when

malicious or spurious Bot traffic creates the load.

The following chapter proposes a new technique for dynamic resource provisioning based

on a profit-aware policy. The policy leverages revenue and cost metrics, produced by

Machine Learning techniques, with the intentions to optimize profits for consumers of

Infrastructure-as-a-Service (IaaS) platforms. We base our proposal on user behavior

models that relates Quality-of-Service (QoS), to the intention of users to buying a prod-

uct on an Ecommerce site. In addition to the QoS-to-sales model, we use as inputs the

current Cloud costs and a server capacity model to determine the maximum concurrent

sessions per server to offer a specific response time. We also show that by classifying

the types of users, and grouping them into clusters with differentiated QoS, the site can

obtain further reduction in server costs, while keeping a high number of sales.

6.1.1 Methodology

Figure 6.1 presents an overview of the target Web execution scenario for the proposal,

also presenting the main components of the system. This chapter focuses on the Re-

source Controller (RC) module, as work on the predictor modules has been presented

on previous chapters.
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As an offline process, the predictors are first trained from log data: the Revenue predictor

is trained from the user navigational log as described in Chapter 4; the QoS-to-Sales

model is trained from the sales and performance datasets presented in Section 3.2, and

the methodology to produce the model can be find in Chapter 5; the Workload predictor

is briefly described in Section 5.7. The resulting models are fed to the RC, that for every

control period, it evaluates the predictions, and if profitable according to the predictions,

decides to add or remove servers to the infrastructure.

In the case user prediction is enabled —in the high-level policies, the RC not only adds

or removes servers, but can decide to create clusters that would return differentiated

QoS to user requests. Figure 6.1 show three clusters: Premium, that have an average

response time of 0.4 seconds; Regular, with an average response time of 2.0 seconds; and

QoS n, representing another cluster with the target response time automatically set by

the RC. When a new request from a user arrives to the system, the Load Balancer (LB),

first classifies the user to one of the defined classes, it forwards then the request to an

available cluster with the appropriate QoS for the user, according to the profit policy

set by the RC.

Experiments are performed on custom, real-life datasets presented in Section 6.4 . The

datasets contain over two years of access, performance, and sales data from popular

travel Web applications. Results from our prototype implementation can enable profit-

aware resource management allowing the self-configuration of IaaS to an optimal number

of servers. In this way, potentially reducing hosting costs for an incoming workload

following high-level policies of business expectations.

6.2 Progress beyond the State-of-Art

Cloud computing is primarily driven by economics [19, 20] and it has been rapidly

adopted due to its inherent cost effectiveness. For this reason, there are a number of

studies on the topic of market-based resource allocation for Grid and Cloud computing.

Most noticeable on scheduling mechanisms including: FirstPrice [87], FirstProfit [88],

and proportional-share [89]. However, as Cloud computing has first evolved out of Grid

computing, where jobs to be executed where mostly batch —rather than having real-

time requirement. Most of these works therefore targeted supercomputing workloads
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with a fixed number of resources and Service Level Agreements (SLA). Currently, Cloud

platforms are used to host almost any type of application, and in particular it has

become the most popular platform for new Web applications. Web traffic presents a

very different, transactional based, QoS dependent workload.

Work related to improving the performance of Ecommerce servers has largely focused

on providing better response times and higher throughput [22]. However, the most

important performance metric from a business perspective is profitability [15, 28, 51].

management, i.e. by Littman et al. [59] uses Näıve-Bayes for cost classification and a

Markov chain feedback approach for failure remediation. Other works such as [60] also

take into account costs and resource allocation; in contrast with previous approaches,

in this thesis we are focusing on the actual revenue that is lost by denying access to

purchasing users, and not resource allocation costs. Authors perform admission control

based on the response time of the system. Profitability of clouds has recently got at-

tention; Liu et al. [92] propose a cost-aware approach to maximize the net profits that

service providers may achieve when operating distributed cloud data centers in multi-

electricity market environments. By capturing the relationship between SLA, cost on

energy consumption, service request dispatching and resource allocation. Choon Lee

et al. [19] introduce a pricing model to Cloud scheduling algorithms where profits are

bound to a customer SLA specification. While most works [11, 19, 87, 92, 93] have

focused on SLAs as a measure of optimization, in practice, from the IaaS consumer and

business perspective, it is the final user satisfaction what finally leads to profits in online

businesses.

Chen et al. [93] propose a profit-driven provisioning technique to maximize profits in

the Cloud, by using auto-regressive performance model to predict the expected demand

curve and determine when and how much resource to allocate and to maximize profits

based on SLA specifications and costs generated by leased resources. While similar to

our approach, there are also main differences: first, the workload employed for the study

is the popular FIFA ’98 dataset, composed of static requests, without customers in the

workload; and second, it also uses static SLAs to calculate profits, while have shown

in a previous work [17], that the QoS that Web users expect varies during the day and

is different by application, one of the main techniques used in our approach to reduce

costs in servers.
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Figure 6.2: Number of sessions and Conversion Rates over a week period

Chen et al. [90] also argues that existing SLA based approaches are not sufficient to

address performance variation and customer satisfaction. They present a model of cus-

tomer satisfaction, leveraged by a utility-based SLA to balance performance and the

cost of running services and two scheduling to make tradeoffs between profit and cus-

tomer satisfaction. In previous works [29, 91], we have also evaluated the use of utility

functions to set SLA targets, however this work differentiates in two ways: first, we base

our approach on real user satisfaction, while [90] based their approach on an synthetic

satisfaction metric based in utility; second, our experimentation is done to a production

Ecommerce workload, while [90] is on video encoding workloads.

6.3 Conversion Rates as a function of Response Time

Conversion Rates (CR) are not static; CRs vary according to time of the day, application,

day of the week, or season. Figure 6.2 presents both the CR and number of sessions for

the site during a week period on separate Y-axis respectively. It can be seen how while

the CR follows the daily session traffic patterns, it is also different per day. While the

number of sessions is greater on Mondays, decreasing until Saturday, the CR has the

opposite effect, and increases throughout the week. Saturday is the day with the overall

higher ratio of buyers, while Sunday is a special case, it has the lower ratio of buyers

compared to the number of sessions. There are also other CR peaks, Monday morning,

just before lunch time and after office hours. The ratio of buyers is higher in general

when there are more users in systems, as users buy at similar times of the day.
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Figure 6.3: Decreasing Conversion Rate as Response Time increases

In addition, CRs are particularly sensitive to fluctuations in service response times.

Figure 6.3 presents a static sample of how CRs are affected as response time increases.

The CR at 0.4 seconds —the minimum recorded by the application— is 3% and decreases

to 0.5% at 10 seconds. More than 25% of sales would be lost at 5 seconds of response

time, while at 10 seconds, 80% of sales would be lost. In our prototype implementation,

presented in Section 6.5, this model is calculated for each time of the day the prototype

runs in. Since CRs vary during the day, so does the effect of response time. What it

is important to notice from the figure, is that there is not a linear relation of sales loss

e.g., between 0.4 and 1 seconds, very little CR is lost; this allows our resource controller

to save in servers. Further details of how the model is calculated are given in [17].

In Chapter 5 we have shown that CRs are usually higher when there are more users on the

system, thus, when the incidence of high response times is higher. This situation makes

particularly important, to give good QoS to incoming sessions at specific times of the day.

We have also shown that this is application dependent, e.g., for the restaurant reservation

application, this time is just before lunch hours. Conversion rates being higher at peak

times also hides the total impact of poor QoS during peaks. For this reason we had

presented a methodology using Machine Learning for predicting the impact on sales as

QoS (RT) degrades. In the present study, we have applied the methodology on a larger

and newer dataset detailed in the next sub-section.
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6.4 Datasets and Server Capacity

Evaluation of Web application resource consumption requires realistic workload simu-

lations to obtain accurate results and conclusions. This section presents the different

datasets provided by Atrapalo.com from their production environment. The datasets

are produced by special probes in the application, logging not only HTTP access data,

but detailed performance data about the resources consumed by the request and the

current state of the server.

The datasets used for experimentation consists of two years of user HTTP requests to

Atrapalo site, from February 2011 to February 2013. The data is composed of over

2.1 billion requests, representing around 480 million sessions. Where the average server

response time is 1.36 seconds, the average database service time is 0.13 seconds, and for

requests that involved external Web services the average is 0.64 seconds per request. A

similar, but shorter dataset has been characterized in Chapter 5 .

We have also been given access to over 7 years of sales history. As vacation products

suffer from great variation of sales and visits according to high and low seasons, day of the

week, or the proximity of a holiday; while ticket sales varies according to the availability

of the event on competing sites and the limited availability, sometimes causing rush

periods. We use this dataset for our sales predictor, that captures the variability of

conversion rate presented in Section 6.3 Sale volumes for these datasets are not reported

due to confidentiality limitations.

6.4.1 Server Capacity

Not understanding how an application behaves under load, or what the true limiting

factors of the application are, may result in an ineffective or even destructive auto scaling

configuration [33]. As Web applications can be served at different QoS, depending mainly

on the number of users that consume resources concurrently per server, to be able to

set response times to a desired level, first the servers need to be benchmarked. From

the performance datasets available, we are able to estimate with great accuracy the

capacity of the application under production load. We use this information as input for

our prototype implementation in later sections.
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Figure 6.4: Average measured and modeled server capacity

Figure 6.4 shows the measured and modeled sever capacity of a single server in Atrapalo

infrastructure. It shows how the Response Time to serve Web requests goes from 0.4

—the lowest the application can serve— to 15 seconds, as the number of requests per

minute grow from 500 to 3000. It is important to remark that Atrapalo.com host their

own servers without the use of any Cloud provider, as the company has over 12 years of

online presence, and their services planed before Cloud offerings were available at their

location. However it is currently being considered a migration to the Cloud.

The capacity of the servers with this dataset used as input in the prototype implemen-

tation follows the logarithmic regression: y = 664.96ln(x) + 1147.7

6.4.1.1 Server specification

Since Atrapalo application runs on physical servers, this sub-section gives an overview of

the server characteristics. Such information is important along with the server capacity

model from the previous section, to be able to compare them to current offerings at

AWS [32] to set prices accordingly for our prototype.

The servers are composed of Intel XEON processors with 4 cores, with hyper-threading

enabled and 16GB of RAM, using conventional SAS hard drives. Using [103] to compare

the processing power of Atrapalo physical server to to Amazon’s offering, each of Atra-

palo servers have at least 2x processing power to Amazon’s current largest offering at
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time of writing. We found that the main performance difference due to Atrapalo servers

not being virtualized; also that resources are exclusive, not shared with other tenants.

6.5 The AUGURES prototype

This section presents AUGURES, our prototype implementation of a profit-aware re-

source provisioner and load balancer. The overview of the implementation architecture

can be seen in Figure 6.1.

Algorithm 1 Main AUGURES algorithm

1: while T do . For each time interval
2: WL← predictExpectedWorkload(T )
3: profitByRT ← calculateProfitByRT(t,WL)
4: optimalServers← maximizeProfitWithPolicies(t, profitByRT )
5: needServers← optimalServers− currentServers
6: setServers(neededServers)
7: end while . Until system stops

Algorithm 1 presents the main process of AUGURES, where, t represents the current

time of the day, while T is the control cycle period in number of minutes. T provides

the granularity in which resource re-provisioning will take place. AUGURES runs every

T minutes to predict the most optimal server configuration according to the time of the

day and the predicted workload.

The first step in AUGURES is predicting the expected number of requests and user

sessions for the next T minutes e.g., 20 minutes. The workload prediction mechanism

employed is explained in further detail in a previous work [29] and it is not the objective

of this study. Second, an array with all the possible server configuration options by

response time (RT ) is calculated and returned. The array profitByRT contains: the

number of servers (cost), conversion rate (sales), and profit for each possible RT for

the T period. The algorithm of the procedure calculateProrfitByRT, is the core of

AUGURES, is explained later, in the next subsection.

After obtaining the different profits for each response time combination, the array profit-

ByRT is used as input to the maximizeProfitsWithPolicies procedure, to select the opti-

mal server configuration according to high level policies. Policies can include constraints

such as minimum and maximum number of servers (cost), maximum and minimum re-

sponse times (QoS), target conversion rates, date and times, and a combination of these
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features. After constraints are checked, the response time policy with the maximum

profit is selected to scale out or down the current number of servers.

6.5.1 Calculating profits by response time

Algorithm 2 Calculating profits by response time procedure

1: procedure calculateProfitByRT(t, WL)
2: for RT ←MIN RT,MAX RT do . For each possible response time
3: reqsPerServerRT ← maxRequestsToAchieveRT(t, RT )
4: neededServersRT ← ceil(WL/reqsPerServerRT )
5: serversCostRT ←

(neededServersRT ∗ CostPerServer) + staticServersCosts
6: CRRTt ← getConversionRateForThisRTandDate(t, RT [, userClass, product])
7: revenueRT ←WL ∗ CRRTt
8: profitRT ← revenueRT − serversCostRT
9: [satisfactionRT ← getUserSatisfactionRT(RT )] . Optional

10: [profitSatisfactionRT ← profitRT − satisfactionRT ] . Optional
11: profitByRT [RT ][ ]← { . Response time array
12: neededServersRT,
13: serversCostRT,
14: CRRTt,
15: revenueRT,
16: profitRT,
17: [satisfactionRT ]
18: [profitSatisfactionRT ]
19: }
20: RT ← RT + STEPRT
21: end for
22: return profitByRT
23: end procedure

The core of the AUGURES algorithm relies on the profit procedure calculateProfitbyRT

shown in Algorithm 2. The profit function iterates from the minimum response time,

MIN RT, that the application can provide to the maximum response time defined in the

system or server capacity limitations, denoted by MAX RT. From the server capacity

model in Section 6.4.1 to Atrapalo Web servers, MIN RT is 0.4s, while we have set

MAX RT to 15 seconds, when the server is handling about 3000 requests per minute.

After the 3000 request limit, the server is considered overloaded and starts giving nega-

tive throughput compared to the maximum —the server starts trashing. Server overload

for a similar dataset has been explored in [10]. For our experimentation we have set the

precision STEP RT to 0.1 seconds.
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The first part of the profit procedure consists in evaluating how many sessions we can

fit per server to achieve the current required RT. The total number of servers needed

is the ceiling of WL by request per server, again using the server capacity model from

Section 6.4.1. The total server cost in this case, is the product of the number of servers

needed to achieve the current RT and the cost per server at the given time of the

selectedCcloud provider. To the per server cost, a fixed cost is added representing

the cost of fixed supporting servers i.e., DNS, load balancers, firewalls, and database

servers. Additionally, server costs can be dynamic depending on the cloud provider

and the desired type of server instance, i.e., spot instances, bidding, and second market

instances [94]. For this work we assume server prices to be fixed, but they can easily be

extended for prices to be updated every time T that the prototype runs.

The second part of the profit procedure consists in evaluating how the currently selected

RT affects the Conversion Rate (CR). The CR as explained in Section 3.1.3, is the ratio

of buying sessions in the workload, and the higher the RT, the lower it will be. The

model for predicting how the CR will be affected by the given RT is described in Section

6.3. After the CR by RT (CR RT ) is found, the revenue is calculated by multiplying

CR RT by the predicted number of sessions for period T, times the value per sale. The

value per sale is dependent on the application and types of product offered. The value

per sale can be either the gross value or directly the gain margins per sale if available.

The third part of the algorithm would include user satisfaction for the given RT if

provided. The user satisfaction can be a value attributed by the user to the given RT

or the value of the reputation of the company, or the probability that the user will

return to the site given the current RT. [17] gives more insight on how user satisfaction

can be calculated from the users’ perspective, not only by the sales from the Ecommerce

retailer. After obtained the potential profit for this RT in time T, the total profit can be

calculated and added to the array. The algorithm continues by looping each STEP RT

until MAX RT is reached, and returns the profitByRT array.

The next section describes the values for our implementation of the algorithm presented

in this section and the results.
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6.6 Experimentation

To test the applicability of the algorithms presented in the previous subsections, a pro-

totype has been implemented that is able to reply the dataset described in Section 6.4.

The dataset is grouped and splitted in T minute intervals, in our case 20 minutes. 20

minutes is chosen as the interval, as it is high enough to provide accurate predictions

by our Machine Learning predictors, represents the QoS of the server, while it is also

high enough for resource provisioners to act upon to apply changes in number of servers.

The server cost per hour is calculated from the specs of the servers of the current ap-

plication compared to the offering of Amazon EC2 servers[103] at time of writing. To

the servers cost, it was added the bandwidth cost, manually calculated from values of

Atrapalo.com. For the following experiments, the server cost was manually calculated

at a fixed at 5 USD per hour. This number, for the time being is divided by T ; however

Cloud providers such as AWS [32] charge by the entire hour, not the fraction. Taking

into account this limitation could be an improvement to our proposal.

For the following experiments we do not include fixed servers costs i.e., database, cache,

and supporting servers; as we want to evaluate just the costs of dynamically provisioned

servers. As sale value, in the next experiments, we assume that the net revenue for each

sale is of 1 USD, the revenue that can be expected of a concert ticket sale for an online

retailer, such as the one presented in Section 3.1.1.

6.6.1 Metrics for dynamic provisioning

Cloud resource provisioners can currently use system performance metrics in order to

scale out or down in number of servers. A problem that arises with dynamic server

provisioning or elastic scaling as it is referred by Amazon Web Services (AWS), is decid-

ing when to scale in number of servers. This is especially a problem as the only usable

metric by default in AWS is CPU utilization [33], which for Web applications is not

a good indicator of QoS. The CPU utilization can tell how loaded is a servers if the

main bottleneck is the CPU, but for Web applications this is hardly the case [10, 33].

Furthermore, there is no direct relation between the utilization of a resource and the

QoS of the service. For Websites, response time can be a better indicator of QoS of the

current infrastructure and relate to user satisfaction [17].
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Figure 6.5: Profits obtained by different response time strategies over a 24hr period

As to what maximum response time to serve requests some authors adhere to what is

called the 8-second rule [79, 80] to determine the maximum threshold of user attention.

While the APDEX standard, establishes 4 seconds as the threshold for unsatisfied users

[80]. Industry leaders such as Google advocates a 2 second limit for page load times [17].

The next subsection compares the profits that can be obtained with AUGURES to

different response time thresholds, and our proposal, a profit-oriented metric based on

the models obtained from the provided production datasets.

6.6.2 Profit-aware policy vs. fixed Response Times

Figure 6.5 presents the averaged profits for every T period in a day when running

AUGURES over the Atrapalo dataset over a 24-hour period with the cost and revenue

variables from previous sections. It can be noted that the profits follows the pattern

of the conversion rates (CR) and number of session variation throughout the day as in

Figure 6.2 as expected. From the figure, t can be seen that profits are close to zero or

even negative during the early morning as CR is very low at this time, as well as the

number of visits to the site. Profits grow very steeply during the early morning, have a

dip during lunch time and continue to grow and peak to the evening.

The first curve in Figure 6.5 represents the profit-aware strategy of AUGURES, Best,

while Lower presents the best possible RT for the application, 0.4s. The rest represent

the strategies of maintaining fixed 2, 4, and 8 seconds. From the figure, it can be
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seen that the most expensive, less profitable strategy is the Lower strategy during early

morning due to requiring more servers. While Lower is the second best during day time,

when CRs are higher and there are more users in the system.
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The Best strategy benefits by saving costs in servers when the conversion rate (CR) is

low and it does not compensate to give a better response time (RT ) to users. It does so

by varying the RT and number of servers needed for every T period as can be seen in

Figures 6.6 and 6.7 respectively. During the night and early morning, it offers up to 2.5s

in response time as conversion rates are low during these times. This is due to most of

the traffic during these hours corresponds to crawlers and other automated bots, and the

CR is very low [28] at this time. During daytime, the chosen RT s are between 0.6 and

0.8 seconds, it does not offer the best RT —0.4— as the ratio of user sessions per server

(see Figure 6.4) and the CR improvement is not the most profitable. On the contrary

it lowers the number of required servers closer to the rest of the fixed strategies.

Figures 6.6 and 6.7 also show the RT under a fixed number of servers —10 servers— as

in a static infrastructures without dynamic provisioning. Under a static configuration,

the RT is dependent on the number of sessions arriving to the system. It can be seen that

during night time, the response time is low, while during the day the response time is at

1.5 seconds in average, losing a small percentage of sales. As a consequence of increasing

traffic or a traffic spike, a static server configuration will degrade response times —losing

sales—, but keeping fixed server cost prices. A dynamic policy would increase hosting
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prices temporarily according to maximum defined values to accommodate load, and keep

the desired RT.

The rest of the strategies provide a fixed QoS (RT ), it can be seen the difference in

number of servers needed from 2 to 8 seconds is minimal compared to the Lower strategy.

While for this application is profitable to give low RT s, the number of servers needed

to serve the site at 2 seconds is 8 servers during daytime. About one third of required

servers for the Lower strategy, where up to 25 servers are needed. The response time

of a static provisioned infrastructure, i.e., 10 servers all day, will vary during the day.

Resulting in the worst response time when there are more users on the system and the

CRs higher [17].
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Figure 6.7: Number of servers needed by each strategy during a 24hr period

Figure 6.8 shows the CR by RT of the different strategies, it can be seen that the Lower

strategy has the best CR. The Best strategy on the other hand, while it does not achieve

all of the sales, it is very close to the best possible with the Lower strategy. This small

difference in lost CR, allows the Best strategy to save up to one third in number of

servers, reducing infrastructure costs. For this reduction in number of servers to be a

significant gain in economic terms, it depends of course in the cost per server, the sale

value, conversion rates, time of the day, and the application.
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6.7 Classifying users

The previous section has presented the potential benefits in business profits of having

a profit-aware resource provisioner. While the Best strategy can provide improvements

by adjusting the target response time (RT ), thus the number of servers needed, all of

the incoming requests are considered from the same class. The next section describes

our extension to AUGURES to dynamically classify requests into classes of users and

the potential benefit of combining our resource provisioner with session classification.

6.7.1 Classes of users

The first step to classify users is to select the classes of users. While this task can be

performed by clustering techniques, the company that provided the dataset already has

users classified into: regular and buyers visitors, API users, internal requests, intranet,

and crawler traffic. Crawler traffic can be divided into: search engine crawlers, which

are beneficial; and malicious bots or Web scrapers. Web scrapers, simulate being regular

users and fetch content from the target site to later brand it as their own, and benefit for

not having to produce their own content, paying contracts ie. Hotel Chains or Flights

Reservation systems [28]. API users in the dataset are clearly identified as such, as they

need login credentials and access specific sub-domains and URLs. For this work we are
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interested in differentiating buyers to regular visits, and content-stealing bots, while we

discard API requests. The next sections describes buyer classification.

6.7.2 Predicting for Buying sessions

In Chapter 4 we have built a prototype implementing both Machine Learning algorithms

and Markov chains in order to predict the intentions and final outcomes of Web sessions.

As with this chapter, our sample Web application is an Ecommerce site, thus the outcome

of interest for our study is whether a session will buy a product or not in its current visit.

Results from Chapter 4 demonstrated that the user intention for visiting the site such

as buying a product on the current session, can be predicted from available navigational

information and time features, from the first clicks to a certain precision.

We have used the previous work to test session buying prediction for session admission

control. The main idea was that if there were traffic spikes on a static infrastructure, and

not all sessions could be served, to select them by the probability of the session buying

a product until the maximum capacity was reached, redirecting remaining sessions to a

wait page. This resulted in sustained profits during traffic spikes. On the current study,

we apply user classification to group users and apply the algorithm presented in Section

6.5 to each group.

Algorithm 3 AUGURES with user prediction

1: while T do . For each time interval
2: for all userClass ∈ definedUserClasses do
3: WL[userClass]← predictExpectedWorkload(T,WL)
4: profitByRT [userClass]←

calculateProfitByRT(T,WL, userClass)
5: end for
6: optimalServers← maximizeProfitWithPolicies(T, profitByRT )
7: for all userClass ∈ definedUserClasses do
8: needServers[userClass]←

optimalServers[userClass]− currentServers[userClass]
9: end for

10: setServers(neededServers)
11: end while . Until system stops

Algorithm 3 presents the changes to the main algorithm to work with different classes

of users. Basically, it is same algorithm as Algorithm 1, except that it loops over the

different defined classes. This change requires that the functions in algorithm 3 to handle
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the userClass parameter, and for data structures to be divided/indexed by the userClass.

The predictWLClass procedure will predict the number of requests expected for this user

class from the predicted total (WL). The prediction is handled by the Machine Learning

module described in Chapter 4

Predicting the user class at each click and forwarding them to the appropriate class

server cluster is a different and separate process. The process of predicting the class of

an incoming session, is a separate, real-time process described in detail in Chapter 4

6.7.2.1 Prediction results

In average, 9.7% of the sessions are classified as buyers and 74.3% of the requests in this

group correspond to buyers. Increasing the CR of this group in average from 0.7% to

6%. The CR for each group can be seen in Figure 6.9. The figure shows that buyers are

effectively being grouped together in the same cluster, while in the NonBuyer group;

there are some buyers, but fewer that with the Best strategy.
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6.7.3 AUGURES with Buyers and NonBuyers groups

Figure 6.10 presents the profit results for each group user classes and the combined group

and the Best strategy from the previous Section. It can be seen that most of the profit

is made on the Buyers group, while the NonBuyers group is close to zero in profits.
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Figure 6.10: Profit obtained by Buyers and NonBuyers compared to Best policy
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Figure 6.11: Number of servers for Buyers and NonBuyers compared to Best policy

Classifying users into groups and allowing different QoS for each group and server re-

sources can be optimized further. Figure 6.11 shows the number of servers need: the

Buyers group, 2 servers; the NonBuyers groups, 10 servers; and the Best strategy 16

server in average during daytime. Combined Buyers and NonBuyers used about 12

servers, giving a saving of 25% over the Best strategy.

Separating groups into user classes also enables to give differentiated QoS to each group.

While the best strategy tries to balance more server costs and profits, the buyers group,

as needs less servers, can provide a lower response time, and improve the likelihood of
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Policy Session Percentage Buyers Percentage

Policy 0: Best strategy no user classification

Policy 1: Winner strategy 9.7% 74.3%

Policy 2 20.2% 91.9%

Policy 3 13.6% 83.0%

Policy 4 5.2% 53.5%

Table 6.1: Different number of sessions and buyers for different prediction policies

purchases further in this group.

6.7.4 Multiple predictions

Since predictions in the implemented numerical classifiers do not give hard, buy/do-

not-buy predictions but a probability for the session belonging to each class, different

classifications can be performed.

This change requires the procedure predictWLClass in Algorithm 3 to return the prob-

abilities of WLclass belonging to the different userClass groups. The profit for each of

the multiple predictions is stored, and then the maximizeProfitWithPolicies procedure

will select the most profitable one according to policies.

We have selected to use 5 different policies. The first policy, Policy 0, corresponds with

the Best strategy from Section 6.6.2. The reason for this is that if the profit is not

improved by user classification, the Best strategy should be used. Furthermore in cases

where few servers are needed, the Best Policy 0 will reduce server costs as there is no

need to split them in groups, also reducing IT management complexity, so it is favored

if not considerable savings can be achieved by the classification. Policy 1 corresponds

to the winner strategy. The winner strategy is the default selection by classifiers, it

select the class with the higher probability. Policy 2, where the probability of being a

buyer is greater than zero. Policy 3, any click with NonBuyers probability less than

90%. Policy 4, any Buyer probability greater than zero and less than 90% probability

of being NonBuyers. Table 6.1 summarizes results for each class.

Figures 6.12, 6.13 shows how the different prediction policies/strategies can be used to

optimize resources to a finer granularity according to the expected CR and WL.
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6.7.5 Classifying Bot traffic and Admission Control

From domain knowledge of the OTA and their scenario (See Section 3.1.1), in Section 4.5

we have also made some tests to classify in real-time content stealing bots to the site.

These are not to be confused with search engine crawlers that are beneficial to the

company search rankings and require a high QoS. For the dataset presented in Section

6.4, 17% of the total requests have been classified as belonging to unwanted Bot traffic

and manually verified. Further details on Bot detection with Machine Learning can

be found in Section 4.5. In the case of the presented dataset the prediction technique
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could eliminate 17% of total requests. As an extension to the AUGURES strategy, the

AUGURES + Bots strategy, besides classifying users, it also predicts if the session might

come from an automated bot to ban such traffic.

Figure 6.14 presents the number of servers required by classifying users and banning

bots. Figure 6.15 presents the profits of classifying users into buyer and not-buyer while

banning bots.
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6.8 Discussion of results

This section presents a comparison of the different fixed and dynamic response time

strategies as well as a comparison with static servers at different costs. Table 6.2 presents

the aggregate percentages of the total possible profits obtained. It was generated by

running AUGURES with the last month in the dataset, January 2013. 100% profits

under this scenario, will be equivalent to no hosting costs, and all the possible revenue

from user sales. Sales values are obtained from the supplied sales dataset.

The Lower strategy keeps the lowest possible response of the application at all times

—0.4 seconds, since it is the best response time possible, it obtains all sales. However,

at this response time, hosting costs corresponds to 73% of all possible profits, lowering

profits to 37%. Keeping a policy of maintaining 2 seconds in the infrastructure leave us

with only 17% of total profits, as many sales are lost at this response time and inccurs

in some server costs. Server use under the different strategies can be seen by going back

to Figures 6.7 and 6.11. Keeping 4 seconds for response time, is even worse, yielding

negative results. The main reason for this, is that for the prices use for this experiment,

selling has higher benefits than server costs, so it always preferable to give a good QoS

and promote sales, as normally occurs with real-life Ecommerce retailers.

Next, for contrasting profits with dynamic server provisioning, the use of a fix number

of servers was studied. 10 servers was selected as the baseline as it is the number Web

servers used by Atrapalo.com. With this number of servers, they are able to serve all

their clients —unless there is an important traffic spike. For fixed servers, different

cost have been explored: We can see that at 5 USD —the same price as the dynamic

strategies— the total profits are only 28% of the total possible revenue. Since fixed

number of servers is generally cheaper, both in a Cloud infrastructure as well as in

collocated scenarios. If reserved instances had a cost of 3 USD, profits increase up to

41%. In the case of servers being collocated in a traditional datacenter as Atrapalo

currently has, the cost of running servers is much lower —without counting the actual

server prices and the cost of managing the hardware. For this reason, a lower price of 1

USD was selected, yielding 53% of total profits.

The last 4 strategies from our own proposal, re-evaluate the response time at each

control period (T ) —20 minutes— in this case. The Best strategy outperforms the
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Lower static response time strategy by 18% in profits. The main reason for this gain

in profits is that it offers a low CR, around 0.7 seconds during the day, and obtains

almost all possible sales. This way in average saving 40% the number of servers needed

compared to Lower. This number of course is dependent on the server capacity model,

but our model presented in Section 6.4.1 has been validated in different benchmarks

from Atrapalo application using the 2-years dataset. The other reason is that it obtains

more profits is because during early-morning time it decides to degrade slightly QoS,

giving a higher response time, close to 2 seconds. The CR during the early-morning is

very low, most of the traffic comes from automated requests and crawlers.

The next best performing strategy is AUGURES. The AUGURES strategy classifies

users into Buyers and NonBuyers groups, obtaining 7% more profits than the Best

strategy. By doing such classification, it is able to group most buyers in a cluster and

give a better response time, while degrading slightly the response time of the NonBuyer

group. In this way, saving in servers, as buyers represent a small portion of the total

workload. The classifiers selects about 10% of the total user sessions as belonging to the

Buyer group, thus sets the QoS higher for this cluster.

The effect of session admission control was also studied; Section 6.7.5 presented the

classification of unwanted Bot traffic. In the case of the presented dataset the prediction

technique could eliminate 17% of total requests. As an extension to the AUGURES

strategy, the AUGURES + Bots strategy, besides classifying users, it also predicts if

the session might come from an automated bot. By classifying Bots and discarding

such traffic, an extra 5% of profits can be obtained compared to AUGURES, and 12%

compared to the Best strategy, as less servers are required. Next, the total profits for

using multiple buyer prediction policies from Section 6.7.4 are evaluated: by being able

to change the target response time, and the size of cluster, an extra 5% of profits could

be obtained e.g., at night time using only one cluster, but during the select the most

profitable one. Adding Bot selection to multiple policies improves profits, but by less

than 2% to the multiple policies strategy.
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Strategy Price per hour Percentage of profits

Lower RT 0.4 5 USD 37.2%

RT 2.0 5 USD 17.9%

RT 4.0 5 USD -11.6%

Static 10 Servers 5 USD 27.6%

Static 10 Servers 3 USD 40.6%

Static 10 Servers 1 USD 53.2%

Best 5 USD 55.4%

AUGURES 5 USD 62.0%

AUGURES + Bots 5 USD 66.7%

Multiple policies 5 USD 67.3%

Multiple policies + Bots 5 USD 68.6%

Table 6.2: Percentage of profits obtained by each policy

6.9 Summary

Improving cost information enables organizations to understand how demand relates to

supply, and how cost behaves through consumption. By improving demand, supply, and

consumption accounting, the better the planning, budgeting and decision making. We

have presented a methodology to provide economical metrics relating costs and revenues

to answer the questions of when to scale in number of server and to what number, as

well as setting the most convenient QoS at each time of the day. We do so by relating

service response times to user satisfaction that leads to sales. As a proof-of-concept, we

have presented a prototype implementation, AUGURES, which predicts the expected

workload, and the potential profits to be obtained from the workload at low time intervals

e.g., 20 minutes, according to the expected conversion rates for that date and time of

the day.

In our results a dynamic policy of changing the response time during the day outperforms

the baseline policy of maintaining two-second response time as performance target by

52% in profits. Furthermore, if the company had a policy of keeping the lowest possible

response time for users, our Best strategy would outperform it in profits by 18% by saving

40% in servers, degrading slightly the response time. In the case of user classification,

grouping users into different clusters, we show that profits can be improved at least

7% more. The effect of session admission control was also studied, and applied to the

classification of unwanted scrapper traffic, which in the case of the presented dataset and

prediction technique eliminated 17% of total requests. We also compared having a static

infrastructure to a dynamic server infrastructure. At the same server per hour price, the
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AUGURES technique outperforms a static infrastructure by 34% in profits. If the static

infrastructure or reserved instances had a cost of only one fifth, profits still improve by

11%, with the additional benefit of supporting traffic spikes. Session admission control

can improve profits by banning automated crawlers, saving the costs of 20% extra servers

from the supplied datasets. The presented technique can enable profit-aware resource

management as shown in our experiments; allowing the self-configuration of IaaS to an

optimal number of servers. This way, potentially reducing hosting costs for an incoming

workload. While also keeping a high throughput in sales, following high-level policies of

business expectations.



Chapter 7

Conclusions

This thesit has presented three different and complementary techniques to contribute

in the area of dynamic service provisioning and Web server resource management in

general, based on real-life production datasets.

In the first contribution, we are able to train a model from previously recorded naviga-

tional information that can be used to tell apart, with nontrivial probability, whether

a session will lead to purchase from the first click. The maximum number of allowed

users to the site can be regulated, according to the infrastructure’s capacity and goal

specification, by placing a threshold over the predicted buying probability of incoming

transactions. That is, the model can adapt itself dynamically to the workload while

maintaining reasonable recall and precision. Using the proposed technique to prioritize

customer sessions can lead to increased revenue in at least two situations: one, when

overload situations occur; that is, the incoming transaction load exceeds the site’s ca-

pacity and some sessions will have to be queued, redirected to a static site, or dropped;

these should be mostly non-buying and crawler sessions, while it admits most buying

ones. The second scenario is that in which keeping extra servers running has a quantifi-

able cost; in this case, one could try to group buying sessions a small number of servers,

possibly shutting down those other servers that would produce little or no revenue e.g.,

for crawler and bot traffic, or to provide differentiated QoS per server. We can conclude

that admission control, and resource management in general, is a promising application

field for automatically learned user models.
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In the second contribution, we have argued that the effect of response time degradation

can be hidden by the fact that peak load times can coincide with high conversion rates,

i.e., when higher fraction of visitors have intention to purchase. To overcome this effect

we have introduced a novel methodology for studying what is the volume of sales lost

in an online retailer due to performance degradation without modifying its application.

We use machine learning techniques to predict the expected sales volume over time and

look for deviations over the expected values during overload periods that may introduce

performance degradation. Using such technique, we can quantify the impact of response

time in the business activities of an online service without modifying production system.

From the obtained results we are able to identify inflection points where sales start to

drop for different applications when response time is high. For the application in the

supplied dataset, there is a tolerating response time threshold from 3 to 11 seconds,

where some sales are lost, and a frustration threshold at 11 seconds, where each increase

in 1 second interval increases total sale loss by 6%. The presented methodology enables

online retailers to determine inflection points where sales start to be affected by the

current application’s response time. Where resulting values can be applied on autonomic

resource managers to optimize the number of servers and reduce infrastructure costs in

cloud computing environments. Most importantly, optimizations should not be made to

accommodate all load, but to provide the best QoS when conversion rates are higher,

generally at peak loads. As an additional contribution, results from this study had led

the presented OTA to make important changes in their infrastructure to avoid high

response times, especially at peak times with positive results.

As third and final contribution we have presented a resource management policy applied

on custom economical metrics relating costs and revenues to answer the questions of

when to scale and to what number. We do so by leveraging the user revenue models from

the first contribution and relation of service times to sales from the second contribution,

while adding a server capacity model and a prototype to perform the experimentation.

In our results AUGURES outperforms the baseline policy of maintaining two-second

response time as performance target by 34% in profits. Furthermore, if the company

had a policy of keeping the lowest possible response time for users, our Best strategy

would outperform it by requiring 40% less servers. At the same server per hour price,

the AUGURES technique outperforms a static infrastructure of keeping a fix number of

servers by 34% in profits. If the static infrastructure or reserved instances had a cost
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of only one fifth, profits will improve by 11%. The effect of session admission control

was also studied, and applied to the classification of unwanted scraper bot traffic, which

in the case of the presented dataset and prediction technique eliminated 17% of total

requests. Session admission control can improve profits, as it saves the costs of 20%

extra servers in our experiments.

This thesit has presented how by understanding user behahavior —the demand, the

relation of Quality-of-Service to sales —resource consumption, and scaling Cloud in-

frastructures —the supply, an online business can improve planning, decision making,

and improve profits by keeping the most optimal infrastructure. In particular scalabil-

ity decisions can be automated, freeing system administrators from operational details,

while the infrastructure runs at top performance following high-level policies of business

expectations.

7.1 Future work

As future work we plan to test the presented approach in different number of Cloud

scenarios and workloads. As first extension, we will like to evaluate profits optimiza-

tions having into consideration different server sizes (vertical scalability), this way, when

scaling, deciding to consolidate a group of smaller servers into a single larger server.

This way, optimizations can be made to more parameters i.e., revenue, server costs,

improved QoS or savings in energy. As second extension, market based instances i.e.,

spot instances can also be considered for profit calculations, reducing costs in servers

at particular times of the day when the price offering is lower. A similar, but opposite

approach can be explored for Cloud reserved server instances, which have a lower cost

than on-demand instances; having the penalty of reserving them for a year in current

offerings. Time constrains such as having an on-demand server for a full hour —rather

than fractions of hours— need to be explored in more depth, as current Cloud offerings

charge by the hour. For large or globally distributed Web sites, the effect of multi-

datacenters and migration among them should be explored, as in this work we have

centered the experiments in the market of the studied site and applications.

We have noticed that mobile access to the site has increased from being practically

inexistent at the beginning of the datasets, to representing more than 10% of the total
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traffic. It is expetected that mobile users will demand a diffent experience in terms of

UX and site peformance, as current studies indicate. An interesting extension of this

work would be to differentiate users by type i.e., device type, connectivity, work or

leasure, and demographics.

We also plan to extend the prototype and experimentation in a per-application base, as

our findings show in Chapter 5 that applications have differentiated resource require-

ments and QoS thresholds. Where we have identified particularities of certain applica-

tions i.e., the restaurants application has very defined purchasing hours —just before

lunch or dinner— or the event-ticket application, that is less affected by response times

as it can have the exclusivity of the event.

We have briefly explored different session valuation techniques, however we have centered

the experiments in this thesis in user sales. Our prototype should be able to adapt to

other metrics, specifically for sites that do not sell products. Value can be set to different

actions that the user performs in a site, i.e., submitting content to a social network, in

that case rewarding and giving higher priority for this type of user sessions.



Appendix A

Thesis scientific production

A.1 Main publications

• Nicolas Poggi, Toni Moreno, Josep Lluis Berral, Ricard Gavaldà, and Jordi Torres.
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[50] Daniel A Menascé, Virgilio AF Almeida, Rodrigo Fonseca, and Marco A Mendes.

A methodology for workload characterization of e-commerce sites. In ACM EC,

1999.

[51] Alexander Totok and Vijay Karamcheti. Rdrp: Reward-driven request prioriti-

zation for e-commerce web sites. Electron. Commer. Rec. Appl., 9(6):549–561,

November 2010. ISSN 1567-4223.

[52] Lakhwinder Kumar, Hardeep Singh, and Ramandeep Kaur. Web analytics and

metrics: a survey. In ACM ICACCI, 2012. ISBN 978-1-4503-1196-0. doi: 10.

1145/2345396.2345552.

[53] Szabolcs Rozsnyai, Aleksander Slominski, and Geetika T. Lakshmanan. Discover-

ing event correlation rules for semi-structured business processes. In ACM DEBS,

2011. ISBN 978-1-4503-0423-8. doi: 10.1145/2002259.2002272.

[54] W. M. P. van der Aalst et al. Workflow mining: a survey of issues and ap-

proaches. Data Knowl. Eng., 47(2), November 2003. ISSN 0169-023X. doi:

10.1016/S0169-023X(03)00066-1.

[55] Wil M. P. van der Aalst, Boudewijn F. van Dongen, Christian W. Gunther, Anne

Rozinat, Eric Verbeek, and Ton Weijters. ProM: The process mining toolkit. In

BPM (Demos), 2009.

[56] Anne Rozinat and Wil M. P. van der Aalst. Decision mining in ProM. In Business

Process Management, 2006.

[57] Wil M. P. van der Aalst, M. H. Schonenberg, and Minseok Song. Time prediction

based on process mining. Inf. Syst., 36(2):450–475, 2011.

[58] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA,

1 edition, 1997. ISBN 0070428077, 9780070428072.



Bibliography 146

[59] Michael L. Littman, Thu Nguyen, and Haym Hirsh. Cost-sensitive fault reme-

diation for autonomic computing. In In Proc. of IJCAI Workshop on AI and

Autonomic Computing, 2003.

[60] C. Kenyon. G. Cheliotis. Autonomic economics: a blueprint for selfmanaged sys-

tems. IJCAI Workshop on AI and Autonomic Computing: Developing a Research

Agenda for Self-Managing Computer Systems, August 2003.

[61] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,

and Ian H. Witten. The weka data mining software: an update. SIGKDD Explo-

rations, 11(1):10–18, 2009.
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[63] Mark Levene, José Borges, and George Loizou. Zipf’s law for web surfers. Knowl.

Inf. Syst., 3(1):120–129, 2001. ISSN 0219-1377. doi: http://dx.doi.org/10.1007/

PL00011657.
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