263 research outputs found

    Sistemas granulares evolutivos

    Get PDF
    Orientador: Fernando Antonio Campos GomideTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Recentemente tem-se observado um crescente interesse em abordagens de modelagem computacional para lidar com fluxos de dados do mundo real. Métodos e algoritmos têm sido propostos para obtenção de conhecimento a partir de conjuntos de dados muito grandes e, a princípio, sem valor aparente. Este trabalho apresenta uma plataforma computacional para modelagem granular evolutiva de fluxos de dados incertos. Sistemas granulares evolutivos abrangem uma variedade de abordagens para modelagem on-line inspiradas na forma com que os humanos lidam com a complexidade. Esses sistemas exploram o fluxo de informação em ambiente dinâmico e extrai disso modelos que podem ser linguisticamente entendidos. Particularmente, a granulação da informação é uma técnica natural para dispensar atenção a detalhes desnecessários e enfatizar transparência, interpretabilidade e escalabilidade de sistemas de informação. Dados incertos (granulares) surgem a partir de percepções ou descrições imprecisas do valor de uma variável. De maneira geral, vários fatores podem afetar a escolha da representação dos dados tal que o objeto representativo reflita o significado do conceito que ele está sendo usado para representar. Neste trabalho são considerados dados numéricos, intervalares e fuzzy; e modelos intervalares, fuzzy e neuro-fuzzy. A aprendizagem de sistemas granulares é baseada em algoritmos incrementais que constroem a estrutura do modelo sem conhecimento anterior sobre o processo e adapta os parâmetros do modelo sempre que necessário. Este paradigma de aprendizagem é particularmente importante uma vez que ele evita a reconstrução e o retreinamento do modelo quando o ambiente muda. Exemplos de aplicação em classificação, aproximação de função, predição de séries temporais e controle usando dados sintéticos e reais ilustram a utilidade das abordagens de modelagem granular propostas. O comportamento de fluxos de dados não-estacionários com mudanças graduais e abruptas de regime é também analisado dentro do paradigma de computação granular evolutiva. Realçamos o papel da computação intervalar, fuzzy e neuro-fuzzy em processar dados incertos e prover soluções aproximadas de alta qualidade e sumário de regras de conjuntos de dados de entrada e saída. As abordagens e o paradigma introduzidos constituem uma extensão natural de sistemas inteligentes evolutivos para processamento de dados numéricos a sistemas granulares evolutivos para processamento de dados granularesAbstract: In recent years there has been increasing interest in computational modeling approaches to deal with real-world data streams. Methods and algorithms have been proposed to uncover meaningful knowledge from very large (often unbounded) data sets in principle with no apparent value. This thesis introduces a framework for evolving granular modeling of uncertain data streams. Evolving granular systems comprise an array of online modeling approaches inspired by the way in which humans deal with complexity. These systems explore the information flow in dynamic environments and derive from it models that can be linguistically understood. Particularly, information granulation is a natural technique to dispense unnecessary details and emphasize transparency, interpretability and scalability of information systems. Uncertain (granular) data arise from imprecise perception or description of the value of a variable. Broadly stated, various factors can affect one's choice of data representation such that the representing object conveys the meaning of the concept it is being used to represent. Of particular concern to this work are numerical, interval, and fuzzy types of granular data; and interval, fuzzy, and neurofuzzy modeling frameworks. Learning in evolving granular systems is based on incremental algorithms that build model structure from scratch on a per-sample basis and adapt model parameters whenever necessary. This learning paradigm is meaningful once it avoids redesigning and retraining models all along if the system changes. Application examples in classification, function approximation, time-series prediction and control using real and synthetic data illustrate the usefulness of the granular approaches and framework proposed. The behavior of nonstationary data streams with gradual and abrupt regime shifts is also analyzed in the realm of evolving granular computing. We shed light upon the role of interval, fuzzy, and neurofuzzy computing in processing uncertain data and providing high-quality approximate solutions and rule summary of input-output data sets. The approaches and framework introduced constitute a natural extension of evolving intelligent systems over numeric data streams to evolving granular systems over granular data streamsDoutoradoAutomaçãoDoutor em Engenharia Elétric

    Uncertainty and Interpretability Studies in Soft Computing with an Application to Complex Manufacturing Systems

    Get PDF
    In systems modelling and control theory, the benefits of applying neural networks have been extensively studied. Particularly in manufacturing processes, such as the prediction of mechanical properties of heat treated steels. However, modern industrial processes usually involve large amounts of data and a range of non-linear effects and interactions that might hinder their model interpretation. For example, in steel manufacturing the understanding of complex mechanisms that lead to the mechanical properties which are generated by the heat treatment process is vital. This knowledge is not available via numerical models, therefore an experienced metallurgist estimates the model parameters to obtain the required properties. This human knowledge and perception sometimes can be imprecise leading to a kind of cognitive uncertainty such as vagueness and ambiguity when making decisions. In system classification, this may be translated into a system deficiency - for example, small input changes in system attributes may result in a sudden and inappropriate change for class assignation. In order to address this issue, practitioners and researches have developed systems that are functional equivalent to fuzzy systems and neural networks. Such systems provide a morphology that mimics the human ability of reasoning via the qualitative aspects of fuzzy information rather by its quantitative analysis. Furthermore, these models are able to learn from data sets and to describe the associated interactions and non-linearities in the data. However, in a like-manner to neural networks, a neural fuzzy system may suffer from a lost of interpretability and transparency when making decisions. This is mainly due to the application of adaptive approaches for its parameter identification. Since the RBF-NN can be treated as a fuzzy inference engine, this thesis presents several methodologies that quantify different types of uncertainty and its influence on the model interpretability and transparency of the RBF-NN during its parameter identification. Particularly, three kind of uncertainty sources in relation to the RBF-NN are studied, namely: entropy, fuzziness and ambiguity. First, a methodology based on Granular Computing (GrC), neutrosophic sets and the RBF-NN is presented. The objective of this methodology is to quantify the hesitation produced during the granular compression at the low level of interpretability of the RBF-NN via the use of neutrosophic sets. This study also aims to enhance the disitnguishability and hence the transparency of the initial fuzzy partition. The effectiveness of the proposed methodology is tested against a real case study for the prediction of the properties of heat-treated steels. Secondly, a new Interval Type-2 Radial Basis Function Neural Network (IT2-RBF-NN) is introduced as a new modelling framework. The IT2-RBF-NN takes advantage of the functional equivalence between FLSs of type-1 and the RBF-NN so as to construct an Interval Type-2 Fuzzy Logic System (IT2-FLS) that is able to deal with linguistic uncertainty and perceptions in the RBF-NN rule base. This gave raise to different combinations when optimising the IT2-RBF-NN parameters. Finally, a twofold study for uncertainty assessment at the high-level of interpretability of the RBF-NN is provided. On the one hand, the first study proposes a new methodology to quantify the a) fuzziness and the b) ambiguity at each RU, and during the formation of the rule base via the use of neutrosophic sets theory. The aim of this methodology is to calculate the associated fuzziness of each rule and then the ambiguity related to each normalised consequence of the fuzzy rules that result from the overlapping and to the choice with one-to-many decisions respectively. On the other hand, a second study proposes a new methodology to quantify the entropy and the fuzziness that come out from the redundancy phenomenon during the parameter identification. To conclude this work, the experimental results obtained through the application of the proposed methodologies for modelling two well-known benchmark data sets and for the prediction of mechanical properties of heat-treated steels conducted to publication of three articles in two peer-reviewed journals and one international conference

    On Information Granulation via Data Filtering for Granular Computing-Based Pattern Recognition: A Graph Embedding Case Study

    Get PDF
    Granular Computing is a powerful information processing paradigm, particularly useful for the synthesis of pattern recognition systems in structured domains (e.g., graphs or sequences). According to this paradigm, granules of information play the pivotal role of describing the underlying (possibly complex) process, starting from the available data. Under a pattern recognition viewpoint, granules of information can be exploited for the synthesis of semantically sound embedding spaces, where common supervised or unsupervised problems can be solved via standard machine learning algorithms. In this companion paper, we follow our previous paper (Martino et al. in Algorithms 15(5):148, 2022) in the context of comparing different strategies for the automatic synthesis of information granules in the context of graph classification. These strategies mainly differ on the specific topology adopted for subgraphs considered as candidate information granules and the possibility of using or neglecting the ground-truth class labels in the granulation process and, conversely, to our previous work, we employ a filtering-based approach for the synthesis of information granules instead of a clustering-based one. Computational results on 6 open-access data sets corroborate the robustness of our filtering-based approach with respect to data stratification, if compared to a clustering-based granulation stage

    A Linear General Type-2 Fuzzy Logic Based Computing With Words Approach for Realising an Ambient Intelligent Platform for Cooking Recipes Recommendation

    Get PDF
    This paper addresses the need to enhance transparency in ambient intelligent environments by developing more natural ways of interaction, which allow the users to communicate easily with the hidden networked devices rather than embedding obtrusive tablets and computing equipment throughout their surroundings. Ambient intelligence vision aims to realize digital environments that adapt to users in a responsive, transparent, and context-aware manner in order to enhance users' comfort. It is, therefore, appropriate to employ the paradigm of “computing with words” (CWWs), which aims to mimic the ability of humans to communicate transparently and manipulate perceptions via words. One of the daily activities that would increase the comfort levels of the users (especially people with disabilities) is cooking and performing tasks in the kitchen. Existing approaches on food preparation, cooking, and recipe recommendation stress on healthy eating and balanced meal choices while providing limited personalization features through the use of intrusive user interfaces. Herein, we present an application, which transparently interacts with users based on a novel CWWs approach in order to predict the recipe's difficulty level and to recommend an appropriate recipe depending on the user's mood, appetite, and spare time. The proposed CWWs framework is based on linear general type-2 (LGT2) fuzzy sets, which linearly quantify the linguistic modifiers in the third dimension in order to better represent the user perceptions while avoiding the drawbacks of type-1 and interval type-2 fuzzy sets. The LGT2-based CWWs framework can learn from user experiences and adapt to them in order to establish more natural human-machine interaction. We have carried numerous real-world experiments with various users in the University of Essex intelligent flat. The comparison analysis between interval type-2 fuzzy sets and LGT2 fuzzy sets demonstrates up to 55.43% improvement when general type-2 fuzzy sets are used than when interval type-2 fuzzy sets are used instead. The quantitative and qualitative analysis both show the success of the system in providing a natural interaction with the users for recommending food recipes where the quantitative analysis shows the high statistical correlation between the system output and the users' feedback; the qualitative analysis presents social scienc

    Long-term learning for type-2 neural-fuzzy systems

    Get PDF
    The development of a new long-term learning framework for interval-valued neural-fuzzy systems is presented for the first time in this article. The need for such a framework is twofold: to address continuous batch learning of data sets, and to take advantage the extra degree of freedom that type-2 Fuzzy Logic systems offer for better model predictive ability. The presented long-term learning framework uses principles of granular computing (GrC) to capture information/knowledge from raw data in the form of interval-valued sets in order to build a computational mechanism that has the ability to adapt to new information in an additive and long-term learning fashion. The latter, is to accommodate new input–output mappings and new classes of data without significantly disturbing existing input–output mappings, therefore maintaining existing performance while creating and integrating new knowledge (rules). This is achieved via an iterative algorithmic process, which involves a two-step operation: iterative rule-base growth (capturing new knowledge) and iterative rule-base pruning (removing redundant knowledge) for type-2 rules. The two-step operation helps create a growing, but sustainable model structure. The performance of the proposed system is demonstrated using a number of well-known non-linear benchmark functions as well as a highly nonlinear multivariate real industrial case study. Simulation results show that the performance of the original model structure is maintained and it is comparable to the updated model's performance following the incremental learning routine. The study is concluded by evaluating the performance of the proposed framework in frequent and consecutive model updates where the balance between model accuracy and complexity is further assessed

    Mining Temporal Association Rules with Temporal Soft Sets

    Get PDF
    This work was partially supported by the National Natural Science Foundation of China (grant no. 11301415), the Shaanxi Provincial Key Research and Development Program (grant no. 2021SF-480), and the Natural Science Basic Research Plan in Shaanxi Province of China (grant no. 2018JM1054).Traditional association rule extraction may run into some difficulties due to ignoring the temporal aspect of the collected data. Particularly, it happens in many cases that some item sets are frequent during specific time periods, although they are not frequent in the whole data set. In this study, we make an effort to enhance conventional rule mining by introducing temporal soft sets. We define temporal granulation mappings to induce granular structures for temporal transaction data. Using this notion, we define temporal soft sets and their Q-clip soft sets to establish a novel framework for mining temporal association rules. A number of useful characterizations and results are obtained, including a necessary and sufficient condition for fast identification of strong temporal association rules. By combining temporal soft sets with NegNodeset-based frequent item set mining techniques, we develop the negFIN-based soft temporal association rule mining (negFIN-STARM) method to extract strong temporal association rules. Numerical experiments are conducted on commonly used data sets to show the feasibility of our approach. Moreover, comparative analysis demonstrates that the newly proposed method achieves higher execution efficiency than three well-known approaches in the literature.National Natural Science Foundation of China (NSFC) 11301415Shaanxi Provincial Key Research and Development Program 2021SF-480Natural Science Basic Research Plan in Shaanxi Province of China 2018JM105

    Fuzzy rough granular neural networks, fuzzy granules, and classification

    Get PDF
    AbstractWe introduce a fuzzy rough granular neural network (FRGNN) model based on the multilayer perceptron using a back-propagation algorithm for the fuzzy classification of patterns. We provide the development strategy of the network mainly based upon the input vector, initial connection weights determined by fuzzy rough set theoretic concepts, and the target vector. While the input vector is described in terms of fuzzy granules, the target vector is defined in terms of fuzzy class membership values and zeros. Crude domain knowledge about the initial data is represented in the form of a decision table, which is divided into subtables corresponding to different classes. The data in each decision table is converted into granular form. The syntax of these decision tables automatically determines the appropriate number of hidden nodes, while the dependency factors from all the decision tables are used as initial weights. The dependency factor of each attribute and the average degree of the dependency factor of all the attributes with respect to decision classes are considered as initial connection weights between the nodes of the input layer and the hidden layer, and the hidden layer and the output layer, respectively. The effectiveness of the proposed FRGNN is demonstrated on several real-life data sets
    corecore