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Traditional association rule extraction may run into some difficulties due to ignoring the temporal aspect of the collected data.
Particularly, it happens in many cases that some item sets are frequent during specific time periods, although they are not frequent
in the whole data set. In this study, we make an effort to enhance conventional rule mining by introducing temporal soft sets. We
define temporal granulation mappings to induce granular structures for temporal transaction data. Using this notion, we define
temporal soft sets and their Q-clip soft sets to establish a novel framework for mining temporal association rules. A number of
useful characterizations and results are obtained, including a necessary and sufficient condition for fast identification of strong
temporal association rules. By combining temporal soft sets with NegNodeset-based frequent item set mining techniques, we
develop the negFIN-based soft temporal association rule mining (negFIN-STARM)method to extract strong temporal association
rules. Numerical experiments are conducted on commonly used data sets to show the feasibility of our approach. Moreover,
comparative analysis demonstrates that the newly proposed method achieves higher execution efficiency than three well-known
approaches in the literature.

1. Introduction

In modern society, vast amounts of data are produced and
collected daily by all walks of life.With an increasing amount
of data, there has been an urgent need for developing
powerful models, methods and apparatuses to facilitate data
analysis. In response to this demand, data mining has
emerged and become a fast-growing research field with
various fascinating topics and practical applications. Data
mining is a multidisciplinary field, which involves applied
mathematics, computer science, information science, sta-
tistics, and other disciplines. In the process of knowledge
discovery in databases (KDD), data mining is viewed as the
most essential step in which sophisticated methods are
applied to extract knowledge or patterns from data. As
shown in Figure 1, six fundamental tasks in data mining are

association rule mining, clustering, classification, regression,
summarization, and sequence analysis. In a more general
perspective, some researchers treat data mining as a syno-
nym for KDD. Data mining has proven to be useful in a
myriad of areas including biological statistics [1], case-based
reasoning [2], factor analysis of heart disease [3], pattern
classification [4], and group role assignment [5].

Association rule mining, such as association analysis and
association rule learning, is of great importance in the realm
of knowledge discovery and data mining. It was originally
proposed in [6] with the aim to find frequent patterns in
transactional databases and potential association rules be-
tween different item sets. Most rule extraction algorithms
belong to one of the following two categories. 'e first one is
known as the class of “candidate generation” methods with
the Apriori [7] algorithm as its typical representative. 'e

Hindawi
Journal of Mathematics
Volume 2021, Article ID 7303720, 17 pages
https://doi.org/10.1155/2021/7303720

mailto:fengnix@hotmail.com
https://orcid.org/0000-0002-8848-9220
https://orcid.org/0000-0002-8876-3090
https://orcid.org/0000-0002-0152-7993
https://orcid.org/0000-0003-2938-1858
https://orcid.org/0000-0001-5256-210X
https://orcid.org/0000-0002-4533-9281
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/7303720


main drawback of these methods is that all of them require
multiple database scans. 'e second category consists of
“pattern growth” methods such as the FP-growth algorithm
[8], which relies on the tree-based data structure (like FP-
trees) to store basic information about frequent item sets.
More specifically, it does not generate candidate sets of
items, and it does not require multiple scans of the database
by saving basic information about frequent sets of items into
a custom-built data structure. In addition, Zaki [9] proposed
another lower I/O costs vertical mining algorithm, called the
equivalence class transformation (ECLAT). However, the
performance of ECLAT can be affected in dense databases.
By using the bitmap representation of sets, Aryabarzan et al.
[10] presented a crucial data structure named NegNodeset
and developed the NegNodeset-based Frequent Itemset
Mining (negFIN) algorithm. 'e prominent features of the
negFIN algorithm are three-fold. Firstly, it makes use of
bitwise operators in order to extract NegNodesets of item
sets. Secondly, it significantly reduces the complexity of
computing supports. Lastly, it generates frequent item sets
by using the structure called set-enumeration tree, and
meanwhile, it efficiently prunes the search space with the
promotion method. Djenouri et al. [11] developed an effi-
cient parallel genetic algorithm for extracting diversified
association rules in big data sets. To further improve pattern
mining in big data, Luna et al. [12] designed several so-
phisticated algorithms which rely on a novel paradigm called
MapReduce and related implementation named Hadoop.
Nevertheless, it should be noticed that the abovementioned
rule extraction methods may sometimes produce redundant
or incoherent association rules. In view of this, Feldman
et al. [13] proposed the maximal association rule, which is a
novel complementary apparatus to extract interesting as-
sociation rules that are frequently lost when using regular
association rules. Amir et al. [14] contributed to additional
developments regarding exact conceptualization and effi-
cient identification of maximal association rules. In addition
to objective measures such as support, confidence, and
correlation, some researchers have been interested in con-
sidering subjective measures such as risk, interest, and utility

to discover useful item sets and association rules. In par-
ticular, a new research direction named utility pattern
mining [15–17] has received considerable attention in recent
years.

Temporal association rule mining (TARM) is one of the
most fascinating topics in the field of association rule
mining. It has been successfully applied to a wide range of
domains such as cancer treatment [18], gene analysis [19],
and web mining [20]. Depending on whether the time
variable is considered as an implied or integral component,
Segura-Delgado et al. [21] systematically classified the
existing TARM approaches into two main categories.
Agrawal and Srikant [22] coined the terminology of se-
quential pattern to facilitate the analysis of a transaction
database. Inspired by this seminal idea, many scholars have
conducted in-depth research with regard to sequential rule
mining. Zhai et al. [23] designed a time constraint-based rule
mining algorithm, called T-Apriori, to analyse the sequence
of ecological events. Gan et al. [24] presented a projection-
based utility miningmethod which is useful for mining high-
utility sequential patterns from sequence data. Hong et al.
[25] constructed a hierarchical granular framework to en-
hance TARM by considering different levels of time gran-
ules. Song et al. [26] detected changes of customer behavior
by using temporal association rules mining from customer
profiles and sales data at different time snapshots. Yun et al.
[27] designed an efficient algorithm to discover high-utility
patterns from incremental databases by constructing a
global data structure through a single scan.

Molodtsov’s soft set theory [28] provides a formal
framework for coping with uncertainty. Its basic principle
relies on the perspective of parameterization, suggesting that
one should recognize uncertainly defined objects from
various facets, and every solo feature yields an approximate
description of this object. Maji et al. [29] soon presented
several operations of soft sets to complement [28]. Ali et al.
[30] introduced several new operations to consolidate the
basis of soft set theory. Babitha and Sunil [31] extended the
ideas of functions and relations by virtue of soft set theory.
Feng and Li [32] clarified the relations among several kinds
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Figure 1: 'e generic framework of KDD.
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of soft subsets and discovered that soft sets satisfy new al-
gebraic properties. By the combination of soft sets and fuzzy
sets, Maji et al. [33] proposed a hybrid concept named as
fuzzy soft sets. Later on, several more complicated exten-
sions of soft sets have been developed and investigated
[34–38]. Ali and Shabir [39] developed some logic con-
nectives in (fuzzy) soft set theory. In [40], a distance-based
algorithm was designed for fuzzy soft set parameter re-
duction. Several works pointed out that rough sets, soft sets,
and fuzzy sets are closely connected models [41–43]. 'ey
model uncertainty from independent perspectives, namely,
gradualness, granularity, and parameterization. Feng et al.
initiated several hybrid structures combining rough sets, soft
sets, and fuzzy sets [44]. Taking a soft set as the underlying
granulation structure, Feng et al. [45] proposed soft rough
sets. Soft sets and related extensions have been widely used
in many distinct domains, such as decision-making [46–51],
valuation of assets [52], clustering [53], medical diagnosis
[54], parameter reduction [55], feature selection [56], data
analysis [57], BCK/BCI-algebras [58–60], graph theory [61],
and computational biology [62]. 'e reader is referred to
John’s latest monograph [63] for more details regarding soft
set theory and its applications.

With the assistance of soft set theory, Herawan and Deris
[64] made an innovative proposal of identifying association
rules from transaction data sets. 'eir pioneering work
opened up a new research direction, aiming at developing
soft set-based approach to rule extraction. Some concepts
were first introduced in [65] to study the approximate
reasoning theory based on soft sets, inclusive of logical
formulas over soft sets, and basic soft truth degree of for-
mulas. Feng et al. [66] revisited Herawan and Deris’s initial
idea and refined several important notions to promote
(maximal) association rule mining by virtue of soft set
theory. Two important observations motivate us to continue
this line of exploration:

(1) 'e ignorance of the temporal aspect of data in the
abovementioned association rule extraction ap-
proaches [64, 66] may cause some limitations. For
instance, some item sets are indeed frequent within
certain time periods, even if they are not frequent in
the whole data set and the entire time-span.
Nonetheless, it is meaningful to discover such item
sets since a commodity may sell exceptionally well in
a specific season but not during the rest of the year.

(2) 'e identification of temporal frequent item sets, as
an essential step in TARM process, can be facilitated
by integrating time as a new component into soft set
theory. In fact, the BitMap Coding (BMC) tree [10]
must be built to generate node sets corresponding to
frequent 1-item sets in the NegNodeset-based fre-
quent item set mining process. 'e bit value at the
index of each temporal frequent 1-item set can be
combined to form the bitmap code of a temporal
frequent item set. 'is indicates that temporal soft
sets and Q-clip soft sets to be introduced in current
work will provide a helpful apparatus for the con-
struction of BMC trees.

To address these issues, the current study focuses on
enhancing association rule extraction with the aid of tem-
poral soft sets. 'e main contributions of this study are
summarized as follows:

(1) We define some new concepts such as temporal
granulation mappings, temporal soft sets and Q-clip
soft sets in order to establish a conceptual framework
for extracting temporal association rules

(2) We present a number of useful characterizations and
results within the established framework, including a
necessary and sufficient condition for fast identifi-
cation of strong temporal association rules

(3) We develop an effective approach, called negFIN-
STARM, to extract strong temporal association rules
by virtue of temporal soft sets and NegNodeset-
based frequent item set mining

'e rest of this paper is arranged in the following way:
Section 2 provides the rudiments with regard to TARM.
Section 3 proposes several fundamental notions such as
temporal soft sets and Q-clip soft sets. Section 4 focuses on
soft temporal association rule mining to develop the neg-
FIN-STARM approach. Section 5 is devoted to numerical
experiments and comparative analysis of four different
methods for extracting temporal association rules. Section 6
concludes this research and points out future research
directions.

2. Temporal Association Rules

'is section focuses on temporal association rules. First, we
quote some fundamental definitions from [19].

Definition 1 (see [19]). An item endowed with a time-stamp
is called a temporal item. A temporal item set means a
nonempty set _I of temporal items.

Definition 2 (see [19]). Assume that T is a set of transactions
on a temporal item set _I and the positive integer α is the
selected support threshold. 'en, we say that _I is a temporal
frequent item set with respect to T and α, when
supportT( _I)≥ α.

Definition 3 (see [19]). A pair of disjoint temporal item sets
is called a temporal association rule (TAR). Let RHS and
LHS, respectively, represent the right and left temporal item
sets. 'en, we denote a TAR by LHS> (Δ)RHS, where the
time-stamp of every temporal item in LHS precedes that, of
any temporal item in RHS, Δ is the interval of two different
time-stamps.

Since temporal items in a transaction are associated with
respective time-stamps, TARs can be generated by finding
temporal frequent item sets in the temporal transaction set
with interval Δ. TARs defined in [19] are therefore useful for
capturing temporal dependence among items within dif-
ferent time spans.
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Nevertheless, it is also interesting to see that some item
sets are indeed frequent within certain period of time, even if
they are not frequent in the whole data set during the entire
time-span. In order to better describe such cases, we revisit
some basic concepts in TARM and refine them in what
follows.

Suppose that I � i1, . . . , i|I|􏽮 􏽯 is an item domain. Any
subset t of I is a transaction, and a transaction data set
consists of a set D � t1, . . . , t|D|􏽮 􏽯 formed by all transactions
under inspection. Each transaction in D has a unique
transaction identifier (TID).

In classical association rule extraction, an item set X is a
subset of I. When it is formed by k distinct items, we call it a
k-item set. To simplify notation, the item set is􏼈 􏼉 is denoted
by is. An item set X appears in t (alternatively, t supports X,
when X⊆ t).

Now, let P � p1, p2, . . . , p|P|􏽮 􏽯 be a collection of pairwise
disjoint periods of time. If t ∈ D is related to a unique period
pt � τ(t) ∈ P (indicating that t occurs during the period pt),
then pt is called the period marker of t. In fact, this defines a
mapping τ from D to P such that τ(t) � pt. In what follows,
T � (D, τ, P) is called a temporal transaction data set.

Definition 4. Assume that T � (D, τ, P) is a temporal
transaction data set, t ∈ D, Q⊆P, and X is an item set. 'en,
t supports X in T during a period in Q if X⊆ t and τ(t) ∈ Q.

Definition 5. Assume that T � (D, τ, P) is a temporal
transaction data set, Q⊆P and Z is an item set. 'e set

ΔQ
T (Z) � t ∈ D: τ(t) ∈ Q∧Z⊆ t{ }, (1)

is the temporal realization of Z in T during a period in Q.

'e set ΔQ
T (Z) consists of all the transactions in D which

contain all the items in Z and occur during a period in Q.
'e cardinality of this set is written as SQ

T (Z), called the
temporal support of Z in T during a period in Q. For

simplicity, Δ pk{ }
T (Z) and S

pk{ }
T (Z) are written as Δpk

T (Z) and
S

pk

T (Z), respectively.

Definition 6. Let T � (D, τ, P) be a temporal transaction
data set and Q⊆P. Given two disjoint nonempty item sets
G, Z⊆ I, an expression G⟹ QZ is called a temporal as-
sociation rule (TAR).

We refer to Z and G as the consequent and antecedent of
the rule G⟹ QZ. 'e rule G⟹ pk{ }Z is simply written as
G⟹ pk Z.

Definition 7. Let T � (D, τ, P) be a temporal transaction
data set, Q⊆P and G⟹ QZ be a TAR. 'en, the temporal
realization of G⟹ QZ in T is given by

ΔQ
T G⟹ Q

Z􏼐 􏼑 � ΔQ
T (G∪Z). (2)

'e cardinality of the set ΔQ
T (G∪Z), denoted by

S
Q
T (G⟹ QZ), is called the temporal support of G⟹ QZ.

Definition 8. 'e temporal confidence of a TAR G⟹ QZ is
given by

C
Q
T G⟹ Q

Z􏼐 􏼑 �
S

Q
T G⟹ Q

Z􏼐 􏼑

S
Q
T (G)

�
S

Q
T (G∪Z)

S
Q
T (G)

. (3)

In particular, C
Q
T (G⟹ QZ) � 0 if S

Q
T (G) � 0.

'e temporal confidence serves as an essential measure
in the evaluation of temporal association rules. It reflects the
strength of the association between antecedent and the
consequent of a TAR during concerned periods.

For simplicity, Δ pk{ }
T (G⟹ pk{ }Z), S

pk{ }
T (G⟹ pk{ }Z),

and C
pk{ }

T (G⟹ pk{ }Z) are written as Δpk

T (G⟹ pk Z),
S

pk

T (G⟹ pk Z), and C
pk

T (G⟹ pk Z), respectively. Let N∗

stand for the set of all positive integers. To find significant and
interesting TARs from a temporal transaction data set
T � (D, τ, P), the users or experts should specify theminimum
temporal support (min-TS) αQ ∈ N∗ and the minimum
temporal confidence (min-TC) βQ ∈ (0, 1] for a given subsetQ

of P. An item set Z is temporal frequent during a period in Q if
S

Q
T (Z)≥ αQ. A TAR G⟹ QZ is frequent during a period in Q

if S
Q
T (G⟹ QZ)≥ αQ. If C

Q
T (G⟹ QZ)≥ βQ, G⟹ QZ is a

confident TAR during a period in Q. A TAR G⟹ QZ is
strong during a period in Q if it is both frequent and confident.

'e next example illustrates some concepts mentioned
above.

Example 1. Consider a temporal transaction data set
adapted from [25]. Let us assume that T � (D, τ, P) be a
sample temporal transaction data set, where
D � t1, t2, . . . , t16􏼈 􏼉 consisting of all the transactions. As-
sume that every t ∈ D is related to a unique period
pt � τ(t) ∈ P, where P � p1, p2, p3, p4􏼈 􏼉. From Table 1, it
can be seen that T is divided into four parts by P. For
example, the item set c􏼈 􏼉 appears in the transaction t2 and t3
during the period p1.

Now, let us consider the subset Q � p1􏼈 􏼉 of P. By
Definition 5, we have Δp1

T ( c􏼈 􏼉) � t2, t3􏼈 􏼉 and S
p1
T ( c􏼈 􏼉) � 2. In

a similar fashion, Δp1
T ( δ{ }) � t1, t2, t4􏼈 􏼉 and S

p1
T ( δ{ }) � 3. In

addition, the 2-item set c, δ􏼈 􏼉 appears in the transaction t2,
and transaction t2 occurs during the period p1. 'us by
Definition 4, we can say that t2 supports c, δ􏼈 􏼉 in T during
the period p1. Also, it is clear that Δp1

T ( c, δ􏼈 􏼉) � t2􏼈 􏼉 and
S

p1
T ( c, δ􏼈 􏼉) � 1.

Next, we consider the TAR c􏼈 􏼉⟹ p1 δ{ }. By Definition
7, its temporal realization in T is

Δp1
T c􏼈 􏼉⟹ p1 δ{ }( 􏼁 � Δp1

T ( c􏼈 􏼉∪ δ{ }) � t2􏼈 􏼉, (4)

and the temporal support of this rule is

S
p1
T c􏼈 􏼉⟹ p1 δ{ }( 􏼁 � S

p1
T ( c􏼈 􏼉∪ δ{ }) � 1. (5)
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By Definition 8, the temporal confidence of this rule is

C
p1
T c􏼈 􏼉⟹ p1 δ{ }( 􏼁 �

S
p1
T c􏼈 􏼉⟹ p1 δ{ }( 􏼁

S
p1
T ( c􏼈 􏼉)

�
S

p1
T ( c􏼈 􏼉∪ δ{ })

S
p1
T ( c􏼈 􏼉)

� 50%.

(6)

Finally, assume that αp1
� 1 and βp1

� 35%.We conclude
that c􏼈 􏼉⟹ p1 δ{ } is a strong TAR during the period p1.

3. Temporal Soft Sets

In this section, we define some new concepts such as
temporal granulation mappings, temporal soft sets, and
Q-clip soft sets which will play a role of fundamental im-
portance in this study. In the following, [ represents a
universal set of objects and E stands for the parameter space
consisting of all parameters associated with objects in [. 'e
power set of [ is written as 2[.

Definition 9 (see [28]). A soft set G � (􏽢F, K) over [ is an
ordered pair, in which K⊆E and 􏽢F: K⟶ 2[ is called the
approximate function of G.

Definition 10 (see [67]). Assume that[ andK are nonempty
finite sets of alternatives and attributes, respectively.'e pair
I � ([, K) is called an information system (IS), when every
attribute k ∈ K can be identified with an information
function k: [⟶ Vk and Vk is the value set of k.

WhenG � (􏽢F, K) is a soft set over [, it naturally induces
an IS IG � ([, K) in the following fashion. Given every
k ∈ K and v ∈ [, associate the corresponding information
function k: [⟶ Vk � 0, 1{ } as follows:

k(v) �
0, when v ∉ 􏽢F(k),

1, otherwise.

⎧⎨

⎩ (7)

Definition 11. Let P be a set of pairwise disjoint periods of
time. 'en, τ: [⟶ P is called a temporal granulation
mapping.

Definition 12. A temporal soft set (TSS) over [ is a qua-
druple T � (􏽢F, K, τ, P) such that

(1) (􏽢F, K) is a soft set over [

(2) τ: [⟶ P is a temporal granulation mapping

'e soft set (􏽢F, K) is said to be the underlying soft set
(USS) of the TSST. We also refer to ℘ � (P, τ) as a temporal
granulation of [. 'e TSST, as an abstract representation of
data, can additionally capture temporal information, which
is unable to be expressed by its underlying soft set.

Definition 13. Assume that T � (􏽢F, K, τ, P) is a TSS over [

and Q⊆P. 'en the Q-clip of T is a soft set TQ � (􏽢G, K)

over

τ− 1
(Q) � u ∈ [|τ(u) ∈ Q{ }, (8)

where 􏽢G(k) � 􏽢F(k)∩ τ− 1(Q) for all k ∈ K.

Note that p􏼈 􏼉-clip soft set is simply called p-clip soft set.
Next, we consider an example that illustrates the above-
mentioned notions.

Example 2. 'e Nobel Prizes are awarded annually to in-
dividuals and organizations in recognition of outstanding
contributions in several categories: literature, chemistry,
physics, physiology or medicine, and peace. In the following,
we focus on three types of prizes, which are the Nobel Prizes
in Physics (NPP), Physiology or Medicine (NPPM), and
Chemistry (NPC).

We consider

[ � v1, v2, . . . , v9􏼈 􏼉, (9)

as a universal set that consists of all Nobel Prizes in scientific
categories, namely, NPP, NPPM, and NPC awarded between
1901 and 1903. Detailed information regarding these prizes
can be found in Table 2. Suppose that C � c1, c2, . . . , c6􏼈 􏼉 is a
set of parameters, containing all the affiliation countries
associated with the prizes in [. More specifically, let ci (i �

1, 2, . . . , 6) stand for “Denmark,” “France,” “Germany,” “'e
Netherlands,” “Sweden,” and “United Kingdom,” respec-
tively. Based on the information in Table 2, we can construct
a soft set (􏽢F, C) over [, with its approximate function
defined as 􏽢F(c1) � v9􏼈 􏼉, 􏽢F(c2) � v8􏼈 􏼉, 􏽢F(c3) � v1, v2, v3, v4􏼈 􏼉,
􏽢F(c4) � v5􏼈 􏼉, 􏽢F(c5) � v7􏼈 􏼉, and 􏽢F(c6) � v6􏼈 􏼉.

In addition, a temporal granulation ℘ � (Y, τ) of [ can
be derived from Table 2 in a natural way. In fact, let Y �

y1, y2, y3􏼈 􏼉 with yi � 1900 + i for i � 1, 2, 3. 'en, the
temporal granulation mapping τ: [⟶ Y is given by

τ v3( 􏼁 � τ v2( 􏼁 � τ v1( 􏼁 � y1 � 1901, (10)

τ v6( 􏼁 � τ v5( 􏼁 � τ v4( 􏼁y2 � 1902, (11)

Table 1: An example of a temporal transaction data set.

Period TID Items
p1 t1 δ
p1 t2 c, δ
p1 t3 c

p1 t4 δ
p2 t5 α, c, δ
p2 t6 α, β, c, δ
p2 t7 β, c, δ
p2 t8 α, δ
p3 t9 β
p3 t10 α, c

p3 t11 α, β, c

p3 t12 β, c

p4 t13 β, δ
p4 t14 β, c, δ
p4 t15 β
p4 t16 β, c, δ

Journal of Mathematics 5



τ v9( 􏼁 � τ v8( 􏼁 � τ v7( 􏼁 � y3 � 1903. (12)

'e intuitive meaning of τ is apparent. For instance,
equation (10) says that the prizes v1, v2, and v3 were
bestowed in 1901. With this mapping, we can construct a
TSS T � (􏽢F, C, τ, Y) over [, as shown in Table 3. As seen
from the equations (10)–(12), the temporal granulation
mapping τ: [⟶ Y induces a partition of [ as follows:

τ− 1
yi( 􏼁|yi ∈ Y􏽮 􏽯 � v4, v5, v6􏼈 􏼉, v7, v8, v9􏼈 􏼉, v1, v2, v3􏼈 􏼉􏼈 􏼉.

(13)

Finally, by Definition 13, the yi-clip soft setTyi
� (􏽢Gi, C)

of the TSS T for i � 1, 2, 3 are as follows:

(1) 'e y1-clip of T is a soft set Ty1
� (􏽢G1, C) over

τ− 1(y1), where 􏽢G1(c3) � τ− 1(y1) � v1, v2, v3􏼈 􏼉 and
􏽢G1(cj) � ∅ for all cj ∈ C with j≠ 3

(2) 'e y2-clip of T is a soft set Ty2
� (􏽢G2, C) over

τ− 1(y2), where 􏽢G2(c3) � v4􏼈 􏼉, 􏽢G2(c4) � v5􏼈 􏼉,
􏽢G2(c6) � v6􏼈 􏼉, and 􏽢G2(cj) � ∅ for all cj ∈ C with
j≠ 3, 4, 6

(3) 'e y3-clip of T is a soft set Ty3
� (􏽢G3, C) over

τ− 1(y3), where 􏽢G3(c1) � v9􏼈 􏼉, 􏽢G3(c2) � v8􏼈 􏼉,
􏽢G3(c5) � v7􏼈 􏼉, and 􏽢G3(cj) � ∅ for all cj ∈ C with
j≠ 1, 2, 5

4. Soft Temporal Association Rule Mining

'is section aims to establish a formal framework for mining
TARs by means of TSSs. Let P be a set of pairwise disjoint
periods of time and Q⊆P throughout this section.

Definition 14. (see [66]). Assume that G � (􏽢F, K) is a soft
set over [ and v ∈ [. 'en, we call

CoG(v) � k ∈ K: v ∈ 􏽢F(k)􏽮 􏽯, (14)

as the parameter coset of the alternative v in G.

It can be seen that CoG(v) contains all the parameters
that the alternative v meets, according to the information
contained in G.

Definition 15. Assume that T � (􏽢F, K, τ, P) is a TSS over [

with its USS G � (􏽢F, K). For any ∅≠B⊆K,

ΔQ
T(B) � v ∈ τ− 1

(Q): B⊆CoG(v)􏽮 􏽯, (15)

is called the Q-realization of B in the TSS T.

When v0 ∈ Δ
Q
T(B), it is said that B is Q-supported by the

alternative v0 ∈ [. 'e Q-support of B inT is the cardinality

of ΔQ
T(B), represented by suppQ

T(B). Note that Δ p{ }
T (B) and

supp
p{ }
T (B) are respectively written as Δp

T(B) and supp
p

T(B).

Definition 16. Assume that T � (􏽢F, K, τ, P) is a TSS over [

and G, Z are two disjoint non-empty subsets of K. We call
the expression G⟹ QZ as a temporal association rule
(TAR) in the TSST. 'e non-empty parameter sets Z and G

are respectively called consequent and antecedent of the
TAR G⟹ QZ.

Definition 17. Suppose that T � (􏽢F, K, τ, P) is a TSS over [

and G⟹ QZ is a TAR in T. We refer to

ΔQ
T G⟹ Q

Z􏼐 􏼑 � ΔQ
T(G∪Z), (16)

as the Q-realization of G⟹ QZ in the TSS T.

'e Q-support of G⟹ QZ, written as
supp

Q
T(G⟹ QZ), is the cardinality of ΔQ

T(G⟹ QZ). For

convenience, G⟹ p{ }Z, Δ p{ }
T (G⟹ p{ }Z) and

supp
p{ }
T (G⟹ p{ }Z) are simply written as G⟹ pZ,

Δp

T(G⟹ pZ) and supp
p

T(G⟹ pZ), respectively.

Proposition 1. Assume thatT � (􏽢F, K, τ, P) is a TSS over [

and fix ∅≠B⊆K. ?en

ΔQ
T(B) � ∩

k∈B
􏽢F(k)􏼒 􏼓∩ τ− 1

(Q)􏼐 􏼑. (17)

Proof. We denote byG the USS of the TSS T � (􏽢F, K, τ, P).
Let x ∈ ΔQ

T(B). Equation (15) assures B⊆CoG(x) and
x ∈ τ− 1(Q). By Definition 14, x ∈ 􏽢F(k) when k ∈ B. 'us we
have

x ∈ ∩
k∈B

􏽢F(k)􏼒 􏼓∩ τ− 1
(Q)􏼐 􏼑. (18)

'is proves

Table 2: Information on NPCs, NPPs, and NPPMs (1901–1903).

Award Year of award Prize category Affiliation country
v1 1901 NPC Germany
v2 1901 NPP Germany
v3 1901 NPPM Germany
v4 1902 NPC Germany
v5 1902 NPP 'e Netherlands
v6 1902 NPPM United Kingdom
v7 1903 NPC Sweden
v8 1903 NPP France
v9 1903 NPPM Denmark

Table 3: Tabular representation of the TSS T � (􏽢F, C, τ, Y).

[ c1 c2 c3 c4 c5 c6 τ(·)

v1 0 0 1 0 0 0 y1
v2 0 0 1 0 0 0 y1
v3 0 0 1 0 0 0 y1
v4 0 0 1 0 0 0 y2
v5 0 0 0 1 0 0 y2
v6 0 0 0 0 0 1 y2
v7 0 0 0 0 1 0 y3
v8 0 1 0 0 0 0 y3
v9 1 0 0 0 0 0 y3

6 Journal of Mathematics



ΔQ
T(B)⊆ ∩

k∈B
􏽢F(k)􏼒 􏼓∩ τ− 1

(Q)􏼐 􏼑. (19)

Now, suppose that y ∈ (∩ k∈B
􏽢F(k))∩ (τ− 1(Q)). 'en

y ∈ τ− 1(Q) and y ∈ 􏽢F(k) for any k ∈ B. From the definition
of the parameter coset CoG(y), it follows that B⊆CoG(y)

and y ∈ τ− 1(Q). Hence y ∈ ΔQ
T(B), which also shows that

∩
k∈B

􏽢F(k)􏼒 􏼓∩ τ− 1
(Q)􏼐 􏼑⊆ΔQ

T(B). (20)

'erefore we derive that

ΔQ
T(B) � ∩

k∈B
􏽢F(k)􏼒 􏼓∩ τ− 1

(Q)􏼐 􏼑. (21)

'is ends the proof.
By Proposition 1, the following results can be

deduced. □

Corollary 1. Assume that T � (􏽢F, K, τ, P) is a TSS over [

and TQ � (􏽢G, K) is its Q-clip soft set. ?en we have

ΔQ
T(B) � ∩

k∈B
􏽢G(k), (22)

for all non-empty subset B of K.

Corollary 2. Assume that T � (􏽢F, K, τ, P) is a TSS over [

and K1, K2 are subsets of K. ?en we have

K1 ⊆K2⟹Δ
Q
T K2( 􏼁⊆ΔQ

T K1( 􏼁. (23)

Proposition 2. Assume thatT � (􏽢F, K, τ, P) is a TSS over [

and G⟹ QZ is a TAR in T. ?en,

ΔQ
T G⟹ Q

Z􏼐 􏼑 � ΔQ
T(G)∩ΔQ

T(Z)

� ∩
k∈G∪Z

􏽢F(k)􏼒 􏼓∩ τ− 1
(Q)􏼐 􏼑.

(24)

Proof: . For simplicity, let J1 and J2 stand for ∩ k∈G 􏽢F(k) and
∩ k∈Z

􏽢F(k), respectively. According to Definition 17,

ΔQ
T G⟹ Q

Z􏼐 􏼑 � ΔQ
T(G∪Z). (25)

By Proposition 1, we have

ΔQ
T G⟹ Q

Z􏼐 􏼑 � ∩
k∈G∪Z

􏽢F(k)􏼒 􏼓∩ τ− 1
(Q)􏼐 􏼑

� J1 ∩ J2( 􏼁∩ τ− 1
(Q)􏼐 􏼑

� J1 ∩ τ
− 1

(Q)􏼐 􏼑∩ J2 ∩ τ
− 1

(Q)􏼐 􏼑

� ΔQ
T(G)∩ΔQ

T(Z).

(26)

'is ends the proof. □

Remark 1. 'e above assertion reveals that the Q-realization
of a TAR G⟹ QZ in a TSS coincides with the intersection
of the Q-realizations of the consequent and antecedent of
G⟹ QZ.

By Proposition 2, the following results can be deduced.

Corollary 3. Assume that T � (􏽢F, K, τ, P) is a TSS over [

and TQ � (􏽢G, K) is its Q-clip soft set. ?en,

ΔQ
T G⟹ Q

Z􏼐 􏼑 � ∩
k∈G∪Z

􏽢G(k), (27)

where G⟹ QZ is a TAR in T.

Corollary 4. Assume that T � (􏽢F, K, τ, P) is a TSS over [

and G⟹ QZ is a TAR in T. ?en,

min supp
Q
T(G), supp

Q
T(Z)􏽮 􏽯≥ supp

Q
T G⟹ Q

Z􏼐 􏼑. (28)

Definition 18. Assume that T � (􏽢F, K, τ, P) is a TSS over [

and G⟹ QZ is a TAR in T. 'e Q-confidence of G⟹ QZ

is given by

confQ
T G⟹ Q

Z􏼐 􏼑 �

supp
Q
T G⟹ Q

Z􏼐 􏼑

supp
Q
T(G)

, if supp
Q
T(G)≠ 0,

0, if supp
Q
T(G) � 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(29)

For convenience, conf p{ }
T (G⟹ p{ }Z) is simply written

as confp

T(G⟹ pZ).

Theorem 1. Assume that T � (􏽢F, K, τ, P) is a TSS over [

and G⟹ QZ is a TAR inT. ?en, G⟹ QZ is strong during
a period in Q if and only if

supp
Q
T G⟹ Q

Z􏼐 􏼑≥max αQ, βQ · supp
Q
T(G)􏽮 􏽯, (30)

where αQ ∈ N∗ is the min-TS and βQ ∈ (0, 1] is the min-TC.

Proof. Suppose that G⟹ QZ is strong inT during a period
in Q. 'en, we have

supp
Q
T G⟹ Q

Z􏼐 􏼑≥ αQ,

confQ
T G⟹ Q

Z􏼐 􏼑 �
supp

Q
T G⟹ Q

Z􏼐 􏼑

supp
Q
T(G)

≥ βQ.

(31)

It follows that

supp
Q
T G⟹ Q

Z􏼐 􏼑≥ βQ · supp
Q
T(G). (32)

'us, we have

supp
Q
T G⟹ Q

Z􏼐 􏼑≥max αQ, βQ · supp
Q
T(G)􏽮 􏽯. (33)

Conversely, let G⟹ QZ be a temporal association rule
in T such that

supp
Q
T G⟹ Q

Z􏼐 􏼑≥max αQ, βQ · supp
Q
T(G)􏽮 􏽯. (34)

It follows that

supp
Q
T G⟹ Q

Z􏼐 􏼑≥ αQ,

supp
Q
T G⟹ Q

Z􏼐 􏼑≥ βQ · supp
Q
T(G).

(35)

Hence, we deduce that

Journal of Mathematics 7



supp
Q
T G⟹ Q

Z􏼐 􏼑

supp
Q
T(G)

� confQ
T G⟹ Q

Z􏼐 􏼑≥ βQ. (36)

'us, G⟹ QZ is strong in T during a period in Q,
completing the proof.

Using the aforementioned concepts and results, we can
obtain the following result. □

Proposition 3. Suppose thatT � (􏽢F, K, τ, P) is a TSS over [

and G⟹ QZ is a TAR in T with
supp

Q
T(G⟹ QZ) � supp

Q
T(G). ?en, the following are

equivalent:

(1) G is temporal frequent during a period in Q

(2) G⟹ QZ is frequent during a period in Q

(3) G⟹ QZ is confident during a period in Q

(4) G⟹ QZ is strong during a period in Q

To illustrate the new notions above, we consider the
following example, which is a continuation of Example 2.

Example 3. Assume that A � a1, a2, a3􏼈 􏼉 is a set of pa-
rameters, consisting of the three types of prizes under
consideration, i.e., a1 is NPC, a2 is NPP, and a3 is NPPM.
Before using the proposed concepts regarding soft temporal
association rule mining for mathematical modeling and
analysis, we now first establish another TSS based on the
information in Table 2. 'e TSS T � (􏽢F, B, τ, Y) over [ is
shown in Table 4, where the parameter set B � C∪A and the
temporal granulation mapping τ: [⟶ Y is identical with
what is defined in Example 2. In what follows, let us consider
three different cases in which Q1 � y1, y2􏼈 􏼉, Q2 � y2􏼈 􏼉, and
Q3 � Y � y1, y2, y3􏼈 􏼉, respectively. Suppose that the min-TS
αQ1

� αQ2
� 1 and αQ3

� 2. 'e min-TC βQi
� 75% for

i � 1, 2, 3.
Let us first focus on the case when Q1 � y1, y2􏼈 􏼉. Recall

first that τ− 1(Q1) � v1, v2, . . . , v6􏼈 􏼉. By Definition 13, the
Q1-clip of the TSST is a soft setTQ1

� (􏽣G1, B) over τ− 1(Q1),
where 􏽣G1(c3) � v1, v2, v3, v4􏼈 􏼉, 􏽣G1(c4) � v5􏼈 􏼉, 􏽣G1(c6) � v6􏼈 􏼉,
􏽣G1(a1) � v1, v4􏼈 􏼉, 􏽣G1(a2) � v2, v5􏼈 􏼉, 􏽣G1(a3) � v3, v6􏼈 􏼉 and
􏽣G1(cj) � ∅ for all cj ∈ C with j � 1, 2, 5. By Proposition 1
and Corollary 1, we can easily get

ΔQ1
T a1􏼈 􏼉( 􏼁 � 􏽢F a1( 􏼁∩ τ− 1

Q1( 􏼁 � 􏽣G1 a1( 􏼁 � v1, v4􏼈 􏼉,

ΔQ1
T c3􏼈 􏼉( 􏼁 � 􏽢F c3( 􏼁∩ τ− 1

Q1( 􏼁 � 􏽣G1 c3( 􏼁 � v1, v2, v3, v4􏼈 􏼉.

(37)

Next, we consider the TAR a1􏼈 􏼉⟹ Q1 c3􏼈 􏼉. By Propo-
sition 2 and Corollary 3, its Q1-realization in T can be
calculated as follows:

ΔQ1
T a1􏼈 􏼉⟹ Q1 c3􏼈 􏼉􏼐 􏼑 � ΔQ1

T a1􏼈 􏼉( 􏼁∩ΔQ1
T c3􏼈 􏼉( 􏼁

� 􏽢F a1( 􏼁∩ 􏽢F c3( 􏼁∩ τ− 1
Q1( 􏼁

� 􏽣G1 a1( 􏼁∩􏽣G1 c3( 􏼁

� v1, v4􏼈 􏼉.

(38)

In fact, as indicated by Corollary 3, the Q1-realization of
the TAR a1􏼈 􏼉⟹ Q1 c3􏼈 􏼉 in the TSS T is completely deter-
mined by the approximate function of the corresponding
Q1-clip TQ1

� (􏽣G1, B). It is clear that the Q1-support of this
rule is

supp
Q1
T a1􏼈 􏼉⟹ Q1 c3􏼈 􏼉􏼐 􏼑 � 2. (39)

By Definition 18, the Q1-confidence of this rule is

confQ1
T a1􏼈 􏼉⟹ Q1 c3􏼈 􏼉􏼐 􏼑 �

supp
Q1
T a1􏼈 􏼉⟹ Q1 c3􏼈 􏼉􏼐 􏼑

supp
Q1
T a1􏼈 􏼉( 􏼁

� 100%.

(40)

Hence, by definition, a1􏼈 􏼉⟹ Q1 c3􏼈 􏼉 is strong during a
period in Q1. On the other hand, we can draw the same
conclusion from 'eorem 1 since

supp
Q1
T a1􏼈 􏼉⟹ Q1 c3􏼈 􏼉􏼐 􏼑>max αQ1

, βQ1
· supp

Q1
T a1􏼈 􏼉( 􏼁􏽮 􏽯

� max 1, 1.5{ } � 1.5.

(41)

Note also that

supp
Q1
T a1􏼈 􏼉⟹ Q1 c3􏼈 􏼉􏼐 􏼑 � supp

Q1
T a1􏼈 􏼉( 􏼁 � 2,

supp
Q1
T a1􏼈 􏼉( 􏼁> αQ1

� 1.
(42)

'us, we can also conclude that a1􏼈 􏼉⟹ Q1 c3􏼈 􏼉 is strong
during a period in Q1 by Proposition 3. 'is rule indicates
that “From 1901 to 1902, all the Nobel Prizes in Chemistry
were awarded to Germany.” Conversely, we can consider the
TAR c3􏼈 􏼉⟹ Q1 a1􏼈 􏼉. Its Q1-support is

supp
Q1
T c3􏼈 􏼉⟹ Q1 a1􏼈 􏼉􏼐 􏼑 � 2> αQ1

, (43)

but its Q1-confidence is

confQ1
T c3􏼈 􏼉⟹ Q1 a1􏼈 􏼉􏼐 􏼑 � 50%< βQ1

� 75%. (44)

Hence, this rule is frequent but not confident during a
period in Q1. It reveals that “From 1901 to 1902, 50% of the
Nobel Prizes awarded to Germany pertain to the category of
chemistry.”

Now, let us consider the second case when Q2 � y2􏼈 􏼉.
Similarly, we can get

supp
y2
T c3􏼈 􏼉⟹ y2 a1􏼈 􏼉( 􏼁 � supp

y2
T c3􏼈 􏼉( 􏼁 � αy2

� 1,

confy2
T c3􏼈 􏼉⟹ y2 a1􏼈 􏼉( 􏼁 � 100%> βy2

� 75%.
(45)

Hence, we conclude that c3􏼈 􏼉⟹ y2 a1􏼈 􏼉 is strong during
the period y2.'is rule says that “In 1902, Germany was only
awarded the NPC, instead of the NPP or NPPM.”

Finally, we consider the third case when
Q3 � Y � y1, y2, y3􏼈 􏼉. Clearly, τ− 1(Q3) � v1, v2, . . . , v9􏼈 􏼉 �

[ in this case. It follows that the Q3-clip of the TSST is a soft
set TQ3

� (􏽣G3, B) over [, which coincide with the USS
(􏽢F, B) of the TSS T. 'at is, 􏽣G3(e) � 􏽢F(e) for all e ∈ B. By
Proposition 1 and Corollary 1, we have
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ΔQ3
T a3􏼈 􏼉( 􏼁 � 􏽢F a3( 􏼁∩[ � 􏽣G3 a3( 􏼁 � v3, v6, v9􏼈 􏼉,

ΔQ3
T c6􏼈 􏼉( 􏼁 � 􏽢F c6( 􏼁∩[ � 􏽣G3 c6( 􏼁 � v6􏼈 􏼉.

(46)

Next, let us consider the TAR a3􏼈 􏼉⟹ Q3 c6􏼈 􏼉, which can
also be seen as an association rule a3􏼈 􏼉⟹ c6􏼈 􏼉 in con-
ventional sense. By Proposition 2 and Corollary 3, its
Q3-realization in T can be calculated as follows:

ΔQ3
T a3􏼈 􏼉⟹ Q3 c6􏼈 􏼉􏼐 􏼑 � ΔQ3

T a3􏼈 􏼉( 􏼁∩ΔQ3
T c6􏼈 􏼉( 􏼁

� 􏽢F a3( 􏼁∩ 􏽢F c6( 􏼁∩[

� 􏽣G3 a3( 􏼁∩􏽣G3 c6( 􏼁

� v6􏼈 􏼉.

(47)

Obviously, supp
Q3
T ( a3􏼈 􏼉⟹ Q3 c6􏼈 􏼉) � 1. By Definition

18, we also have

confQ3
T a3􏼈 􏼉⟹ Q3 c6􏼈 􏼉􏼐 􏼑 �

supp
Q3
T a3􏼈 􏼉⟹ Q3 c6􏼈 􏼉􏼐 􏼑

supp
Q3
T a3􏼈 􏼉( 􏼁

�
1
3
.

(48)

It is clear that

supp
Q3
T a3􏼈 􏼉⟹ Q3 c6􏼈 􏼉􏼐 􏼑 � 1< αQ3

� 2,

confQ3
T a3􏼈 􏼉⟹ Q3 c6􏼈 􏼉􏼐 􏼑 �

1
3
< βQ3

� 0.75.

(49)

'us, we deduce that a3􏼈 􏼉⟹ Q3 c6􏼈 􏼉 is neither frequent
nor confident during a period in Q3. 'is rule reveals that
“From 1901 to 1903, only one Nobel Prize in Physiology or
Medicine was awarded to the United Kingdom.” In addition,
it can be seen that the rule c3􏼈 􏼉⟹ Q3 a3􏼈 􏼉 is neither frequent
nor confident during a period in Q3 since

supp
Q3
T c3􏼈 􏼉⟹ Q3 a3􏼈 􏼉􏼐 􏼑 � 1< αQ3

� 2,

confQ3
T c3􏼈 􏼉⟹ Q3 a3􏼈 􏼉􏼐 􏼑 � 0.25< βQ3

� 0.75.
(50)

'is rule says that “From 1901 to 1903, only a quarter of
the Nobel Prizes awarded to Germany pertain to the cate-
gory of physiology or medicine.”

Compared with the case of Q3 consisting of all time
periods, we see that some rules such as a1􏼈 􏼉⟹ Q1 c3􏼈 􏼉 and
c3􏼈 􏼉⟹ y2 a1􏼈 􏼉 can only be identified as strong TARs when

we restrict to the cases of Q1 or Q2 consisting of fewer time
periods.'is is mainly due to the fact that some item sets can
be frequent during certain time periods rather than all of
them. In a nutshell, we conclude that the TARM based on
TSSs can help find some strong TARs which might be ig-
nored in conventional rule extraction process.

Based on the results obtained in this section and the
concepts such as TSSs and Q-clip soft sets proposed in
Section 3, we present a novel TARM method by combining
NegNodeset-based frequent item set mining with TSS-based
rule mining. Our method will be abbreviated as negFIN-
STARM in the sequel. 'e pseudocode description of the
negFIN-STARM method is given in Algorithm 1. 'is al-
gorithm takes a temporal transaction data set T, a set Q⊆P,
the min-TS αQ, and the min-TC βQ as the input. 'e output
of Algorithm 1 is the class SRTAR(T, Q, αQ, βQ), which
contains all strong TARs during a period in Q. 'e main
procedure of the negFIN-STARM method can be divided
into three stages:

(1) In the first stage, we construct a TSS T � (􏽢F, I, τ, P)

over D from the provided temporal transaction data
set T.'en, according to Definition 13, we determine
τ− 1(Q) and construct the Q-clip soft setTQ � ( 􏽢H, I)

of the TSS T. Next, we derive the IS
ITQ

� (τ− 1(Q), I) from the Q-clip soft set
TQ � ( 􏽢H, I) of T.

(2) In the second stage, NegNodeset-based frequent
item set mining technique and temporal soft sets are
combined for generating all temporal frequent item
sets. More specifically, we first employ the infor-
mation function of ITQ

� (τ− 1(Q), I) to construct
the BMC tree. 'en, the Nodesets of all frequent 1-
item sets are generated by traversing the BMC tree.
Furthermore, we identify the NegNodesets of all
frequent k-item sets (k≥ 2). Eventually, the set-
enumeration tree is built to generate the class
TFIS(TQ, αQ), which consists of all temporal fre-
quent item sets. 'ese item sets will function as
potential consequents and antecedents for finding
strong TARs. Here, we would like to emphasize a
crucial issue. To apply the NegNodeset-based fre-
quent item set mining, the BMC tree must be built to
generate the node set related to every frequent 1-item
set. Each frequent item set is represented by a bitmap
code, and every frequent 1-item set is mapped to one

Table 4: Tabular representation of the TSS T � (􏽢F, B, τ, Y).

[ c1 c2 c3 c4 c5 c6 a1 a2 a3 τ(·)

v1 0 0 1 0 0 0 1 0 0 y1
v2 0 0 1 0 0 0 0 1 0 y1
v3 0 0 1 0 0 0 0 0 1 y1
v4 0 0 1 0 0 0 1 0 0 y2
v5 0 0 0 1 0 0 0 1 0 y2
v6 0 0 0 0 0 1 0 0 1 y2
v7 0 0 0 0 1 0 1 0 0 y3
v8 0 1 0 0 0 0 0 1 0 y3
v9 1 0 0 0 0 0 0 0 1 y3
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of its bits. In other words, the bit value at the cor-
responding index of each temporal frequent 1-item
set can be combined to form the bitmap code of the
temporal frequent item set. It is worth noting that the
use of TSSs and Q-clip soft sets can facilitate the
calculation of bitmap codes and the construction of
BMC trees in this important stage.

(3) In the last stage, by Corollary 3, we can calculate the
Q-realization of G⟹ QZ using the Q-clip soft set
TQ for all G, Z ∈ TFIS(TQ, αQ) which are disjoint.
Next, by'eorem 1, it is easy to check whether or not
the G⟹ QZ is strong during a period in Q. If this is
true, then we put G⟹ QZ into the class
SRTAR(T, Q, αQ, βQ).

5. Numerical Experiments

In this section, we conduct numerical experiments on the
commonly used chess and mushroom data sets to compare
the performance of our newly presented negFIN-STARM
approach with three well-known approaches in the litera-
ture, namely, the T-Apriori [23], T-FPGrowth [8], and
T-ECLATmethods [9]. Hereinafter, the abbreviations such
as T-Apriori, T-FPGrowth, and T-ECLAT stand for Tem-
poral Apriori, Temporal FPGrowth, and Temporal Eclat,
respectively.

5.1. Running Environment. 'e numerical experiment was
conducted on a laptop computer equipped with a 2.00GHz
Intel Core i7 processor and 8GB of RAM running the 64-bit
Microsoft Windows 10 operating system.'e algorithms are
coded in Java 13.0.1 using IntelliJ IDEA 2019.2.2. 'e
performance of the selected methods is evaluated by the
runtime over the aforementioned data sets. For higher ac-
curacy, the codes corresponding to the four methods were

executed 5 times under the same conditions. 'e compar-
ison is made in terms of the average values of the runtime.

5.2. Description of Data Sets. Two commonly used data sets
are employed for comparing our method with existing
methodsmentioned above.'ese data sets are available from
the open-source data mining library SPMF ('e SPMF li-
brary at http://www.philippe-fournier-viger.com/spmf/.)
founded by Philippe Fournier-Viger. 'e first data set is the
chess data set adapted based on the UCI chess data set. 'e
second one is the mushroom data drawn from'e Audubon
Society Field Guide to North American Mushrooms. Table 5
gives a basic description of these data sets.

5.3. Results and Comparative Analysis. At first, we conduct
numerical experiments and comparative analysis of four
different methods using the chess data set. 'is data set
contains 3196 transactions, each uniquely related to a
period in P � p1, p2, p3, p4, p5􏼈 􏼉. 'ere are 75 different
items in the item domain of this data set. We consider the
cases when Q � p1􏼈 􏼉 and Q � p5􏼈 􏼉. 'e min-TS and min-
TC are simply denoted by αpi

and βpi
(i � 1, 5), respectively.

'e runtime comparison based on the chess data set of four
methods under different thresholds is shown in Figure 2.
More details regarding the average runtime (in millisec-
onds) of four methods on the chess data set are listed in
Tables 6 and 7.

As shown in Figure 2(a), the negFIN-STARM method is
faster than the T-Apriori, T-ECLAT, and T-FPGrowth
methods when Q � p1􏼈 􏼉, the min-TS αp1

� 500, and the
min-TC βp1

is 75%, 85%, and 95%, respectively. In addition,
Figure 2(b) illustrates that the negFIN-STARMmethod runs
faster than the other methods when βp1

� 85% and αp1
is

designated as 400, 450, and 500, respectively.

Input: a temporal transaction data set T � (D, τ, P), a set Q⊆P, the min-TS αQ ∈ N∗, and the min-TC βQ ∈ (0, 1].
Output: the class SRTAR(T, Q, αQ, βQ) that contains all strong TARs during a period in Q.
(1) Construct a TSS T � (􏽢F, I, τ, P) over D from the temporal transaction data set T with the item domain I

(2) Calculate τ− 1(Q) and construct the Q-clip soft set TQ � ( 􏽢H, I) of T
(3) Construct the IS ITQ

� (τ− 1(Q), I) induced by TQ � ( 􏽢H, I)

(4) Construct the BMC tree by ITQ
� (τ− 1(Q), I)

(5) Traverse the BMC tree to get the Nodesets of all frequent 1-item sets
(6) Identify the NegNodesets of all frequent k-item sets (k≥ 2)

(7) Build the set-enumeration tree to generate the class TFIS(TQ, αQ), which consists of all temporal frequent item sets
(8) for G ∈ TFIS(TQ, αQ) do
(9) for Z ∈ TFIS(TQ, αQ) do
(10) if G∩Z � ∅ then
(11) Calculate ΔQ

T(G⟹ QZ) � ∩ a∈G∪Z
􏽢H(a);

(12) end if
(13) if supp

Q
T(G⟹ QZ) � |ΔQ

T(G⟹ QZ)|≥max αQ, βQ · supp
Q
T(G)􏽮 􏽯 then

(14) Put G⟹ QZ into SRTAR(T, Q, αQ, βQ);
(15) end if
(16) end for
(17) end for
(18) return SRTAR(T, Q, αQ, βQ);

ALGORITHM 1: 'e negFIN-STARM method.
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From Figure 2(c), we see that the negFIN-STARM
method is faster than the T-Apriori, T-ECLAT, and
T-FPGrowth methods when Q � p5􏼈 􏼉, αp5

� 500, and βp5
is

designated as 75%, 85%, and 95%, respectively. In addition,
Figure 2(d) illustrates that our new method performs better
than those existing methods when βp5

� 85% and αp5
is set

as 400, 450, and 500, respectively.

Furthermore, the quantity comparison of the obtained
TARs based on the chess data set under different thresholds
is demonstrated in Figure 3. In brief, we can find that the rule
number decreases when the threshold increases.

More specifically, Figure 3(a) shows that if Q � p1􏼈 􏼉, the
min-TS αp1

� 500, and the min-TC βp1
is specified as 75%,

85%, and 95%, the number of TARs is 1481 178, 1290 849,
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Figure 2:'e runtime comparison of four methods based on the chess data set. (a) Q � p1􏼈 􏼉 and αp1
� 500. (b) Q � p1􏼈 􏼉 and βp1

� 85%. (c)
Q � p5􏼈 􏼉 and αp5

� 500. (d) Q � p5􏼈 􏼉 and βp5
� 85%.

Table 5: Basic description of the data sets.

Data set Type Items Transactions Periods
Chess Real 75 3196 5
Mushroom Real 119 8124 17
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Table 6: Execution time (ms) of four methods on the chess data set when Q � p1􏼈 􏼉.

Method
αp1

� 500 βp1
� 85%

βp1
� 75% βp1

� 85% βp1
� 95% αp1

� 400 αp1
� 450 αp1

� 500

negFIN-STARM 3684.786 3342.824 1960.214 34 331.857 9424.531 3342.824
T-FPGrowth 3867.453 3535.803 2164.636 34 692.863 9634.365 3535.803
T-ECLAT 4266.350 3924.420 2547.601 37159.247 10 479.533 3924.420
T-apriori 5020.186 4732.639 3408.667 53 857.785 12 905.558 4732.639

Table 7: Execution time (ms) of four methods on the chess data set when Q � p5􏼈 􏼉.

Method
αp5

� 500 βp5
� 85%

βp5
� 75% βp5

� 85% βp5
� 95% αp5

� 400 αp5
� 450 αp5

� 500

negFIN-STARM 1861.970 1819.180 1566.782 11 266.145 3901.763 1819.180
T-FPGrowth 1943.752 1905.275 1646.243 11 556.546 4049.539 1905.275
T-ECLAT 2100.131 2094.229 1822.637 12 908.227 4460.329 2094.229
T-apriori 2861.286 2844.442 2582.787 18 667.517 7362.813 2844.442
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Figure 3: 'e quantity comparison of TARs based on the chess data set. (a) Q � p1􏼈 􏼉 and αp1
� 500. (b) Q � p1􏼈 􏼉 and βp1

� 85%.
(c) Q � p5􏼈 􏼉 and αp5

� 500. (d) Q � p5􏼈 􏼉 and βp5
� 85%.
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and 348100, respectively. In addition, as illustrated in
Figure 3(b), when themin-TC βp1

� 85%, and αp1
is specified

as 400, 450, and 500, the rule number is 26 632 597, 6750 662,
and 1290 849, respectively.

Figure 3(c) shows that when Q � p5􏼈 􏼉, αp5
� 500, and βp5

is specified as 75%, 85%, and 95%, the rule number is
312 092, 282 769, and 76 564, respectively. In addition, as
shown in Figure 3(d), when βp5

� 85% and αp5
is specified as

400, 450, and 500, the rule number is 9024 350, 1926 626, and
282 769, respectively.

Similarly, we also conduct numerical experiments and
comparative analysis of four methods using the mushroom
data set. 'is data set contains 8124 transactions, each
uniquely related to a period in P � p1, p2, . . . , p17􏼈 􏼉. 'ere

are 119 different items in the item domain of this data set.
We consider the cases when Q � p1􏼈 􏼉 and Q � p10􏼈 􏼉. 'e
min-TS and min-TC are simply denoted by αpi

and
βpi

(i � 1, 10), respectively. 'e runtime comparison with
respect to the mushroom data set of four methods under
different thresholds is shown in Figure 4. 'e quantity
comparison of the obtained TARs based on the mushroom
data set under different thresholds is illustrated in Figure 5.
'e average runtime (in milliseconds) of four methods on
the mushroom data set is listed in Tables 8 and 9.

'e above numerical experiments demonstrate that our
newly proposed method is a helpful apparatus for mining
TARs. 'e comparative analysis illustrates that the negFIN-
STARM method performs better than three well-known
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Figure 4: 'e runtime comparison of four methods based on the mushroom data set. (a) Q � p1􏼈 􏼉 and αp1
� 400. (b) Q � p1􏼈 􏼉 and

βp1
� 70%. (c) Q � p10􏼈 􏼉 and αp10

� 300. (d) Q � p10􏼈 􏼉 and βp10
� 70%.
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Table 8: Execution time (ms) of four methods on the mushroom data set when Q � p1􏼈 􏼉.

Method
αp1

� 400 βp1
� 70%

βp1
� 50% βp1

� 70% βp1
� 90% αp1

� 300 αp1
� 400 αp1

� 500

negFIN-STARM 23 301.314 16 805.882 10 229.619 20 402.433 16 805.882 4147.764
T-FPGrowth 23 471.043 16 936.191 10 358.534 20 530.658 16 936.191 4228.420
T-ECLAT 24 027.201 17 564.730 10 956.091 21 303.879 17 564.730 4496.445
T-apriori 24 912.996 18 563.465 11 896.175 23 838.725 18 563.465 4757.468
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Figure 5: 'e quantity comparison of TARs based on the mushroom data set. (a) Q � p1􏼈 􏼉 and αp1
� 400. (b) Q � p1􏼈 􏼉 and βp1

� 70%.
(c) Q � p10􏼈 􏼉 and αp10

� 300. (d) Q � p10􏼈 􏼉 and βp10
� 70%.

Table 9: Execution time (ms) of four methods on the mushroom data set when Q � p10􏼈 􏼉.

Method
αp10

� 300 βp10
� 70%

βp10
� 50% βp10

� 70% βp10
� 90% αp10

� 250 αp10
� 300 αp10

� 350

negFIN-STARM 24 591.737 23 351.536 22 622.411 44 517.337 23 351.536 22 317.219
T-FPGrowth 24 691.053 23 444.934 22 721.846 44 671.873 23 444.934 22 453.963
T-ECLAT 25 243.845 23 984.707 23 251.537 45 474.467 23 984.707 22 990.058
T-apriori 26 033.490 24 824.828 24 074.110 47 534.273 24 824.828 23 866.514
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existing methods, which are the T-Apriori, T-FPGrowth,
and T-ECLAT methods.

6. Conclusions

'is paper is devoted to enhancing association rule mining
by virtue of temporal soft sets. 'e notion of temporal
granulation mappings was defined to induce the granular
structure of a given temporal transaction data set. With the
help of temporal granulation mappings, we introduced
temporal soft sets and their Q-clip soft sets, which enable us
to establish a conceptual framework for extracting TARs.
Specially, we presented a number of useful characterizations
and related results within this framework, including a
necessary and sufficient condition for fast identification of
strong TARs. An illustrative example regarding the Nobel
Prizes was presented to show how these concepts and results
can help facilitate TARM. We also developed a novel
method, named negFIN-STARM, for extracting strong
TARs by taking advantage of both temporal soft sets and
NegNodeset-based frequent item set mining techniques. In
addition, two commonly used data sets were employed to
verify the feasibility of the negFIN-STARM method. Nu-
merical results have shown that the negFIN-STARMmethod
has better performance than existing approaches such as
T-Apriori, T-ECLAT, and T-FPGrowth. It is robust with
respect to the selection of different min-TS and min-TC
thresholds as well. In future, it will be interesting to in-
vestigate the mining of maximal TARs using TSSs and
consider its potential applications to dynamic detection,
fault diagnosis, and optimal control in industrial processes.
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