11,142 research outputs found

    An Algorithm for Automated Printed Circuit Board Layout and Routing Evaluation

    Get PDF
    An algorithm has been developed to evaluate printed circuit boards that are designed using automated board layout and routing software. The algorithm analyzes aspects of component placement and trace routing while searching for violations of basic EMC design principles. The algorithm is implemented in code designed to work with a widely used board layout and routing program. This code can help novice and experienced circuit board designers to avoid mistakes that may result in serious electromagnetic compatibility problems

    Printed Circuit Board (PCB) design process and fabrication

    Get PDF
    This module describes main characteristics of Printed Circuit Boards (PCBs). A brief history of PCBs is introduced in the first chapter. Then, the design processes and the fabrication of PCBs are addressed and finally a study case is presented in the last chapter of the module.Peer ReviewedPostprint (published version

    Hydrothermally extracted nanohydroxyapatite from bovine bone as bioceramic and biofiller in bionanocomposite

    Get PDF
    Bones have an extraordinary capacity to restore and regenerate in case of minor injury. However, major injuries need orthopedic surgeries that required bone implant biomaterials. In this study, n-HAP powder was extracted from bovine bone by hydrothermal and calcined at different calcination temperatures (600-1100°C) without the use of solvents. The n-HAP powders produced were used to fabricate two types of biomaterials (HAP bioceramics and PLA/n-HAP bionanocomposite). The raw-HAP and calcined n-HAP powder samples were compacted into green bodies and were sintered at various temperatures (1000-1400°C) to produce HAP bioceramics. The best calcined n-HAP was mixed with PLA by melt mixing and injection moulding to fabricate PLA/n-HAP bionanocomposite. Characterizations of the n-HAP powder, n-HAP bioceramics and PLA/n-HAP bionanocomposite samples were done by Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transforms infrared (FTIR), Field emission scanning electron microscopy (FESEM), Energy-dispersive x-ray spectroscopy (EDX), X-ray fluorescence (XRF) spectroscopy, universal testing machine (UTM) and melt flow index (MFI) analyses. TGA data revealed that n-HAP was thermally stable at 1300ºC. The extracted n-HAP powder was highly crystalline and crystallite size was in the range of 10-83 nm as confirmed by XRD. Density and hardness of the n-HAP bioceramics increased as sintering temperature increased and showing maximum values at a temperature of 1400°C. The results of PLA/n-HAP bionanocomposite revealed that the higher n-HAP loaded (at 5wt%), the lower the tensile strength of bionanocomposite due to poor interfacial adhesion. The interfacial adhesion was improved by loading of 1.0 wt% maleic anhydride (MAH) as a compatibilizer. The biocompatibility of bionanocomposite was evaluated in simulated body fluids (SBF). The results showed that apatite layers were grown on the surfaces of both biomaterials. Therefore, both biomaterials formulated shall be promising medical biomaterials for orthopedic applications

    Design and implementation of an electro-optical backplane with pluggable in-plane connectors

    Get PDF
    The design, implementation and characterisation of an electro-optical backplane and an active pluggable in-plane optical connector technology is presented. The connection architecture adopted allows line cards to be mated to and unmated from a passive electro-optical backplane with embedded polymeric waveguides. The active connectors incorporate a photonics interface operating at 850 nm and a mechanism to passively align the interface to the optical waveguides embedded in the backplane. A demonstration platform has been constructed to assess the viability of embedded electro-optical backplane technology in dense data storage systems. The demonstration platform includes four switch cards, which connect both optically and electronically to the electro-optical backplane in a chassis. These switch cards are controlled by a single board computer across a Compact PCI bus on the backplane. The electrooptical backplane is comprised of copper layers for power and low speed bus communication and one polymeric optical layer, wherein waveguides have been patterned by a direct laser writing scheme. The optical waveguide design includes densely arrayed multimode waveguides with a centre to centre pitch of 250μm between adjacent channels, multiple cascaded waveguide bends, non-orthogonal crossovers and in-plane connector interfaces. In addition, a novel passive alignment method has been employed to simplify high precision assembly of the optical receptacles on the backplane. The in-plane connector interface is based on a two lens free space coupling solution, which reduces susceptibility to contamination. Successful transfer of 10.3 Gb/s data along multiple waveguides in the electro-optical backplane has been demonstrated and characterised

    Prototyping of petalets for the Phase-II Upgrade of the silicon strip tracking detector of the ATLAS Experiment

    Full text link
    In the high luminosity era of the Large Hadron Collider, the HL-LHC, the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with the resultant increase in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and exploits the concept of modularity. Prototyping and testing of various strip detector components has been carried out. This paper presents the developments and results obtained with reduced-size structures equivalent to those foreseen to be used in the forward region of the silicon strip detector. Referred to as petalets, these structures are built around a composite sandwich with embedded cooling pipes and electrical tapes for routing the signals and power. Detector modules built using electronic flex boards and silicon strip sensors are glued on both the front and back side surfaces of the carbon structure. Details are given on the assembly, testing and evaluation of several petalets. Measurement results of both mechanical and electrical quantities are shown. Moreover, an outlook is given for improved prototyping plans for large structures.Comment: 22 pages for submission for Journal of Instrumentatio

    RAID-2: Design and implementation of a large scale disk array controller

    Get PDF
    We describe the implementation of a large scale disk array controller and subsystem incorporating over 100 high performance 3.5 inch disk drives. It is designed to provide 40 MB/s sustained performance and 40 GB capacity in three 19 inch racks. The array controller forms an integral part of a file server that attaches to a Gb/s local area network. The controller implements a high bandwidth interconnect between an interleaved memory, an XOR calculation engine, the network interface (HIPPI), and the disk interfaces (SCSI). The system is now functionally operational, and we are tuning its performance. We review the design decisions, history, and lessons learned from this three year university implementation effort to construct a truly large scale system assembly

    FirstLight: Pluggable Optical Interconnect Technologies for Polymeric Electro-Optical Printed Circuit Boards in Data Centers

    Get PDF
    The protocol data rate governing data storage devices will increase to over 12 Gb/s by 2013 thereby imposing unmanageable cost and performance burdens on future digital data storage systems. The resulting performance bottleneck can be substantially reduced by conveying high-speed data optically instead of electronically. A novel active pluggable 82.5 Gb/s aggregate bit rate optical connector technology, the design and fabrication of a compact electro-optical printed circuit board to meet exacting specifications, and a method for low cost, high precision, passive optical assembly are presented. A demonstration platform was constructed to assess the viability of embedded electro-optical midplane technology in such systems including the first ever demonstration of a pluggable active optical waveguide printed circuit board connector. High-speed optical data transfer at 10.3125 Gb/s was demonstrated through a complex polymer waveguide interconnect layer embedded into a 262 mm × 240 mm × 4.3 mm electro-optical midplane. Bit error rates of less than 10-12 and optical losses as low as 6 dB were demonstrated through nine multimode polymer wave guides with an aggregate data bandwidth of 92.8125 Gb/s
    corecore