2,928 research outputs found

    Polyhedral Computations for the Simple Graph Partitioning Problem

    Get PDF
    The simple graph partitioning problem is to partition an edge-weighted graph into mutually disjoint subgraphs, each containing no more than b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we present a branch-and-cut algorithm for the problem that uses several classes of facet-defining inequalities as cuttingplanes. These are b-tree, clique, cycle with ear, multistar, and S, Tinequalities. Descriptions of the separation procedures that are used for these inequality classes are also given. In order to evaluate the usefulness of the inequalities and the overall performance of the branch-and-cut algorithm several computational experiments are conducted. We present some of the results of these experiments.Branch-and-cut algorithm; Facets; Graph partitioning; Multicuts; Separation procedures

    Geometric-based Optimization Algorithms for Cable Routing and Branching in Cluttered Environments

    Get PDF
    The need for designing lighter and more compact systems often leaves limited space for planning routes for the connectors that enable interactions among the system’s components. Finding optimal routes for these connectors in a densely populated environment left behind at the detail design stage has been a challenging problem for decades. A variety of deterministic as well as heuristic methods has been developed to address different instances of this problem. While the focus of the deterministic methods is primarily on the optimality of the final solution, the heuristics offer acceptable solutions, especially for such problems, in a reasonable amount of time without guaranteeing to find optimal solutions. This study is an attempt to furthering the efforts in deterministic optimization methods to tackle the routing problem in two and three dimensions by focusing on the optimality of final solutions. The objective of this research is twofold. First, a mathematical framework is proposed for the optimization of the layout of wiring connectors in planar cluttered environments. The problem looks at finding the optimal tree network that spans multiple components to be connected with the aim of minimizing the overall length of the connectors while maximizing their common length (for maintainability and traceability of connectors). The optimization problem is formulated as a bi-objective problem and two solution methods are proposed: (1) to solve for the optimal locations of a known number of breakouts (where the connectors branch out) using mixed-binary optimization and visibility notion and (2) to find the minimum length tree that spans multiple components of the system and generates the optimal layout using the previously-developed convex hull based routing. The computational performance of these methods in solving a variety of problems is further evaluated. Second, the problem of finding the shortest route connecting two given nodes in a 3D cluttered environment is considered and addressed through deterministically generating a graphical representation of the collision-free space and searching for the shortest path on the found graph. The method is tested on sample workspaces with scattered convex polyhedra and its computational performance is evaluated. The work demonstrates the NP-hardness aspect of the problem which becomes quickly intractable as added components or increase in facets are considered

    MIPaaL: Mixed Integer Program as a Layer

    Full text link
    Machine learning components commonly appear in larger decision-making pipelines; however, the model training process typically focuses only on a loss that measures accuracy between predicted values and ground truth values. Decision-focused learning explicitly integrates the downstream decision problem when training the predictive model, in order to optimize the quality of decisions induced by the predictions. It has been successfully applied to several limited combinatorial problem classes, such as those that can be expressed as linear programs (LP), and submodular optimization. However, these previous applications have uniformly focused on problems from specific classes with simple constraints. Here, we enable decision-focused learning for the broad class of problems that can be encoded as a Mixed Integer Linear Program (MIP), hence supporting arbitrary linear constraints over discrete and continuous variables. We show how to differentiate through a MIP by employing a cutting planes solution approach, which is an exact algorithm that iteratively adds constraints to a continuous relaxation of the problem until an integral solution is found. We evaluate our new end-to-end approach on several real world domains and show that it outperforms the standard two phase approaches that treat prediction and prescription separately, as well as a baseline approach of simply applying decision-focused learning to the LP relaxation of the MIP

    ACCPM with a nonlinear constraint and an active set strategy to solve nonlinear multicommodity flow problems

    Get PDF
    This paper proposes an implementation of a constrained analytic center cutting plane method to solve nonlinear multicommodity flow problems. The new approach exploits the property that the objective of the Lagrangian dual problem has a smooth component with second order derivatives readily available in closed form. The cutting planes issued from the nonsmooth component and the epigraph set of the smooth component form a localization set that is endowed with a self-concordant augmented barrier. Our implementation uses an approximate analytic center associated with that barrier to query the oracle of the nonsmooth component. The paper also proposes an approximation scheme for the original objective. An active set strategy can be applied to the transformed problem: it reduces the dimension of the dual space and accelerates computations. The new approach solves huge instances with high accuracy. The method is compared to alternative approaches proposed in the literatur
    corecore