
Clemson University Clemson University

TigerPrints TigerPrints

All Dissertations Dissertations

August 2020

Geometric-based Optimization Algorithms for Cable Routing and Geometric-based Optimization Algorithms for Cable Routing and

Branching in Cluttered Environments Branching in Cluttered Environments

Nafiseh Masoudi
Clemson University, masoudi88@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Recommended Citation Recommended Citation
Masoudi, Nafiseh, "Geometric-based Optimization Algorithms for Cable Routing and Branching in
Cluttered Environments" (2020). All Dissertations. 2702.
https://tigerprints.clemson.edu/all_dissertations/2702

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information,
please contact kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2702&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2702?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2702&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

GEOMETRIC BASED OPTIMIZATION ALGORITHMS FOR CABLE ROUTING

AND BRANCHING IN CLUTTERED ENVIRONMENTS

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Mechanical Engineering

by

Nafiseh Masoudi

August 2020

Accepted July 21, 2020 by:

Dr. Georges M. Fadel, Committee Chair

Dr. Margaret M. Wiecek

Dr. Joshua D. Summers

 Dr. Cameron J. Turner

Distinguished External Reviewer: Dr. Jonathan Cagan, Carnegie Mellon University

http://www.ces.clemson.edu/~agramop/

ii

ABSTRACT

The need for designing lighter and more compact systems often leaves limited

space for planning routes for the connectors that enable interactions among the system’s

components. Finding optimal routes for these connectors in a densely populated

environment left behind at the detail design stage has been a challenging problem for

decades.

A variety of deterministic as well as heuristic methods has been developed to

address different instances of this problem. While the focus of the deterministic methods

is primarily on the optimality of the final solution, the heuristics offer acceptable solutions,

especially for such problems, in a reasonable amount of time without guaranteeing to find

optimal solutions. This study is an attempt to furthering the efforts in deterministic

optimization methods to tackle the routing problem in two and three dimensions by

focusing on the optimality of final solutions.

The objective of this research is twofold. First, a mathematical framework is

proposed for the optimization of the layout of wiring connectors in planar cluttered

environments. The problem looks at finding the optimal tree network that spans multiple

components to be connected with the aim of minimizing the overall length of the

connectors while maximizing their common length (for maintainability and traceability of

connectors). The optimization problem is formulated as a bi-objective problem and two

solution methods are proposed: (1) to solve for the optimal locations of a known number

of breakouts (where the connectors branch out) using mixed-binary optimization and

visibility notion and (2) to find the minimum length tree that spans multiple components

iii

of the system and generates the optimal layout using the previously-developed convex hull

based routing. The computational performance of these methods in solving a variety of

problems is further evaluated.

 Second, the problem of finding the shortest route connecting two given nodes in a

3D cluttered environment is considered and addressed through deterministically generating

a graphical representation of the collision-free space and searching for the shortest path on

the found graph. The method is tested on sample workspaces with scattered convex

polyhedra and its computational performance is evaluated. The work demonstrates the NP-

hardness aspect of the problem which becomes quickly intractable as added components

or increase in facets are considered.

iv

DEDICATION

To my best friend, life coach, motivator, and the love of my life, Yasha, for his

relentless support and encouragement during my challenges as a doctoral student both

inside and outside the lab. This dissertation is also dedicated to my beloved parents Akram

and Mansoor for their unconditional love and being my primary teachers.

v

ACKNOWLEDGMENT

The present effort would have not been possible without the kind support and input

of many. I would like to take this opportunity to acknowledge some of the many people

who have contributed to the success of my work.

First and foremost, I would like to extend my deepest gratitude to my advisor,

Professor Georges Fadel for his unwavering support and patience throughout the progress

of my research. I truly appreciate the opportunity to work with him as his final Ph.D.

student and the input he provided at different stages of my research and academic growth.

His insight and advice always helped me find the right direction both in research and my

professional development. Professor Fadel always held me to high academic standards and

mentored me to take ownership of my work and therefore become a more effective leader

and communicator for which I am truly grateful.

I gratefully acknowledge the efforts and guidance of my dissertation co-advisor,

Professor Margaret Wiecek. Her insight from a mathematician’s point of view was

instrumental to the outcome of this research.

I would like to express my sincere appreciation to my dissertation committee

members, Professors Summers and Turner, and the distinguished external reviewer,

Professor Jonathan Cagan, for their invaluable feedback, practical suggestions, and review

of my work.

My special gratitude goes out to Dr. Summers for all his support and mentorship in

helping me become a more effective researcher, instructor, and leader. He was always

vi

willing to take the extra mile in providing advice whenever I felt stuck with a problem in

the classes I teach or in my research.

 Ph.D. studies have enough challenges to discourage a person from keeping up with

the path. I, on the other hand, was not left alone in this journey and was fortunate to be

joined by my greatest source of encouragement, my husband. Yasha wholeheartedly stood

by my side with all his love at every step I took over the course of my studies, never gave

up on motivating me when even I was doubting myself and provided insightful suggestions

on my research. His continuous support was the key to helping me overcome the hardship

of the path.

I am deeply grateful for all the love and support I have received from my parents

Akram and Mansoor and my sisters Fatima and Bahar during my doctoral studies. Though

far away, I always felt them by my side, and I am very fortunate to be a member of this

lovely family.

I had an amazing opportunity to be a part of a collaborative and vibrant research

group, Clemson Engineering Design Applications and Research (CEDAR). To me,

CEDAR is a school by itself and this is made possible by the contribution of all the

principal investigators (Professors Fadel, Summers, Mocko, and Turner) as well as the

graduate students. I take this opportunity to recognize the contribution of my research lab

mates at CEDAR (Apurva Patel, Vijay Sarthy, Shubhamkar Kulkarni, Maria Vittoria

Elena, Malena Agyemang, Elizabeth Gendreau, Nicole Zero, and Nick Spivey, to name a

few) along with the lab alumni: Dr. James Righter, Dr. Meng Xu, Dr. Qing Mao, Dr.

Anthony Garland (I appreciate his help with the recursive programming aspects of the

vii

research), Dr. Ivan Mata (for providing programming tips), Dr. Jingyuan Yan, and Dr. Mo

Chen. The scientific discussions we had in CEDAR played an important role in

constructing a problem-solving and critical thinking mentality for me.

The Mechanical Engineering Department at Clemson University is highly

appreciated for the generous financial support made through Teaching Assistantships over

three years during my doctoral studies. The experiences I gained from laboratory and

classroom teaching had a significant contribution in making me enthusiastic about teaching

and deciding to take this route as my future career.

I am also grateful to Dr. Todd Schweisinger, my supervisor in undergraduate labs,

for his mentorship and support during my teaching appointment and his contribution in

offering me a Graduate Teaching Fellowship to teach a junior level mechanical engineering

course, Machine Design, so that I could gain more teaching experience as a Ph.D. student.

My special thanks go to all the 115 Mechanical Engineering students I had the

opportunity to be their instructor during my time at Clemson University who made teaching

an enjoyable aspect of my graduate studies.

Last but not the least, I acknowledge the help and support of all the ME 2220

Teaching Assistants as well as my friends at Clemson. I am also thankful to the kind staff,

Ms. Kathryn Poole and Ms. Trish Nigro, at the Mechanical Engineering Department for

the unparalleled service they provide for the graduate students.

viii

TABLE OF CONTENTS

Abstract .. ii

Dedication ... iv

Acknowledgment ... v

List of Tables ... x

List of Figures ... xi

Chapter One Introduction .. 1

Chapter Two An Overview of 2D Path Planning Problems and

Solution Methods ... 8

2.1 Roadmap techniques .. 8

2.2 Cell decomposition .. 20

2.3 Potential Fields (PF) .. 20

2.4 Stochastic and Sampling-Based methods .. 21

2.5 Heuristic methods .. 22

2.6 Comparison of path planning methods .. 23

2.7 Planar convex hull based approach for 2D routing .. 25

Chapter Three 2D Multipath Planning and The Cable Harness Design

Problem .. 29

3.1 Review of the related work .. 30

3.2 Research objective and proposed solution ... 59

3.3 Mixed-binary layout optimization using Euclidean norm 61

3.4 Layout optimization using convex hull based routing ... 84

Chapter Four Overview of The Related Work On 3D Path Planning

Methods.. 109

4.1 3D Visibility graph .. 110

4.2 Non-deterministic methods .. 119

4.3 Other methods for 3D path planning ... 122

4.4 Comparison of path planning methods .. 125

ix

4.5 Research objectives- Part II ... 128

Chapter Five 3D Path Planning Problem Setup, Definitions, and

Formulation .. 129

5.1 Definitions of fundamental terms .. 129

5.2 Assumptions ... 130

5.3 Modeling the workspace: representation and exchange format 132

5.4 Data types and structures ... 138

5.5 Problem formulation .. 142

Chapter Six Intersection Detection Algorithms ... 145

6.1 Line segment-triangle intersection ... 145

6.2 Triangle-triangle intersection ... 156

Chapter Seven 3D Visibility Graph Construction and The Shortest

Path .. 159

7.1 3D graph construction .. 159

7.2 Shortest path: 3D graph search .. 177

7.3 Results and discussion ... 179

7.4 Final remarks ... 197

Chapter Eight Summary and Future Work .. 200

8.1 Cable harness design problem in 2D ... 200

8.2 Graphical representation of the free space in 3D planning 204

8.3 Broader Impact .. 212

Appendices ... 215

Appendix A: Additional Results for Layout Optimization Problem 216

Bibliography .. 222

x

LIST OF TABLES

Table 2.1 Comparison of path planning methods .. 24

Table 2.2 Comparison of methods to improve visibility algorithm 27

Table 3.1 Comparison of design and optimization methods for

multipath connection problems .. 59

Table 3.2 Summary of visibility information for Figure 3.11 64

Table 3.3 Summary of visibility information for Figure 3.12 65

Table 3.4 Summary of visibility information for Figure 3.13 69

Table 3.5 Optimal values of decision variables and objective

functions for Problem 1 ... 77

Table 3.6 Optimal values of the decision variables and objective

functions for Problem 3-2 .. 82

Table 3.7 Results for testing the effects of density on optimal

layout.. 102

Table 4.1 Comparison of 3D visibility-based planning methods 127

Table 5.1 Common neutral CAD formats [213] .. 133

file:///C:/Users/Nafiseh/Dropbox/Nafiseh-dissertation/Doctoral%20Dissertation_N.Masoudi.docx%23_Toc47376104

xi

LIST OF FIGURES

Figure 2.1 Sample visibility graph for two objects .. 9

Figure 2.2 Sample conical region in Clarkson’s method [30] 12

Figure 2.3 Supporting segments defined by Rohnert [33] ... 13

Figure 2.4 Steps in Jan’s method [35] ... 14

Figure 2.5 Steps in grouping obstacles in Toan’s method [40] 16

Figure 2.6 Ellipsoidal bounding region for downsizing of visibility

graph [41] ... 16

Figure 2.7 Example of a Voronoi diagram with four obstacles [47] 18

Figure 2.8 Generation of the convex hulls of the intersecting

objects .. 25

Figure 2.9 The solution of C-hull based planning ... 26

Figure 3.1 The literature review of cable harness design .. 31

Figure 3.2 Generic cable harness design process [106] ... 37

Figure 3.3 Notion of Steiner visibility [133] ... 41

Figure 3.4 Final optimal layout for a wind farm[144] ... 45

Figure 3.5 Obstacle-avoiding optimal wind farm layout[145] 46

Figure 3.6 Sample polyhedral gauge with 6 fundamental directions

[152] ... 48

Figure 3.7 Sample grid for location problem with barriers[152] 49

Figure 3.8 Illustration of the shadow of a point [153] ... 50

Figure 3.9 Sample subdivision of the feasible space by Klamroth's

method [153] .. 50

Figure 3.10 Construction of the grid in the feasible domain ... 51

Figure 3.11 Sample subdivision using shadows of existing nodes 63

Figure 3.12 Effects of node locations on the subdivision of the

workspace .. 64

Figure 3.13 Sample visibility map for workspace with one

triangular obstacle .. 69

Figure 3.14 Level 2 decomposition of the workspace of Figure

3.13... 70

Figure 3.15 Examples of Pareto non-dominated solutions .. 72

xii

Figure 3.16 Final set of non-dominated solutions for Problem 1-2 76

Figure 3.17 Optimal (efficient) locations of the breakout for

Problem 1-2 .. 76

Figure 3.18 Evolution of non-dominated fronts .. 77

Figure 3.19 Optimal (efficient) locations of the breakout for

Problem 3-2 .. 80

Figure 3.20 Set of non-dominated solutions for Problem 3-2 81

Figure 3.21 Flowchart for the iterative convex hull creation... 88

Figure 3.22 Example of a breakout located inside the convex hull

of a nonconvex obstacle ... 91

Figure 3.23 Sample workspace with start and goal nodes ... 94

Figure 3.24 Non-dominated set of solutions for Figure 3.23 ... 95

Figure 3.25 Sample optimal layouts for Figure 3.23 example 97

Figure 3.26 No-breakout layout example for Figure 3.23 ... 98

Figure 3.27 Two different topologies for 4 nodes and 2 breakouts 100

Figure 3.28 Effects of the density of the workspace on the

computation time ... 103

Figure 3.29 Effects of the density of the workspace on the

maximum common length ... 103

Figure 3.30 Effects of the density of the workspace on the

minimum total length ... 104

Figure 3.31 Effects of the density of the workspace on the

minimum total length without a breakout .. 104

Figure 3.32 Example of interlocking obstacles in a dense

environment ... 105

Figure 3.33 Sample optimal layout for the workspace of Figure

3.32... 106

Figure 3.34 Wire layout without breakouts for the workspace of

Figure 3.32 ... 107

Figure 3.35 Optimal locations of the breakout for Problem 3-2

found using convex-hull based routing .. 108

Figure 3.36 Non-dominated sets for Problem 3-2 found using

convex-hull based routing vs. mixed-binary optimization 108

Figure 4.1: Illustration of collineation concept [179] .. 114

xiii

Figure 4.2: The shortest path through the midpoints of the found

edge sequence [179] ... 114

Figure 4.3: Three-level visibility graph [180].. 115

Figure 4.4: The notion of partial visibility for segments [9] .. 117

Figure 4.5: The sub-goal for a cuboid obstacle[182] ... 118

Figure 4.6: The shortest path for a 2D workspace [182] ... 119

Figure 4.7: Optimal layout for a chemical plant using SA[183].................................. 121

Figure 4.8: An example of a Dubins path .. 124

Figure 4.9 Taxonomy of path planning methods ... 125

Figure 5.1: Round-off error in tessellations ... 135

Figure 5.2: Sample STL representation of CAD data in ASCII

format ... 136

Figure 5.3: Sample VRML representation of CAD data in ASCII

format ... 137

Figure 5.4: Multidimensional Cell Array [215] ... 140

Figure 5.5: Graphical representation of a linked list[217] ... 141

Figure 6.1: Rotation about the Y-axis .. 148

Figure 6.2: Rotation about the X-axis .. 149

Figure 6.3: Sample coordinate transformation... 150

Figure 6.4: Sample out-of-bound AABB ... 151

Figure 6.5: Object lying at one side of the line .. 152

Figure 6.6: Non-intersecting object not filtered in step II ... 153

Figure 6.7: Intersection between two triangles [221] .. 158

Figure 6.8: Example of Moller’s intersection test [222] .. 158

Figure 7.1 3D convex hull with the Start and the intersecting

obstacle .. 161

Figure 7.2 Flowchart for determining the first leg of the path..................................... 162

Figure 7.3 Flowchart for determining the second leg of the path 164

Figure 7.4 Connected edges on the convex hull .. 166

Figure 7.5 Example perpendicular line to the Start-Goal line and

the edge .. 167

Figure 7.6 Example of cutting plane .. 168

xiv

Figure 7.7 Dimensional limits of the cutting plane.. 169

Figure 7.8 The intersection of the cutting plane and the convex hull 170

Figure 7.9 Illustration of type II intersection between an edge and

an obstacle .. 171

Figure 7.10 Sample edge sequences for Figure 7.4 ... 173

Figure 7.11 Sample edge sequences for Figure 7.9 ... 173

Figure 7.12 Optimal locations of waypoints for edge sequences of

Figure 7.10 ... 175

Figure 7.13 Optimal locations of waypoints for edge sequences of

Figure 7.11 ... 175

Figure 7.14 Final collision-free graph of Figure 7.4 .. 176

Figure 7.15 Final collision-free graph of Figure 7.9 .. 176

Figure 7.16 Shortest route on the graph of Figure 7.14 (after

geometric transformation) .. 177

Figure 7.17 Shortest path on the untransformed workspace of

Figure 7.4 ... 178

Figure 7.18 Shortest route on the graph of Figure 7.15 (after

geometric transformation) .. 178

Figure 7.19 Shortest path on the untransformed workspace of

Figure 7.9 ... 179

Figure 7.20 Tessellated models of half-sphere used for the test 181

Figure 7.21 Collision-free graphs on tessellated models of half-

sphere ... 181

Figure 7.22 Computation time vs. the number of triangular faces

(semilog scale) ... 182

Figure 7.23 Computation time vs. the number of triangular faces

(loglog scale) .. 182

Figure 7.24 Path length vs. the number of triangular faces ... 183

Figure 7.25 Path length vs. the number of triangular faces (semilog

scale) .. 184

Figure 7.26 Collision-free graphs and shortest paths on oriented

half-sphere of Figure 7.20 .. 184

Figure 7.27 Computation time vs. the number of triangular faces

for oriented half-sphere (semilog scale) .. 185

xv

Figure 7.28 Computation time vs. the number of triangular faces

for oriented half-sphere (loglog scale) ... 185

Figure 7.29 Path length vs. the number of triangular faces for

oriented half-sphere ... 186

Figure 7.30 Path length vs. the number of triangular faces for

oriented half-sphere (semilog) ... 186

Figure 7.31 Effects of adding blocking obstacles .. 189

Figure 7.32 Effect of the location of the blocking obstacle ... 190

Figure 7.33 Effect of the orientation of the blocking obstacle 190

Figure 7.34 Effects of adding blocking objects of different shapes 193

Figure 7.35 Effects of the number of objects on the computation

time .. 194

Figure 7.36 Example path planning in a workspace with three

blocking objects ... 195

Figure 7.37 Collision-free graph of a workspace with multiple

objects of random shapes ... 196

Figure 7.38 Shortest path on the graph of Figure 7.37 Collision-

free graph of a workspace with multiple objects of random

shapes ... 197

Figure 8.1 Example of path planning in the presence of a non-

convex object ... 208

Chapter One

INTRODUCTION

Finding the shortest path between two given points in an environment has been one

of the classical problems in geometry. Without any obstacles to block the line of sight

between the two points, the shortest path is trivially the line segment that connects the two.

The problem, however, becomes challenging when the two points are not visible to each

other due to the presence of obstacles blocking the direct path.

Path planning emerges in a variety of real-world problems. For example, as new

features are continuously added to complex electromechanical systems such as hybrid

electric vehicles, the number of their wire or cable connectors is considerably increased

and the wire harnesses are becoming heavier and more complex to be designed. According

to studies (for example see [1]), cabling is the third heaviest and costliest component in a

car after its engine and chassis. Traditionally, cables and hoses have been routed using a

manual trial-and-error approach in CAD software. The routing might be tested on

prototypes [2]; however, it mainly relies on the experience of skilled engineers [3]. This

makes the process time-consuming, tedious, and error-prone [4]. In addition, it could result

in non-optimal solutions. Therefore, an optimal cable routing method is required to reduce

their length and therefore minimize the total weight of the system.

While cable/wire routing is an example of path planning in cluttered environments

and the main focus of the present study, other examples include robot motion planning,

VLSI (Very Large Scale Integration) design, transportations, pipe routing (in ships and

process plants), and navigation problems (e.g. vehicle routing, and UAV path planning).

1

2

Tremendous effort has been made to address different instances of this problem in

both two- and three-dimensional workspaces. All these studies have one element in

common; they attempt to identify a finite number of waypoints between the path start and

goal points and then connect the found waypoints in series to form piecewise linear and

collision-free paths. While the waypoints can be located anywhere in the collision-free

space, studies show that to minimize the length of the path, the waypoints should lie on the

vertices (in 2D workspaces) or the edges of (in 3D workspaces) the intersecting obstacles

or at an offset from their entities (if an object must not be touched; for example to avoid

sharp edges or high-temperature surfaces). In cases where the path constructed by the

waypoints is not unique, the points are concatenated in a graph, which is later searched

using algorithms such as Dijkstra [5] or A* [6] to find the global shortest collision-free

path on the graph.

In addition to the main objective, minimization of the path length, there might be

other criteria such as minimizing the number of turns in the path. This could be critical in

instances where turns in the path cause complications and should be avoided. The design

of the layout of chemical process plants with thousands of pipes or motion planning of

robots with arbitrary geometry in densely populated environments are examples of path

planning problems where the number of turns should be minimized in addition to the path

length.

Besides avoiding intersection with any of the obstacles in the workspace, there

could also be constraints on the path turn angle, further limiting the feasible space of the

optimization problem. Other factors may also increase the complexity of the problem

3

including complexities in the shapes of the obstacles (e.g. holes or nonconvexities),

increase in the number of intersecting obstacles, and maintaining a set clearance between

the obstacles at all times. These factors, though not fundamental to this study, are

occasionally discussed throughout this manuscript.

The two-dimensional class of collision-free path planning has gained extensive

attention by scholars and a variety of exact as well as non-exact methods have been

developed to tackle its different instances.

In our previous work, an exact geometric-based algorithm for planar routing in

cluttered environments is presented. The effort is made to overcome the computational

limitations of the classical visibility graph (the only exact path planning method available)

by constructing candidate partial visibility graphs. The algorithm makes use of the convex

hulls of the intersecting objects to construct collision-free graphs. The advantage of using

the convex hulls is that it enables handling any free form obstacle in the workspace. The

developed algorithm has a proven time complexity of 𝑂(𝑛𝑙𝑜𝑔(
𝑛

𝑓
)) for n vertices and f

intersecting objects which is a significant improvement from the classical visibility and its

variants. Further, the algorithm outperforms its competitors in constructing partial visibility

graphs that are used to yield the globally optimum solution in addition to being faster.

Apart from finding the shortest collision-free path between two given points, there

are problems wherein multiple points in the environment are to be connected with the

shortest segments. This can be seen in cable/wire routing in electromechanical systems that

connect different system components or piping systems in chemical process plants and

ships.

4

Other non-intuitive applications of multipath planning problems include but may

not be limited to facility location in the presence of obstacles, layout design of wind farms,

and design of transportation networks. Facility location is the problem of locating one or

more new facilities in the proximity of existing facilities to minimize (or maximize) the

distances between all facilities while avoiding both the placement of the new facilities

inside and the travel through forbidden areas. These applications are further discussed in

Chapter 3 along with the existing methods to address them.

In multipath planning problems, instead of finding the shortest path between any

pair of points separately, a more efficient approach is to create the main route which can

then branch out to reach different nodes; this results in a shorter network of paths. The

problem, therefore, can be deemed as finding a minimum length network in the presence

of obstacles.

Steiner Minimal Tree (SMT) and Minimum Spanning Tree (MST) are the most

popular methods to find the minimum length tree (or network) that connects multiple points

in a known network. These methods, however, do not deal with the collision avoidance

constraint that is common in cluttered environments.

Building on and extending our previous work on the 2D convex hull based path

planning method, the present study addresses the multipath planning problem in two-

dimensional spaces by answering the question: what is the optimal layout of a network of

points in the presence of obstacles?

This is a cable harness design problem; the harness trunk includes the majority of

the cables together, and then they are distributed to connect to their respective nodes. The

5

problem is formulated as a bi-objective optimization problem whose objectives are (1) to

minimize the overall length of the network and (2) to maximize the common length of the

paths.

Most real-world path planning problems, however, are in 3D space. Nonetheless,

moving to 3D space introduces more complexities that make most of the existing methods

for 2D problems inefficient for three dimensions. Due to these complexities, most methods

developed for 3D problems attempt to address the simplified version of the generic path

planning problem in the presence of obstacles. The methods mainly make use of heuristic

or stochastic techniques that may not be able to guarantee the attainment of the globally

optimum solution. These methods are discussed in detail in Chapter Four.

Based on this background, the second part of this study investigates the possibility

of developing a deterministic optimization method to find the shortest collision-free path

in cluttered 3D environments. As stated by Canny [7], the shortest collision-free path in

3D cluttered environments passes through the edges of some of the obstacles if there is no

direct path from start to end. This research, therefore, answers the questions of where and

how the waypoints should be located on obstacle edges in a known 3D cluttered

environment.

Dissertation Organization

The following provides an overview of the organization and content of each chapter

in this dissertation, following Chapter One.

Chapter Two begins with a description of the 2D path planning problem and the

existing methods to address it. The chapter discusses the contributions and limitations of

6

the related work on 2D problems along with an explanation of our previously developed

convex hull based approach for 2D planar problems in a cluttered environment. The

extension of these studies to 3D problems is also briefly discussed.

Chapter Three is allocated to the discussion of multipath planning problems with

a particular focus on 2D problems. The review of the related work is provided and the

specific application of this problem in cable harness design is explored. Finally, an

optimization paradigm for cable harness layout in 2D cluttered environments is proposed

and results are further presented.

Chapter Four serves as the second part of the literature review on path planning

problems as it focuses on 3D cluttered environments. The discussion of the existing

methods to tackle this class of path planning problems leads to the identification of gaps in

methods to address 3D path planning problems which is the basis of the hypothesis in this

research.

Chapter Five sets the stage for the development of the deterministic 3D path

planning algorithm by stating the definitions used and assumptions made throughout this

study. In addition, the workspace representation and data types/structures used to organize

the geometric data of the workspace are also explained. Finally, the formulations of the

graph construction and the shortest path problems are given.

Chapter Six details the geometric algorithms used to detect two types of

intersections in 3D space: (1) between a line and a 3D object and (2) between two triangles.

The former is used to detect intersecting objects while the latter is used as a step in

constructing the collision-free graph using the information of the intersecting objects on

7

the way to the path goal point. Intersection detection is at the core of the 3D graph

construction algorithm proposed in this research.

Chapter Seven portrays the steps in constructing the collision-free graph in a given

workspace after the identification of the intersecting objects. It also presents the results of

applying the developed 3D path planning algorithms on a variety of test cases. Further, a

discussion of the contribution of this research in routing applications as well as the

limitations of the method is provided.

Chapter Eight concludes this dissertation by summarizing the major research

findings and the limitations of the proposed methods to design cable harnesses and route

3D connectors. It, additionally, presents research questions that can be explored in the

future as potential extensions of the present study and research avenues that could be

further explored.

8

Chapter Two

AN OVERVIEW OF 2D PATH PLANNING PROBLEMS AND SOLUTION

METHODS

The Path Planning problem has been widely studied in the literature. Whether one

is interested in solving a problem modeled on a network graph or a more real-world

planning problem in 3D, the solution methods developed so far can be summarized and

classified into four main categories that are explained in this chapter, though not all of them

address the problem in full generality [8].

This chapter is allocated to an overview of the related work on path planning

problems in 2D environments in particular. First, different approaches to address path-

planning problems in a variety of environments are explained along with their assumptions

and constraints. Next, the different approaches are compared based on the optimality of the

solution they provide and their computational efficiency. Finally, the gaps in the literature

are identified and our solution to bridge one gap is presented. The developed method is the

basis of the 2D multipath planning problem that is explained in Chapter 3. The path

planning problem in 3D environments is further discussed in Chapters 4 through 8.

2.1 Roadmap techniques

Roadmap techniques are among the first methods to address path planning

problems. These methods map the free space to a connectivity graph that is later searched

to find the shortest path. Roadmaps are geometric based methods, meaning they take into

account the geometric properties of the obstacles when constructing the graph. According

to Tran et al. [9], geometric-based path planning methods are more accurate than their

9

heuristic and stochastic competitors. The visibility graph and retraction method (using

Voronoi diagrams) are examples of roadmap techniques.

2.1.1 Visibility graphs

Constructing the “visibility graph” to model the free space is deemed the first

method in computational geometry to address the shortest path problem [10]. The method

is introduced by Nilsson [11] to plan a safe path for a mobile robot.

The visibility graph of a set of polygonal objects in 2D consists of visible vertices

of the objects that are connected by non-intersecting line segments. Any two nodes that can

be connected by a line segment not intersecting any obstacles in the workspace are visible.

Figure 2.1 shows an example of a visibility graph created for an environment with two

objects.

Figure 2.1 Sample visibility graph for two objects

The method is widely applied to different planning problems to reduce the routing

problem to that of searching a graph of the feasible solutions, for example, see [12–16]. It

is noteworthy that for robot motion planning, a configuration space introduced by Udupa

[17] is first obtained that dilates the obstacles using the Minkowski sum of the robot’s

10

geometry and the obstacle space. Consequently, the polygonal robot is treated as a moving

point instead of a moving object. For example, Lozano and Wesley [13] tackled the

problem of planning a collision-free path for a moving object of a known geometry among

polyhedral obstacles using visibility graphs. To find the configuration space of the

problem, they considered the position as well as the orientation of the robot. After

determining the configuration space, a visibility graph needs to be constructed and finally

searched for the shortest path.

Despite its simplicity and completeness, the brute-force algorithm to generate the

visibility graph is computationally expensive since it explores all the obstacle vertices [18].

In fact, the classical algorithm to develop the visibility graph of an environment in 2D takes

𝑂(𝑛3) time where 𝑛 is the total number of vertices [19]. Hence, researchers have attempted

to improve the efficiency of the visibility algorithm in one of these two ways: (1)

developing more efficient algorithms to create the complete visibility graph and (2)

downsizing and creating the partial visibility graph by eliminating the unnecessary edges.

2.1.1.1 Efficient algorithms for visibility graph construction

The early efforts in generating the complete visibility graph through developing

more efficient algorithms date back to the studies by Lee [20], Welzl [21], and Asano et al.

[22,23]. Lee’s algorithm improves the complexity of classical visibility up to 𝑂(𝑛2𝑙𝑜𝑔 𝑛)

while Welzl and Asano, in their separate research works, have further improved it to 𝑂(𝑛2).

Sharir and Schorr [24] investigated the shortest paths in 2D spaces with polyhedral

obstacles. They developed an algorithm that constructs the visibility graph of the

environment with n total number of vertices in 𝑂(𝑛2𝑙𝑜𝑔 𝑛) time although they presented

11

some special cases for which the time complexity of the construction could be improved

up to 𝑂(𝑛 𝑙𝑜𝑔 𝑛).

Additionally, Ghosh and Mount [25] achieved an output-sensitive algorithm with

𝑂(𝐸 + 𝑛 𝑙𝑜𝑔 𝑛) time that computes the visibility graph for E edges of the visibility graph

and n obstacle vertices. Readers are referred to [15,24,26–28] for further examples of

efficient algorithms for the visibility graph generation.

2.1.1.2 Downsizing and partial visibility graph algorithms

Since the classical visibility graph is comprised of all non-intersecting segments,

some of them might not be useful to find the shortest path. As claimed by Wein [29], for

example, the edges created by nonconvex vertices are never used in the shortest path,

therefore, they can be simply removed. In this section, some of the developed algorithms

to construct partial visibility graphs are presented.

In a study by Clarkson [30], a method is proposed to improve the time complexity

of the visibility-based shortest path algorithm. His developed technique works based on

eliminating some of the unnecessary edges of the visibility graph. To construct the reduced

visibility graph, he creates a family of cones per each vertex of the obstacles. The apex of

the cones is the corresponding vertex of the obstacle. The edges of the reduced graph are

segments between the apexes and the closest visible points in each cone. The reduced graph

is a subset of the original visibility graph that needs to be augmented by the start and goal

points of the path. The edges connected to the start and goal are added analogous to the

other edges in the graph using the conical regions. A sample conical region is shown in

Figure 2.2. He then applies the algorithm developed by Fredman and Tarjan [31] to find

12

the ε-shortest path. The ε-short path is the path that has a length no longer than (1 + 𝜀)

times the shortest path. Clarkson’s algorithm is capable of constructing the data structure

in 𝑂(𝑛 𝑙𝑜𝑔 𝑛) and finding the ε-shortest path in 2D cases in 𝑂(𝑛 𝑙𝑜𝑔 𝑛 + 𝑛/𝜀) time, with

n vertices and ε, 0 ≤ 𝜀 ≤ .

Figure 2.2 Sample conical region in Clarkson’s method [30]

Hershberger and Guibas [32] considered downsizing the visibility graph. They

developed a pruning heuristics decision making that removes the unnecessary edges based

on mathematical rules and the triangle inequality. Their algorithm finds the shortest path

for a moving convex body in 𝑂(𝑛2) time.

Rohnert [33] in another study developed an algorithm that computes the shortest

path in a Euclidean plane in the presence of disjoint convex polygonal obstacles in 𝑂(𝑓2 +

𝑛 𝑙𝑜𝑔 𝑛) time for f number of obstacles. His algorithm generates the local visibility graph

that works efficiently for planes with convex obstacles. He introduced the supporting

segments between polygons and claimed that the shortest collision-free path between two

given points passes through both the polygon edges and supporting segments. A supporting

segment as defined by Rohnert is the common tangent line segment between two polygons.

The supporting segments between two convex polygons are depicted in Figure 2.3. He then

suggested that the partial visibility graph needs to be constructed using only the supporting

13

segments and the polygon edges. However, the supporting segments that intersect with

other polygons of the environment are removed from the visibility graph. The elimination

of these supporting segments may, however, restrict the feasible region and cause difficulty

in reaching the globally optimal path.

Figure 2.3 Supporting segments defined by Rohnert [33]

Following Rohnert’s approach to reducing the visibility graph, Priya and Sridharan

[34] developed a faster algorithm to create the supporting segments. Their algorithm

benefits from a coding paradigm that identifies the tangent segments. They assign binary

codes to different inner and outer regions created by a polygon and identify tangents by

operating on these codes. Similar to Rohnert’s technique, they remove the intersecting

supporting segments from the visibility graph. Their algorithm can generate a reduced

visibility graph in 𝑂(𝑓2 + 𝑙𝑜𝑔((𝑛/𝑓)2)) which is an improvement from Rohnert’s.

More recently, Jan et al. [35] have proposed an algorithm based on the Delaunay

triangulation to reduce the size of the visibility graph and find the near-shortest path.

14

Figure 2.4 Steps in Jan’s method [35]

15

Although the algorithm’s dominant time complexity is found 𝑂(𝑛 𝑙𝑜𝑔 𝑛), for 𝑛

obstacles, it requires multiple post-processing refinements and it only generates the near-

shortest path [36]. The method also requires complete knowledge of the environment a

priori to be able to perform the triangulation, which makes it inefficient for real-time

planning problems. Moreover, as noted by Qureshi and Ayaz [37], Jan’s method is limited

to low dimensional spaces as it works based on workspace discretization which makes it

inefficient for higher dimensions. The general steps in Jan’s method are illustrated in

Figure 2.4.

In another planar path-planning study, Jafarzadeh et al. [38] developed an exact

method that applies to static environments with convex as well as nonconvex shapes. Their

algorithm reduces the size of the graph by identifying the effective polygons and

eliminating their unnecessary vertices from the graph. This algorithm finds the shortest

path in 𝑂(𝑛𝑛′2
), where n is the total number of vertices and 𝑛′ is the number of graph’s

nodes.

In addition to reducing the graph size, some scholars proposed methods to create

the graph for a limited region in the workspace, i.e. restricting the feasible region to that of

the shorter paths. For example, one algorithm computes a region by the extreme vertices

of the intersecting obstacles [39]. In another study [40], a grouping technique is proposed

to merge multiple smaller neighboring obstacles into a bigger one (see Figure 2.5).

Although this method reduces the number of obstacles, it compromises finding the global

solution as it excludes the regions in between the smaller obstacles. This situation may

worsen in tighter workspaces wherein the path should go through narrow passages.

16

Figure 2.5 Steps in grouping obstacles in Toan’s method [40]

Along with these efforts, Gasilov et al. [41] presented a technique that reduces the

feasible region to an ellipse created by the start and goal points of the path as the two ellipse

foci. They claim that based on the definition of an ellipse it is the right representative of

the feasible region. Hence, paths found in the ellipsoidal region would be optimal. An

example of such an ellipsoidal region with an optimal path is shown in Figure 2.6.

Figure 2.6 Ellipsoidal bounding region for downsizing of visibility graph [41]

17

In a rather similar manner, Badariyah et al. [42] proposed a method that limits the

graph generation to an equilateral area. They create the visibility graph on a rhombus-

shaped region, the diagonals of which are the baseline (the line connecting the start and

goal points of the path), and the line perpendicular to the baseline at its midpoint. Despite

the efficiency of the proposed algorithm in yielding the globally optimal path, it still

generates unnecessary edges in the visibility graph of the limited region, and not all the

obstacles that lie inside the region may be useful in finding the shortest path.

In the aforementioned studies, if efficient, the proposed methods are only valid for

special cases that involve convex objects and if the objects are non-convex, a

convexification is performed a priori. In some applications [32,43], the complete visibility

graph has to still be developed and then downsized via removing some of the edges. In

addition, the free space graph is created using all obstacles in the workspace or by limiting

its feasible region [40–42] regardless of their contribution to the shortest path which could

result in near-optimal solutions. In other studies [35], graph construction needs pre or post-

processing steps to refine the final solution and obtain results closer to the global optimum.

2.1.2 Voronoi diagrams

Researchers have also utilized Voronoi diagrams in solving path-planning

problems over the past decades [44]. Ó'Dúnlaing and Yap [45] are pioneers of using

Voronoi diagrams for solving planning problems by introducing the “Retraction Method”.

Simultaneously, though independently, Brooks [46], introduced the freeway technique,

which is a more empirical version of the retraction by the notion of Voronoi diagrams.

18

As defined by O’Rourke [10], the Voronoi region of a point p, on a plane, is the set

of all points that are closer to p than any other specified points or sites. By this definition,

the Voronoi diagram of a set of n disjoint planar polygons divides the plane into n maximal

clearance connected cells [47]. An edge of a Voronoi diagram is equidistant to two vertices

or polygon edges while any Voronoi vertex is equidistant to vertices or edges of at least

three polygons. Figure 2.7 illustrates a Voronoi diagram of four obstacles in a plane.

Figure 2.7 Example of a Voronoi diagram with four obstacles [47]

Bhattacharya and Gavrilova [48], undertook the problem of 2D path planning using

Voronoi diagrams and developed a shortest-path algorithm that works in 𝑂(𝑛 𝑙𝑜𝑔 𝑛) time,

n being the total number of vertices. They create the Voronoi diagram of the workspace by

approximating the obstacles by their boundary points. They then dynamically add the start

and goal points into the diagram and connect them to all Voronoi vertices to avoid

intersections. Next, they define the minimum clearance, c, from the obstacles, and remove

all the edges of the Voronoi diagram that result in a clearance less than c. Finally, they

apply Dijkstra’s search algorithm to find the shortest path on the graph.

19

A downside to this method is that the solution found might require some smoothing

and refinement since the shortest path includes redundant vertices and unnecessary turns.

The Voronoi diagram is effective for cases where the maximal clearance or the

safest path is of particular interest, for example, see [49–51]. Additionally, a generalization

of this method is presented in [52]. Since the edges of the Voronoi diagram are created by

the points equidistant from pairs of vertices and/or edges of the two closest obstacles, it

results in the maximal clearance path, which is not necessarily the shortest.

To achieve the shortest path and at the same time maintain a certain clearance from

the obstacles, Wein et al. [47] proposed an algorithm applicable to small-sized workspaces.

They improved the efficiency of their algorithm up to 𝑂(𝑛2𝑙𝑜𝑔 𝑛), over the time-expensive

visibility graph construction. The algorithm evolves from a visibility graph to a Voronoi

diagram as c grows from 0 to ∞. In the preprocessing phase, they grow the polygonal

obstacles by c using the Minkowski sum of the polygon and a disk of radius c. They then,

construct the visibility graph of the grown obstacles. In case a narrow passage is blocked

by two or more of the grown obstacles, they find the intersection of the union of the grown

obstacles and the Voronoi diagram, hence replacing the blocked portion by a Voronoi edge

passing through the narrow passage. Although the clearance of the Voronoi edge from the

blocking obstacles is less than c and it may yield sharp turns, to ensure the shortest path is

achieved, this passage is allowed. The graph is later searched using Dijkstra’s algorithm to

find the shortest path. Despite the proven efficiency of this algorithm, it may not be

practical to apply it to larger-scale problems [48].

20

2.2 Cell decomposition

Cell Decomposition method [53–55] aims at partitioning the collision-free space

into a finite number of non-overlapping cells. The decomposition could be conducted either

exactly or approximately [8]. The exact method decomposes the free space into cells of

triangular and/or trapezoidal shapes [8]. Alternatively, the approximate decomposition

starts with discretizing the workspace to a known number of cells of prespecified shape.

The dividing of the cells is continued recursively until each cell is located completely inside

or outside the obstacle space or a termination criterion is achieved.

Quadtree and octree techniques [8] are examples of approximate cell

decomposition where the decompositions are in four (for 2D) and eight (for 3D) cells

respectively. After the decomposition is complete, the neighboring cells are connected in

the form of a graph capturing their adjacency information to search for the shortest path.

More applications of cell decomposition in routing problems can be found in [56,57].

Neither exact nor approximate cell decomposition is efficient in finding the shortest

path since the exact algorithm cannot provide the global solution and the approximate

algorithm is not computationally efficient [58].

2.3 Potential Fields (PF)

In the PF method, first developed by Khatib [59], scalar functions similar to

electrostatic potentials are assigned to all nodes of the search graph. The potentials assigned

to the obstacles are the highest. The objective is then to find the path with the minimum

electrostatic potential, thus avoiding collisions.

21

Unlike roadmaps and cell decomposition, PF is a local optimization method for

which the development of a graph from the free space is not needed[8]. Despite its

efficiency in dealing with collisions in real-time, as Overmars [60] states, PF’s main

drawback is the possibility of it getting stuck at local minima other than the goal, preventing

the attainment of the true optimum. In addition to its main drawback, PF performs poorly

in planning a path through narrow passages [61].

However, in recent years some heuristic techniques are introduced to reduce the

risk of being trapped at a local optimum, (for example see [62–66]) though the techniques

are predominantly applicable to special cases or otherwise increase the computational time

drastically [60].

2.4 Stochastic and Sampling-Based methods

The probabilistic RoadMap (PRM) method, first presented by Overmars [60],

generates a random graph in the free space. The probabilistic algorithm first adds the start

and goal nodes to the graph; then introduces random nodes in the free space to be added to

the graph until a complete path through the randomly generated nodes connects the start

and goal. For more details and implementation examples, readers are referred to [67–71].

Also, other variants of PRM known as Rapidly-exploring Random Trees (RRTs) are

presented in [37,72].

Intermittent Diffusion is another stochastic method for solving shortest path

problems [73]. Lu et al. developed a stochastic algorithm based on intermittent diffusion

that solves the path-planning problem in cluttered dynamic environments. They used a

mathematical approach and modeled the path as a curve, the length of which is to be

22

minimized. To achieve the global solution, they use Intermittent Diffusion that finds a good

approximation of the global minimizer of a scalar function [74]. Since the method is

stochastic, the probability of achieving the global solution increases by increasing the run

time. According to Chow et al., the method is proven efficient in solving 3D path-planning

in static as well as dynamic environments scattered by obstacles with C2 continuous

boundaries.

PRM and other stochastic methods may be effective in dealing with dynamic or on-

line path-planning problems. However, they may have difficulty meeting the optimization

criteria of the path-planning due to the probabilistic nature of such algorithms in

constructing the graph [75].

2.5 Heuristic methods

 In addition to the four widely used algorithms for path planning problems,

researchers have started integrating mathematical and heuristic methods to solve larger

scale and real-time routing problems [76–82]. Most popular heuristic methods to solve path

planning problems include the Genetic Algorithm, Simulated Annealing, and Ant Colony,

although Tabu Search and Hill Climbing have also been used in the past. Despite their

efficiency in solving NP-hard problems, they are not exact mathematical optimization

methods; hence, there is no guarantee they can find the global solution.

In the next section, a comparison of the path planning methods is provided followed

by a discussion of the limitations of the previous work and a proposed solution to address

such limitations.

23

2.6 Comparison of path planning methods

The review of the related methods for 2D planning shows among all developed and

practiced path planning methods, only visibility roadmaps have both properties of being

able to guarantee the attainment of the globally optimal solution and being exact [60] as

shown in Table 2.1. However, they could be computationally expensive. Although efforts

have been made to improve the efficiency of the visibility method, they still fall short of

yielding the global solution to the problem. A resolution to this challenge is suggested in

the next section which is proven efficient for planar path planning problems.

The C-hull based approach described in [83] reduces the complete visibility graph

to a local graph without loss of generality and therefore improves the efficiency of the

graph construction algorithm. Unlike the previous algorithms [34,39], this algorithm does

not require any pre-processing such as the convexification of any of the obstacles, neither

does it need post-processing steps [33,35] to prune the graph. Therefore, it applies to the

generalized path-planning problems on a plane including routing through narrow passages

between obstacles that may be non-convex and is proven to generate the globally optimal

solution.

24

T
a
b

le
 2

.1
 C

o
m

p
a
ri

so
n

 o
f

p
a
th

 p
la

n
n

in
g
 m

et
h

o
d

s

C
o
m

p
a
ri

so
n

C
ri

te
r
ia

M
et

h
o
d

R
o

a
d

m
a

p

C
el

l
D

ec
o
m

p
o
si

ti
o
n

P

o
te

n
ti

a
l

F
ie

ld
s

H
eu

ri
st

ic
s

S
to

c
h

a
st

ic

V
is

ib
il

it
y

V
o

ro
n

o
i

E
x
a
ct

A

p
p

ro
x
im

a
te

E
x
a
c
t

o
r

a
p

p
ro

x
im

a
te

E
x

ac
t

E
x

ac
t

A
p
p
ro

x
im

at
e

A
p
p
ro

x
im

at
e

A
p
p
ro

x
im

at
e

A
p

p
ro

x
im

at
e

A
p

p
ro

x
im

at
e

G
lo

b
a
l

o
r

lo
ca

l

o
p

ti
m

a
l

so
lu

ti
o

n

G
lo

b
al

N

o
n
-

o
p

ti
m

al

L
o
ca

l
L

o
ca

l
M

ay
 t

ra
p
 a

t

lo
ca

l
o
p
ti

m
a

N
o

 g
u

ar
an

te
e

fo
r

g
lo

b
al

L
o

ca
l

B
es

t-
k

n
o
w

n

co
m

p
le

x
it

y
 o

f

co
m

p
u

ta
ti

o
n

O
(n

2
)

O
(n

 l
o
g

 n
)

O
(n

 l
o
g

 n
)

D
ep

en
d
s

o
n
 t

h
e

si
ze

 a
n
d
 s

h
ap

e

o
f

th
e

ce
ll

D
ep

en
d
s

o
n
 t

h
e

p
o
te

n
ti

al

fu
n
ct

io
n

V
ar

ia
b

le

d
ep

en
d
in

g
 o

n

th
e

h
eu

ri
st

ic

ty
p

e

N
o

t
av

ai
la

b
le

R
ea

l-
ti

m
e

r
o
u

ti
n

g

N
o

N

o

N
o

N

o

Y
es

Y

es

Y
es

25

2.7 Planar convex hull based approach for 2D routing

To overcome the above-mentioned challenges in roadmap development, Masoudi

et al. [83] proposed an algorithm to construct the free space graph in a 2D environment

scattered with arbitrarily shaped objects with the time complexity of 𝑂(𝑛 𝑙𝑜𝑔(
𝑛

𝑓
)) for n

vertices and f intersecting objects. The algorithm benefits from the convex hulls of

intersecting objects which contain the candidate nodes and edges of the roadmap.

Figure 2.8 Generation of the convex hulls of the intersecting objects

After the intersecting objects are determined, they are ordered from the closest to

the start point to the farthest. The algorithm then starts with creating the convex hull with

the start point and the first intersecting object as shown in Figure 2.8. On this convex hull,

two extreme points are identified. The extreme points are the points on the convex hull

with maximum distances from the line connecting the start and goal points (see Figure 2.8).

by this definition, two extreme points are identifiable on each convex hull, one per each

side of the line. After the extreme points are found, each is set as the new start point of the

path. At this step the algorithm checks for a direct collision-free path between the new start

point and the goal point. If one exists, the algorithm is terminated; otherwise, the new

26

intersecting objects are identified, and another convex hull is created using the new start

point and the first intersecting object. This process is iteratively continued until a complete

collision-free graph is formed. The nodes of this graph are vertices of the objects on the

series of convex hulls while the graph edges are extracted from the edges of the convex

hulls.

Using convex hulls of only the intersecting objects leads to the construction of a

smaller graph as well as handling both convex and non-convex obstacles by a more

computationally efficient means, outperforming the previous methods. After the graph is

completed, Dijkstra’s search algorithm is applied to output the shortest route from the start

to the goal. A graph with the shortest path between the start and goal points for a workspace

with four arbitrary objects is shown in Figure 2.9.

Figure 2.9 The solution of C-hull based planning

27

Table 2.2 Comparison of methods to improve visibility algorithm

 Reference Approach Time complexity

Efficient

algorithms for

complete

visibility

Welzl [21], Asano[23], Hershberger

[32]

Efficient Visibility

algorithm
𝑂(𝑛2)

Lee [20], Wein[47], Sharir and Schorr

[84]

Visibility 𝑂(𝑛2𝑙𝑜𝑔 𝑛)

Ghosh and Mount[25] Output-sensitive

visibility

𝑂(𝐸 + 𝑛 𝑙𝑜𝑔 𝑛)

Reduced size

visibility

Rohnert [85] Partial visibility graph 𝑂(𝑛 + 𝑓2𝑙𝑜𝑔 𝑛)

Priya et al. [34] Reduced Visibility 𝑂(𝑓2 + log ((𝑛/𝑓)2))

Jan [35] Delaunay Triangulation 𝑂(𝑛 𝑙𝑜𝑔 𝑛)

Jafarzadeh et al. [38] Geometry-based 𝑂(𝑛𝑛′2
)

C-hull Based Roadmap [83] Convex hulls 𝑂(𝑛 𝑙𝑜𝑔(𝑛/𝑓))

Table 2.2 summarizes and compares the attempts to downsize the visibility graph

or improve the algorithm’s performance based on the time complexity and their ability to

obtain the globally optimum solution. As seen in Table 2.2, the C-hull based roadmap

outperforms the other efficient algorithms developed to date. The presented time

complexities only include the graph construction step.

Even though this algorithm is efficient in dealing with any planar routing problems

among scattered obstacles, the exact algorithm may not be generalized to the 3D routing

problems. Irrespective of the computational time, the idea of employing convex hulls to

identify the next set of traveling points, while working efficiently for 2D problems, may

not apply to 3D problems. 3D convex hulls contain more than two extreme points which

make the identification of extreme points not as evident as in 2D. Hence, if an approach

based on the convex hull notion is to be employed for 3D routing problems, a new method

to identify the waypoints on the obstacle edges must be developed. This is further discussed

in Chapter 7. For more details on the applicability of the convex hull based method to 3D

problems, please refer to [83].

28

The next chapter discusses multipath planning problems in 2D cluttered

environments using the convex hull based approach.

29

Chapter Three

2D MULTIPATH PLANNING AND THE CABLE HARNESS DESIGN PROBLEM

Even though planning the shortest path between two points in a cluttered

environment is essential in applications such as robot motion planning, real-world routing

problems often require planning of multiple routes, e.g. pipe routing or cable harness

design. In complex interconnected systems like automobiles and aircraft, hundreds to

thousands of wires and cables are required to connect various components of the system.

The routing of these wires, therefore, becomes the multipath planning problem where

multiple wires or cables are to be routed while collision with any of the objects (or even

other wires) is prohibited. Often, these wires are bundled to form a cable harness assembly

and start to branch out at a breakout point to connect to a system component. The number

and location of these breakouts can then determine the final layout of the cable harness

assembly.

Building on the results of Chapter 2, this chapter addresses the multipath planning

problem in a 2D cluttered environment with a focus on cable harness design problems. The

objective is to develop an optimization framework to determine the optimal locations of

the breakouts in cable harness assemblies.

The chapter starts with a review of the related work and the identification of gaps

in the literature. Then, a solution is proposed and tested to address some of the limitations

in the previous studies.

30

3.1 Review of the related work

The design and routing of cable harness assemblies have been a challenging

problem for decades. Yan et al. in a survey of design of cable harness assemblies [86] and

Ng et al. [4] independently pointed out several challenges in the design process of cable

harnesses such as being costly, time-consuming, complex, tedious, and often done by a

trial-and-error approach in the late stage of detailed design that leaves limited space for

harnesses. They claim that even though attempts have been made to fully automate the

process, they were not completely successful and human input is still demanded at different

stages of design.

By this introduction, efforts to address cable branching and layout design are

channelized in two main directions, each of which has their sub-branches: (1) Design

process for cabling in different products/systems and (2) optimization of the cable layouts

to satisfy various objectives including but not limited to the minimization of wire lengths,

minimization of the number of branches, and minimization of the number of breakouts or

junctions.

It is also noteworthy that these categories are not mutually exclusive; for example,

in some of the design-based studies that are discussed in the next section, optimization of

the wire/cable routes are also considered as a step in the design process. The optimization

class of approaches, on the other hand, mainly focuses on developing or deploying a

mathematical framework to achieve the set objectives while satisfying the optimization

constraints. Therefore, these efforts often overlook the actual design process that leads to

31

the development of the final product or system. A classified summary of the studies

reviewed in this research is shown in Figure 3.1.

Figure 3.1 The literature review of cable harness design

3.1.1 Design of cable harnesses and piping systems

Design of one-dimensional connectors such as wires or pipes is a complex problem

as the designer is often left with a limited free space to squeeze a large number of

components, the requirements are varied across the multiple disciplines involved, and the

sizes of the components can also be different [3]. For example, there could be requirements

on the bending stiffness and mass distribution in a cable, or some requirements may even

change depending on a region in the environment such as a high-temperature zone that

requires thicker cables or insulation [3]. Therefore, different tools have been developed

over the years to assist the designer from modeling the design environments and connectors

32

to choosing the route and size of wires or pipes. In addition, design methods such as case

studies have been followed in designing cabling and piping systems.

While pipe routing and cable/wire routing may seem to be similar to the problems

of planning paths for one-dimensional connectors in a system, the two have fundamental

differences. For example, it is evident that the piping system is most often comprised of

orthogonal routes for which the Manhattan distance metric is used, whereas, cables or wires

have more flexibility in their shapes and therefore Euclidean metric is a more appropriate

measure of distance for them.

The remainder of this section is allocated to the review of the related work in the

design and optimization of cable harness layouts and similar problems.

3.1.1.1 Design tools

CAD and computer-based models in the design process

CAD and other computer-based models are helpful tools in the design process of

pipes and wire harnesses. In this section, a review of the research efforts in this area is

provided starting with the piping systems in ships or power plants.

An integrated computer-aided piping design system for the design, planning, and

fabrication of piping systems in ships is introduced in [87] as one of the early works in the

computer-based design of piping systems.

Another geometric modeling kernel is introduced in [88] based on documented

design regulations and human designer’s knowledge, which aids designers in modeling

ship pipes by providing a user interface.

33

Roh et al. [89] pointed out a shortcoming in the then-available CAD support

systems for ship pipe designs. Even though CAD packages were available at the time to

support the designers, there was a lack of relationship between the CAD model of the pipes

and the hull structure, i.e., any changes in the hull structure would have not affected the

pipe model and vice versa [89]. Hence, if any changes were made to the hull structure, the

designer had to manually modify the piping model to reflect such changes. To overcome

this limitation, Roh et al. proposed a method that generates the piping model considering

its dependence upon the hull structure. The method, however, does not consider the effects

of the changes in the piping model on the hull structure.

Other studies explored CAD support systems specifically designed for wire/cable

harness design, some of which are briefly explained here.

For instance, Billsdon and Wallington developed a CAD package that assists human

designers with selecting the parts to be connected in an attempt to address the lack of a

standard CAD software package for wiring harness design [90]. At the outset, a harness

assembly drawing, which can be created using Microsoft Visio, is inputted to the system.

The software then outputs a design sequence to connect the chosen parts. It also provides

guidance on selecting wire sizes and materials based on the imposed design constraints.

Although the package is made to work interactively, the final path for wires may not

necessarily be optimal.

In another study, Lindfors et al. compared the cabling design done on physical

prototypes with that of CAD software [2]. Although in their view, CAD packages save

34

designers’ time by removing the need to test the design on physical prototypes, hardly could

these systems yield an optimal solution for the configuration design.

Additionally, a flexible geometric model of cables with B-splines for virtual

maintenance using VRML (Virtual Reality Modeling Language) is presented in [91].

A review of the CAD packages capable of routing cable harnesses is provided by

Han and Guo [92] followed by a new cable harness modeling approach using design rules

in Pro/E software.

Design guidelines

The focus on the design of cable harnesses mainly leads to developing a set of

design guidelines rather than identifying ways to find the optimal configuration for the

cable harness. For example, Lin et al. [93] developed a set of instructions for cost

minimization of wire routing and wire sizing in electrical circuits while also considering

the shortest routes for wires found using the depth-first method.

Virtual Reality

In recent years researchers have extensively studied the incorporation of Virtual

Reality in the design and planning of cable harnesses [86,94]. This tool allows the designer

to apply his/her knowledge and expertise in the design process especially where human

input is required and makes a difference to the outcome of the design.

Ng et al. in a series of research studies [4,95–98] proposed a possible

implementation of a virtual reality environment to model the design process of cable

harnesses with the use of a designer’s expertise. They claim that their approach enhances

35

the current automation degree in the process and enables the designer to develop the design

schematic faster than using the previous methods [4].

Park et al. [3,99] discussed other levels of human interaction and collaboration in

the concurrent and often multidisciplinary design of cable harnesses from modeling the

workspace to assessing the final design solution.

Knowledge-based and Concurrent Engineering

In line with virtual reality tools for the design process to benefit from the human

designer’s input, some researchers also focused on the design and simulation of cables

using human knowledge and Artificial Intelligence (AI) [100]. As in the past, cable layouts

were carried out on prototypes or physical mockups based on human knowledge and

experience, these researchers argue that this experience should not be overlooked. For

example, in [101,102] different knowledge-based routing techniques are employed for the

cable design problem. In this view, two approaches are generally taken: (1) the human is

considered in the loop and can interact with the design environment, thus, the routing

process is not fully automated or (2) the system captures human knowledge and imitates

human behavior in design, hence automating the design process. However, in either case,

there is no guarantee that the final solution is optimal since it only relies on human

experience[93].

Advocates of knowledge-based design of cable harnesses believe that the full

automation of the process is infeasible and human knowledge must be the base of this

dynamic and iterative activity [103]. A survey of the AI and nature-inspired algorithms to

36

tackle cable harness design problems can be found in [104]. For more studies using AI and

knowledge-based or concurrent engineering see [103].

3.1.1.2 Design methods

In addition to tools that aid designers in their decision making on cable harness or

pipe route design, research methods are deployed to further study and improve the design

process for these components. Case study is among the common methods used for the cable

harness design process.

Case study has been highlighted as a design research method by Teegavarapu et al.

[105]. As defined in [105], case study is “an empirical method that investigates a

contemporary phenomenon, focusing on the dynamics of the case, within its real-life

context.” Research that benefits most from this method usually answers “why” and “how”

questions. By this definition, it appears that the method can be suitably applied to cable

harness design research.

As an example, Ng et al. [106] used a case study method to observe and investigate

how cable harness design is practiced across five British advanced manufacturing

companies. With these case studies, they confirmed that the industrial design process is

sequential and reliant on the designer’s expertise which involves a lot of trial-and-error.

Additionally, they found out that the process is time-consuming, late in the design stage

(which could even lead to the expensive re-design of the entire machine chassis to provide

sufficient space for the cable routes) and still requires costly physical prototypes for

validation. Figure 3.2 shows a generic model of the design and planning for cable harnesses

developed by Ng et al. based on their case studies.

37

Figure 3.2 Generic cable harness design process [106]

The harness path planning in the five studied companies was performed either

manually or through CAD packages such as CATIA; either of which lacks optimality in

the provided solution for the cable routes. They also mentioned that it is a common practice

in industries to determine the cable lengths, paths, and locations of breakouts manually

using the physical prototype.

Based on the findings of this case study research, the authors finally made

recommendations on the incorporation of a concurrent rather than sequential design

38

approach. They also pointed out the effectiveness of a virtual reality environment where

cable harnesses can be designed using the expertise of a human designer.

3.1.2 Optimization of harness layouts

While the focus of design-based studies is mainly on the design process of the cable

harness assemblies which requires some levels of human intervention, other studies focus

primarily on generating optimal routes for cables or pipes and optimal locations for the

breakouts in cluttered environments. The goal, herein, is to overcome the limitations in the

overall design process of these components, namely the manual determination of paths and

locations of breakouts for cable harnesses which often lacks optimality.

The research efforts in this area have led to the introduction of several deterministic

as well as heuristic optimization methods or algorithms. Benefiting from the analytical

properties of an optimization problem, deterministic methods generate a series of solutions

in the feasible domain that eventually converge to the global solution [107]. Heuristics, on

the other hand, are often used when applying deterministic methods is not efficient. This

mainly occurs in large-scale or non-convex optimization problems [107]. Heuristics,

however, cannot guarantee to converge to the global solution.

A brief review of the fundamental studies on the optimization of cable

harness/piping assemblies is provided in this section starting with tree-based methods.

3.1.2.1 Steiner and spanning trees

Steiner Minimal Tree (SMT) and Minimum Spanning Tree (MST) are two popular

methods for network optimization problems. Given a set of nodes, MST is the minimum

39

length tree that interconnects and spans all the nodes, which makes it an immediate solution

to the wire routing problem [10]. Prim [108] and Kruskal [109] have independently

developed methods to construct the MST for a given set of nodes.

Steiner Minimal Tree also pertains to minimizing the overall length of a network.

Steiner trees, however, introduce external nodes (often called Steiner vertices) into the tree

in order to further minimize the length of the tree [110].

Ever since the introduction of Spanning and Steiner trees, researchers have

developed a variety of deterministic as well as heuristic algorithms to construct these trees

for a given set of nodes, for example, see [111–123]. Due to the intrinsic advantages of

minimizing the length of a network while spanning all or specified nodes, Steiner and

Spanning trees are suitable candidates for cable harness layout optimization. As a result, a

multitude of studies has looked into furthering the use of these methods in cable and pipe

routing design, some of which are discussed in detail next.

In one example, Lin et al. have formulated the wire routing problem as a Steiner

Tree problem with capacity constraints on the breakouts (where more than two wires are

connected)[124]. After constructing the Steiner tree, they reformulate the problem as an

Integer Linear Program (ILP) to relocate the breakouts and satisfy the capacity constraint.

Next, they relax the ILP to a linear program since there exist more solution methods to

solve this type of optimization problem. Due to this relaxation, the final solution becomes

suboptimal.

 Sommer et al. in another study [125] developed a method that optimizes the

topology of Ethernet networks by finding the optimal locations of junctions (breakouts) in

40

the network. They used Simulated Annealing (SA) on the initial solution generated by

placing the junctions randomly on the network and applying the minimum Steiner tree to

connect all the random nodes in a minimum length tree. Following this approach, a near-

optimal solution for the location and number of junctions on the network is achievable.

Looking at the minimum spanning tree and the shortest path problem

simultaneously, scholars in the field of operations research have defined the “cable trench

problem” [126] and proposed various solution methods to address its instances [127–132].

The problem is defined as: let a connected graph with its known sets of vertices and edges

be given. The objective is to minimize the weighted sum of two functions: the total length

of the spanning tree and the total length of all paths from a specified vertex, v0 , to all other

vertices in the graph. The name has originated from the application of this problem in

connecting the buildings on a university campus to the building that houses the main

computer [126]. Since only the edges from the edge set are allowed and all the vertices

must be connected to v0, a Steiner tree cannot be the solution [126].

For real-world problems of cable and/or pipe routing, the obstacle avoidance

constraint must be satisfied when a spanning or Steiner tree is to be formed. It is noteworthy

that for cabling, Euclidean Steiner or spanning trees are of interest while for piping the

rectilinear (or Manhattan) trees are normally generated that reflect the orthogonality of

pipes.

Multiple solutions for the construction of obstacle-avoiding trees have been

proposed by scholars over the past three decades. For instance, a Steiner visibility graph is

introduced by Winter that produces suboptimal solutions to the Euclidean Steiner tree

41

problem with polygonal obstacles [133]. As mentioned by Winter, the Euclidean Steiner

tree problem is NP-hard, even in the absence of any obstacles. Therefore, good heuristics

ought to be sought to solve even small size Steiner trees with obstacles [133].

Winter’s idea was to break down the Euclidean Steiner Tree Problem with Obstacle

(ESTPO) into subproblems of finding obstacle-avoiding Steiner trees for subsets of two,

three, and four terminals. After these smaller subtrees are found, they are concatenated in

the form of a spanning tree which is the final obstacle-avoiding Euclidean Steiner minimal

tree. The problem of finding these subtrees becomes challenging when the number of

terminals exceeds three or there remains more than one obstacle (or the only remaining

obstacle is non-convex) after pruning the irrelevant obstacles. Therefore, Winter introduced

heuristics to address such cases assuming the obstacles are convex, for simplicity. In

addition, to avoid intersections with obstacles, his algorithm benefits from a geometric

construct called Steiner visibility graph. An example of two Steiner visible points is shown

in Figure 3.3 as described by Winter.

Figure 3.3 Notion of Steiner visibility [133]

By Winter’s definition, the point b is Steiner visible from a, iff a point s can be

placed on the arc ab , such that a and b are both visible from s. For further details of

constructing the graph and determining the arc ab , readers are referred to [133].

42

Building on the success of their obstacle-free Steiner tree construction [120],

Zachariasen and Winter proposed an exact algorithm for the obstacle-avoiding Steiner

minimal tree construction [134]. Similar to Winter’s [133], their algorithm also takes

advantage of the generation and concatenation paradigms. In further detail, they generate

full Steiner trees (FST), which are Euclidean Steiner trees where all the terminals are of

degree one, for subsets of terminals and store the shortest obstacle-avoiding FST. The union

of these FSTs involving the terminals and some of the obstacles’ vertices will form the final

obstacle-avoiding Steiner tree. Contrary to Winter’s heuristic approach, they used a

visibility graph that enables the computation of the shortest obstacle-avoiding distances

between any two points in the plane. Though the use of visibility graphs may increase the

overall computation time, it allows having non-convex obstacles while generating the FSTs

and finally results in a more optimal solution. Another visibility-based obstacle-avoiding

Steiner tree construction method is proposed in [135] which benefits from approximations

to improve the time complexity up to nearly linear time.

Parque and Miyashita while looking at constructing an obstacle-avoiding Euclidean

Steiner tree, also considered preserving a known topology (or n-star topology for n

terminals) in the tree [136]. As they claimed, this particular case is of importance in layout

design when clutter-free visualization of networks is of interest (e.g. in VLSI design).

In addition to obstacle-avoiding Euclidean Steiner trees, some scholars explored

the construction of rectilinear Steiner trees in the presence of obstacles which has specific

application in pipe routing optimization and circuit design. For example, Chiang et al. [137]

introduced a weighted minimal Steiner tree to address the routing of wires in the presence

43

of obstacles and obtain the globally optimum solution. They assign infinity weights to

obstacles as an indicator of a high-cost region and to avoid a path going through them. The

weighted minimal Steiner tree then minimizes the weighted sum of the lengths. For more

studies on the use and generation of obstacle-avoiding rectilinear Steiner trees, please see

[138–142].

3.1.2.2 Mathematical programming for wind farm layouts

The problem of cable layout design is also vital in applications like wind farm

layout design and planning. The objective of wind farm layout design is to find the location

of wind turbines to meet the problem requirements. A combination of different

mathematical programming, as well as heuristic methods, have been presented to address

the layout design of wind farms. Wędzik [143], for example, looked at the problem of

designing a new wind farm from the perspective of locating the wind turbines. He

compared the efficacy of a graph-based optimization using the minimum spanning tree

against a Mixed Integer Program (MIP) when the problem is formulated as a cable trench

problem. He concluded that while the difference between the length of cables produced

using either method was negligible, the MIP method provided more flexibility in the

selection of different components for the wind farm (e.g. the number of wind turbines in

each section of the farm) which could be of high importance for designers.

Wind turbine allocation and their optimal connection using cables for both onshore

and offshore wind farm designs are investigated in [144]. The authors made use of Mixed

Integer Linear Programming (MILP) to address the two problems while also considering

physical constraints (including the wake models that affect downstream turbines) that, due

44

to their nonlinearity, are modeled using stochastic programs. Their proposed MILP model

determines a feasible allocation of turbines while maximizing power production. The

constraints pertinent to the layout optimization include the minimum and the maximum

number of turbines that can be built, clearance between any two consecutive turbines (to

ensure the blades do not interfere), and the foundation cost (for the offshore case). It is

noteworthy that their optimization model benefits from a grid that comes with possible

locations for the turbines and thus the decision variables are binary variables indicating

whether or not a specific grid point is selected for a turbine location.

After the layout is optimally determined, the next problem is to find an optimal

cable connection between all turbines and the substations. The constraints imposed on this

problem include the capacity constraints for cables, a no-crossing constraint between any

two cables, and the constraint on the maximum number of strings that can be connected to

a substation. This problem is also modeled and solved as a MILP. A sample layout

generated by this method is shown in Figure 3.4 for 72 turbines and one substation.

In their next study [145] Fischetti and Pisinger added the real-world constraint of

avoiding obstacles and the objective of minimizing power losses to the wind farm layout

optimization problem. To model the forbidden area imposed by an obstacle, they

introduced “dummy” nodes at the vertices of the polygonal obstacle. To indicate the

borders of the obstacle, they forced zero-cost cables in the problem formulation by setting

the corresponding binary variables equal to 1. Thanks to the no-crossing constraint on the

cables, the actual cables are not allowed to cross the obstacles. An example of the optimal

layout for a wind farm in the presence of polygonal obstacles is illustrated in Figure 3.5.

45

Figure 3.4 Final optimal layout for a wind farm[144]

Another MILP-based solution for the wind farm layout design is presented in [146]

that considers the cost of energy losses and technical parameters of cables and turbines

(e.g. number of feeders, cables’ cross-sections, and the number of turbines connected to

one feeder) in the optimization model.

46

Figure 3.5 Obstacle-avoiding optimal wind farm layout[145]

3.1.2.3 Location Theory

There are instances where the primary focus in a cable harness layout optimization

problem is on finding the optimal location of the path breakouts. Location theory (aka

facility-location)in operations research (OR) deals with problems of this kind.

Alfred Weber’s well-known location problem [147] aims at placing a new facility

in the vicinity of a number of existing facilities to minimize the sum of its transportation

costs to all facilities. Different versions of this problem are addressed in business and OR

fields [147]. A classification of location problems is presented by Hamacher and Nickel

[148]. For each location problem, they defined five attributes to classify the problems in

the form of Pos1/Pos2/Pos3/Pos4/Pos5. The 5 properties are attributed to the number and

47

type of facilities, type of location topology, model specifics, the relation between facilities,

and type of objective function, respectively. Continuous location, network location, and

discrete location are three classes of location models based on Hamacher’s definition. They

also provided a general approach to multicriteria planar location problems in the absence

of obstacles for the single facility case though they have addressed the planar multicriteria

multi-facility location problems in their other work [149].

The location problem in the presence of obstacles can be modeled analogously to

the cable harness layout optimization when the decision variables are the locations of the

breakouts. Therefore, it is worthwhile to review the related work in location problems in

the presence of obstacles.

Katz and Cooper are among the first researchers who considered the location

problem in the presence of obstacles. They addressed the problem of locating a new facility

in the presence of one circular forbidden region using the Euclidean distance metric [150].

They modified the distance function to geodesic distance using the calculus of variation to

be able to find the shortest non-intersecting path between any two points and solved the

nonlinear location problem using sequential unconstrained minimization technique.

As an example of the continuous location problem, Aneja and Parlar looked into

Weber’s location problem for the single facility in the presence of forbidden regions [151].

They deployed a visibility graph to create a network with the existing facilities and the

barriers’ corners and applied Dijkstra’s algorithm with the source node being the location

of the new facility to find the shortest routes to all existing facilities. Lastly, they used

Simulated Annealing to find an approximate optimal location for the new facility.

48

Since the distance between any two points may no longer be calculated as simple

Euclidean or Manhattan (or any other lp norms) when their direct path is blocked by a

barrier, Hamacher and Klamroth redefined the distance metric for such cases by

introducing polyhedral gauges [152]. The new distance function makes use of the

piecewise continuous parametrization of the permitted path connecting the two points, i.e.

a curve that does not intersect the interior of any objects. The length of this curve is

equivalent to the shortest non-intersecting distance between any two points.

To further simplify the computation of the non-intersecting distance, they used the

polyhedral gauges instead of the parametrized curve between the two points. As described

in [152], a polyhedral gauge is given by a convex symmetric polyhedron in the plane,

containing the origin in its interior. They used the extreme points of this polyhedron to

define the fundamental directions (see Figure 3.6). For any point X inside the cone spanned

by two consecutive fundamental directions di and di+1, only these two fundamental

directions need to be used to determine the norm of X (e.g. d1 and d2 can define ||X|| in

Figure 3.6).

Figure 3.6 Sample polyhedral gauge with 6 fundamental directions [152]

49

In addition, Hamacher and Klamroth noted that the presence of obstacles in the

location problem destroys the convexity of the objective function. As a result, they

proposed a discretization of the plane using the fundamental directions at the existing

facilities and barriers’ extreme points. They proved that one of the grid points is optimal

for the location problem in the presence of convex barriers using polyhedral gauges. A

sample constructed grid, based on their algorithm, is depicted in Figure 3.7.

Figure 3.7 Sample grid for location problem with barriers[152]

In Figure 3.7, Exi denotes the ith existing facility (𝑖 = 1, . . ,4) and B is the shaded

region occupied by the triangular barrier whose vertices are 𝑝1, 𝑝2, and 𝑝3. Also, in this

figure an example of a cell created by the discretization of the plane is shown in the shaded

area denoted by “a cell C.”

Klamroth in another study [153], proposed a reduction of the nonconvex barrier

problem to a set of convex location problems without barriers using a novel subdivision of

the feasible region which led to an exact algorithm. The subdivision makes up a grid

denoted by the boundaries of the shadows of all existing facilities and all extreme points

50

of the convex polygonal barrier. Given a distance function d, the set of all points in the

region that are not visible from a point X in that region form the shadow of X with respect

to d [153]. An example of shadow shown in [153] is provided in Figure 3.8 followed by a

final subdivision of the feasible region to decompose the non-convex location problem to

a finite set of convex problems pictured in Figure 3.9.

Figure 3.8 Illustration of the shadow of a point [153]

Figure 3.9 Sample subdivision of the feasible space by Klamroth's method [153]

51

In Figure 3.9, the discretization of the plane is performed using the shadow of each

existing facility, Exi, and the extension of the borders of the barrier B. The construction of

the grid lines is therefore based on the notion of shadow described in Figure 3.8. The

formation of the grid lines is further justified in Figure 3.10.

Figure 3.10 Construction of the grid in the feasible domain

To further improve the computational performance of the location algorithm in the

subdivided region proposed in [153], Bischoff and Klamroth [154] found applying a

heuristic (genetic algorithm) beneficial to solve a finite series of convex subproblems

though the final solution is an approximation to the globally optimum.

A global optimal approach to locating a facility in presence of convex forbidden

region(s) is presented by Mcgarvey and Cavalier [155] using a version of the branch-and-

bound algorithm known as Big Square Small Square (BSSS) developed by Hansen [156].

BSSS divides the plane into discrete squared regions and provides global or near-global

optimal solutions.

52

Kuhn proved two results from Weber’s location problem[157]. First, if the facilities

are not collinear, the objective function is convex meaning any local optimum is also a

unique global optimum [155]. And second, the location of the new facility is inside the

convex hull of the existing facilities. This helps to limit the search region and to improve

the computation time. In the case of location problems with barriers, it is not sufficient to

only include the existing facilities when creating the convex hull as the boundary of the

convex hull might intersect with an object. Thus, Klamroth [158] suggested an iterative

convex hull approach that extends the boundary of the convex hull to include the

intersecting objects. The boundary of the convex hull expands iteratively until all the edges

of the convex hull are found non-intersecting.

In the case of non-convex forbidden regions, Butt [159] has shown that the location

of the new facility will never be within the convex hull of a non-convex forbidden region

unless an existing facility locates inside this convex hull.

Finally, a multi-facility location problem with polyhedral barriers is considered in

[160]. They proposed two decomposition approaches to tackle the problem. The first

approach reduces the multi-facility location problem for N new facilities to N single-facility

location problems of the same type by fixing the assignment variables in the problem

formulation to 1. The second approach, on the other hand, keeps the location variables

constant and benefits from the set partitioning of the feasible domain based on visibility

properties. In the latter case, they restrict each new facility to one of the candidate domains

of the feasible space which could be deemed as the extension of the reduction results of

[153] to multiple new facilities. These decompositions result in a finite number of mixed-

53

integer programming sub-problems. They finally apply a genetic algorithm heuristic to

solve the two problems.

3.1.2.4 Heuristic methods

Heuristic techniques are widely used to address the cable harness routing and

similar problems since they are capable of handling the highly nonconvex search space of

the routing problem [161].

Of the early works on routing cable harnesses, Conru’s and Cutkosky’s method for

concurrent design of cable harnesses using heuristics drew attention [162]. After voxelizing

the workspace, to make the feasible space of the optimization problem convex, they

initially neglect the obstacles and find a globally optimal solution for the locations of the

harness transitions (breakouts). Next, if any of the transitions are placed in the obstacle

space, it must be moved to the closest cell in the free space. Then, a heuristic path planning

method locally optimizes the path between the endpoints of the cables and transitions.

However, the final path may still not be optimal due to the local optimizations, and further

human input is required to reroute the harness that is stuck in a local optimum. Additionally,

some case-specific constraints such as minimum bend radii may not have been considered

in the initial optimization problem and human user needs to take those into account to make

the final solution feasible. Thus, human interaction is crucial in this method to guarantee

the globality of the optimal solution.

In another study by Conru [161], a genetic algorithm (GA) is utilized to route the

bundles and locate the transitions between the end connectors that define the connection

points on the components. The algorithm starts with an initial configuration for the harness

54

which includes the connection information between the nodes (nodes are the end

connectors and transitions). Assuming the free space graph is known, Dijkstra’s algorithm

is applied to generate the shortest route for the wire between each pair of the desired

connectors. After the shortest routes are generated, an objective function is defined that

minimizes the total cost of all the bundles consisting of a number of wires. GA is deployed

to locate the transitions optimally using mutation and crossover operations on the initial

configuration. After the optimal locations of the transitions are found locally, the algorithm

explores the other configurations using another GA to develop close-to-global optima.

Hence, the problem is decomposed into two domains and GA is applied to each to find the

optimal solution.

In another study [163], Kimura employed a GA technique to address the problem

of finding an optimal arrangement for ship pipes with branches. He simplified the problem

by removing the branches and considering them as equipment in the design space instead.

Zhu et al. [164] have also innovated an approach to integrate optimization and

knowledge-based engineering to optimize the location and number of harness breakouts.

They proposed a two-step optimization method: initialization step, which benefits from a

roadmap path planning to define an initial configuration for the harness, and a refinement

step, which refines the locations to further improve the solution and satisfy all constraints.

The initialization is solved as a bi-level optimization problem since the problem is multi-

destination path planning: a branch level and a harness level. The branch level finds the

shortest path for each branch on a predefined roadmap using the A* algorithm on a

predetermined grid. In the harness level, Hill Climbing heuristic is deployed to locate the

55

harness breakouts. To eliminate the likely violations of the constraints at the initialization

step and improve the near-optimal solution achieved at initialization, the initial harness

configuration is refined using Generalized Pattern Search (GPS) optimization.

Most of the research studies done on the routing and design of cable harnesses

consider cables as a series of rigid segments. However, Kabul et al. argued that in addition

to geometric and collision constraints, physical and mechanical constraints of the cables

need to be accounted for to obtain a more realistic routing solution [165]. They,

consequently, asserted that cable must be considered as a deformable body for which a

motion needs to be planned. Taking the functional and manufacturing constraints noted by

Kabul et al, Hermansson et al. [166] presented a heuristic grid-based method for routing of

flexible 1D components in three-dimensional space.

3.1.3 Comparison of the methods

To summarize, all the related work on the study of multipath connection systems

including but not limited to cables and pipes classify into two main categories: design-

related research and optimization-related research. The design-related research primarily

focuses on the design process that leads to the final layout for the connectors. Researchers

over the past few decades have developed design tools such as CAD and computer-based

models, virtual reality environments, and design guidelines that can assist designers in their

decision-making pertinent to the selection of sizes and routes for multiple connectors in a

densely populated region. Additionally, design methods such as case studies were followed

to further investigate the industrial design of such systems in order to make improvements

to the practiced processes. Regardless of all the efforts, the developed tools still require

56

different levels of human intervention and thus the process lacks automation. For example,

as noted by Ng et al. [4], cable lengths, paths, and location of breakouts are decided based

on trial-and-error using physical prototypes in final stages of design (detail design stage).

More importantly, the design-based methods may not yield a final optimal layout which

could bear significant costs for the manufacturing and maintenance of the cables or pipes

[4].

Unlike the design-based methods, the optimization methods are mainly concerned

with optimizing the layout of the connectors though some of the proposed methods may

not apply to all real-world problems in practice, as claimed in [89]. Of the relevant studies,

tree-based methods have gained popularity in designing interconnected networks. Minimal

Steiner trees, in particular, are extensively employed to address problems where adding

extra nodes to a network is allowed to further minimize its total length. This fact makes the

method a well-suited candidate for cable/pipe routing problems where branching is

permitted. The original Steiner tree, however, does not deal with obstacle-avoiding

constraints; hence, researchers have to make modifications to adopt the method for

cable/pipe routing in the presence of obstacles. In fact, adding obstacles to the environment

of a Steiner tree significantly increases the complexity of the problem [133]. Therefore, the

research conducted to address these problems is limited to the use of approximations and

heuristic to find an optimal solution. Although exact solution methods are proposed

[134,135], they generally are computationally expensive and may not apply to large scale

problems without using any approximations. Hence, the obstacle-avoiding Steiner tree may

not be an efficient solution to the cable/pipe layout optimization problem.

57

Design and optimization of wind farm layout could be deemed analogous to cable

harness layout problems as both may be simplified to a network of connected nodes. Wind

farm layout design is mainly solved using MIP models. Often, the planar workspace of the

problem is discretized to a grid. With a known number of wind turbines, their optimal

locations are assigned from the grid points by solving the MIP. This is, however, unlikely

to occur in the cable harness layout problem as the locations of the components need to be

connected are known a priori. Further, the wind farm layout problem has multiple Start

nodes but only one Goal node, known as the station, where all the wind turbines are

connected. The cable harness layout problem, on the other hand, can have multiple Start

and multiple Goal nodes connected via breakouts. Since not all the physical constraints of

the cable layout problem may be mapped to the wind farm layout optimization problem,

the corresponding solution methods are not further considered for potential applications to

the cable layout optimization problem.

When the focus in the cable layout problem is shifted from the length of the cables

to the determination of the optimal location of the cable breakouts, an immediate set of

candidate methods can be considered from the Location Theory. Location problems in the

presence of obstacles have been among the challenging NP-hard problems in operations

research[152]. Though many solution methods are presented over the past four decades,

they still cannot address the problem in its entirety. For example, the methods can only deal

with convex obstacles [150,151,167], since the objective function is non-convex, the

discretization of the workspace is used [152] which results in locally optimal solutions, and

58

finally, the bi-objective multi-facility problem in presence of freeform objects remains

unsolved.

Last but not the least, heuristic methods are widely applied to solve different

instances of multipath planning problems with branches due to their efficiency in solving

NP-hard problems, although the solutions found are not necessarily global. Table 3.1

summarizes the efforts in the design and optimization of multipath connectors applicable

to cable harness layout optimization problem.

The review of the literature shows a scarcity of research efforts in developing

computationally efficient methods to tackle optimization of cable harness layout in

presence of freeform objects to global optimality. Additionally, there exist few studies that

consider other objectives besides the minimization of the total length of the cable layout.

Apart from the limitations, it is understood that the chosen optimization method

highly depends on the specifics of the problem which stems from its real-world application.

For example, the constraints of cable harness layout optimization are different from wind

farm design and pipe routing in ships. Hence, the problem must be well-defined in terms

of its constraints and criteria to be aligned with its application so that the algorithm is

practical for real-world problems and could assist designers in their decision making

regarding the selection of connectors in a complex interconnected system.

By this background, the objectives of the first part of the present study are outlined

in the next section.

59

Table 3.1 Comparison of design and optimization methods for multipath connection

problems

Classification Reference Contributions Limitations

Design tools

(CAD)

[87–91] - human-computer

interface for

designers

- geometric kernel for

modeling cables/pipes

- Sub-optimal

solutions

- lacks automation

- Based on trial-and-error

Design tools

(VR)

[4,86,94,95,97,98,168] - Consideration of

human expertise in

design

- Design automation

- Sub-optimal

solutions

- Designer-dependent

Design Heuristics Design guideline [93,169] - Instructions for cost

minimization for wire

routing and sizing

- Sub-optimal

solutions

Knowledge-based and

concurrent engineering

[3,99,101,102,104]

- Value human

knowledge in

design

- Sub-optimal

solutions

- lacks automation

Optimization-

Obstacle-avoiding

Steiner/spanning

trees

Winter [133] - introduction of Steiner

visibility

- problem breakdown

into subproblems

- approximate solution

- convex polygonal

obstacles only

Zachariasen and Winter

[134]

- exact visibility-based

method for subtree

problem

- computationally

expensive

Parque and Miyashita

[136]

- Steiner tree with n-star

topology

- known topology, not

applicable to the

general layout design

problem

Optimization-

Location theory

Katz and Cooper [150]

- first to consider

obstacle in

location problems

- only one circular

obstacle considered

Aneja and Parlar[151] - multiple obstacles - applicable to single-

facility only

Klamroth et al. [152–

154,158,160]

- new distance metric

- discretization of

workspace

- multi-facility

- local optimal

- convex obstacles

only

Heuristic

optimization

Conru and Cutkosky [170],

Kimura[163], Zhu et al.

[164]

- Computationally

efficient in solving

NP-hard problems

- Sub-optimal solutions

3.2 Research objective and proposed solution

The limitations of the existing methods in addressing cable harness layout

optimization in its general form, drive the first part of this research to explore optimal

60

solutions to the following problem: For a given number of start and goal points that

connect different components in a cluttered environment using flexible connectors (e.g.

wires), a layout is to be found for the connectors defined by their routes and the locations

of a finite number of breakouts to minimize the total lengths of needed connectors while

maximizing their commonality such that the connectors do not cross any objects and the

breakouts are not placed inside an occupied area.

The optimization objectives are set to minimize the cost of the wiring connection

systems while providing more accessibility and traceability for maintenance purposes

through maximizing the common length of the connectors (or bundling as many connectors

as possible for the longest possible distance).

The goal is to provide this insight for the designer at any stage of design by being

able to run the algorithm and based on the outcome, make appropriate recommendations

regarding the final layout of cable connectors. The underlying assumptions based on which

the problem needs to be formulated and solved are as the following:

• The problem is modeled on a 2D plane.

• Since the wiring connectors are flexible, the Euclidean distance metric is

used to calculate distances between the points in the plane.

• Obstacles are arbitrary polygons scattered on the plane.

• The cartesian coordinates of the nodes that need to be connected are given.

• The number of required breakouts is prespecified.

In addition, the problem is bi-objective and constrained, and the decision variables

of the optimization problem are the cartesian coordinates of the breakouts.

61

The first part of this research answers the question: How can this bi-objective

nonlinear optimization problem be solved without approximating the lengths of cable

routes?

Two approaches are proposed to address this research question. First, looking at the

limitations of the existing methods to tackle the location problem in presence of obstacles

without approximating the distances (e.g. using polyhedral gauges), this work investigates

the possibility of formulating the cable harness layout as bi-objective location problem in

presence of obstacles using Euclidean norm and solving the problem with a suitable

optimization method. Second, this study aims at investigating the potential of the convex

hull based routing, introduced in Chapter 2, in solving the cable harness layout as a

multipath planning problem with two objectives. The efficiency of this method in finding

the shortest path between any two points of a cluttered planar environment is shown in the

previous chapter. In this chapter, its extension and application to multipath planning

problems with more than one objective are further discussed.

The remainder of this chapter is allocated to the explanation of the two approaches

proposed to address the cable harness layout optimization problem as well as a discussion

on the results of applying the methods to sample problems.

3.3 Mixed-binary layout optimization using Euclidean norm

As discussed in the previous section, the goal is to develop an algorithm to find the

optimal layout of a cable harness assembly by finding the optimal location(s) of the

breakout(s). The problem, therefore, becomes analogous to the well-known Weber’s

problem of locating a new facility in the vicinity of existing facilities and outside forbidden

62

regions to achieve minimum traveling cost or other objectives (e.g. maximum distance

from existing facilities).

One challenge of the location problem in the presence of obstacles is that the

distances between the nodes that are not visible to each other changes and the conventional

Euclidean norm can no longer be used to determine such distances. To overcome this

challenge, Klamroth has introduced polyhedral gauges that approximate the distance

between two points not visible to each other [152]. This approximation, however, affects

the final optimal solution.

That said, the objective of this section is to further investigate the possibility of

formulating the objective functions of the cable harness optimization problem explicitly in

terms of Euclidean norm and to solve the formulated optimization problem. The notion of

visibility is utilized in defining the objective functions as discussed in the next section.

3.3.1 Visibility map for location-allocation

When an object blocks the direct path between a pair of points in an environment,

the traveling distance between them also changes and a waypoint (or a series of waypoints)

needs to be located in the unoccupied region to enable traveling from one point to the other.

The direct path, as a result, is broken into segments between the found waypoints, Start,

and Goal. The locations of these waypoints highly affect the distance to be traveled to reach

the goal point or a node.

Thus, the presence of an obstacle decomposes the free space into areas that are

either visible or invisible with respect to each node. Knowing to which of these areas the

Start/Goal node(s), the breakouts, or the waypoints belong, helps to determine the distance

63

between the points. For example, the location of a breakout is to be found for the cable

harness of Figure 3.11 with one Start node and two Goal nodes while avoiding its

placement on and traveling through the line barrier, 𝑂1𝑂2
̅̅ ̅̅ ̅̅ ̅ . The objectives are to minimize

the overall distances between the respective start and goal nodes and maximize the

common length of wires between the Start node and the breakout. As seen in this figure,

the presence of the line barrier divides the workspace into two regions based on the

visibility of points with respect to one another.

The decomposition is inspired by Klamroth’s [153] subdivision using the shadows

of the existing nodes (here 𝑆1, 𝐺1, and 𝐺2). Looking at Figure 3.11, the shadow of each

node is outlined with dashed lines. In addition, the convex hull of the nodes and the

intersecting obstacle is shown in a solid blue line to specify the bounded region inside

which the breakout must be located based on Klamroth’s proof.

Figure 3.11 Sample subdivision using shadows of existing nodes

This subdivision based on visibility is then used to define a set of objectives and

constraints per region. That is, depending on the region where the breakout is placed, the

distances can be calculated and optimized. For instance Figure 3.11 shows that every point

64

in region 1 is visible to 𝑆1 but invisible to 𝐺1 and 𝐺2. Vice versa, every point in region 2 is

invisible to 𝑆1 but visible to 𝐺1 and 𝐺2. We call this decomposition of the workspace on the

grounds of visibility of the nodes, the visibility map of the workspace with respect to the

breakout. The table below summarizes the visibility information based on the visibility

map of Figure 3.11. The checkmark is for visible and the cross mark is for the invisible

locus with respect to each node in the top row.

Table 3.2 Summary of visibility information for Figure 3.11

Breakout location 𝑺𝟏 𝑮𝟏 𝑮𝟐

Region 1 ✓  

Region 2  ✓ ✓

It is noteworthy that the location of the existing nodes highly affects the subdivision

of the feasible domain. Suppose, for instance, that the three nodes of Figure 3.11 were

located as in Figure 3.12. The difference between the figures is that the node 𝐺1, previously

inside the shadow of 𝑆1, now lies outside this shadow which creates more regions in the

feasible domain based on the visibility information of Table 3.3.

Figure 3.12 Effects of node locations on the subdivision of the workspace

65

Table 3.3 Summary of visibility information for Figure 3.12

Breakout location 𝑺𝟏 𝑮𝟏 𝑮𝟐

Region 1 ✓ ✓ ✓

Region 2 ✓ ✓ 

Region 3 ✓  

Region 4  ✓ ✓

The visibility map of the workspace enables defining the objective function(s)

explicitly using the Euclidean norm by introducing binary variables. Two sets of binary

variables are introduced to formulate the problem based on a visibility map: the first set is

used to activate the region housing the optimal location of the breakout and the second is

used to activate the potential waypoints where the optimal path needs to make a turn to

avoid an obstacle.

For example, for the workspace of Figure 3.11, two binary variables, 𝑤1 and 𝑤2,

are required to denote which region is activated to yield the optimal location of the

breakout. Binary variables are deployed since they can serve as on/off switches which

activate/deactivate a region if the value of the variable is equal to 1/0.

Additionally, due to the presence of the line barrier in Figure 3.11, a waypoint is

required to facilitate travel from the Start node to either of the Goal nodes. The optimal

locations of the waypoint are the two ends of the line barrier, 𝑂1 and 𝑂2. Depending on

which endpoint is decided in the final optimal solution, binary variables, 𝑦𝑖, can be

introduced to reflect this decision and the calculation of the Euclidean distances. The

problem can now be formulated as in Problem 1.

66

Problem 1

() ()

2

2

1 1 2

2 1 3 1 1 1 3 1 2 2

 Z (1) ,

 Z , (1) , , (1) , ,

min

max

X

X

wD w D

w S X w y S O O X y S O O X





= + −

 = + − + + − + 

() ()

() ()
1 1 1 1 1 1 1 2 2 1

2 1 1 2 2 2 2 2

, , , (1) , ,

 , , (1) , ,

D S X y X O O G y X O O G

y X O O G y X O O G

= + + + − +

+ + + − +

() ()2 3 1 1 1 3 1 2 2 1 2, , (1) , , , ,D y S O O X y S O O X X G X G= + + − + + +

1 2. . S t X O O

X C
2X 

, {0,1}, 1,2,3iy w i =

Where

X : the breakout location in the plane;

C : the convex hull of the set points S, G, and the intersecting obstacles.

In Problem 1, the first objective is to minimize the total distances between the

nodes and the breakout. Two functions, 𝐷1 and 𝐷2, are defined, respectively for regions 1

and 2, to calculate the total lengths of wires. It is clear that distances change as the location

of the breakout changes from region 1 to region 2, which entails the introduction of 𝐷1 and

𝐷2 (e.g. 𝐷1 must be used if the breakout is located in region 1). The binary variable, w,

serves as a switch for region selection in this problem. For example, if the breakout is

placed in region 1, w activates 𝐷1, that is 𝑤 = 1, and deactivates 𝐷2, and vice versa.

It should be noted that two binary variables, 𝑤1 and 𝑤2, are required to switch the

distance metrics on/off. However, since at any time only one location for the breakout is

plausible, only one variable can become active, therefore, 𝑤1 + 𝑤2 = 1. To minimize the

number of variables used in the optimization problem, the relationship between the two

67

binary variables is taken advantage of and one variable is written in terms of the other,

𝑤1 = 1 − 𝑤2 = 𝑤.

As can be seen in Problem 1, all the distances are calculated using the Euclidean

norm. In 𝐷1 distance function, the first term is to calculate the distance between the Start

node and the breakout, X. The second term in this function benefits from the introduction

of a new binary variable, 𝑦1, which indicates which route is taken to reach the first Goal

node. Since the Goal nodes are in areas invisible to any point in region 1, there needs to be

a waypoint to facilitate traveling to the Goal nodes. Two routes are conceivable to reach

the Goal nodes, one that passes from 𝑂1 and the other that passes from 𝑂2 (for the proof

that these points yield the optimal solution, please refer to [83]). If, in the second term of

𝐷1, 𝑦1 = 1, the route that passes from 𝑂1 is activated which deactivates the path with the

waypoint at 𝑂2. On the contrary, if 𝑦1 = 0, the path that passes from 𝑂2 becomes activated

(third term). The same rationale is used to add the fourth and fifth terms to 𝐷1 by

introducing another binary variable that switches between the two possible routes to 𝐺2.

As discussed, the second distance function is activated in the objective function

when the breakout is in region 2. Locating the breakout in region 2 makes it invisible to

the Start node. Therefore, a turning point must be selected (similarly at 𝑂1 or 𝑂2) to enable

traveling from 𝑆1 to 𝐺1 or 𝐺2 which results in the introduction of the third binary variable

that works similarly to 𝑦1 and 𝑦2 and forms the first two terms in 𝐷2. The last two terms in

this function calculate the distances from the breakout to either of 𝐺1 and 𝐺2 both of which

are visible from X.

68

The second objective function is to maximize the common length, here the distance

between 𝑆1 and X. It is observable in the formulation of Problem 1 that the choice of the

region for placing the breakout as well as the routes to invisible points are reflected in the

terms of the maximization function by the binary variables.

The constraints force the breakout to lie inside the convex hull of the nodes and the

barrier, but outside the barrier. Further, the decision variables are X, the cartesian

coordinates of the breakout in the plane, and all of the binary variable, w and 𝑦𝑖.

Following the same procedure and based on the visibility map of the workspace,

Problem 2 is formulated for the cable harness in Figure 3.12. Since the visibility map of

Figure 3.12 has four regions, four binary variables, 𝑤𝑖 , 𝑖 = 1, … ,4, are required to activate

one and deactivate the other three at each time. In addition, the second set of binary

variables, 𝑦𝑗 , 𝑗 = 1,2,3, is used to activate/deactivate the waypoints to be passed to reach

the nodes in the invisible regions.

 Problem 2

() () ()

2

2

4

1

1

3

2 1 4 3 1 1 1 3 1 2 2

1

 Z ,

 Z , , , (1) , ,

min

max

i i
X i

i
X i

w D

w S X w y S O O X y S O O X

 =

 =

=

 
 = + + + − +   

 





1 1 1 2, , ,D S X X G X G= + +

() ()2 1 1 1 1 1 2 1 2 2 2, , , , (1) , ,D S X X G y X O O G y X O O G= + + + + − +

() ()

() ()
3 1 2 1 1 1 2 2 2 1

1 1 1 2 1 2 2 2

, , , (1) , ,

 , , (1) , ,

D S X y X O O G y X O O G

y X O O G y X O O G

= + + + − +

+ + + − +

() ()4 3 1 1 1 3 1 2 2 1 2, , (1) , , , ,D y S O O X y S O O X X G X G= + + − + + +

1 2. . S t X O O

69

X C
2X 

4

1

1i

i

w
=

=

, , {0,1}, 1,...,4, 1,2,3i jw y i j = =

Where

X : the breakout location in plane;

C : the convex hull of the set points S, G, and the intersecting obstacles.

A more complex example with a triangular obstacle is shown in Figure 3.13 with

its visibility information summarized in Table 3.4.

Figure 3.13 Sample visibility map for workspace with one triangular obstacle

Table 3.4 Summary of visibility information for Figure 3.13

Breakout location 𝑺𝟏 𝑮𝟏 𝑮𝟐

Region 1 ✓  

Region 2   ✓

Region 3  ✓ ✓

Region 4 ✓ ✓ 

As seen in Figure 3.13 and Table 3.4, four regions are created based on the

visibilities of the existing nodes with respect to the breakout. Note that in Figure 3.13,

multiple paths are conceivable to reach the breakout from 𝑆1 depending on the waypoint(s)

taken to reach the breakout; hence, the distances can change. As a result, region 3 needs to

70

be further decomposed to areas inside each the distance from 𝑆1 to breakout is consistent.

This second level of decomposition is shown in Figure 3.14.

Figure 3.14 Level 2 decomposition of the workspace of Figure 3.13

Looking at Figure 3.14, it is discernable that for the breakout in region 31 the path

from 𝑆1 to X passes through 𝑶𝟏. Even though another route is feasible through 𝑶𝟐 and then

𝑶𝟑, this route is longer and therefore discarded from the formulation of the optimization

problem. It is also evident that the distance from 𝑆1 to X is different in the region 32 than

in the region 31. This difference comes from the visibility of the waypoints 𝑶𝟏 and 𝑶𝟐

from X in different subareas of region 3. For example, X in region 31 sees 𝑶𝟏 but not 𝑶𝟐

while X in region 32 can see both 𝑶𝟏 and 𝑶𝟐. Therefore, two paths from 𝑆1 to an X in 32

are plausible without clear superiority of one over the other (unlike the two paths from 𝑆1

to an X in 31). The situation in the region 33 is closer to that of 31’s where the route

traveling from 𝑆1 to 𝑶𝟐 to X is clearly shorter than the path from 𝑆1 to 𝑶𝟏 to 𝑶𝟑 and then

X.

Following the same logic in formulating Problem 1 and Problem 2 and using the

visibility map of Figure 3.14, a formulation of the optimization problem is provided as in

Problem 3.

71

Problem 3

() ()

() () ()

2

2

6

1

1

2 1 1 1 1

1,6 2,3

4 1 1 1 1 1 1 2 2 5 1 2 2

 Z ,

 Z , , ,

 , , (1) , , , ,

min

max

i i
X i

i i
X i i

w D

w S X w S O O X

w y S O O X y S O O X w S O O X

 =

 = =

=

   
= + +   
   

 + + + − + + + 



 

() ()1 1 2 2 1 1 1 2, , , , ,D S X X O O G X O O G= + + + +

() ()2 1 1 1 3 3 1 2, , , , ,D S O O X X O O G X G= + + + +

()3,1 1 1 1 1 2, , , ,D S O O X X G X G= + + +

() ()3,2 1 1 1 1 1 1 2 2 1 2, , (1) , , , ,D y S O O X y S O O X X G X G= + + − + + +

()3,3 1 2 2 1 2, , , ,D S O O X X G X G= + + +

() ()4 1 1 2 1 1 2 2 2 2 2, , , , (1) , ,D S X X G y X O O G y X O O G= + + + + − +

1 2 3. . S t X O O O

X C
2X 

6

1

1i

i

w
=

=

, , {0,1}, 1,...,6, 1,2i jw y i j = =

Where

X : the breakout location in plane;

C : the convex hull of the set points S, G, and the intersecting obstacles.

3.3.2 Results and discussion

The problems formulated in this section using the visibility map and binary

variables can be solved with bi-objective optimization solvers that handle integer variables

and nonlinear objective functions and constraints. A few solvers are developed that satisfy

the aforementioned criteria to solve these problems. To the best of our knowledge, no

software exists to solve this class of problems with exact optimization methods. Therefore,

72

a heuristic solver in MATLAB is sought to solve sample problems formulated in the

previous section.

Since the objective functions of a bi-objective optimization problem conflict with

each other, meaning the increase in the value of one function could cause a decrease in the

value of the other and vice versa, the problem does not have a unique solution. Instead, the

Pareto set, or the set of non-dominated solutions, is generated that shows the tradeoff

between the values of the objective functions. A Pareto non-dominated solution, shown in

Figure 3.15, is the one in which improving one objective requires degradation of the other.

Figure 3.15 Examples of Pareto non-dominated solutions

MathWorks has released two multi-objective optimization solvers in MATLAB:

ParetoSearch (PS) and Multi-Objective Genetic Algorithm (MOGA), both of which are

heuristic-based and generate the set of non-dominated solutions. PS uses pattern search

method on a set of points and iteratively searches for non-dominated points [171]. It

requires an initial guess for the decision variables. MOGA, on the contrary, is developed

based on Deb’s NSGA-II [172], an elitist genetic algorithm. Unlike PS, MOGA creates a

random initial population for the decision variables to be selected from. Some parameters

73

can affect the creation of the initial population, e.g. population size or initial population

range. For a list of user-defined parameters please refer to [173]. For this research, the

MOGA solver is selected to solve all of the bi-objective optimization problems. It is

noteworthy that using a heuristic-based solver cannot guarantee to find the true Pareto set

and one may only be able to obtain non-dominated solutions up to a known number of

generations. For this reason, in the remainder of this manuscript, the outcome of the MOGA

is referred to as non-dominated solutions, not Pareto set.

The default settings of MOGA do not allow having integer decision variables. Thus,

in the properties function that MOGA solver reads, the initial population alongside the

mutation and crossover functions are modified to accept binary variables1. A new set of

constraints specifying the ids of the binary variables is added to the MATLAB functions of

the initial population, mutation, and crossover. Also, in the main program, upper and lower

bounds of 1 and 0, respectively, are added to specify the limits of the binary variables. The

bounds as well as the modified functions are then sent to the solver to read and set up the

variables accordingly during the optimization process.

In addition to setting up the variables, following Problem 1, separate MATLAB

functions are created to quantify the constraints’ violation and evaluate the objective

functions. For the second objective function, which is the maximization of the common

length, the negative of the distance between the Start node and the breakout is used. Since

MATLAB’s default definition of an optimization problem comes only with the

1 All codes are written in MATLAB and can be accessed from: https://github.com/nmasoud/Routing-algorithms.git

https://github.com/nmasoud/Routing-algorithms.git

74

minimization of a function, for maximization problems, the negative of the function is used

to comply with MATLAB’s default definition.

The GA parameters that affect the non-dominated solutions such as the population

size and the number of generations must also be decided. For Problem 1, since the

objective functions and constraints are rather simple (due to the few numbers of nodes and

the presence of only one line barrier), the population size of 50 and 500 generations are

considered in the MOGA solver. A sample workspace is generated to mimic the visibility

map of Figure 3.11 wherein the coordinates of the Start and Goal nodes are 𝑆1 = (0,0),

𝐺1 = (6,2), and 𝐺2 = (8, −5). Additionally, a line barrier with endpoints located at 𝑂1 =

(5,3) and 𝑂2 = (4, −4) is added to the workspace. Using the above-mentioned settings,

Problem 1 is solved in MATLAB via gamultiobj solver.

To solve this problem, the constraint of avoiding the placement of the breakout on

the obstacle, 1 2X O O , is expanded and broken into two constraints that reflect the region

the breakout belongs to as shown in Problem 1-2. Region 1 is to the left of the line and

setting 𝑤 = 1 activates it, while region 2 is to the right and w must be zero to activate it.

Problem 1-2

() ()

2

2

1 1 2

2 1 3 1 1 1 3 1 2 2

 Z (1) ,

 Z , (1) , , (1) , ,

min

max

X

X

wD w D

w S X w y S O O X y S O O X





= + −

 = + − + + − + 

() ()

() ()
1 1 1 1 1 1 1 2 2 1

2 1 1 2 2 2 2 2

, , , (1) , ,

 , , (1) , ,

D S X y X O O G y X O O G

y X O O G y X O O G

= + + + − +

+ + + − +

() ()2 3 1 1 1 3 1 2 2 1 2, , (1) , , , ,D y S O O X y S O O X X G X G= + + − + + +

75

. . () 0

 (1)() 0

S t w AX b

w AX b

+ 

− − − 

X C
2X 

, {0,1}, 1,2,3iy w i =

Where

X : the breakout location in the plane;

C : the convex hull of the set points S, G, and the intersecting obstacles.

After gamultiobj solver is applied, the set of non-dominated solutions is

generated. The solver stopped at 202 generations since the average change in the spread of

the non-dominated solutions becomes less than the set tolerance. The final set of non-

dominated solutions is shown in Figure 3.16, which corresponds to the objective space and

the local optimal locations of the breakout (efficient solutions for the preimages of the non-

dominated solutions) corresponding to each of the non-dominated solutions are shown in

Figure 3.17. A colormap is used to map every solution in the objective space (Figure 3.16)

to its relevant solution in the feasible space (Figure 3.17) using the same color. It can be

seen from Figure 3.17 that all the optimal locations are in region 2 of the visibility map

which increases the maximum common length.

Figure 3.18 shows the evolution of the non-dominated solutions from early

generations to the final found at the 202nd generation. The solution set found at iteration

(i+1)th dominates all the non-dominated points found previously at the 1st, 2nd, …, and ith

generations.

76

Figure 3.16 Final set of non-dominated solutions for Problem 1-2

Figure 3.17 Optimal (efficient) locations of the breakout for Problem 1-2

77

Figure 3.18 Evolution of non-dominated fronts

Additional details of the optimal locations and their corresponding optimal values

of the objectives are provided in Table 3.5.

Table 3.5 Optimal values of decision variables and objective functions for Problem 1

Optimal breakout

location coordinates,

X* (cm)

Min total length

with the breakout,

𝒁𝟏
∗ (cm)

Max common

length, 𝒁𝟐
∗ (cm)

(7.6456 -4.2147) 20.8059 13.5154

(5.6618 1.3906) 15.0731 7.5712

(7.6456 -4.2147) 20.8059 13.5154

(6.186 -0.0907) 16.474 9.1413

(6.1787 -0.3836) 16.7669 9.414

(6.6784 -2.266) 18.7143 11.358

(5.6618 1.3906) 15.0731 7.5712

(5.9235 0.4521) 15.9251 8.5411

(6.5375 -1.8523) 18.2815 10.921

(7.3274 -3.3309) 19.8693 12.5761

(6.3669 -1.0959) 17.4983 10.1489

(7.2494 -3.0952) 19.6214 12.3279

(6.8802 -2.7686) 19.244 11.8982

78

(6.4667 -2.1137) 18.5592 11.1508

(7.3011 -3.5989) 20.1334 12.8195

(6.2822 -0.6831) 17.0749 9.7308

(6.8447 -3.0693) 19.5636 12.1744

(6.7182 -2.4896) 18.9485 11.5831

A more complex example of a location problem in the presence of an obstacle is

Problem 3 where the line barrier is replaced by a triangular obstacle that increases the

number of regions in the visibility map. In addition to the obstacle avoiding constraint

presented in Problem 1, Problem 3 has a linear equality constraint that imposes the sum

of the binary variables attributed to the region selection to be equal to one. MATLAB’s

gamultiobj solver cannot handle linear equality constraints concurrent with integer

variables. Therefore, an approach to solve the bi-objective problem by reducing it to a

single objective problem must be followed. Two common methods of solving a multi-

objective optimization problem by converting it to a single objective problem are weighted

sum and ε-constraint.

The weighted sum method benefits from the introduction of a vector of weights

multiplied by the objectives to convert the vectorized objectives to a scalar. The weights

are chosen proportionately to the importance of the objective and their sum should be equal

to one. Despite its simplicity, the weighted sum method has difficulty reaching the entire

set of non-dominated solutions when the feasible domain is non-convex (like the non-

dominated set in Figure 3.15, right). Therefore, a portion of the Pareto front would never

be found with the weighted sum.

Unlike the weighted sum, the ε-constraint method, first introduced by Haimes

[174], works with both convex and non-convex feasible sets and yields the Pareto set. The

79

method minimizes one of the objectives and expresses the other(s) in the form of inequality

constraints (i.e. the value of objective 𝑖 expressed in the constraints must be less than or

equal to 𝜀𝑖). Since the ε-constraint method has the advantage of obtaining solutions that are

not reachable using the weighted sum, it is selected to solve Problem 3.

Similar to Problem 1, the obstacle-avoiding constraint, 1 2 3X O O O , is further

broken into six constraints to reflect each of the six regions the breakout can be located.

The formulation of Problem 3 is therefore updated as in Problem 3-1.

Problem 3-1

2

6

1

1

 Zmin i i
X i

w D
 =

=

() ()1 1 2 2 1 1 1 2, , , , ,D S X X O O G X O O G= + + + +

() ()2 1 1 1 3 3 1 2, , , , ,D S O O X X O O G X G= + + + +

()3,1 1 1 1 1 2, , , ,D S O O X X G X G= + + +

() ()3,2 1 1 1 1 1 1 2 2 1 2, , (1) , , , ,D y S O O X y S O O X X G X G= + + − + + +

()3,3 1 2 2 1 2, , , ,D S O O X X G X G= + + +

() ()4 1 1 2 1 1 2 2 2 2 2, , , , (1) , ,D S X X G y X O O G y X O O G= + + + + − +

() ()

() () ()

1 1 1 1

1,6 2,3

4 1 1 1 1 1 1 2 2 5 1 2 2

. . , , ,

 , , (1) , , , ,

i i

i i

S t w S X w S O O X

w y S O O X y S O O X w S O O X 

= =

   
+ +   

   

 + + + − + + +  

 

 () 0, 1,...,6i i iw A X b i+  =

X C
2X 

6

1

1i

i

w
=

=

, , {0,1}, 1,...,6, 1,2i jw y i j = =

Where

X : the breakout location in the plane;

80

C : the convex hull of the set points S, G, and the intersecting obstacles.

Following the ε-constraint method, the problem is converted to a constrained

single-objective optimization problem with binary variables. The best solver in MATLAB

that satisfies the requirements of Problem 3-1, is the GA solver. The magnitude of ε varies

from 0.5 to 8.5 which is found based on testing the single objective of maximizing the

common length. The optimal (efficient) locations of the breakout as well as the final set of

non-dominated solutions are shown in Figure 3.19 and Figure 3.20 respectively.

Figure 3.19 Optimal (efficient) locations of the breakout for Problem 3-2

81

Figure 3.20 Set of non-dominated solutions for Problem 3-2

It is observed from Figure 3.19 and Figure 3.20 that the set of non-dominated

solutions attributed to each of the four regions (color-coded in Figure 3.20) in the visibility

map of the problem (Figure 3.13) is convex while the union of these sets shown in Figure

3.20 is non-convex. This behavior is caused by using binary variables to reflect the region

selection in the location problem. Once a region is selected for locating the breakout and

the corresponding binary variables are set, the problem, within the chosen region, becomes

convex; thus, the found non-dominated set in the outcome space also becomes convex.

However, the original problem described in Problem 3-2 is a non-convex optimization

problem. Therefore, when all the resulting non-dominated sets (created per each region)

are combined to generate the overall set of non-dominated solutions, the outcome is a non-

convex set as in Figure 3.20.

82

In addition, the numerical values of the optimal locations of the breakout as well as

the two objectives can be found in Table 3.6.

Table 3.6 Optimal values of the decision variables and objective functions for

Problem 3-2

ε Optimal breakout

location coordinates,

X* (cm)

Min total length

with the breakout,

𝒁𝟏
∗ (cm)

Max common

length, 𝒁𝟐
∗ (cm)

0.5 (-1.5033, 0.9526) 15.6877 0.499

1 (-1.0074, 0.8872) 15.8373 0.999

1.5 (-0.5177, 0.7766) 16.103 1.499

2 (-0.0322, 0.6479) 16.6294 1.999

2 (-0.0807, 0.4407) 16.6274 1.999

2.5 (0.2566, -0.0071) 16.8633 2.499

3 (0.7565, -0.0126) 16.8841 2.999

3.5 (1.2565, -0.0168) 16.9107 3.499

4 (1.7565, -0.0184) 16.9457 3.999

4.5 (2.2566, -0.0165) 16.9936 4.499

5 (2.7566, -0.0086) 17.0629 4.999

5.5 (3.2566, 0.0110) 17.1707 5.499

6 (3.8520, 2.3200) 22.6108 5.999

6 (3.7561, 0.0559) 17.3561 5.999

6.5 (4.2552, 0.1056) 17.7107 6.499

6.5 (4.3527, 1.5357) 17.8191 6.499

7 (4.7543, -0.1526) 18.2701 6.999

7 (4.7537, -0.1709) 18.27 6.999

7 (4.7663, 0.9454) 18.354 6.999

7.5 (5.2563, 0.0497) 19.1211 7.499

7.5 (5.296, 1.046) 19.1422 7.499

7.5 (5.2227, 0.5955) 19.136 7.499

7.5 (5.3112, 1.1379) 19.1438 7.499

7.5 (5.2462, 0.3285) 19.1249 7.499

8 (4.5487, 0.7756) 18.2051 6.8566

8 (5.8364, 2.4132) 20.1214 7.999

8 (5.3853, 0.5404) 19.4329 7.6549

8 (5.8259, 2.5028) 20.1237 7.999

8.5 (6.000, 3.000) 20.6322 8.2546

8.5 (5.4837, 0.9339) 19.7331 7.805

83

3.3.3 Final remarks

In this section, sample location problems are formulated using binary variables and

visibility maps. Even though the method has the advantage of providing a formulation of

the optimization function with explicit Euclidean distances between the points, the

complexity of the problem formulation (which indicates the complexity of the solution)

highly relies on the problem structure. For example, as discussed, a change in the locations

of the existing nodes can completely change the visibility map of the workspace provided

the geometry of the workspace remains unchanged.

In addition, it is shown that adding an obstacle or changing the shape of an obstacle

can drastically increase the nonlinearity of the objectives and/or constraints which has a

direct impact on the solution method. Therefore, this method is most efficient for

workspaces with as few as one simple obstacle. Further, the obstacle must be polygonal

and without any curved edges as having a curvature increases the nonlinearity of the

constraints.

Apart from the geometric structure of the workspace of a location problem, care

must be taken when formulating the problem using binary variables. For example, looking

at Figure 3.20, an outlier is present in the set of non-dominated solutions with objective

values of (22.611, 5.999). As seen in Figure 3.19, this point is located in region 4 of the

visibility map. The reason why the total length of the harness is 22.611 by placing the

breakout on this outlier is that the distance from 𝑆1 to this breakout is calculated using the

route passing from 𝑂1 and 𝑂3 instead of the shorter route passing from 𝑂2. Although from

the mathematical point of view this solution is feasible, it may not be realistic or optimal

84

from the design perspective. Hence, to avoid the attainment of such solutions and outliers

in the non-dominated set, additional constraints can be introduced to the problem

formulation to block the longer routes. If, however, more layouts are preferred to choose

from, considering other physical constraints of the wiring harnesses (e.g. accessibility),

solutions like this can remain in the non-dominated set and the constraints may not be

modified in the problem formulation.

As future extensions of this work, the following research questions can be further

investigated; (1) Is it possible to develop an algorithm that outputs the constraints and

criteria of the problem using binary variables? (2) what is the effect of non-convex

obstacles on the problem formulation and final optimal solutions? (3) can other criteria

(e.g. minimizing the number of turns in the path) be added to the optimization problem?

3.4 Layout optimization using convex hull based routing

Although the method discussed in the previous section enables the formulation of

the cable harness layout optimization problem with explicit objective functions, it may not

be computationally efficient in solving complex problems where multiple freeform objects

are scattered in the workspace. The convex hull based routing method explained in Chapter

2, on the other side, is proven efficient in generating the shortest collision-free path between

any two points in a cluttered planar environment. This section further investigates the

potential of this method in optimizing the layout of a cable harness assembly with the

constraints and criteria outlined in section 3.2.

85

3.4.1 Problem formulation

Suppose a layout for a cable harness assembly needs to be generated to connect n

components from a list of Start components to a Goal list of m components. It is assumed

that two breakouts are required; the first is to bundle n wires from the Start list and extend

to reach the second breakout, where the cables branch to reach the m components from the

Goal list.

The constraints are to avoid crossing the obstacles and placing a breakout inside an

obstacle. The objectives are (1) to minimize the total lengths of wires needed to connect all

the components including the breakouts and (2) to maximize the length between the two

breakouts for the longest possible commonality. The general mathematical formulation of

this problem is provided in Problem 4.

Problem 4

 
22

1 11 1

1 1 1 2 2 2 1 2
,, 1 1

(,) (,) + (,) , (,)maxmin
n m

i w j
B BB B i j

Z D S B n D B B D B G Z D B B
 = =

   
= + =        

 

1 2

1

. . B ,B int()
l

k

k

S t P
=



Where

B1, B2 : the two breakouts of the cable harness;

iS : ith start point, 𝑖 = 1,2, … , 𝑛;

jG : jth goal point, 𝑗 = 1,2, … , 𝑚; and

kP : kth polygonal obstacle, 𝑘 = 1,2, … , 𝑙; and

nw: the number of wires passing through the length covered between B1 and B2.

1

, (int)
(,)

(,)

l

k

k

a b ab P
D a b

D a b
otherwise

=

  =
= 


(,)D a b : the shortest distance between a and b calculated on from the route found by

applying the C-hull based roadmap

86

In Problem 4, the minimization objective function has three terms: the sum of the

distances between each start terminal and the first breakout, the distance between the two

breakouts multiplied by the number of wires passing through it, and the sum of the

distances between the second breakout and each of the goal terminals. The number of

wires passing from B1 to B2, nw, is found by taking the maximum of the number of Start

and Goal nodes. In other words: 𝑛𝑤 = 𝑚𝑎𝑥{|𝑆|, |𝐺|}, where | • | is the cardinality of a

set. The decision variables are the (𝑥, 𝑦) coordinates of the breakouts in
2

(plane). The

constraints are to avoid locating a breakout inside a polygonal obstacle.

It should be noted that the breakouts might be located on the borders of an obstacle

depending on the potential application of the optimization problem. It is also noteworthy

that the constraint of having wires not cross the interior of any obstacles is implicitly

addressed by calling the convex-hull based routing function when any two points are

invisible to each other. Therefore, the explicit representation of this constraint in the

optimization problem is not further provided.

The distance function, 𝐷(•,•) shown in Problem 4 outputs the Euclidean distance,

‖•,•‖, if the two points are visible to each other. Otherwise, the modified distance

function, 𝐷̃(•,•), calculated based on the shortest collision-free path that the convex-hull

based routing finds, is utilized.

The formulation shown in Problem 4 requires the solver to search the entire

feasible space which is the 2 plane, except the areas occupied by the obstacles, to find the

optimal locations of the breakouts. This could significantly slow down the optimization

process, especially for large-scale problems. Hence, it is recommended to adapt Klamroth’s

87

iterative convex hull [158] to limit the feasible domain inside the convex hull created by

the Start and Goal nodes. As explained previously, the boundary of this convex hull needs

to expand iteratively by including obstacles crossing the convex hull boundaries, until all

of the hull edges become collision-free. Using this idea, a new constraint is added to

Problem 4, and the problem is reformulated as in Problem 5.

Problem 5

22
1 11 1

1 1 1 2 2 2 1 2
,, 1 1

(,) (,) + (,) , (,)maxmin
n m

i w j
B BB B i j

Z D S B n D B B D B G Z D B B
 = =

   
= + =        

 

1 2

1

. . B ,B
l

k

k

S t P
=



1 2B ,B C

Where

C : the convex hull of the set points S, G, and the intersecting obstacles.

1

, (int)
(,)

(,)

l

k

k

a b ab P
D a b

D a b
otherwise

=

  =
= 


(,)D a b : the shortest distance between a and b calculated on from the route found by

applying the C-hull based roadmap

In Problem 5, C is a convex polygonal region defined by its vertices and edges. To

form this new constraint, a set of linear inequalities is added to dictate the location of the

breakouts inside this convex hull.

3.4.2 Optimization solver

This problem can be formulated and set up in MATLAB as an optimization

problem. In the main program, the workspace geometric data that includes the VRML data

of the obstacles alongside the Start and Goal sets of nodes with their coordinates are taken

as inputs. Next, the linear constraints that impose the breakouts to stay inside the

88

Klamroth’s convex hull are created. The flowchart of Figure 3.21 describes the process

used to create this convex hull.

Figure 3.21 Flowchart for the iterative convex hull creation

In this flowchart, first, the convex hull of all the nodes in the Start and Goal sets is

created using MATLAB’s “convhull” function. Next, the edges of the convex hull are

stored in the set E using their endpoints (denoted by their coordinates). Every edge in the

set E is then checked for intersections with all the existing obstacles using the intersection

detection algorithm developed in the convex-hull based roadmap [83]. If the edge is found

crossing any of the obstacles, the corresponding obstacle is included to generate the

updated convex hull. The process is continued until all the edges of the convex hull become

collision-free. In the flowchart of Figure 3.21, 𝑃𝑗 is the jth obstacle, where 𝑗 = 1, … , 𝑚.

89

After the convex hull is created, its edges are extracted to define the linear

constraints of the problem. These linear constraints specify a convex region inside which

the breakouts can be located without the need to search the entire feasible region. Using

this convex hull, the next step is to identify the obstacles that lie inside the convex hull.

This information is to be passed to the nonlinear constraint function where the optimizer

checks that the breakouts are not located inside or on the boundary of any obstacle

(depending on whether the breakouts are allowed to be located on the boundary of a

component or not). By determining the obstacles bounded inside the convex hull, the

nonlinear constraint checks for every obstacle if the breakout is placed inside or outside

this polygonal region.

A separate MATLAB function is created to set up the nonlinear constraints. These

constraints are vectorized. For example, if 𝑙 obstacles are identified inside the convex hull

region, an 𝑙 × 1 vector is created that quantifies the output of the constraints using Boolean

values. In more detail, if a breakout is located inside or on the boundary of obstacle k, 𝑘 ∈

{1,2, … , 𝑙}, the value of the kth row in the above-mentioned vector is 1; otherwise, it is zero.

The pseudocode for setting up the nonlinear constraints as explained here is shown as in

Algorithm 3.1.

90

This algorithm makes use of the InPolygon function [175] written by Redish and

Jacquenot that detects if a set of points are inside a polygonal region. The function takes,

as input, the coordinates of all the points to be checked and the vertices of the polygonal

region in either clockwise or counterclockwise order.

Since the geometric data of the obstacles is provided in the tessellated format of

VRML, the triangles that form each obstacle can be used as the set of polygonal regions.

This may, however, increase the computation time as the algorithm needs to check every

breakout point against every single triangle of an obstacle. Additionally, placing a breakout

inside the convex hull of a non-convex obstacle may cause sharp and often undesirable

turns of wires at these breakouts (see Figure 3.22).

Algorithm 3.1

Input: The set P of 𝑃𝑘, 𝑘 ∈ {1,2, … , 𝑙}, the obstacles bounded inside the convex hull, and 𝑋 =
[(𝑥1, 𝑦1), (𝑥2, 𝑦2)], the coordinates of the breakouts (the decision variables

Output: a Boolean vector C, showing which obstacles contain the breakout(s)

C ← 𝑙 × 1 vector of zeros

for (𝑘 = 1 to l), do:

if 𝐼𝑛𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑋, 𝑃𝑘) true

𝐶𝑘 ← 1

endif

end for

return C

91

Figure 3.22 Example of a breakout located inside the convex hull of a nonconvex

obstacle

To avoid these unwanted turns and to improve the computation time, instead of

using the triangles in each obstacle as the polygonal regions, this study uses the convex

hull of each obstacle as the polygonal region. We, however, recommend using the exact

border of the nonconvex obstacle (or the triangles defining the shape) for densely populated

workspaces where there may exist a Start or Goal node that is inside the convex hull of a

nonconvex obstacle. This case is further discussed in section 3.4.3.

The output of the InPolygon function is a Boolean vector that shows whether

any of the points is inside an obstacle. The code can be modified to output three types of

vectors: strictly IN, which shows if a point lies in the interior of the polygon, IN/ON, which

shows whether a point is in the interior or on the boundary of the polygon, and finally, ON,

which turns to 1 if a point lies on the boundary of the polygon, not its interior. Since the

purpose of this research is to avoid placing a breakout on a component of the workspace,

the IN/ON check is used to output the nonlinear constraint value. The MATLAB code can,

92

however, be modified to use only the interior points such that placing a breakout on the

boundary of a component is permitted. When searching for the feasible values of the

decision variables, if any element in the C vector is found nonzero, the assumed decision

variables become infeasible and must be excluded.

Lastly, the objective functions need to be set up in the optimization problem. For

this purpose, another MATLAB function is created that outputs a vector of objective

function values when the decision variables are inputted. Algorithm 3.2 provides the

pseudocode used to create this function.

Algorithm 3.2

Input: 𝑋 = [(𝑥1, 𝑦1), (𝑥2, 𝑦2)], the coordinates of the breakouts (the decision variables

Output: Z, a 2 × 1 vector of integer values for the two objective functions

Z ← 2 × 1 vector of zeros

0L

for (𝑖 = 1 to |𝑆|), do:

1(,)iL L D S B= +

end for

1 2(,)wL L n D B B= +

for (𝑗 = 1 to |𝐺|), do:

2(,)jL L D B G= +

end for

1Z L

2 1 2(,)Z D B B−

return Z

Following Problem 5, the first objective, the total lengths of wires, is decomposed

into three segments: the length between each start node and the first breakout, the length

between the two breakouts, and the length between the second breakout and each goal

node. Analogous to the mixed-binary optimization, for the second objective function,

93

which is the maximization of the common length, the negative of the distance between the

breakouts is used.

After the objective and constraint functions are set up correctly in MATLAB, a

solver should be called to solve the optimization problem. Since the two objective functions

in the bi-objective optimization problem of Problem 5 conflict, it is expected to obtain a

Pareto set of optimal solutions instead of a single value for the optimal functions.

The present problem is NP-hard with nonconvex constraints and criteria; hence,

hardly could it be solved using an exact solution method. Even if an exact method exists to

solve this problem, it would not be computationally efficient. Therefore, we need to resort

to heuristic techniques. Though they may not be the best approach in finding the global

solution, their efficiency in addressing NP-hard problems outweighs their inability to

guarantee to find the global optimum. For this research, the MOGA solver in MATLAB is

deployed to solve problems in this section.

 An example workspace with 12 scattered obstacles, 3 Start nodes, 4 Goal nodes,

and 2 breakouts, the locations of which are to be found, is shown in Figure 3.23. In this

figure, Si is the ith Start node and Gj is the jth Goal node. Also shown in this figure is the

convex hull of the nodes and intersecting objects in blue.

94

Figure 3.23 Sample workspace with start and goal nodes

The problem is solved using the explained setup and MATLAB’s MOGA solver

with 100 generations and a population size of 50. The final set of non-dominated solutions

can be seen in Figure 3.24. It should be reminded that due to the utilization of a heuristic

solver, at each execution of the GA a new set of non-dominated solutions is generated and

the non-dominated solutions at the last generation cannot be guaranteed to match the true

Pareto set.

95

Figure 3.24 Non-dominated set of solutions for Figure 3.23

For every point in the non-dominated or eventual Pareto set, there is an associated

optimal layout for the cable harness found by locating the breakouts. Four sample layouts

are depicted in the following figures.

96

97

Figure 3.25 Sample optimal layouts for Figure 3.23 example

In examples of Figure 3.25, the layouts are selected from the set of non-dominated

solutions (local Pareto optimal solutions) and drawn in a separate figure (right). It can be

seen that changing the locations of the breakouts could change a layout significantly. It is

evident that maximizing the common length of wires between the two breakouts will result

98

in an overall longer wire harness. An interesting case is layout 18 where the two breakouts

coincide at the same location, zeroing the total common length. While this layout may not

provide any commonality for bundles of wires, it can still bring insight to the designer

when deciding about the final layout. It would, therefore, be worthwhile to compare this

solution with the case where no breakout is used and the goal is to only minimize the total

lengths of wires. The case of separate paths without any breakouts is created for the

example in Figure 3.23 and the final layout is shown in Figure 3.26.

Figure 3.26 No-breakout layout example for Figure 3.23

In the next section, the effects of changing the number of Start or Goal nodes and

the density of the workspace, measured by the ratio of the occupied regions inside the

convex hull over the total area of the convex hull, on the optimal layout are further

investigated.

99

3.4.3 Results and discussion

This section evaluates the effects of the geometric structure of the workspace on

the optimal solution to the cable harness layout problem. Since the optimal solution is not

unique, to make the comparison of different layouts more meaningful, three solutions are

selected from the Pareto set: the solution with the maximum distance between the two

breakouts, the solution with the minimum total lengths of wires, and finally the solution

with no breakouts.

3.4.3.1 Effects of the number of nodes and the number of breakouts

While having more components to connect evidently requires more wires and

therefore increases the total length of wire harness, other factors such as the locations of

the nodes (components) also affect the total and common lengths. Hence, it is inconclusive

as to how increasing the number of nodes in the workspace alone could affect the optimal

layout of the harness without considering where the new nodes are located.

Further, analyzing the effects changing the number of breakouts has on the optimal

solution requires the knowledge of the topology of the harness. The topology of the harness

shows which nodes are connected to each breakout and how the breakouts are connected.

For example, Figure 3.27 shows two different topologies for the case with 4 total nodes

and 2 breakouts.

100

Figure 3.27 Two different topologies for 4 nodes and 2 breakouts

Note that these are to show different topologies created with the same number of

nodes and breakouts and they may not necessarily satisfy the physical requirements of a

cable harness.

3.4.3.2 Effects of the workspace density

One of the challenges the designer of a cable harness layout faces is the limited

feasible space remained to route all the wires and locate the breakouts in the detail design

stage. Adding more objects to the same workspace results in a more densely populated

environment. Therefore, the designer must know the effects of the density of the

environment on the optimal layout of a cable harness assembly. The density of the

workspace, in this research, is defined as the ratio of the area occupied by the obstacles

inside Klamroth’s convex hull over the area of the convex hull:

()
(%) 100

()

area obstacles
density

area Conv hull
= 

(3.1)

101

Since the iterative convex hull is used to further bound and downsize the feasible

domain for faster computation of the optimal solutions, it is reasonable to only consider

the objects inside this convex hull as the obstacles to be avoided by the wire connectors.

MATLAB’s convhull function, which is used for the calculation of the 2D

convex hull in this research, also outputs the convex hull area. For the calculation of the

area of each of the obstacles inside the convex hull, MATLAB’s polyarea function is

used that is capable of finding the area of any polygonal region (convex as well as

nonconvex) as long as the vertices of the polygon are in clockwise or counterclockwise

order. The VRML format used to store and represent the obstacles’ geometry does not

necessarily come with ordered vertices. Thus, an algorithm is developed that sorts the

vertices of the obstacles in clockwise (or counterclockwise) order.

To evaluate the effects of density on the optimal solutions, 11 different test cases

are generated by varying the density from 14.25% to 52.36% in the feasible region of the

workspace. Since the density of the workspace cannot be controlled, in this research, the

density is increased by adding objects inside the convex hull until the computation time

increased beyond one hour (for the density of 54.5%, which did not yield a solution within

one-hour runtime of the algorithm). To make the comparison of the test cases possible, two

Start and two Goal nodes are used with fixed locations across all the tests. The locations

are 𝑆1 = (−25,10), 𝑆2 = (−20,20), and 𝐺1 = (25,15), 𝐺2 = (11, −4).

Additionally, the number of required breakouts is kept at 2. The workspaces of these

test cases are shown in Appendix A. The data of maximum common length, minimum total

102

wire lengths with and without the breakouts, and the total computation time for each test

case is compiled and recorded in Table 3.7.

Table 3.7 Results for testing the effects of density on optimal layout

Test

ID

Workspace

density

(%)

Max common

length (cm)

Min total

length with

breakout (cm)

Min total length

without breakout

(cm)

Total computation

time (sec)

1 14.25 39.1647 89.934 89.454 20.4921

2 16.80 44.3307 90.942 89.6053 50.4038

3 21.88 32.6631 89.9212 89.8316 73.0086

4 28.65 44.0532 91.5033 90.2484 154.9674

5 31.09 41.6997 91.2973 90.2484 174.2097

6 34.64 47.7741 92.256 90.6393 262.6323

7 37.75 49.4265 94.4517 91.8152 352.5452

8 42.06 48.933 94.5502 91.8152 544.1885

9 45.36 31.8739 95.3751 92.0603 595.7788

10 49.12 36.1219 94.2169 92.3305 800.6291

11 52.36 33.2051 97.5491 93.0223 1219.9532

It can be seen in Table 3.7 that increasing the density increases the minimum total

lengths of wires as well as the computation time (see also Figure 3.28, Figure 3.30, and

Figure 3.31). The computation time seemingly increases exponentially with the increase in

the density. Unlike the minimum total length, a trend is not observable in the changes to

the maximum common length as density increases (see Figure 3.29). Since increasing the

density beyond 52.36% in the same workspace results in the exponential growth of the

computation time, cases with densities greater than 52.36% are not further explored.

103

Figure 3.28 Effects of the density of the workspace on the computation time

Figure 3.29 Effects of the density of the workspace on the maximum common length

0

200

400

600

800

1000

1200

1400

0 0.1 0.2 0.3 0.4 0.5 0.6

ti
m

e
(s

ec
)

Density

Effects of density on computation time

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6

m
ax

im
u
m

 c
o
m

m
o
n
 l

en
g
th

 (
cm

)

Density

Effects of density on max common length

104

Figure 3.30 Effects of the density of the workspace on the minimum total length

Figure 3.31 Effects of the density of the workspace on the minimum total length

without a breakout

While relative conclusions can be drawn, it should not be overlooked that the solver

used for this optimization problem is heuristic-based. Therefore, the found solutions are

89

90

91

92

93

94

95

96

97

98

0 0.1 0.2 0.3 0.4 0.5 0.6

T
o
ta

l
le

n
g
th

 (
cm

)

Density

Effects of density on minimum total length

89

89.5

90

90.5

91

91.5

92

92.5

93

93.5

0 0.1 0.2 0.3 0.4 0.5 0.6

T
o
ta

l
le

n
g
th

 (
cm

)

Density

Effects of density on minimum total length

without a breakout

105

locally optimal and it cannot be expected to achieve the same results by solving the problem

repeatedly. Thus, the values entered in Table 3.7 are subject to change by future executions

of the algorithm.

There might also be cases of densely populated environments where the convex

hull of a nonconvex obstacle encompasses a part of another obstacle. An example of such

a case is depicted in Figure 3.32 where a part of the second obstacle lies inside the convex

hull of the first obstacle (dashed green lines).

Figure 3.32 Example of interlocking obstacles in a dense environment

In such a case, the convexification of the obstacles that is used as a step in the

optimization process would result in entirely blocking the passage between the two

obstacles. This blockage might further lead to the omission of some of the optimal solutions

from the Pareto set. Therefore, it is suggested in this research to use the actual obstacles’

edges and vertices and avoiding convexification of the obstacles inside Klamroth’s convex

106

hull when the InPolygon function is called in such environments. Note that to be able

to use the actual obstacle’s vertices in InPolygon function, the vertices must be in either

clockwise or counterclockwise solution, as explained before.

Using the actual vertices allows GA to include in the population the locations that

are inside the convex hull but outside the actual boundary of a non-convex obstacle which

was considered infeasible when the convex hull of the object was used instead. For

example, a solution to the workspace of Figure 3.32 is outlined in Figure 3.33. The layout

shown in this figure has two breakouts, B1 and B2, both of which are located inside the

convex hull of the second object. Had the passage between the two interlocking objects in

Figure 3.32 been blocked, the wires would have had to go around these objects to reach G1

and G2, which would have lengthened their route. Also, the layout with no breakouts is

shown in Figure 3.34 for comparison.

Figure 3.33 Sample optimal layout for the workspace of Figure 3.32

107

Figure 3.34 Wire layout without breakouts for the workspace of Figure 3.32

The convex hull based multi-path planning is also compared with the mixed-binary

optimization using Problem 3-2 as the test case. The results are shown in Figure 3.35 and

Figure 3.36. Even though the locations of the breakout in Figure 3.35 found by the convex

hull based routing are quite different from Figure 3.19 generated by solving the mixed-

binary optimization problem with the ε-constraint method, the local Pareto fronts look quite

similar.

It should, herein, be reminded that despite the strength of the mixed-binary

formulation of the problem using exact Euclidean distances, the approach is limited by the

increase in the complexity of the workspace such as the number of obstacles, the shape of

the obstacles, the number and locations of the existing nodes, and the number of breakouts.

108

Figure 3.35 Optimal locations of the breakout for Problem 3-2 found using convex-

hull based routing

Figure 3.36 Non-dominated sets for Problem 3-2 found using convex-hull based

routing vs. mixed-binary optimization

109

Chapter Four

OVERVIEW OF THE RELATED WORK ON 3D PATH PLANNING METHODS

Although plenty of methods have been introduced and implemented to address path

planning problems in 2D environments, as reviewed in Chapter 2, due to the inherent

challenges of 3D path planning, most of those methods are found inefficient in dealing with

3D problems (e.g. the classical visibility graph) and some may not even apply (e.g. Voronoi

diagrams). In fact, according to Canny and Reif [7], the path planning problem in its general

form in 3D environments is an NP-hard problem, i.e. it cannot be solved in polynomial

time. Therefore, to find a solution to 3D shortest path problems within a reasonable

computation time, researchers mainly resort to stochastic and heuristic techniques for

which there is no guarantee to find a globally optimal solution. Some, on the other hand,

value the optimality of the solution higher than the computation time and attempt to adopt

deterministic methods to solve 3D problems. In an effort to reach polynomial-time

complexities, algorithms have been developed that generate approximate shortest paths

[176]. These efforts have resulted in methods that either make simplifying assumptions and

generate an approximate shortest path or address the special cases of the general 3D

problem.

This chapter highlights the two popular classes of methods for 3D path planning

problems: variants of visibility graph, based on a deterministic method covered in Chapter

2, and non-deterministic (including heuristics and stochastics) approaches.

110

4.1 3D Visibility graph

While the discussed methods of constructing visibility graphs apply to 2D

environments, the construction of a 3D visibility graph may not be as straightforward. The

notion of visibility graph in 3D spaces may differ from its 2D counterpart. O’Rourke [10]

provided different definitions for visibility graphs. According to him, a 3D visibility graph

may be created between two objects instead of a pair of nodes, which can greatly simplify

the graph construction. In that case, each object serves as a node. Using this definition of

visibility may, however, result in non-optimal solutions to shortest path problems.

Nonetheless, using the classical definition of a visibility graph, the construction of that

graph requires the determination of all visible points of an object from a given point in the

space. By the classical definition, in 2D planning, the graph nodes are the vertices of the

intersecting polygonal obstacles as shown in [83]. In 3D, on the other hand, the visible

points used in the shortest path lie anywhere on the edges of the polyhedral obstacles [24].

Therefore, the construction of visibility graphs in 3D becomes an NP-hard problem [10].

In addition, moving from 2D to 3D, the definition of intersection also changes. In

3D environments, the intersections occur between a line segment and an interior of a

polyhedron, not a polygon. Therefore, intersections need to be checked between a line

segment and an object’s edges as well as its surfaces. If tessellated models of objects are

used, it suffices to only check intersections between the line segment and the triangles that

compose the surface of the solid model. This fact alone can increase the time complexity

of any graph construction algorithm drastically. Further explanation of the intersection

detection algorithms used in this study is provided in Chapter 6.

111

Despite the discussed challenges, work has been done on developing construction

algorithms for 3D visibility graphs with simplifying assumptions (e.g. the approximate

shortest path) or for special cases. For example, Lozano-Pérez and Wesley [13] extended

their approach to 3D path planning based on visibility graphs by introducing new vertices

along the edges of polyhedral obstacles, further subdividing an edge. According to them, a

3D visibility graph whose nodes consist only of the obstacles’ vertices is not guaranteed to

contain the shortest collision-free path. The new vertices they introduce can lie anywhere

on an edge of an obstacle (or its dilation in the configuration space) such that the length of

each subdivision does not exceed a pre-specified value. The addition of the new vertices

can lead to a reasonable approximation of the shortest path on the visibility graph though

the computation time may be significant depending on the size of the graph.

Sharir and Schorr [24] presented a doubly exponential (has the form of 𝑎𝑏𝑥
, where

a and b are constants) algorithm in terms of the number of wall edges to find a sequence

of edges of obstacles through which the shortest path passes. They identify the contact

points on the edges of the obstacles by solving a system of m equations (for m segments of

the shortest path) which sets the arriving and leaving angles of the path segments at each

edge equal. They prove that the shortest path on a sequence of edges is unique and the ith

turning point on an edge is such that the angle created between ith segment of the path and

the edge is equal to the angle between (i+1)th segment and the same edge. Even though the

analytical solution to this problem is computationally expensive (even numerical methods

take 𝑂(𝑚𝑚) to solve a system of m equations), they considered a special case of finding

the shortest 3D path along the surface of a convex polyhedral object which is solvable in

112

𝑂(𝑛3𝑙𝑜𝑔 𝑛) for n vertices of the polyhedron. This path is also known as a geodesic path

[24].

To further improve the computational time of the 3D shortest path algorithm

suggested by Sharir and Schorr, Papadimitriou [15] proposed an algorithm capable of

finding approximate 3D shortest paths that are at most (1+ε) times longer than the globally

shortest path. His algorithm can be run in the polynomial-time of 𝑂(𝑛4(𝐿 + log (𝑛/𝜀))2/

𝜀2), where n is the number of vertices and L is the precision of the integers used (for

example for the coordinates of the vertices, L is the base 2 logarithm of the largest integer

used in a coordinate). The proposed algorithm subdivides each edge into at most 𝑁 =

𝑂(𝑛(𝐿 + log (1/𝜀))/𝜀) segments. He defines visible edges as a pair of edges with two

points, one on each edge, visible to each other. If such points exist, the segments are visible.

Next, he calculates the distances between visible edges as the distance between their

midpoints. Finally, applying Dijkstra’s algorithm to the visibility graph, the shortest path

can be found.

Clarkson’s method [30] discussed in Chapter 2 is also applicable to 3D path

planning problems. In fact, he provided improvements to the time complexity of

Papadimitriou’s algorithm for the 3D visibility graph. The idea here is analogous to the 2D

problem. the conical regions are created for the nodes of the graph. This time, however,

the nodes are not necessarily the vertices of the obstacles. Instead, the apex of the cones

(or nodes of the reduced graph) lies on the edges of the obstacles which implies infinitely

many vertices. To avoid this burdensome computation, Clarkson subdivides the edges to a

finite number of segments. After the graph is constructed, the search algorithm presented

113

in [31] is applied to obtain the shortest path. In addition to Clarkson, Choi et al. [177] also

revisited Papadimitriou’s algorithm and defined a new subdivision scheme to further lower

its running time.

An 𝑂(𝑛6𝑘−1) time algorithm is developed to find the 3D shortest collision-free path

amidst vertical obstacles, resembling buildings in an urban setting, with a total of n vertices

and k distinct heights [178]. Vertical obstacles are such that each of their faces is either

parallel or perpendicular to the xy plane. The authors also proposed speedup techniques

that improve the time complexity up to 𝑂(𝑛2) though the resulting paths are longer by a

maximum of 8% due to the deployed approximations and simplifying assumptions.

In this algorithm, a visibility graph is constructed per level. After all the graphs are

found, they are connected to form a 3D graph which is searched for the shortest path. The

algorithm benefits from the orthogonality of the objects when using their projections to

construct visibility graphs and find the waypoints.

A 3D Reduced Visibility Graph (3DRVG) is introduced in [179]. The proposed

construction algorithm has polynomial computational time in terms of the number of

vertices and exponential time in terms of the number of obstacles, 𝑂(𝑛3𝑣𝑓), where n is the

number of vertices, f is the number of obstacles, and v is the maximum number of vertices

in any one obstacle.

To construct the 3DRVG, the authors explained a perspective projection referred

to as collineation that projects the obstacles on a plane perpendicular to the line connecting

the start and goal. The projection viewpoint is the start point. An example of the defined

collineation is shown in Figure 4.1.

114

Figure 4.1: Illustration of collineation concept [179]

Using the projected image of the obstacles, non-overlapping edges are identified by

removing the hidden lines in the projected image. Using the information of visible edges

in the 2D projection plane, the corresponding edges on the 3D obstacles are identified.

After the visible edges are found, they are connected in a sequence starting from the start

point, passing through the midpoint of each edge and ending at the goal point (see Figure

4.2). However, since the midpoints of the edges may not yield the shortest path, an elastic

string analogy is used to resemble each path to minimize the total potential energy of the

elastic strings. This optimization leads to minimizing the length of the path by moving the

path turning points on the visible edges of the obstacles.

Figure 4.2: The shortest path through the midpoints of the found edge sequence

[179]

115

A modification to Gewalli’s algorithm is provided in a more recent study by

Frontera et al. [180]. Their modified algorithm, known as ApVL, reduces the number of

vertices used to find the shortest path and as a result, improves the computation time to

𝑂(𝑛3). Similar to [178], they construct 2D visibility graphs at different levels i, 1 ≤ 𝑖 ≤ 𝑘,

for k distinct levels of obstacles. However, their classification of levels differs from that of

[178] in that they have evenly spaced levels and no matter how many distinct heights the

obstacles have, they keep k constant. They then use projections of the visibility nodes at

different levels to create connecting edges between visibility graphs at different levels and

find the shortest path in 𝑂(𝑘2𝑛3) which, assuming a constant value for k, is reduced to

𝑂(𝑛3). A sample three-level visibility graph is shown in Figure 4.3. The first step in their

algorithm is the determination of the intersecting obstacles. These obstacles are then passed

to the approximate graph generation to build the visibility graph which is later searched

using A*.

Figure 4.3: Three-level visibility graph [180]

A downside to their approach is the discarding of non-intersecting obstacles. This

contributes to the intermittent collision between the final shortest path and the discarded

116

obstacles. To avoid this, they check for collisions once again after the shortest path is

created to ensure the path is collision-free. If collisions are found, the process is performed

iteratively to converge to a collision-free path between the two given points. This algorithm

is also compared with the sub-sampling algorithm [13], approximations by Gewalli et al.

[178], visibility line-based [181], and stochastic methods of PRM and RRT. The results

show that it outperforms the rivals in finding the 3D shortest path in an urban environment

with regular obstacles both in computation time and the path length.

Looking at the same problem but adding extra constraints and criteria (such as the

number of links and the maximum height of the obstacles), Tran et al. [9], developed an

algorithm that generates even shorter paths than ApVL’s output, among convex vertical

polyhedra. Their algorithm has two main steps: (1) the construction of a visibility graph

based on the obstacle segments that are fully or partially visible to each other and (2)

solving a Mixed Integer Linear Program (MILP) that attempts to find the location of

waypoints on the nodes of the visibility graph. An example of two partially visible

segments identified based on Tran’s algorithm is shown in Figure 4.4. It should be noted

that the nodes of the visibility graph are in fact edges of the obstacles. Therefore, instead

of constructing a visibility graph based on visible nodes, the authors construct the graph

for visible edges. They also deploy a linear approximation of the Euclidean distance metric

to be able to model the problem and solve it as a MILP.

117

Figure 4.4: The notion of partial visibility for segments [9]

Although the method is competitive in finding reasonable approximate solutions to

the shortest path problem using an exact geometric-based approach, hardly could it be

applied to solve 3D path planning problems with non-vertical obstacles. The method of

determining the visibility of obstacle edges is significantly simplified by using vertical

obstacles that have either parallel or perpendicular faces to the xy plane. In addition, the

distance metric used approximates the Euclidean metric, which requires post-processing

steps to further refine the path for a shorter one.

The methods developed in [178], [180], and [9] all make an assumption that

traveling below the base surface of any obstacle is not permitted; hence mimicking an

urban environment for finding the path. Although this assumption is valid for the case of

UAV path planning in an urban setting, for the problem of wire routing it may not be

realistic to assume wires can only extend over the top (or sides) of the obstacles. Therefore,

the proposed approach may not apply to the general problem of 3D path planning.

Liang et al. [182] developed a geometric-based path planning approach in two and

three-dimensional workspaces scattered with regular objects including rectangles and

118

ellipses in 2D and cubes and cones in 3D. The algorithm starts with identifying the

intersecting obstacles and ordering them based on their distance from the start point of the

path. Then, the points of intersections with edges (2D) or faces (3D) are determined and

the closest point to the path start point is selected. The distances from the selected point to

the vertices (2D) or edges (3D) of the respective edge (2D) or face (3D), to which the point

belongs, are calculated and the vertex or edge with the minimum distance is chosen as the

sub-goal of the path. An example of a sub-goal is illustrated in Figure 4.5 (point A).

Figure 4.5: The sub-goal for a cuboid obstacle[182]

They showed that for any arbitrary point, B on the edge with minimum distance

from P, the inequality of ‖𝑆𝐵‖ + ‖𝐵𝐹‖ ≥ ‖𝑆𝐴‖ + ‖𝐴𝐹‖ holds; therefore, A is on the

shortest path from S to F. In the next iteration, the sub-goal is set as the new start point and

the process is iteratively performed. These sub-goals act as the waypoints and if they form

non-intersecting segments, they will be appended together to create a collision-free path.

Figure 4.6 shows an example of the final shortest path in a 2D environment using this

method.

119

Figure 4.6: The shortest path for a 2D workspace [182]

Though claimed by the authors that the path found by this algorithm is a good

approximation of the shortest path, no proof is provided that such paths are near-optimal.

Comparisons are provided with 2D and 3D heuristic methods that show the superiority of

the method in the optimality of the solution. However, the heuristics may not be a valid

reference as they cannot guarantee to find a globally optimal solution. Further, the proposed

algorithm can only handle regularly shaped obstacles and the process of determining the

sub-goals highly depends on the obstacles’ shapes; therefore, it may not apply to a more

general case of 2D problems or any 3D planning problems.

4.2 Non-deterministic methods

Heuristic and stochastic methods are popular in addressing 3D path planning

problems as they can often generate an adequate solution in a reasonable time. If a solution

exists, they generally find it, however, it could take drastically long for these methods to

converge to the exact solution depending on the scale of the problem; thus, often there is

120

no guarantee the found solution is the global optimum. Stochastic methods (e.g. PRM and

RRT) are useful for environments that contain levels of uncertainty where also real-time

routing is required. Here we refer to a few examples of heuristic and stochastic planning

approaches for 3D problems.

One of the early efforts to use evolutionary algorithms for path planning problems

was made by Szykman and Cagan [183]. They proposed an approach based on Simulated

Annealing (SA) to produce non-orthogonal routes for pipes in a 3D environment. Given

the locations for a pair of terminals, an initial route, which is the straight line between the

two terminals, is chosen. Then, the optimizer based on SA moves the locations of bend

points, which are design variables, to minimize an objective that consists of the sum of

three components: the total length of the route, the number of bends, and the degree of

penetration inside obstacles. Weights are used to distribute the importance of the three

objectives, and the aim is to drive the third one (obstacles interference) to 0. Figure 4.7

shows an example of an optimal layout for a four-story chemical plant using the approach

introduced in [183].

Later, Sandurkar and Chen [76] addressed the pipe routing problem in 3D space

using the tessellated format (triangulated meshes for the surface approximation of solid

models) to represent components in the workspace and implemented a Genetic Algorithm

(GA) that determines angles and lengths of each segment of a single pipe.

121

Figure 4.7: Optimal layout for a chemical plant using SA[183]

While GA and SA are among the most popular heuristic techniques for 3D routing,

researchers have also applied Ant Colony (e.g. for pipe routing in ships [184] and 3D hose

routing[185,186]), Particle Swarm (e.g. for pipe-assembly in aero-engine [187], pipe

routing [188,189], and robot path planning [190]), and Tabu Search (e.g. for vehicle routing

[78]).

In addition to heuristics, other non-deterministic methods such as sampling-based

methods of PRM (e.g. see [69,191,192]) and RRT (e.g. see [193–195]) have drawn a lot of

attention by 3D path planning researchers and many have applied them to solve 3D

planning problems in complex environments.

Heuristics and sampling-based methods are popular due to their simple

implementation and computational efficiency and therefore there is a multitude of studies

on these routing methods for different applications. However, since the focus of the present

work is on deterministic methods, we skip the further discussion of the related work based

on non-deterministic methods.

122

4.3 Other methods for 3D path planning

Although visibility based, heuristics, and sampling-based methods are popular

among scholars for solving 3D routing problems, other methods discussed in Chapter 2

have also been applied to 3D problems and their performance has been evaluated. In this

section, a brief explanation of the most common of these methods is provided.

Potential fields- As explained in Chapter 2, PF is a method that benefits from

defining potential functions for various points in the workspace. The potential associated

with the goal point is zero and the objective is to minimize the total potential function as

the router moves from the start point toward the goal. By this definition, the PF method

can be similarly applied to 3D path planning problems (for example see references [196–

198]). Despite the strength of the method in addressing dynamic environments, similar to

2D, the PF method has a downside of trapping at local minima in 3D environments as well,

especially in environments with closely spaced obstacles. Different solutions are proposed

to overcome this problem by defining new potential functions [198] or placing an

imaginary goal point near the trap for the router to escape the local minimum [65]. These

potential functions may, however, approximate the shortest path, therefore, could result in

sub-optimal paths.

Voronoi- Retraction methods using the Voronoi diagram are the best candidates

for planning the safest path among scattered objects. Although the method is more popular

for 2D safe routing problems, some researchers have benefitted from generating Voronoi

diagrams for 2.5D environments or 2D projections of 3D environments [199,200] while

123

others looked at blending the method with other planning methods (such as heuristics[201]

or RRT[50]) to increase the path safety[50,201].

Octree- Octrees are a subset of the approximate cell decomposition method

reviewed in Chapter 2. Using octrees, the free space in a given environment is further

decomposed into 8 cubic cells in multiple iterations, until a termination criterion is reached,

or a cell is located completely inside or outside the obstacle space. Depending on the

desired resolution for the decomposition, the method can have low to high computation

time simultaneously trading off the optimal path found on the cellular map. The method is

extensively used in the literature for collision avoidance in robot motion planning problems

[56,202,203]. Some scholars went farther and combined octrees with other planning

methods such as Ant Colony to benefit from both the collision avoidance capabilities of

octrees and computational efficiency of Ant Colony [204].

Dubins- Named after its developer [205], Dubins path is the shortest curve that

connects two points in a plane with a constraint on the radius of curvature and known

velocity vectors (tangents) at the two points. Dubins further proved that for 2D Euclidean

planes, the curve is continuously differentiable and the path consists of no more than three

segments each of which is either an arc of a circle with the radius no greater than the set

curvature (constraint) or a line segment [205]. Other researchers looked into adopting the

method for 3D path planning by considering different planes for the initial and final

configurations [206]. As a result, Dubins paths are commonly used to address UAV path

planning in cluttered environments with known UAV configurations at the initial and final

points of flight [207,208]. Figure 4.8 shows an example of a Dubins path with an initial

124

position at (0,0,0) and a final position at (51,18,51). As can be seen in this figure, the curved

path consists of three segments: an initial arc, a straight line segment, and a final arc that

lands on the final point of the path, consistent with Dubins’ proof.

Contrary to roadmaps and cell decompositions where the workspace is mapped to

a connectivity graph, akin to the discretization of the workspace, Dubins paths are

continuous parametrized curves with predefined initial and final orientations (or

configurations). In addition, due to considering velocity and position of the moving point

(e.g. UAV), Dubins’ method is a suitable candidate for dynamic and time-dependent

routing where in addition to the length of the path, the time it takes to complete the path

may also need to also be minimized.

Figure 4.8: An example of a Dubins path

125

In the next section, a comparison of the 3D path planning methods discussed in this

chapter is provided followed by a discussion of their limitations which leads us to the

research questions to be addressed in the remainder of this study.

4.4 Comparison of path planning methods

The planning methods discussed in this study are classified as in Figure 4.9 based

on their approach to solving the problem and their optimization models. The three main

classes are (1) representation-based methods, which make use of the graphical

representation of the workspace, (2) reasoning-based methods that follow a logical instead

of the geometric approach to solving the problem, and (3) hybrid, which uses a combination

of the two previous methods to benefit from the advantages of both.

Figure 4.9 Taxonomy of path planning methods

The representation-based methods are further broken into two groups: methods that

only generate a free space graph (pre-processes) and usually need a post-process that finds

126

the solution on the graph and methods that not only generate the graph but are also capable

of determining the shortest path on the graph in an all-at-once approach.

The methods are also color-coded following the legend on the bottom right corner

of the figure based on the optimization models they use to address the problem. Three

themes are found in the planning methods reviewed in the literature: deterministic models,

heuristic models, and stochastic models. Deterministic models, as introduced in Chapter 3,

generate the same fully determined output per each execution of the algorithm when the

same input is provided. If an optimal solution exists, deterministic models can find it and

prove its optimality.

Heuristic models, on the other hand, define functions (e.g. fitness function in GA

or potential functions in PF) to generate and score optimal solutions. The goal in heuristics

is to find a solution with acceptable accuracy or optimality degree more quickly, which

results in making approximations. Heuristics cannot guarantee to find the global optimum

and may trap at local optima or take longer to converge to a global optimum.

When some levels of randomness exist in the problem, stochastic methods are the

best candidates for the mathematical model. Random variables are often used in the

mathematical model of a stochastic optimization problem and instead of a single output, a

distribution of possible outcomes may be generated as the solution. Unlike, heuristics that

cannot provide proof of optimality, stochastic optimization methods can provide and prove

the optimal solution with a known probability.

Heuristic and stochastic approaches are the two widely used classes of methods to

address 3D routing which provide an approximate solution. The popularity of these

127

methods comes from their computational efficiency that could overshadow the accuracy of

the solution. Among the three classes of optimization methods, only deterministic methods

are capable of finding the exact solution, though their time complexity can significantly

increase as they explore the solution space more comprehensively. As shown in Figure 4.9,

all representation-based methods, except PRM and RRT families of methods, are

deterministic.

Visibility methods are the most exact, among the deterministic methods, for the

shortest path problem in 3D. Constructing the complete visibility graph in 3D workspaces

is, however, computationally expensive, if at all possible. Hence, as discussed, the

available methods can only address special cases (such as specific shapes [179,182],

vertical obstacles [9], or only one convex polyhedron[24]) or generate approximate

solutions by subdividing the obstacle edges [15,30,178] and therefore restricting the

solution space. Table 4.1 below summarizes the studies on 3D visibility-based planning

methods.

Table 4.1 Comparison of 3D visibility-based planning methods

Methodology Reference Limitations

Subdivision of obstacle

edges

Lozano-Pérez & Wesley [13],

Papadimitriou [15], Clarkson [30],

- Approximate solution

- Computationally expensive

Multi-level 2D visibility

graph

Gewali [178], Frontera [180] - Approximate graph

- Vertical objects only

Kuwata and How [209] - Approximate path

- Vertical block obstacles

Projection on plane Jiang [179] - Specific shapes (pyramids, cubes)

Huang [210], Omar and Gu [181] - Approximate 2D graph using

rotational planes

- Vertical block obstacles

Visibility segment graph Tran [9] - Approximate Euclidean length

- Vertical block objects

128

Shown in this table are the limitations of the visibility based methods which are one

of the two categories: approximate paths on subdivided edges or special shapes/topologies

of obstacles.

4.5 Research objectives- Part II

With the discussed limitations, a deterministic approach is required that does not

subdivide obstacle edges and can apply to obstacles not limited to vertical or specific

polyhedral shapes. Based on this discussion, the objective of the second part of this

research is to develop and test a geometric-based and deterministic approach based on the

visibility notion to generate optimal solutions to the 3D path planning problems. The focus

is more on the optimality of the solution than the computation time while, when possible,

speedup techniques are also implemented.

As mentioned, the waypoints of the piecewise shortest path between start and goal

points in a 3D cluttered space lie on the edges of the obstacles [24]. Therefore, an approach

is sought that can produce the optimal edge sequence to be followed by the path and the

optimal locations of turning points of the path on those edges. Different paths found are

then appended together to form the 3D visibility graph and later Dijkstra’s search algorithm

is applied to yield the shortest path on the graph.

129

Chapter Five

3D PATH PLANNING PROBLEM SETUP, DEFINITIONS, AND FORMULATION

This chapter provides an overview of the definitions of the fundamental terms and

assumptions used to simplify the problem. Other preliminary steps taken toward

constructing the 3D visibility graph are also explained here. These steps include the

workspace geometric representation, data types/structures used, and finally the

mathematical formulation of the problem.

5.1 Definitions of fundamental terms

See the following definitions for the terms used in the problem statement.

Definition 1. As defined by O’Rourke [10], a polyhedron is “a region of space

whose boundary is composed of a finite number of flat polygonal faces, any pair of which

are either disjoint or meet at edges and vertices.”

Definition 2. By Definition 1, a convex polyhedron is the one whose faces are all

convex polygons.

Definition 3. Intersection (or collision) between a line segment and a polyhedron

occurs if and only if the line intersects with at least two faces of the polyhedron at points

with different coordinates. Note that for a convex polyhedron, an intersection occurs if the

line segment intersects with exactly two faces of the polyhedron at two distinct points.

By this definition, in a 3D space, the direct path connecting two points X and Y is

not collision-free if and only if the line segment 𝑋𝑌̅̅ ̅̅ intersects with the interior of at least

one obstacle, that is:

130

: int()i iP W XY P    (5.1)

Where 𝑃𝑖 is the ith obstacle, W is the 3D workspace, and 𝑖𝑛𝑡(𝑃𝑖) denotes the interior

of the ith polyhedral obstacle.

Definition 4. A path 𝑅 from the start (𝑠) to the goal (𝑔) is said to be the shortest

collision-free if it is the shortest path among all the collision-free paths from 𝑠 to 𝑔.

5.2 Assumptions

Several assumptions are made to model the problem mathematically and

geometrically to be able to solve it as an optimization problem. The assumptions are:

Assumption 1. Obstacles are convex polyhedra (please see Definition 1 and

Definition 2).

Assumption 2. The location and geometry of all the obstacles are known a priori.

Assumption 3. The obstacles are static (their location does not change at any time)

and disjoint, meaning no two obstacles touch. If any two obstacles touch, they are

considered one obstacle. Since this new obstacle becomes non-convex, the methods

developed in this research may not apply to those cases.

Assumption 4. The obstacles are modeled using tessellations that approximate each

object’s surface by triangular polygons.

This assumption also simplifies the collision check between a line segment and a

polyhedron as explained in the next chapter.

Assumption 5. The obstacles can take any arbitrary convex shape and geometry.

The shape is not constrained as long as it satisfies the definition of a convex polyhedron.

131

Assumption 6. The start and goal points of the path are not interior to any

polyhedral obstacle.

Note that this assumption together with Assumption 3 implies that there is always

a collision-free path between the given points amidst the obstacles.

Assumption 7. A path can touch the boundary of an obstacle or its configuration

space; however, traveling through the interior of any of the obstacles is not allowed (see

Definition 3).

Assumption 8. Should the environment of the routing problem be enclosed,

collisions will be avoided with the walls of the enclosure.

Assumption 9. The wire routing problem is modeled as a 3D problem; however,

the algorithm is capable of routing in 2.5D workspaces (such as robots moving on a floor

plan or UAVs flying in an urban environment). For an exact algorithm for 2D routing

problems, readers are referred to [83].

Assumption 10. Collision-free paths between the given points are piecewise linear

if the baseline connecting the endpoints regardless of the obstacles intersects with at least

one obstacle. Otherwise, the shortest collision-free path is trivially the line segment

connecting them.

Although path smoothening is possible using B-Spline or NURBS parametric

models of curves, the output path in this research is piecewise linear and no post-processing

steps are taken to smoothen the path; therefore, focusing on the exact shortest paths.

Assumption 11. The given environment is the configuration space of the problem.

Therefore, the agent that is routing through obstacles is assumed to be a point.

132

This is critical in case the agent has a two or three-dimensional geometry (such as

a robot or a wire with circular cross-section) which needs to be shrunk to a point and grow

the obstacles correspondingly.

5.3 Modeling the workspace: representation and exchange format

The geometric representation of the workspace is at the core of the proposed path

planning method. An appropriate geometric model contributes to speeding the collision

detection between the path and the objects. The identification of the intersecting obstacles

is the basis of the algorithm suggested in this manuscript. Therefore, it is of high

importance to select the geometric representation and CAD format that best describe the

geometric data of the workspace and facilitate the geometric operations including collision

detection.

Different geometric representation paradigms exist to define and model 3D objects,

the two most common of these are Constructive Solid Geometry (CSG) and Boundary

Representation (B-rep) [211].

According to Zeid [211], CSG benefits from primitives (or building blocks) that

can be manipulated using Boolean operations to generate more complex 3D models. These

primitives are typically basic shapes such as rectangular block, cylinder, cone, plane, and

sphere. B-rep, on the other hand, is based on the idea that a physical object is bounded by

a finite number of faces that are closed (i.e. no breaks or holes exists on their boundary)

and orientable (i.e. the two sides of a face are distinct by having surface normals pointing

to opposite directions). Therefore, faces, vertices, and edges are the building blocks of B-

rep that construct a physical object [211]. As path planning methods are generally

133

concerned with faces, edges, and vertices, the suitable geometric representation for this

application is seemingly B-rep, and therefore this representation is adopted in this research.

After the geometric representation is specified, the next step is to decide how the

geometric data of this representation is to be stored and reported. CAD software packages

provide a variety of data formats. An appropriate data format is the one that could be easily

exchanged between these packages. Accordingly, to overcome the interoperability issues

of using platform-specific 3D models (proprietary formats), this research benefits from

open-source (neutral) formats. These are the formats of 3D models that are common among

different CAD software packages. Examples of these neutral formats include IGES, XBF,

SET (for shape data exchange), and STEP and PDES (for product data exchange) [212].

Table 5.1 Common neutral CAD formats [213]

Data format Geometric

representation

Shape and product data Application

IGES CSG and B-rep Surface geometry and color

data

High precision

engineering (e.g.

aerospace)

STEP CSG and B-rep Surface geometry, topology,

and appearance data

High precision

engineering

OBJ (neutral in

ASCII format)

Approximate and

precise mesh in B-rep

surface geometry, appearance

data

3D printing, 3D

graphics

STL

(STereoLithography)

Approximate mesh in

B-rep

Surface geometry only 3D printing, CAM

VRML (Virtual

Reality Modeling

Language)

Approximate mesh in

B-rep

Surface geometry and

appearance data

Internet and the web

COLLADA B-rep surface geometry, appearance

data, animation

Graphics (gaming and

film industries)

As discussed by Owen and Bloor [212], some of the issues with the initial data

exchange formats included storage and accuracy. The early versions of IGES, for example,

134

required more space to store the same data than the native CAD formats did. In addition,

the accuracy of the transferred data in the early formats could be diminished. To alleviate

these issues, more recently other formats are introduced. Table 5.1 provides the properties

of some of the common neutral formats used both commercially and scientifically as

described in [213].

As can be seen in Table 5.1, OBJ, STL, and VRML are the formats that use

approximate meshes in a B-rep geometric representation. Approximate mesh formats

render faster than precise mesh formats. STL is one of the primary tessellated based formats

and is widely deployed in additive manufacturing industries. It approximates the surfaces

of solid models by triangular meshes. An STL file of a solid model includes the X, Y, and

Z coordinates of each triangle’s vertices as well as the outward normal vector to the surface

of that triangle. An edge must be shared by no more than two triangles.

For 3D printing applications, OBJ is gaining more attraction these days as it

encodes color and appearance data in addition to the shape, which is useful if parts with

multiple colors or textures are to be printed. Further, its approximate mesh is not limited to

only triangular surfaces. It can, for example, use quadrilateral meshes to approximate

surfaces. VRML is another tessellated based format that also encodes appearance data and

is best for web applications.

Following Assumption 3, obstacles are modeled using a tessellated format in CAD

software. Thus, STL and VRML are two candidates for the format of the workspace data

storage. As noted by Fadel and Kirschman [214], STL causes loss of accuracy due to round-

off errors when computing the approximations of curved surfaces by a series of triangles.

135

This error results in the generation of multiple very close points despite pointing to the

same single point. This could cause a hole inside a tessellated object since the edge that

two triangles share is no longer common due to different coordinates of the “common

points”. This situation can be seen in Figure 5.1.

Figure 5.1: Round-off error in tessellations

Another issue relates to the chordal tolerance in a triangulation. Chordal tolerance,

as defined by Fadel and Kirschman, is the distance from the surface of a solid model to the

vector that represents a side of the triangle. To improve the accuracy of the tessellation,

one needs to reduce the chordal tolerance by increasing the number of triangles.

The STL creates a tessellated format by getting the coordinates of the points of each

triangle and representing them. Hence, the coordinates of two points would be repeated as

an edge is shared between the two triangles. The repetition of the coordinates of a point

may increase the chance of getting the round-off error at that point. Additionally, it results

in more space required to store the large data of STL format. VRML, on the other hand,

first gets all the points and then creates the triangles, reducing the possibility of the round-

off error. This format, however, does not come with the normals to the triangles. If such

normals are desired for an application, the user has to compute them numerically. Figures

136

5.2 and 5.3 below show, in ASCII format, an STL and a VRML representation of data of a

cube modeled in SolidWorks, respectively.

Figure 5.2: Sample STL representation of CAD data in ASCII format

137

Figure 5.3: Sample VRML representation of CAD data in ASCII format

Despite the discussed challenges with STL, since in this research appearance data

is of little importance whereas surface normals are required for the next set of calculations,

the selected format is STL to avoid further calculations of the normals by the cross products

of the vectors defining triangle edges.

138

5.4 Data types and structures

The types and structures of the data to be stored and manipulated affect the

computational performance of an algorithm. Therefore, in this work, attempts are made to

deploy the data types that facilitate the geometric and algebraic operations on the data of

the tessellated objects. Here, an explanation of the data types as well as structures used is

provided.

5.4.1 Data types

The three main types of data used in implementing the developed algorithms in this

research include floating-point, integer, Boolean, and characters. The geometric data of

the objects imported from the CAD software is composed of an n-by-3 matrix of

coordinates of vertices, where n is the number of vertices per object, and an m-by-3 matrix

of edges, where m is the number of triangles in the triangulated object. The data of the

vertex coordinates has the type floating-point in double-precision while integer data type

is used in the matrix of tringles that denote the ids of the vertices connected in each triangle.

Boolean is another type of data used extensively in the algorithm implementation

especially where the output of the operation is binary. For example, the output of whether

or not an object is on the way is reported in Boolean. Last but not the least, characters are

used to create the vertex ids. The id of each vertex in an object is denoted as “𝑎. 𝑏”, where

𝑎 is the number associated with the object, and 𝑏 denotes the vertex number in that object.

For instance, following the discussed identification method, the id “2.31” refers to the

thirty-first vertex in the second object.

139

Now that the data types used in this research are introduced, the structures to

organize this data for the most effective usage need to be explored.

5.4.2 Data structures

A list of data structures with their brief explanation is provided in this section

starting with the most basic structure, arrays.

5.4.2.1 Arrays

Arrays are one of the basic data structures in every programming language. An

array could store vector data of any primitive type so long as the type of the stored data is

uniform. Reference to the data in each memory location is made by the index of the array

element.

Matrices could be created by concatenating multiple arrays of the same dimensions

either in rows or columns depending on the dimension of the array. Arrays are indeed one-

dimensional matrices. Cell arrays, unlike matrices, are structures that could store and

organize different data types including numerical and text data. The data in a single cell

must, however, be of the same type. Arrays that have more than two dimensions are called

multidimensional arrays [215]. In these array types, the first and second dimensions are

associated with the row and column numbers while the third dimension is usually referred

to as the page [215]. Figure 5.4 shows an example of a multidimensional cell array. Shown

in the figure, each cell can contain data of different types. Additionally, it is noteworthy

that cell arrays can have cells with different sizes as opposed to matrices. An example is

shown in Figure 5.4 where cells 1,1,1 and 2,2,1 have dimensions 2x2 and 1x1 respectively.

140

Figure 5.4: Multidimensional Cell Array [215]

Another important array type used extensively in this research is the dynamic array.

A dynamic array is a variable-size array used when predefining an array is not feasible or

the array size is not known a priori. For example, in creating a path consisting of a sequence

of connected points, the number of waypoints is not known in advance. Therefore, defining

the path as a dynamic array helps to construct the path by appending the next waypoint to

the array at each iteration until the goal point is reached.

5.4.2.2 Record or struct

A struct (or structure) is a form of organizing data that consists of several fields. A

“struct” groups the related data using these fields [216]. Each field can contain data of any

type similar to a cell array. Both struct and cell can contain heterogeneous data. However,

the two data structures differ in how they provide access to the data of each field or cell.

To access the data in a field of a structure one should use dot notation in the form

141

“structName.fieldName” [216]. In a cell array, on the other hand, access to a cell is

provided by numeric indexing.

In this research, a struct is used to store the geometric data of the objects. Some of

the fields in this struct are “vertices”, which contains the x, y, and z coordinates of the

vertices, “faces”, which contains the surface triangle data by denoting the ids of the three

nodes of each triangle, and “normals” to the triangular surfaces.

5.4.2.3 Linked lists

Lists are structures wherein data is not stored in contiguous memory locations. That

means unlike arrays where data in each element is easily accessible by numeric indexing,

access to the data of a random element in a list may require extra effort in implementing

procedures and routines to perform such operations since linked lists can only provide

sequential access from the first node[217]. As shown in the below figure, elements of lists

are connected via pointers (links). Therefore, a linked list consists of nodes that contain a

field for data and a link to the next node of the list [217].

Figure 5.5: Graphical representation of a linked list[217]

Despite the difficulty in accessing random elements of lists, insertion and deletion

of elements of lists are easier than arrays since there does not exist continuous memory

locations for elements of lists. This advantage of lists makes them a good candidate for

142

storing the data of the sequence of edges of obstacles to be traversed to achieve the goal

point in the 3D path planning problem.

5.4.2.4 Graphs

Graphs are structures that contain the node (or vertex) and edge data of a known

network. Edge data shows which nodes are connected in the network. This data structure

is critical in any routing problem. Since geometric based planning problems mainly work

based on the construction of graphs that are searched for the safe shortest path, the graph

data structure needs to be defined and created correctly. In this research, the nodes of the

graph include the start and goal as well as the waypoints identified on the obstacle edges

for 3D path planning.

5.5 Problem formulation

The path planning problem considered in this research aims at minimizing the

length of one-dimensional components (cables, wires, tubes, and hoses) in

electromechanical systems. Therefore, the problem can be defined as:

Primary problem: Given an environment scattered with static convex polyhedral

obstacles and a start and a goal point, the objective is to develop a deterministic geometric-

based optimization algorithm that finds a minimum length path between the two points

while avoiding collisions with any obstacles.

Suppose there are f polyhedral obstacles, Pi, (i = 1, 2, …, f) scattered in the 3D

space. Following the above-mentioned assumptions, the problem is to construct the free

space defined as Eq.(5.2) in the form of a graph.

143

1

\fr

f

ee i

i

W PW C
=

=

(5.2)

In Eq.(5.2) Cfree denotes the free space as a subset of the workspace, W, which could

be generated by taking the complement of the union of all obstacles. Additionally, the

contact space (Contact) can be defined as in Eq.(5.3) to capture the boundary space of the

obstacles:

1

f

contact i

i

C P
=

= 

(5.3)

Where ∂Pi denotes the boundary of the polyhedron i.

The graph G, defined by its set of vertices (V) and edges (E), is desired to capture

a collision-free subset of the workspace.

 , { , }free contactG C C G V E  =

(5.4)

Definition 5. The set V is a set of vertices of the free space graph. These vertices

are on the edges of the intersecting obstacles and augmented by the start and goal points of

the path.

Definition 6. The set E is a set of edges of the free space graph that connect the

vertices in V.

After the desired graph is constructed, the shortest path needs to be found by

exploring the graph using Dijkstra’s algorithm. The formulation of Dijkstra’s problem is as

below:

Secondary problem: Given the connected graph 𝐺 = {𝑉, 𝐸}, find the shortest path between

nodes 1 and 𝑚, 𝑚 ≠ 1 such that

144

𝑚𝑖𝑛 ∑ 𝐶𝑖𝑗𝑋𝑖𝑗

(𝑖,𝑗)∈𝐺

Subject to : ∑ 𝑋𝑖𝑗{𝑗:(𝑖,𝑗)∈𝐺} − ∑ 𝑋𝑗𝑖{𝑖:(𝑖,𝑗)∈𝐺} = {
1
0

−1

𝑖 = 1
𝑖 ≠ 1, 𝑚

𝑖 = 𝑚

Where: 𝑋𝑖𝑗 = {
1 𝑖𝑓𝑒𝑖𝑗 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐶𝑖𝑗: cost, the Euclidean length of arc 𝑒𝑖𝑗

145

Chapter Six

INTERSECTION DETECTION ALGORITHMS

Path planning in cluttered environments requires avoiding intersections with

obstacles. Therefore, intersection detection is at the core of any path planning problem in

the presence of obstacles. Indeed, the first step in constructing the free space graph in

geometric-based path planning approaches is detecting the intersections between the direct

path (the path connecting the start and goal) and the obstacles. If no intersection is detected,

the shortest path is trivially the straight line between start and goal. Otherwise, the path

needs to be re-routed until a collision-free path can be achieved. This chapter is allocated

to the methods and algorithms of detecting the intersections between objects in 3D space.

Readers are referred to Definition 3 for an intersection between a line segment and object

in 3D space. In this chapter, two types of intersections are discussed: (1) line segment-

triangle intersection, which contributes to identifying the intersecting objects, and (2)

triangle-triangle intersection, which is an intermediary step during the construction of the

free space graph (discussed in the next section). Triangulated objects highly simplify the

intersection calculations as instead of computing the intersections between polyhedra and

a line (or between more than two polyhedra), it suffices to determine intersections between

a line segment and several triangles (or between multiple triangles).

6.1 Line segment-triangle intersection

Since the shortest path in 3D space passes through the edges of the intersecting

obstacles, the first step in constructing the free space graph is to identify the intersecting

obstacles. As the obstacles are modeled using tessellations, it suffices to find intersections

146

between the line segment connecting the start and goal points and all the triangles in an

object.

The intersection detection in this research undergoes two main steps: (1) filtering

the out-of-bound obstacles and (2) checking for line segment-triangle intersections only

for obstacles whose coordinates overlap with the coordinates of the endpoints of the line

segment. In what follows the steps to identify the intersecting obstacles alongside the

pseudocode for intersection detection are presented.

Step 1: Transformation of the coordinate system

After the workspace is modeled using a tessellated-based solid model in CAD

software, the data of the obstacles is imported in the path planning environment. MATLAB

is selected for the computational environment of the path planning problem in this research.

Therefore, the solid models of the obstacles are imported in MATLAB. Since STL is the

selected format for data exchange of the obstacles’ solid model, the data needs to be

converted to MATLAB-compatible STL data. To achieve this, “stlRead”, a MATLAB

function developed by Micó [218], is used to read the STL data of each obstacle. The data

is then stored in a struct whose fields are vertices, faces, and normals to faces the obstacles’

faces.

After the geometric data is retrieved, the coordinates of the start and goal points are

inputted to the program. Before the intersection check is performed, the coordinate system

of the workspace is transformed such that the start point is coincident with the origin (0,0,0)

and the start-goal vector is lined up with the Z-axis of the coordinate system. Though this

may seem like an additional computation that could potentially affect the overall

147

computational efficiency of the method, this step is essential in simplifying the intersection

computations and the determination of the edge sequence that follows the intersection. The

latter is discussed in the next section.

The coordinate transformation is performed in the following order. First, a linear

translation is required to coincide with the start point with the origin of the coordinate

system. To enable matrix multiplication that leads to the desired translation, homogeneous

coordinates are used for the points to be transformed. The homogeneous coordinates can

be created by augmenting the original coordinates. Augmentation adds a nonzero fourth

coordinate to the 3D coordinates of a point. For simplicity, the fourth coordinate is often

set equal to one.

Using the homogenous coordinates, the translation matrix is given as:

1 0 0

0 1 0

0 0 1

0 0 0 1

T

X

Y
T

Z

 
 


 =
 
 
 

(6.1)

With this translation matrix, a point P can be translated by the amounts X , Y ,

Z along the X, Y, and Z axes, respectively, using the equation:

['] [].[]TP T P=

Or

' 1 0 0

' 0 1 0

' 0 0 1

1 0 0 0 1 1

x X x

y Y y

z Z z

     
     


     =
     
     
     

(6.2)

148

To translate the coordinates such that the start point and the origin coincide, one

needs to set ∆𝑋 = −𝑥𝑠, ∆𝑌 = −𝑦𝑠, and ∆𝑍 = −𝑧𝑠 where 𝑥𝑠, 𝑦𝑠, and 𝑧𝑠 are the 3D

coordinates of the start point.

After the coordinates are successfully translated, the start-goal vector needs to be

rotated to lie within the YZ plane. This rotation is performed about the Y-axis and the angle

of rotation is found using the projection of the vector onto the XZ plane as illustrated in

Figure 6.1.

Figure 6.1: Rotation about the Y-axis

As can be seen from Figure 6.1, the projection of the vector on the XZ plane makes

an angle θ with the X-axis. To project the vector onto the YZ plane, a rotation about Y-axis

is required, the angle of which must be – (90 − 𝜃). Eq.(4.3) provides the rotation matrix

about the Y-axis. In order to rotate the vector to make it lie on the YZ plane, one should

substitute θ with – (90 − 𝜃) in Eq.(6.3).

cos 0 sin 0

0 1 0 0
()

sin 0 cos 0

0 0 0 1

yR

 


 

 
 
 =
 −
 
 

(6.3)

149

From Figure 6.1, it can be seen that the angle θ can be found as:

2 2

'
sin

' '

z

x z
 =

+

(6.4)

After the vector is rotated and lies in the YZ plane, it must be rotated a second time

to line up with the Z-axis. To do so, the second rotation should be performed about the X-

axis. Figure 6.2 illustrates this rotation and the rotation angle.

Figure 6.2: Rotation about the X-axis

As can be seen from this figure, a rotation about the X-axis in the amount of φ will

put the desired vector along the Z-axis. The rotation matrix and angle are given as in

equations (6.5) and (6.6).

1 0 0 0

0 cos sin 0
()

0 sin cos 0

0 0 0 1

xR
 


 

 
 

−
 =
 
 
 

(6.5)

2 2

"
cos

" "

z

y z
 =

+
 (6.6)

150

After the angles are calculated, the three transformations can be performed at once

using the below equation.

2 1[] [].[(90)].[()].[]T y xP T R R P = −
(6.7)

This transformation is performed on the coordinates of every vertex in all obstacles

as well as the start and goal points. A sample coordinate transformation is depicted in

Figure 6.3 with 3 obstacles.

Figure 6.3: Sample coordinate transformation

Step 2: Filter I: out-of-bound obstacles

After all the objects are transformed, it is time to filter out the ones that are out of

the scope of the start-goal line. To achieve this, the Axis-Aligned Bounding Box (AABB)

of each object is created. The orthogonal bounding box is created by the minimum and

maximum x, y, and z values of the vertices of an object as shown in Eq (6.8).

151

min max

min max

min max

x x

AABB y y

z z

 
 

=
 
  

(6.8)

The coordinates of the bounding box should be checked against the coordinates of

the start-goal line in the transformed coordinate system. Since the start-goal line is aligned

with the Z-axis, it is only necessary to initially check the Z coordinates of each object. If it

is found that the maximum z coordinate in the AABB is negative (less than the z coordinate

of the start point) or the minimum z coordinate in the AABB exceeds the z coordinate of

the goal point, the object is entirely out-of-bound of the line and therefore there is no chance

that the line intersects the object. This situation is shown in Figure 6.4. If, however, it is

found that the z coordinates of the object are between the z coordinates of the start and goal

points, the next step is to check for the x and y coordinates.

Figure 6.4: Sample out-of-bound AABB

152

Even if the AABB is within the boundary of the start-goal line, the object may lie

entirely at one side of the line, zeroing the chance of intersecting the obstacle. For the object

to lie on one side of the line it is sufficient to check whether all x coordinates or all y

coordinates have the same sign. This helps since we know the line is aligned with the Z-

axis. Therefore, if all x coordinates are positive (or negative) the AABB has no chance to

intersect the line. To check this, we merely need to compute the multiplication of minimum

and maximum x (or y) coordinates:

if (𝑥𝑚𝑖𝑛. 𝑥𝑚𝑎𝑥 ≥ 0) or (𝑦𝑚𝑖𝑛. 𝑦𝑚𝑎𝑥 ≥ 0)

AABB ← non-interfering

else

AABB ← interfering

endif

An example of an AABB that lies at one side of the line is shown in Figure 6.5.

Figure 6.5: Object lying at one side of the line

153

Step 3: Filter II: ray-triangle intersection check

After filtering out the out-of-bound objects and objects that lie on a side of the line,

the final check is to determine if the line intersects the interior of the object that passed all

the filters. This step is crucial in separating the intersections from the cases where the line

segment touches the object but does not pass through its interior or a case such as the one

shown in Figure 6.6.

This is the step where intersections need to be checked between the line segment

and all the triangles in the above-mentioned object. Following Definition 3, if the line

segment intersects with exactly two faces of the polyhedron at two distinct points, there is

an intersection between the line and the object.

Figure 6.6: Non-intersecting object not filtered in step II

For the line segment-triangle intersection detection, the ray-triangle intersection

algorithm developed by Möller and Trumbore [219] is used in this research. The algorithm

takes a ray (defined by its origin and normalized direction) and a triangle (defined by its

154

vertices) as inputs and transforms the origin of the ray. The output of this transformation is

a triplet (𝑡, 𝑢, 𝑣) where 𝑡 is the distance to the plane to which the triangle belongs and 𝑢

and 𝑣 are the barycentric coordinates of intersection inside the triangle. The barycentric

coordinates of a point on a triangle is given in [219] as:

0 1 2(,) (1)T u v u v V uV vV= − − + +
(6.9)

Where 𝑉0, 𝑉1, and 𝑉2 are the three vertices of the triangle and 𝑢, 𝑣 ≥ 0 and 𝑢 + 𝑣 ≤

1. Using this equation, the transformation of the origin can be written as[219]:

0 1 2(1)O tD u v V uV vV+ = − − + +
(6.10)

Where 𝑂 is the origin and 𝐷 is the direction of the inputted ray. As shown in [219],

the re-arrangement of Eq.(6.10) yields a system of linear equations which can be solved to

determine the triplet (𝑡, 𝑢, 𝑣). The rearrangement is given in Eq.(6.11) below.

 1 0 2 0 0

t

D V V V V u O V

v

 
 

− − − = −
 
  

(6.11)

In this research, the implementation of Möller and Trumbore’s algorithm developed

by Tuszynski [220] in MATLAB is used for the ray-triangle intersection step of the

collision detection. A pseudo-code of the overall intersection detection algorithm is also

shown in Algorithm 1. The pseudo-code assumes the transformations are performed and

the objects, as well as the start and goal points, are given in the transformed coordinate

system. Although in this research, it is assumed that all objects are convex, the explained

intersection detection algorithm similarly applies to non-convex objects.

155

Algorithm 6.1

Input: Workspace objects, start and goal points

Output: an array of the ids for intersecting obstacles

Step 1. Transform the coordinate system such that start-goal line becomes aligned with the Z axis. The

new coordinates of start and goal are (0,0,0) and (0,0, 𝑧2) respectively

Step 2.

in-bound ← ∅

for (𝑖 = 1 to number of objects), do:

Create the OBB for 𝑖:
if (𝑧𝑚𝑖𝑛 ≥ 𝑧2) or (𝑧𝑚𝑎𝑥 ≤ 0)

OBB ← out-of-bound

else

if (𝑥𝑚𝑖𝑛. 𝑥𝑚𝑎𝑥 ≥ 0) or (𝑦𝑚𝑖𝑛. 𝑦𝑚𝑎𝑥 ≥ 0)

OBB ← non-interfering

else

OBB ← interfering

in-bound ← 𝑖
endif

endif

end for

intersected ← ∅

𝑂 ← (0,0,0)

𝐷 ← (0,0, 𝑧2)

for (j= 1 to size(in-bound)), do

𝑛 ← number of triangles in 𝑗

𝑉0 ← n-by-3 matrix of the x,y,z coordinates of the first vertex of all triangles in 𝑗

𝑉1 ← n-by-3 matrix of the x,y,z coordinates of the second vertex of all triangles in 𝑗

𝑉2 ← n-by-3 matrix of the x,y,z coordinates of the third vertex of all triangles in 𝑗

call TriangleRayIntersection (O,D, 𝑉0, 𝑉1, 𝑉2)

return t

if (𝑡 = 0)

intersected ← 𝑗

endif

end for

return intersected}

156

6.2 Triangle-triangle intersection

Another type of intersection check that is extensively used in this research is the

intersections between two triangulated surfaces. This type of intersection is extensively

used throughout the graph construction algorithm. As explained in the next chapter,

constructing the free space graph initially requires identifying a sequence of edges of

obstacles to be explored. This edge sequence from the path start point to the goal point is

determined in multiple steps. In one step, for example, a convex hull is created between

the start point and the first intersecting obstacle. The edges that are connected to the start

point on this convex hull are then extracted and stored as the first set of edges to be

explored. For each of these edges, a plane is created that is perpendicular to the edge and

contains the start-goal line. The intersection of this plane and the convex hull is then used

to identify the next edges to be added to the edge sequence. Further details of this algorithm

and other instances where intersections between surfaces need to be determined are

explained in the next chapter.

It is therefore clear that the previous ray-triangle intersection detection method can

no longer be applied to identify intersections between surfaces. This section is, therefore,

allocated to the explanation of the algorithm used for detecting such intersections.

Moller has developed a fast triangle-triangle intersection test [221] that is suitable

for collision detection between 3D triangulated objects. This algorithm works in a rather

similar way to his ray-triangle intersection check. Here, however, instead of determining

the distance between the ray and the plane of the triangle, he determines the distance from

the vertices of the first triangle to the plane of the second triangle. The algorithm finds the

157

distances by simply substituting the vertices of the first triangle in the plane equation for

the second triangle as in Eq.(6.12):

1

2 2 1,2,3i iD N V d i=  + =
(6.12)

Where 2N is the normal to the plane of the second triangle (plane equation:

2 2 =0 N X d + where X is any point on the plane) and
1

iV is the ith vertex in the first triangle.

2N and 2d can be found using equations (6.13) and (6.14) below.

2 2 2 2

2 2 1 3 1() ()N V V V V= −  −
(6.13)

2

2 2 1d N V= −  (6.14)

This calculation is repeated between the plane of the first triangle and the vertices

of the second triangle. If the calculated distances, iD , are not equal to zero and all are

found to have the same sign, the triangle lies on one side of the plane. On the other hand,

if all iD distances are equal to zero, the triangle and the plane are co-planar. Otherwise, the

planes of the triangles intersect, and their intersection is a line segment, the direction of

which can be found from 1 2N N . The common intervals between the line of intersection

and each triangle determine if the two triangles also intersect. For example, as shown in

Figure 6.7, when the intervals on the line do not overlap (Figure 6.7 right), the triangles do

not intersect either.

158

Figure 6.7: Intersection between two triangles [221]

The method goes on to determine the exact surface of intersection which can be

represented by triangulated faces and vertices. For further details of the algorithm and the

computation of different cases of intersection, readers are referred to [221]. In this research,

Tuszynski’s implementation of Moller’s algorithm in MATLAB is borrowed [222].

Tuszynski has solved an example of intersections between two objects the results of which

are shown in Figure 6.8. In this figure, the surfaces of intersection are shown on the right.

Figure 6.8: Example of Moller’s intersection test [222]

159

Chapter Seven

3D VISIBILITY GRAPH CONSTRUCTION AND THE SHORTEST PATH

After all of the intersecting obstacles are identified using the algorithms of Chapter

6, their information is stored and utilized to construct a 3D connectivity graph that

represents the free space of the path planning problem. As discussed previously, the goal

of geometric-based path planning methods is to map the workspace onto a connected graph

and subsequently search the graph for the shortest path. This chapter details the process

proposed in this research, to construct and search the free space graph. The method is tested

on different workspaces to evaluate its computational performance and the results are

presented in this chapter.

7.1 3D graph construction

As reviewed in Chapter 4, the 3D visibility graph must have turning points on the

edges of the intersecting obstacle(s). The objective of this section is, therefore, to first find

an optimal sequence (or sequences) of edges that house the waypoints. Next, the exact

optimal locations of the waypoints on the edges need to be determined. This section details

algorithms developed to address these two problems starting with the problem of finding

the edge sequence(s).

7.1.1 Algorithms to find the edge sequences

Suppose the direct path from the Start point to the Goal point is blocked by a

polyhedron in a 3D cluttered environment. To enable traveling to the Goal, there needs to

be at least one waypoint to facilitate the detour around the intersecting obstacle. To

minimize the path length, the waypoint must be on an edge of this obstacle as proven by

160

Sharir and Schorr [24]. This waypoint, as a result, breaks the path into two segments: the

Start-waypoint and the waypoint-Goal segments.

Based on this observation, the proposed algorithm for graph construction in this

research is also broken into two parts: (1) the first leg identifies which edges should be

visited first, after the Start point, and outlines how these edges can be found following a

geometric-based approach; and (2) addresses how the Goal point is approached after the

edge housing the first waypoint is reached?

To answer the question of “what is the next traveling edge after the Start point?”

the notion of the convex hull is revisited. Even though the convex hull created by a

waypoint (or the Start) and an intersecting obstacle in 3D may not contain all the nodes of

the final free space graph, in contrast to the 2D convex hull, it still provides practical

information based on which the edge sequence can be extracted. Take Figure 7.1 as an

example; the convex hull created between the Start and the intersecting obstacle in this

figure contains the edges that are connected to the Start via triangles on the hull. These

edges are (1.0005-1.0006), (1.0005-1.0007), (1.0007-1.0008), and (1.0006-1.0008) where

the digits before and after the decimal show the object id and vertex id in that object,

respectively.

As shown in Figure 7.1, the convex hull between the Start and the intersecting

obstacle can be used to extract all the potential edges that could house the first waypoint.

161

Figure 7.1 3D convex hull with the Start and the intersecting obstacle

If the waypoint does not lie on any of these edges of the convex hull, it may either

be inside the convex hull or outside its volume. In either case, the location of the waypoint

will cause an increase in the path length. Thus, it is concluded that the first point to travel

to after the Start, must be a point on one of the edges connected to the Start on the convex

hull. The flowchart of Figure 7.2 follows this rationale to locate the waypoint and

subsequently create the first leg of the path in a cluttered 3D environment.

162

Figure 7.2 Flowchart for determining the first leg of the path

In the flowchart of Figure 7.2, the algorithm starts with taking the cartesian

coordinates of the Start and Goal as well as the STL data of the obstacles. Since the

transformation of the Start-Goal line and the workspace obstacles is the basis of the

intersection detection algorithm discussed in Chapter 6, the first step in finding the set of

edges to house the first waypoint is transforming the coordinate system. After the

coordinate system is transformed appropriately, all intersecting obstacles can be identified

by calling the intersection detection function written in MATLAB2. The intersecting

2 All codes are written in MATLAB and can be accessed from: https://github.com/nmasoud/Routing-algorithms.git

https://github.com/nmasoud/Routing-algorithms.git

163

obstacles are then ordered from the closest to the furthest obstacle from the Start. This

helps to identify the first intersecting obstacle to be bypassed.

After the first intersecting obstacle is identified, its convex hull with the Start point

is created. This convex hull is then used to extract the edges of the obstacle that may be

traversed after the Start. Thus, all the edges of the obstacle on this convex hull that are part

of a triangle that includes the Start (similar to edges shown in Figure 7.1) are found and

stored in the set E. For all the edges in E, If the triangle constructed with the Start and an

edge from the set E is collision-free (which can be checked by calling the triangle-triangle

intersection detection procedure discussed in Chapter 6), that obstacle edge is added to the

set 𝑆𝐸 of the potential obstacle edges to house the first waypoint. Otherwise, the process is

iterated by detecting the obstacle nearest to the Start that intersects the triangle and creating

a new convex hull with the new intersecting obstacle. The process is continued until all the

triangles that connect the Start to the edges in set E on the convex hull of the first

intersecting obstacle at each iteration are collision-free. It is worth noting that the triangle

between the Start and a respective edge is considered as it models the visibility between

the Start point and all points on that particular edge.

164

Figure 7.3 Flowchart for determining the second leg of the path

After the edges that could house the first waypoint are found, the second leg of the

possible path, the segment between the first waypoint and the Goal, needs to be determined.

For every edge in the set 𝑆𝐸 at least one sequence of edges, following this edge, can be

found to connect the Start to the Goal with a piecewise linear path.

Figure 7.3 lays out the flowchart for the algorithm developed in this research to find

the sequences of edges to be traversed to reach the Goal from each of the identified first

waypoints. Based on this algorithm, for each edge, 𝑒𝑖, in the set 𝑆𝐸, if the triangle created

by this edge and the Goal is found collision-free (in other words, if the edge is visible to

165

the Goal) the edge sequence initiated by 𝑒𝑖 is completed and 𝑒𝑖 is the only edge that should

be visited on the way from the Start to the Goal.

If, on the other hand, the triangle intersects with at least one obstacle, other edges

must be identified on the way to the Goal. Similar to the algorithm for the first leg of the

path, the first intersecting obstacle (here, the obstacle closest to the edge 𝑒𝑖) is considered

at the initial step. The algorithm identifies the next set of edges to be added to the sequence,

based upon two types of intersections between the edge-Goal triangle and the obstacle: (1)

the triangle including the edge, 𝑒𝑖 intersects the obstacle to which 𝑒𝑖 belongs and (2) the

intersecting obstacle does not contain 𝑒𝑖.

In the first case, a sequence of edges must be found to travel over the surface of the

intersecting obstacle to avoid passing through its interior until an exit edge is achieved. The

exit edge is the last edge identified on the obstacle from which the goal is visible, and from

where the obstacle is left to reach the Goal. The “PlaneFinder” algorithm is developed

that outputs the edge sequences on the surface of the intersecting obstacle.

The PlaneFinder algorithm benefits from the convex hull of the intersecting

obstacle with the Start and Goal points to extract the subsequent edges over the surface of

the obstacle. Since the convex hull is the smallest convex set that contains all the members

of the set, it provides insight on the connected entities (vertices, in the 2D hull, and triangles

in the 3D hull). In 2D, the convex hull function of MATLAB outputs a clockwise or

counterclockwise ordered set of points that identify the vertices of the hull. Therefore, it is

evident which two nodes are the neighbors of a known point. This fact played a crucial role

in developing the 2D convex hull based routing algorithm. The 3D convex hull function,

166

in contrast, outputs a set of triangles that cover the outer surface of the 3D hull (see Figure

7.1). Thus, it may not be as clear as in the 2D hull case, which edges are directly connected

to an edge of interest on this surface. To overcome this issue and facilitate finding the edges

that follow the first edge on the obstacle, the PlaneFinder algorithm adopts the 2D

convex hull to benefit from its potential to identify the neighboring entities.

For instance, in Figure 7.1, it is observable that the edges connected to the edge

(1.0007-1.0008) on the obstacle are (1.0007-1.0005), (1.0007-1.0003), (1.0007-1.0001),

(1.0007-1.0004), (1.0008-1.0004), (1.0008-1.0006), and (1.0008-1.0005) (on the bottom

of the obstacle). Figure 7.4 includes other angles of view of the workspace in Figure 7.1 to

better visualize the connections of the edges. Suppose the edge (1.0007-1.0008) houses the

first waypoint; it can be seen from Figure 7.1 and Figure 7.4 that not all the edges connected

to (1.0007-1.0008) are useful in determining the edge sequence over the surface of the

convex hull to progress towards the Goal. Thus, the less useful edges need to be filtered

out from the sequence.

Figure 7.4 Connected edges on the convex hull

167

To ensure that the unnecessary edges are filtered out, the 3D convex hull is

converted to a 2D hull by making a cut through the 3D convex hull generated between the

intersecting obstacle and the Start and Goal points. The cutting plane contains the Start-

Goal line and the line that is perpendicular to both the Start-Goal line and the originally

identified edge. To find the perpendicular line, the PlaneFinder algorithm identifies the

coordinates of two points, one on the Start-Goal line and the other on the discussed edge

such that the line connecting the two points has the minimum length. This is a simple

quadratic optimization problem that can be solved with MATLAB’s fmincon nonlinear

optimization solver. Figure 7.5 shows two views of an example of the line perpendicular

to the Start-Goal line-segment and the edge (1.0007,1.0008). Shown in this figure, the

points 𝑃1 and 𝑃2 are found on segments Start-Goal and (1.0007,1.0008), respectively.

Figure 7.5 Example perpendicular line to the Start-Goal line and the edge

168

After the perpendicular line is determined, the cross product of this line and the

Start-Goal line is calculated which yields the cutting plane’s normal. Now that the normal

is found, the plane is fully defined since the coordinates of at least one point in this plane

are known (e.g. the Start or Goal). The final cutting plane for the example discussed in

Figure 7.4 and Figure 7.5 is depicted in Figure 7.6.

Although the plane’s normal along with the coordinates of one of its points can

fully define a plane, since the purpose of the cutting plane is to determine the edges of the

obstacle that intersect the plane, the plane’s dimensions must be selected such that it spans

the entire height, width, and depth of the convex hull. For example, in Figure 7.7, if the

plane was only extended up to the (1.0006-1.0008) edge, it could not have covered the edge

(1.0002-1.0004); thus, this edge would have not been included in the edge sequence though

it should evidently be present in the edge sequence.

Figure 7.6 Example of cutting plane

169

Figure 7.7 Dimensional limits of the cutting plane

As can be seen in Figure 7.6 and Figure 7.7, the cutting planes intersect the obstacle

at edges that follow the initial edge with which the plane is created. Figure 7.8 further

depicts the intersection of the cutting plane and the convex hull for the example in Figure

7.5 using two angles of view. The plane of intersection in this figure passes from these

edges: (1.0007-1.0008), (1.0007-1.0004), and (1.0007-1.0003). Also, it can be observed

that this plane connects the Start with the Goal by traveling to these edges. The example

of Figure 7.8 is the edge sequence based on one initial edge and this process needs to be

repeated on all other edges found following the algorithm for the path’s first leg.

170

Figure 7.8 The intersection of the cutting plane and the convex hull

 This procedure is sufficient to determine the edge sequence for cases with only

one obstacle. If, however, the number of obstacles is greater than one, the same approach

may not be able to output all possible edge sequences to the Goal and additional convex

hulls may need to be generated with other intersecting objects.

It should be noted that since the obstacles are disjointed, there is no need to check

for intersections with obstacles when moving from one edge on the surface of the same

obstacle to another.

After the exit edge is found, the triangle between the exit edge and the Goal is

checked for collisions with other obstacles. If no collision is reported between this triangle

and any of the obstacles, the exit edge becomes the last edge in that sequence and the

process goes on to check other edges from the set 𝑆𝐸. Otherwise, the algorithm is

recursively iterated to find the collision-free edge sequence (see Figure 7.3) to reach the

Goal. At this point, the triangle created by the exit edge and the Goal may intersect an

171

obstacle that does not contain the exit edge and thus a different approach must be followed

to output the edge sequence.

The second type of intersection between the edge-Goal triangle and the first

intersecting obstacle, as shown in the flowchart of Figure 7.3, occurs when the initiating

edge does not belong to the intersecting obstacle. In this case, a convex hull is generated

between the edge, the closest intersecting obstacle to the edge, and the Goal, analogous to

the first leg of the path, except that instead of having a start point, this time there is a start

edge. Hence, similar to the algorithm of the first leg of the path, after the convex hull is

created, the edges that are connected to the start edge must be detected. To avoid

unexpected (and often undesired) twists in the final optimal path, only edges that form a

plane with the start edge are considered to be added to the sequence. See Figure 7.9 for

example of the second type intersection and connected edges.

Figure 7.9 Illustration of type II intersection between an edge and an obstacle

172

The example shown in Figure 7.9 illustrates a type II intersection between the edge

(1.0003-1.0004) and the second obstacle. As a result of this intersection, the convex hull is

created which indicates the edges connected to (1.0003-1.0004). The connected edges are

(2.0003-2.0004) and (2.0005-2.0006). Other edges could be misinterpreted as connected

edges such as (2.0001-2.0003) which does not form a planar surface with (1.0003-1.0004)

and therefore should not be included in the edge sequence.

After an edge in the convex hull is found connected to the start edge (e.g. (1.0003-

1.0004) in Figure 7.9) and forms a plane with it, the planar surface made by the two edges

needs to be checked for collisions with obstacles. If no collision is detected, the found edge

is added to the sequence and the process moves on to the next connected edge. Otherwise,

like the previous case, the algorithm is recursively iterated until the edge connected to the

start edge forms a collision-free planar surface with the start edge. For example, both edges

(2.0003-2.0004) and (2.0005-2.0006) found connected with (1.0003-1.0004) in Figure 7.9

form collision-free planar surfaces. Thus, they can be added to the edge sequence without

further deliberation.

This procedure can be followed at each edge added to the sequence until an edge

forms a collision-free triangle with the Goal which implies arriving at the final edge of the

sequence. Example edge sequences are provided in Figure 7.10 and Figure 7.11 for

workspaces of Figure 7.4 and Figure 7.9 respectively. While several sequences of edges

are generated for each workspace, only two of them are shown per figure. For example, the

two edge sequences in Figure 7.10 are: Sequence I = (1.0005-1.0006), (1.0006-1.0001),

and (1.0001-1.0002) and Sequence II = (1.0005-1.0007) and (1.0007-1.0001).

173

Figure 7.10 Sample edge sequences for Figure 7.4

Figure 7.11 Sample edge sequences for Figure 7.9

174

7.1.2 Optimal locations of the turning points of a path

After all the edge sequences from the Start to the Goal are found, the exact locations

of the paths’ turning points must be decided. To find the optimal locations of these

waypoints an optimization problem is solved per each edge sequence from the Start to the

Goal. The formulation of this optimization problem is as in Problem 7.1.

In Problem 7.1, the decision variables are 𝑥𝑖 , 𝑖 = 1, … , 𝑛. For each edge in the

sequence, an 𝑥𝑖 is assigned which has a value between 0 and 1. The parametric definition

of a line segment is used in finding the location of the point 𝑃𝑖 on the ith edge. 𝑃𝑖 can be

anywhere between 𝐸1
𝑖 and 𝐸2

𝑖 . For example, if 𝑥𝑖 = 0, 𝑃𝑖 = 𝐸1
𝑖 and if 𝑥𝑖 = 1, 𝑃𝑖 = 𝐸2

𝑖 . The

objective function minimizes the total Euclidean distances between the waypoints, Start,

and Goal. Since this is a constrained nonlinear optimization problem, MATLAB’s

fmincon solver is a suitable candidate to solve the problem. Figure 7.12 and Figure 7.13

present the optimal locations of waypoints for the edge sequences shown in Figure 7.10

and Figure 7.11, respectively.

Problem 7.1

1 1

1

 min
i

n

i i n
x i

Z P S P P G P+
 =

 
= − + − + − 

 


. . 0 x 1iS t  

 ix 

Where

1 2 1()i i i

i iP E x E E= + −

1

iE and 2

iE : the first and second endpoints in the ith edge

3,S G : Cartesian coordinates of the Start and Goal respectively

n : the number of edges in the edge sequence

a b− : Euclidean distance between a and b in
3

175

Figure 7.12 Optimal locations of waypoints for edge sequences of Figure 7.10

Figure 7.13 Optimal locations of waypoints for edge sequences of Figure 7.11

After all waypoints in an edge sequence are optimally located, the corresponding

nodes and edges are added to the graph. The graph is completed by solving Problem 7.1

176

for every edge sequence and appending the generated nodes and edges to it. Final collision-

free graphs of Figure 7.4 and Figure 7.9 are shown in Figure 7.14 and Figure 7.15

respectively.

Figure 7.14 Final collision-free graph of Figure 7.4

Figure 7.15 Final collision-free graph of Figure 7.9

177

7.2 Shortest path: 3D graph search

After the free space graph is constructed using the edges of the intersecting

obstacles, a search algorithm needs to be applied to find the shortest path on the graph.

Various search algorithms exist with different accuracies and time complexities. For

simplicity and exactness, Dijkstra’s search algorithm [5] is selected in this research. For

the graphs of Figure 7.14 and Figure 7.15, the shortest route from the START to the GOAL

is found and shown in Figure 7.16 and Figure 7.18 respectively. Additionally, the graphs

and shortest paths are shown on the actual untransformed workspaces in Figure 7.17 and

Figure 7.19.

Figure 7.16 Shortest route on the graph of Figure 7.14 (after geometric

transformation)

178

Figure 7.17 Shortest path on the untransformed workspace of Figure 7.4

Figure 7.18 Shortest route on the graph of Figure 7.15 (after geometric

transformation)

179

Figure 7.19 Shortest path on the untransformed workspace of Figure 7.9

7.3 Results and discussion

To evaluate the performance of the developed method in constructing the 3D free-

space graph and exploring the graph for the shortest path using Dijkstra’s method, several

test cases are created which investigate the effects of the number of face/edges/vertices of

the obstacles as well as the number of obstacles on the final optimal path and the

computation time. This section presents the results of these tests followed by a discussion

of their meaning from the computational perspective.

7.3.1 Effects of the number of faces/edges/vertices

The presented algorithm of constructing the collision-free graph relies substantially

on identifying and manipulating some edges of the obstacles at each iteration. Hence, it

can be predicted to observe an increase in the computation time when the number of

180

geometric primitives (faces/edges/vertices) of an obstacle also increases. In general, it can

be predicted that increasing the number of any geometric primitive, defined as faces, edges,

and vertices based on B-rep representation [211], will increase the computation time

(regardless of the shape of the obstacle) and the path length (only if the obstacle has curved

surfaces such as spheres where the curved surface is tessellated to be linearized and

resemble a polyhedron). To prove (or disprove) this hypothesis, a test case is generated

with one intersecting obstacle with a half-sphere shape. The number of faces in this

obstacle is gradually increased (from 10 to 1000) and the final optimal path and the

computation time are recorded for each model.

Since it is assumed that all obstacles are convex (free of any non-convexities

including holes) and non-self-intersecting and their surfaces are closed, Euler’s polyhedron

law applies to these obstacles with F faces, E edges, and V vertices.

 2F E V− + = (Euler’s law)

 Using Euler’s law, it is evident that the number of faces is linearly proportionate to

the number of edges as well as the number of vertices for the obstacles used in this research.

Thus, increasing one geometric primitive (e.g. the number of faces) will consequently

increase the other two (the number of edges and vertices) at the same rate. Hence, it is

sufficient to test the effects of increasing one of the geometric primitives and extrapolate

conclusions on the effects of the other two. In this study, the number of faces of the obstacle

is increased. To do so, the original solid model of the obstacle is imported into Autodesk

Meshmixer (software designed to work with triangular meshes) where the number of its

triangular faces can be changed and a new solid model is generated. Figure 7.20 shows a

181

sample of three different solid models generated by Meshmixer with 10, 100, and 1000

triangles, respectively. Also, the Start and Goal points of the path are shown in this figure

with respective locations at (15,15,20) and (10,-5,12).

Figure 7.20 Tessellated models of half-sphere used for the test

Additionally, the final collision-free graphs with the shortest path on each of the

three models in Figure 7.20 are shown in Figure 7.21.

Figure 7.21 Collision-free graphs on tessellated models of half-sphere

182

The results of the tests for evaluating the effects of the number of faces on the

computation time are plotted in graphs of Figure 7.22 and Figure 7.23 in semilog and loglog

scales, respectively.

Figure 7.22 Computation time vs. the number of triangular faces (semilog scale)

Figure 7.23 Computation time vs. the number of triangular faces (loglog scale)

183

From Figure 7.23, it can be concluded that for this obstacle, the computation time

increases with the number of faces. A power curve fits the data of computation time vs. the

number of triangles with 𝑅2 = 0.9965.

Further, Figure 7.24 and Figure 7.25 indicate the effects of increasing the number

of faces on the length of the final optimal path. From these figures, it is seen that the length

of the optimal path increases logarithmically with increasing the number of triangles. The

curve flattens at greater than 600 triangles and the optimal length eventually reaches the

true length where it becomes independent of the number of triangles. A power curve with

𝑅2 = 0.9654 is fitted to the data of path length vs. the number of faces.

Figure 7.24 Path length vs. the number of triangular faces

184

Figure 7.25 Path length vs. the number of triangular faces (semilog scale)

In addition to the examples of Figure 7.20, the half-sphere is oriented as in Figure

7.26 and a different shortest path is obtained by varying the number of triangular faces

from 10 to 1000 as shown in the same figure.

Figure 7.26 Collision-free graphs and shortest paths on oriented half-sphere of

Figure 7.20

Similar to the example in Figure 7.20, the computation time and the optimal path

length are plotted vs. the number of triangles as in Figure 7.27 through Figure 7.30.

185

Figure 7.27 Computation time vs. the number of triangular faces for oriented half-

sphere (semilog scale)

Figure 7.28 Computation time vs. the number of triangular faces for oriented half-

sphere (loglog scale)

186

Figure 7.29 Path length vs. the number of triangular faces for oriented half-sphere

Figure 7.30 Path length vs. the number of triangular faces for oriented half-sphere

(semilog)

Exponential functions with 𝑅2 = 0.9886 and 𝑅2 = 0.994 describe respectively the

increase in computation time and path length as the number of triangular faces in the half-

187

sphere grows as indicated in Figure 7.27 through Figure 7.30. Therefore, with changing the

orientation of the half-sphere, the same conclusions can be drawn that the computation time

and path length increase when the intersecting object has more faces to pass over.

It should be noted that the outliers on the path length vs. the number of faces are

resulted from adding the triangles with different sizes and orientations to the original model

of the half-sphere with 10 triangles. These new faces can be added with an orientation that

blocks the path, therefore increasing the length, or they may not interfere with the found

shortest path.

Even though the results of Figure 7.22 to Figure 7.25 and Figure 7.27 to Figure 7.30

indicate that both computation time and path length increase with the number of triangular

faces, this may not be extrapolated to the cases with more than one obstacle as the rate of

increase could be steeper. One reason is that for the case with only one obstacle, it is

sufficient to create one convex hull with the Start point and the obstacle. This convex hull

alone can yield all possible edge sequences from the Start to the Goal without the need to

create a second convex hull. This, however, is not true for more than one obstacle, as at

each iteration, there might be a need to create a new convex hull which could increase the

computation time more drastically.

7.3.2 Effects of the number and shapes of the intersecting obstacles

Adding more obstacles that block the path to the Goal will lead to generating

additional convex hulls to extract the edges on the new intersecting obstacles to be visited

and detour the obstacle. Therefore, the addition of intersecting obstacles increases the

overall computation time and may also affect the optimal path length.

188

Consider the simple example of a cubic obstacle that blocks the path of the 𝑆𝑡𝑎𝑟𝑡 =

(−20,30,30) to the 𝐺𝑜𝑎𝑙 = (280,20,20) in Figure 7.31. The shortest path is found in 0.6

sec using the discussed method of section 7.2 and the solution is shown in Figure 7.31(a).

Now, if a second obstacle with the same shape and orientation is added to the workspace

with the fixed location of Start and Goal to further block the line of sight of the points, the

graph and the respective shortest path will be changed as shown in Figure 7.31(b), which

is found in 5.8 sec.

189

Figure 7.31 Effects of adding blocking obstacles

Adding a third obstacle with similar geometry (shape and orientation), an increase

in the computation time (15.2 sec) and a change in the graph alongside the shortest path

are observable as illustrated in Figure 7.31(c). It is also expected to observe the same trend

of obtaining a new graph in higher computation time and possibly a new shortest path as

more obstacles are added that block the line of sight between the two points.

It should be noted, however, that depending on the location and orientation of newly

added obstacles, the shortest path may stay the same while certainly a new graph is

generated. For example, if the second object in Figure 7.31(b) is added as in Figure 7.32,

such that it does not interfere with the graph edge in the shortest path (shown with the

arrow in Figure 7.32) that connects the first object to the Goal, the shortest path does not

change on the new graph.

If, however, the location of the second obstacle remains unchanged and is the same

as in Figure 7.32, but it is rotated around the Start-Goal line, a new graph, as well as the

shortest path, are achieved as shown in Figure 7.33. It can be seen that the graph is changed

and the shortest path is slightly longer than the one found in Figure 7.32. Therefore, both

190

the location and the orientation of the new blocking obstacle(s) affect the final graph and

possibly the shortest path.

Figure 7.32 Effect of the location of the blocking obstacle

Figure 7.33 Effect of the orientation of the blocking obstacle

It is noteworthy that in generating the graph of Figure 7.33, the constraint of being

co-planar for two consecutive obstacle edges (the second must belong to the next object),

illustrated in Figure 7.9, is relaxed to allow having twists in the path. While this may not

be desirable for some applications (e.g. pipe routing), it can be possible in the wire routing

problem where the connectors are flexible.

From these observations, it could be concluded that adding more blocking obstacles

increases the computation time and results in a new graph or even a longer path. Assuming

the shapes and orientations of all blocking obstacles are the same if n of these obstacles are

191

put in series to block the path and each has E number of edges at its largest cross-section

(where it touches the convex hull), going from one obstacle to the next, at each iteration, E

convex hulls are generated to extract the edges on the next object to be traversed. Thus, in

total, 𝐸𝑛 + 1 convex hulls are generated, one convex hull between the Start and the first

intersecting object and 𝐸𝑛 convex hulls between an edge of an obstacle and the next

intersecting obstacle in the line. Therefore, the number of required convex hulls grows

exponentially with the number of blocking objects which could directly influence the

computation time. This conclusion may not, however, be generalized to cases that involve

objects of different shapes/orientations.

In the examples shown so far, the shapes of the obstacles remained the same while

other effects (location, orientation, and the number of objects) were discussed. To have a

more realistic evaluation of the effect of adding blocking objects, examples of Figure 7.34

can be considered. In Figure 7.34(a), there is only one intersecting obstacle with 36 faces

and the final graph and shortest path are found in 6.15 sec.

The second object with fewer faces (12), is added as in Figure 7.34(b) and the

shortest path is found (Figure 7.34(c)) on the collision-free graph (Figure 7.34 (b)) in 26.06

sec. Finally, the third blocking object with even fewer faces (8) is added which still

increases the computation time to 69.20 sec to generate the graph (Figure 7.34(d)) and

search it for the shortest path (Figure 7.34(e)). This example shows that the addition of

blocking objects to the path increases the computation time to generate the graph regardless

of the shape and number of faces of the added object.

192

193

Figure 7.34 Effects of adding blocking objects of different shapes

Figure 7.35 demonstrates the exponential increase in the computation time by

adding more blocking objects in Figure 7.34. Even with fewer faces, the addition of a

blocking obstacle increases the computation time.

194

Figure 7.35 Effects of the number of objects on the computation time

While general conclusions cannot be made on the effects of the shape of an object,

it is evident that the larger the blocking obstacle is, the more likely it is to be hit and the

bigger detour needs to be made; thus a longer path can be anticipated. Figure 7.36 and

Figure 7.37 show examples of path planning using the geometric-based method developed

in this research on workspaces with different shapes of obstacles. As can be seen from these

figures, the method is not limited to vertical objects; it, however, assumes the obstacles are

convex polyhedra.

195

Figure 7.36 Example path planning in a workspace with three blocking objects

196

Figure 7.37 Collision-free graph of a workspace with multiple objects of random

shapes

197

Figure 7.38 Shortest path on the graph of Figure 7.37 Collision-free graph of a

workspace with multiple objects of random shapes

7.4 Final remarks

This chapter presented a geometric-based deterministic method for finding the

collision-free (visibility) graph between two given points in a 3D cluttered environment.

198

The presented method makes use of the convex hulls of the blocking objects and the cutting

plane method discussed previously to determine a set of obstacle edges to be traversed in

a sequence from the Start point to the Goal point. The found edges are next used in an

optimization problem to find the optimal locations of the graph nodes.

 An integral assumption in developing the algorithm is that all objects must be

convex polyhedra and should be triangulated before being fed to the algorithm.

Consequently, if a non-convex object exists in a workspace, two approaches can be taken

to tackle the problem: (1) the object can be convexified by using its convex hull (or

bounding box) which may introduce some levels of approximation to the final graph or (2)

the object can be decomposed into a few smaller convex objects that are in contact with

each other and the discussed approach can be used to obtain a collision-free graph. Further,

curved surfaces can be approximated with planar surfaces using tessellation-based

modeling with the desired resolution.

Unlike the methods developed for UAV routing in urban environments [178,180],

there is no need for the edges of the obstacles to be parallel or perpendicular to the axes

(like vertical objects) using this method. Also, the method does not subdivide the obstacle

edges to locate the visibility nodes in contrast to some other visibility-based methods such

as [15,24,30]. Subdivision of edges results in loss of information and limiting the location

of the visibility nodes to only a sample of the edge while the entire edge may potentially

house the waypoint. While Tran’s method [9] also does not use subdivision of obstacle

edges to locate the visibility graph nodes, a key assumption in his algorithm is that all

199

objects are vertical, and therefore cannot handle cases illustrated in Figure 7.36 and Figure

7.37.

The developed method does not use heuristics in determining the graphical

representation of the free space, contrary to RRT and PRM, which means if the inputs of

the algorithm do not change (geometry and locations of the objects as well as locations of

the path endpoints), it outputs the same shortest path.

Last but not the least, even though the capability of the method in finding the

shortest path in different cluttered environments with a number of blocking obstacles is

shown in sample problems, it is demonstrated with examples that its computation time is

substantial and will increase drastically with an increase in the complexity of the problem

(e.g. with a higher number of obstacles or more complex shapes (more faces/edges))

demonstrating the NP-Hard aspect of this problem.

200

Chapter Eight

SUMMARY AND FUTURE WORK

The problems of finding an optimal layout for wire harnesses in two dimensions

and defining a graphical representation of the free space in a 3D cluttered environment to

enable searching for the shortest path are addressed in this research. This chapter presents

a summary of the contributions made in this research and discusses potential research

avenues that could be explored in the future.

8.1 Cable harness design problem in 2D

The design of cable harness assemblies requires the planning of optimal (or

shortest) routes for the wiring connectors while avoiding collisions with the system

components and satisfying physical constraints of the problem including keeping a distance

from hot zones and sharp edges.

The final design solutions are often in the form of a graph that captures the topology

of the connected system showing where the breakouts are placed and which components

are connected to each of them. As discussed in this study, the design of cable harnesses is

often left to the detail design stage where the remaining feasible space for the connectors

is limited. Therefore, solution methods to address this problem must apply to densely

populated environments with freeform objects.

In this work, a classification of the existing approaches to tackle the cable harness

design (and similar multipath planning) problems is presented. According to this

classification, the efforts belong to either the design category of solutions or the

optimization category. While the efforts in the design category are focused on the actual

201

design process which may overlook the optimality of the solutions and require different

levels of human intervention, the optimization methods attempt to provide the optimal

solution to the problem. Among the optimization-based approaches, Steiner and spanning

trees have gained popularity as they can find a minimum length tree that spans all the nodes

of a graph (system components). Additionally, the approaches developed in the location

theory are relevant in addressing the optimal locations of the breakouts. While offering

exact solutions to the optimization problem, these deterministic methods fall short of

addressing the collision avoidance constraint in a cluttered environment. Indeed, location

problems in the presence of obstacles have been among the challenging problems in

operations research which are considered to be NP-hard [152], and the proposed methods

are limited to special cases with convex obstacles [150,151,167].

In this research, two solution methods are proposed and tested to address the

problem of “ having a given number of start and goal points that connect different

components in a cluttered 2D environment using flexible connectors (e.g. wires), a layout

is to be found for the connectors to minimize the total lengths of needed connectors while

maximizing their commonality such that the connectors do not cross any objects and the

breakouts are not placed inside an occupied area.” The two objectives of this problem are

to first minimize the total lengths of wires and secondly, maximize the common length of

wires to provide more accessibility and traceability for maintenance of wiring connections

and/or system components.

The first solution method focuses on the mathematical modeling of the problem

and uses the visibility information of the Start and Goal nodes to explicitly define the

202

optimization objectives in terms of Euclidean distances between the nodes. The idea of a

visibility map is introduced that subdivides the feasible domain into several regions

depending upon the visibility of the points inside a region with respect to the existing

nodes. Then, binary variables are used to reflect the decisions on the chosen route to take

to reach a node and the chosen region to place a breakout. Examples are shown and solved

using the MOGA solver in MATLAB, in the absence of linear equality constraints and

using the ε-constraint method when linear equality constraints exist. The set of final non-

dominated solutions is generated which may not match the true Pareto set since the solver

is heuristic-based and cannot guarantee the attainment of the global solution. The wire

lengths around the obstacles are however computed using deterministic approaches and are

therefore exact. Despite the capability of this method in explicitly defining the objective

functions using Euclidean norms, the complexity of the problem formulation (which

indicates the complexity of the solution) highly relies on the problem structure. It is shown,

for example, that adding more obstacles, changing the shape of an obstacle, or changing

the locations of the existing nodes can drastically increase the nonlinearity of the objectives

and/or constraints which has a direct impact on the performance of the solver. Therefore,

this method is most efficient for workspaces with few simple obstacles. Further, the

obstacles must be polygonal and without any curved edges as having a curvature increases

the nonlinearity of the constraints.

For this reason, a second solution method is proposed with the aim of solving the

same problems with less computational effort. To achieve this, the convex hull based

routing method, proven to be efficient in finding the shortest path in a planar densely

203

populated environment [83], is deployed to calculate the shortest collision-free distance

between the two nodes when they are invisible to each other. The constraints and criteria

of the optimization problem are the same and MATLAB’s MOGA solver is selected to

solve different examples with two breakouts. Final non-dominated sets of solutions are

generated. Any member of this set is associated with an optimal layout for the cable

harnesses and designers can use this information in their decision making at different stages

of design.

 The efficiency of the method in dealing with workspaces of different densities is

also evaluated. The results show that while increasing the density of an environment

certainly increases the computation time and the total lengths of wires, general conclusions

cannot be made on its impact on the common length of wires. Other factors that affect the

final solution are the number and locations of nodes and the number of breakouts. The two

methods are then applied to a sample problem. While both generate the same sets of non-

dominated solutions, the computational efficiency of the convex-hull based method is

superior.

8.1.1 Future work

In the future, the following research questions can be addressed to further the

capabilities of the developed methods to address the cable harness layout design and

optimization problem.

(1) Given all the existing nodes, is it possible to develop an algorithm that outputs

the visibility map of a cluttered workspace as well as the constraints and criteria

of the optimization problem?

204

(2) How does adding other constraints and criteria (e.g. minimizing the number of

turns and the number of breakouts, constraining the bend radii of wires) affect

the problem formulation and consequently the choice of the optimization

solver?

(3) How can the convex-hull based method be extended to also include rectilinear

shortest path? For this purpose, the distance function needs to be modified to

use Manhattan instead of Euclidean distance. The outcome of this can be

applied to address pipe routing problem instances.

(4) Where in the design process does the wire routing problem need to be

considered and addressed? And do the requirements of the problem change

depending on the stage of the design process wire harnesses are considered?

When the wire harness design is considered in the detail design stage, the

feasible domain of the problem becomes limited which reduces the design

solutions. Therefore, it may be more reasonable to address this problem at the

early conceptual design stage and update the solution at each iteration of the

design process to reflect the decisions made and their effects on the optimal

layout of the system.

8.2 Graphical representation of the free space in 3D planning

Planning the shortest collision-free path among multiple scattered obstacles is

claimed to be an NP-complete problem [223]. Owing to the intrinsic complexities of this

problem, researchers mainly resort to heuristic and stochastic methods that can output an

acceptable (but not necessarily optimal) solution in reasonable computation time.

205

The NP-completeness assumption of the problem has not, however, discouraged

researchers from developing deterministic solutions that provide approximations to the

shortest path. These methods are, in general, complete meaning if a solution exists, they

can find it, and if no solution exists they stop. Among the deterministic methods, visibility-

based approaches are the most popular. Since it might be impossible to generate the

complete visibility graph for 3D cluttered environments, approaches are proposed to

generate approximate graphs. According to studies [24], the turning points of the path (the

nodes of the visibility graph) lie on the edges of the obstacles. These methods, hence,

attempt to find possible edge sequences that house the turning points. The efforts were

mainly centered around subdividing the edges of the obstacles and using a sampling of the

obstacle edges to find the locations of the graph nodes (aka waypoints or turning points)

[15,30], therefore, limiting the potential locations of the graph nodes to only a sample of

an obstacle edge while the entire edge could potentially house the node. Other methods

that do not use sampling on the obstacle edges are limited to special cases, e.g. vertical

objects [9,178,180], specific shapes (only handling cubes and cones)[182], or geodesic

paths on the surface of one convex polyhedron[24].

To overcome these limitations and focus on the optimality of the solution, a

deterministic geometric-based approach is developed in this research that yields possible

sequences of obstacle edges to be visited to reach the Goal. These edges could be used to

form the graphical representation of the free space between the Start and the Goal which

is later searched by a search algorithm (here, Dijkstra), to find the exact shortest path on

the graph.

206

The convex hulls were shown to be effective in determining the graph edges in

planar routing problems [83]. Therefore, their applicability was considered in this research.

The developed method divides the search for edge sequences into two segments: (1) finding

the sequences of edges to reach the first set of waypoints and (2) finding the sequences of

edges to reach the Goal from each of the first waypoints in the sequence.

Cutting planes are used to find an edge sequence to be traveled on the surface of an

obstacle when the waypoint is on an edge that is obscured by the object it belongs to. When

traveling from one obstacle to the next is required, the convex hull between the last

traveling edge on the previous obstacle is created with the next intersecting obstacle. This

convex hull contains the information of edges of the next obstacle that are connected to the

edge on the previous obstacle. If the surface connecting the edge on the previous obstacle

to an edge on the next obstacle intersects any obstacles in the environment, the colliding

obstacle needs to be considered and a new convex hull must be created to find edges on

the colliding obstacle that needs to be traveled on before the edges on the next obstacle and

the process is iterated until the surface connecting two edges of different obstacles is found

collision-free. This is similar to the 2D convex hull based approach where convex hulls are

recursively generated to avoid collisions with random objects that were not initially hit.

After all possible sequences of edges are determined, the algorithm solves an

optimization problem to find the exact optimal locations of each waypoint on its respective

edge. Hence, the method does not require any subdivision of obstacle edges and benefits

from the full capacity of an edge to house a waypoint. As a result, final locations of the

waypoints are globally optimal.

207

The capability of the method in deterministically finding shortest collision-free

paths in environments cluttered with different objects of convex shapes is shown in

examples of Figure 7.36 and Figure 7.37. As seen in these figures, the method is not limited

to specific shapes of obstacles (e.g. vertical only or a combination of cubes and cones) as

long as the shape is a convex polyhedron.

Since the objects are assumed to be convex disjoint polyhedral, a path always exists

between two given points. Also, due to the presence of disjoint obstacles, the cutting plane

method can always find an edge sequence on the surface on an obstacle and the convex

hull can always generate the connected edges between two obstacles. Thus, it can be

concluded that the method is complete and can always output a solution.

8.2.1 Limitations of the method

Even though the use of convex hulls in the 2D path planning is proven sufficient in

determining all necessary edges of the free space graph [83], the generation of 3D convex

hulls may not be sufficient in capturing all the necessary information that could be used to

form the graph when non-convex obstacles are involved. For example, in Figure 8.1, a

shorter collision-free route is available through the non-convex intersecting obstacle which

cannot be obtained using the method developed in this research. Due to using convex hulls

to extract the nodes of the collision-free graph, the method can only yield obstacle edges

that are on the surfaces of these convex hulls, as seen in Figure 8.1. Therefore, the

developed method may not be effective in finding an optimal solution for cases with non-

convex objects. As suggested in Chapter 7, in cases where a non-convex object is present,

to avoid introducing additional approximations, the non-convex object can be split into

208

several convex objects that are in contact with one another and the proposed method can

be similarly applied to the newly defined problem.

Figure 8.1 Example of path planning in the presence of a non-convex object

Additionally, the objects are modeled using tessellations that linearize curved

features. Therefore, the final solution is an approximation to the shortest path. On this

account, while STL-based data exchange format is used in this research, any other

tessellation based formats can be handled with slight modifications to the program.

Last but not the least, it should be reminded that the deterministic method

developed in this research targets an NP-complete problem, the complexity of which grows

209

exponentially with the increasing complexity of the objects. Thus, it is expected to observe

a significant increase in computation time as the problem complexity grows. As an

example, the effect of increasing the number of edges of the intersecting obstacle on the

computation time is shown in Figure 7.22 and Figure 7.23 which verify the growing

complexity of the problem and its characterization as an NP-Hard problem.

8.2.2 2D vs. 3D convex hull based routing

In this study, two graph construction methods are presented for 2D and 3D routing

problems. Despite the use of the convex hull geometric structure in both approaches, the

two solution methods have fundamental differences in the ways they generate the collision-

free graphs. For 2D problems, it is proven that the use of the convex hull created by the

intersecting object(s) is necessary and sufficient in extracting the graph edges [83]. This is

due to the fact that non-convex vertices need to be excluded from the graph and therefore

the corresponding edges connected to such vertices must also be removed from the graph

to avoid lengthening the path. This property makes the approach equally applicable to

convex and non-convex objects whereas the 3D convex hull falls short of this property.

The exclusion of non-convexities in 3D objects (e.g. Figure 8.1) results in overlooking the

optimality of the solution found on the constructed graph. Thus, it may not be sufficient to

extract the edges of the graph from the convex hulls generated with non-convex objects

unless the object is decomposed into multiple convex shapes.

Moreover, at each step in the 2D routing method when a new convex hull is

generated, exactly two extreme points are identified as the next traveling (turning) points

of the path. This, however, is not the case for 3D routing. In the 3D routing method, when

210

a new convex hull is generated, the number of next possible traveling points (or edges)

varies depending on the number of edges in the cross-section of the convex hull.

In addition to the extreme points, when an intersection exists between a line

segment connecting an extreme point and the Goal in 2D routing, the information of the

convex hull can be used to identify the set of vertices to be traversed on the perimeter of

the polygonal object to avoid intersecting its interior. This information, however, may not

be helpful in determining the set of edges to be traversed over the surface of a polyhedral

object when the triangle generated by an edge and the Goal intersects the interior of this

object. Hence, in the 3D routing approach, the cutting plane is used as a guide to determine

the necessary set of edges to be visited to avoid such an intersection.

8.2.3 Future work

The following research questions can be addressed as potential extensions of this

research on the graphical representation of a cluttered workspace.

(1) How can the method be modified to take non-convex shapes of the obstacles

and provide the shortest paths? Two approaches are proposed in this study that

are convexification and decomposition of the non-convex shapes. The effects

of these operations can be evaluated on the final optimal solution.

(2) How can the method be adapted to the changes in the environment? The

changes can be on the shapes (configurable objects), locations, and orientations

of the obstacles. If the method can be adapted, it can solve real-time routing,

routing in dynamic environments, or routing under uncertainty. A possible

approach to undertake this problem is to model the changes in the environment

211

as uncertainties or parameters whose values are to be determined. Following

this approach, stochastic or parametric optimization methods can be utilized to

solve dynamic routing problems.

(3) Can the method of generating the 3D graphical representation be adopted in

solving the 3D layout problem for cable harnesses? The capability of the 3D

convex hull based routing method to address planning in the presence of a few

convex objects is demonstrated. This approach can be adapted to the

mathematical framework proposed for harness layout problems to yield optimal

layouts for cable harness assemblies in 3D spaces.

(4) What modifications can be made to the algorithm to be able to generate

rectilinear shortest paths? A start point to tackle this problem could be the use

of bounding boxed instead of convex hulls and Manhattan instead of Euclidean

distances between points in 3D.

(5) The 3D routing problem considered in this research is at the component level.

In the actual design process, which is a multidisciplinary problem, the system

components interact and affect the system-level and component-level decisions.

For example, considering the wire routing problem in airplanes, the routing may

not be addressed independently of the constraints and criteria of other

disciplines such as propulsion and aerodynamic disciplines. Thus, the effects of

and interrelationships among other disciplines need to be factored in when

planning the optimal routes for wires. This research proposed a solution to

finding an optimal graphical representation that captures the connectivity

212

information of a system at the component level. One research question toward

addressing the discussed challenge is: can the results of this research be used to

capture the interrelationships among different disciplines within an

interconnected system? And if so, what information can be used, depending on

the system under the study, to model the interconnections among different

disciplines?

(6) The graph-based optimization method developed in this research aimed at

solving the routing problem in 3D. What other problems in interconnected

systems can be modeled and solved using a graphical representation of the

environment?

8.3 Broader Impact

This research proposed geometric-based optimization methods for routing and

laying out cable harnesses in cluttered environments. The mathematical framework

proposed for the optimization of cable harness layouts is applicable to network

optimization problems where multiple components of the network need to be connected

using one-dimensional connectors (e.g. wires, cables, hoses, or pipes). Examples of such

networks are electromechanical systems such as computing devices, automobiles, and

aircraft. Optimization of the length of the connectors in such systems results in minimizing

the weight of the system and reducing its energy consumption. In addition to

electromechanical systems, the layout problem is omnipresent in wind farm design. The

decision of allocating wind turbines to feasible locations in the farm is a mixed-integer

213

optimization problem that could be modeled and solved using the proposed method in

Chapter 3 of this dissertation.

In this study, also a graphical representation of the 3D cluttered environment of

path planning problems is proposed. The generated graph is a representative set of design

solutions for the routes of 3D flexible connectors. If the shortest route is desired, Dijkstra’s

search algorithm is applied to the graph that finds the minimum cost (here cost is the length

of the path) path. Otherwise, depending on other physical constraints of the problem, such

as accessibility of wires/components, maintenance, bend radius of the connector, or thermal

loading, other routes could be selected from the graph. The advantage of graph-based over

reasoning-based methods is the generation of a solution set rather than a single solution.

This is especially advantageous in design problems where alternative solutions are sought

for the designers to have flexibility in their decision making. The additional constraints can

either be considered later in the decision making or be introduced as penalty functions in

the objective of the optimization problem.

While the graph-based routing method can apply to workspaces with any convex

shapes of obstacles, the fewer faces an obstacle has, the shorter it will take for the algorithm

to determine the graph. Therefore, for problems with complex shapes of obstacles where

an acceptable solution needs to be found in a reasonable amount of time, for example in

automotive systems, the obstacles may be approximated by their bounding boxes to reduce

the number of their associated faces. Other areas where the method can be applied to find

routes of wiring connectors without major modifications to the algorithm include

computers that contain components of regular convex shapes (e.g. rectangular blocks).

214

This dissertation shows that it may be possible to have optimization algorithms to

deterministically identify the shortest routes in cluttered environments. As computing

power keeps enhancing, larger and larger problems can be tackled and ultimately provide

the designers with better tools to address such problems and eventually be confident in

their design decisions.

215

APPENDICES

216

APPENDIX A: ADDITIONAL RESULTS FOR LAYOUT OPTIMIZATION

PROBLEM

Workspaces of the test cases used to evaluate the effects of density

217

218

219

220

221

222

BIBLIOGRAPHY

[1] Matheus, K., and Konigseder, T., 2015, Automotive Ethernet, Cambridge University Press.

[2] Lindfors, N., Pesonen, A., Franck, C., and Kuosmanen, P., 2003, “CABLING DESIGN

UTILIZING 3D CAD IN PRODUCT DEVELOPMENT OF AN ELECTRIC DEVICE,”

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN ICED 03, A. Folkeson, K.

Gralen, M. Norell, and U. Sellgren, eds., Stockholm, pp. 1–8.

[3] Park, H., Lee, S. H., and Cutkosky, M. R., 1992, “Computational Support for Concurrent

Engineering of Cable Harnesses,” Computers in Engineering Conference, San Francisco, CA, USA,

USA.

[4] Ng, F. M., Ritchie, J. M., and Simmons, J. E. L., 2000, “The design and planning of cable harness

assemblies,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 214(10), pp. 881–890.

[5] Dijkstra, E. W., 1959, “A note on two problems in connexion with graphs.pdf,” Numer. Math., pp.

269–271.

[6] Hart, P. E., Nilsson, N. J., and Raphael, B., 1968, “A formal basis for the heuristic determination of

minimum cost paths,” IEEE Trans. Syst. Sci. Cybern., 4(2), pp. 100–107.

[7] Canny, J., and Reif, J., 1987, “New Lower Bound Techniques for Robot Motion Planning

Problems.,” Annu. Symp. Found. Comput. Sci., pp. 49–60.

[8] Latombe, J.-C., 1991, Robot Motion Planning, Kluwer Academic Publishers, Boston.

[9] Tran, N., Dinneen, M. J., and Linz, S., 2019, Multi-criteria Shortest Paths in 3D among Vertical

Obstacles, Department of Computer Science, The University of Auckland, New Zealand.

[10] O’Rourke, J., and Mallinckrodt, A. J., 1995, Computational Geometry in C, Computers in Physics.

[11] Nilsson, N. J., 1969, “A Mobius Automation: An Application of Artificial Intelligence

Techniques,” Proceedings of the 1st international joint conference on Artificial intelligence,

Morgan Kaufmann Publishers Inc., pp. 509–520.

[12] Wangdahl, G. E., Pollock, S. M., and Woodward, J. B., 1974, “Minimum-Trajectory Pipe

Routing,” J. Sh. Res., 18(1), pp. 46–49.

223

[13] Lozano-Pérez, T., and Wesley, M. a., 1979, “An algorithm for planning collision-free paths among

polyhedral obstacles,” Commun. ACM, 22(10), pp. 560–570.

[14] Ma, Y., Zheng, G., and Perruquetti, W., 2013, “Cooperative path planning for mobile robots based

on visibility graph,” Control Conference (CCC), 2013 32nd Chinese. IEEE, pp. 4915–4920.

[15] Papadimitriou, C. H., 1985, “An algorithm for shortest-path motion in three dimensions,” Inf.

Process. Lett., 20(5), pp. 259–263.

[16] Gao, B., Xu, D., Zhang, F., and Yao, Y., 2009, “Constructing Visibility Graph and Planning

Optimal Path for Inspection of 2D workspace,” Intelligent Computing and Intelligent Systems,

2009. ICIS 2009. IEEE International Conference on, IEEE, Shanghai, China, pp. 693–698.

[17] Udupa, S. M., 1977, “Collision detection and avoidance in computer controlled manipulators,”

California Institute of Technology.

[18] Hahmann, S., Miksch, J., Resch, B., Lauer, J., and Zipf, A., 2017, “Routing through open spaces –

a performance comparison of algorithms,” Geo-spatial Inf. Sci., pp. 1–10.

[19] Souissi, O., Benatitallah, R., Duvivier, D., and Artiba, A., 2013, “Path Planning : A 2013 Survey,”

Industrial Engineering and Systems Management (IESM), Proceedings of 2013 International

Conference on, IEEE, Rabat, Morocco, pp. 1–8.

[20] Lee, D.-T., 1978, “Proximity and Reachability in The Palne,” ILLINOIS UNIV AT URBANA-

CHAMPAIGN COORDINATED SCIENCE LAB.

[21] Welzl, E., 1985, “Constructing the visibility graph for n-line segments in O (n2) time,” Inf. Process.

Lett., 20(4), pp. 167–171.

[22] Asano, T., Asano, T., Guibas, L., Hershberger, J., and Imai, H., 1985, “Visibility-Polygon Search

and Euclidean Shortest Paths,” Found. Comput. Sci., pp. 155–164.

[23] Asano, T., Asano, T., Guibas, L., Hershberger, J., and Imai, H., 1986, “Visibility of Disjoint

Polygons,” Algorithmica, 1(1–4), pp. 49–63.

[24] Sharir, M., and Schorr, A., 1986, “On shortest paths in polyhedral Spaces,” SIAM J. Comput.,

15(1), pp. 144–153.

[25] Ghosh, S. K., and Mount, D. M., 1991, “An Output Sensitive Algorithm for Computing Visibility

224

Graphs,” SIAM J. Comput., 20(5), pp. 888–910.

[26] Chazelle, B., 1982, “A Theorem on Polygon Cutting with Applications,” Foundations of Computer

Science, 1982. SFCS ’08. 23rd Annual Symposium on, IEEE, Chicago, IL, USA, USA, pp. 339–

349.

[27] Kapoor, S., and Maheshwari, S. N., 2000, “Efficiently constructing the visibility graph of a simple

polygon with obstacles,” SIAM J. Comput., 30(3), pp. 847–871.

[28] Storer, J. a, and Reif, J. H., 1994, “Shortest paths in the plane with polygonal obstacles,” Inf.

Process. Lett., 23(5), pp. 982–1012.

[29] Wein, R., Jur P., V. den B., and Halperin, D., 2007, “The visibility – Voronoi complex and its

applications ✩,” Comput. Geom., 36(1), pp. 66–87.

[30] Clarkson, K., 1987, “Approximation algorithms for shortest path motion planning,” Proc. Ninet.

Annu. ACM Symp. Theory Comput., pp. 56–65.

[31] Fredman, M. L., and Tarjan, R. E., 1987, “Fibonacci heaps and their uses in improved network

optimization algorithms.pdf,” J. ACM, 34.3, pp. 596–615.

[32] Hershberger, J., and Guibas, L. J., 1988, “An O(n 2) shortest path algorithm for a non-rotating

convex body,” J. Algorithms, 9(1), pp. 18–46.

[33] Rohnert, H., 1986, “Shortest Paths in the Plane with Convex Polygonal Obstacles,” Inf. Process.

Lett., 23, pp. 71–76.

[34] Priya, T. K., and Sridharan, K., 2004, “An Efficient Algorithm to Construct Reduced Visibility

Graph and its FPGA Implementation,” VLSI Design, 2004. Proceedings. 17th International

Conference on. IEEE, IEEE, Mumbai, India, pp. 1057–1062.

[35] Jan, G. E., Sun, C., Tsai, W. C., and Lin, T., 2014, “An O (n log n) Shortest Path Algorithm Based

on Delaunay Triangulation,” 660 IEEE/ASME Trans. MECHATRONICS, 19(2), pp. 660–666.

[36] Pillai, A. C., Chick, J., Johanning, L., Khorasanchi, M., and Laleu, V. De, 2015, “Offshore wind

farm electrical cable layout optimization,” Eng. Optim., 47(12), pp. 1689–1708.

[37] Qureshi, A. H., and Ayaz, Y., 2015, “Intelligent bidirectional rapidly-exploring random trees for

225

optimal motion planning in complex cluttered environments,” Rob. Auton. Syst., 68, pp. 1–11.

[38] Jafarzadeh, H., and Fleming, C. H., 2018, “An Exact Geometry-Based Algorithm for Path

Planning,” Int. J. Appl. Math. Comput. Sci., 28(3), pp. 493–504.

[39] Huang, H.-P., and Chung, S.-Y., 2004, “Dynamic Visibility Graph for Path Planning,” IEEE/RSJ

International Conference on Intelligent Robots and Systems, IEEE, Sendai, Japan, pp. 2813–2818.

[40] Toan, T. Q., Sorokin, A. A., Thi, V., and Trang, H., 2017, “Using modification of visibility-graph

in solving the problem of finding shortest path for robot,” International Siberian Conference on

Control and Communications (SIBCON), pp. 1–6.

[41] Gasilov, N., Doğan, M., and Arici, V., 2011, “Two-stage Shortest Path Algorithm for Solving

Optimal Obstacle Avoidance Problem Two-stage Shortest Path Algorithm for Solving Optimal

Obstacle Avoidance Problem,” IETE J. Res., 57(3), pp. 278–285.

[42] Badariyah, N., Latip, A., Omar, R., and Debnath, S. K., 2017, “Optimal Path Planning using

Equilateral Spaces Oriented Visibility Graph Method,” Int. J. Electr. Comput. Eng., 7(6), pp. 3046–

3051.

[43] Graser, A., 2016, “Integrating Open Spaces into OpenStreetMap Routing Graphs for Realistic

Crossing Behaviour in Pedestrian Navigation,” GI_Forum 2016, pp. 217–230.

[44] Garrido, S., Moreno, L., Abderrahim, M., and Martin, F., 2006, “Path Planning for Mobile Robot

Navigation using Voronoi Diagram and Fast Marching,” Proceedings of the 2006 IEEE/RSJ

International Conference on Intelligent Robots and Systems, IEEE, Beijing, China, pp. 2376–2381.

[45] Ó’Dúnlaing, C., and Yap, C. K., 1985, “A ‘ Retraction ’ Method for Planning of a Disc the

Motion,” J. Algorithms, 6(1), pp. 104–111.

[46] Brooks, R. A., 1983, “Solving the Find-Path Problem by Good Representation of Free Space,”

IEEE Trans. Syst. Man. Cybern., 13(3), pp. 190–197.

[47] Wein, R., and Halperin, D., 2005, “The Visibility – Voronoi Complex and Its Applications,” Proc.

twenty-first Annu. Symp. Comput. Geom., pp. 63–72.

[48] Bhattacharya, P., and Gavrilova, M. L., 2007, “Geometric Algorithms for Clearance Based Optimal

Path Computation,” Proceedings of the 15th International Symposium on Advances in Geographic

226

Information Systems ACM GIS 2007, pp. 1–4.

[49] Leven, D., and Sharir, M., 1987, “Planning a Purely Translational Motion for a Convex Object in

Two-Dimensional Space Using Generalized Voronoi Diagrams,” Discrete Comput. Geom., 2(1),

pp. 9–31.

[50] Zhang, L., and Manocha, D., 2008, “An Efficient Retraction-based RRT Planner,” IEEE

International Conference on Robotics and Automation, Pasadena, CA, pp. 3743–3750.

[51] Takahashi, O., and Schilling, R. J., 1989, “Motion Planning in a Plane Using Generalized Voronoi

Diagrams,” IEEE Trans. Robot. Autom., 5(2), pp. 143–150.

[52] Alt, H., and Yap., C. K., 1989, “Algorithmic Aspect of Motion Planning: A Tutorial,” Algorithms

Review, pp. 173–196.

[53] Schwartz, J. T., Sharir, M., and Hopcroft, J. E., 1987, Planning, geometry, and complexity of robot

motion, Intellect Books.

[54] Schwartz, J. T., and Sharir, M., 1983, “On the ‘piano movers’’” problem I. The case of a two-

dimensional rigid polygonal body moving amidst polygonal barriers,’” Commun. pure Appl. Math.,

36(3), pp. 345–398.

[55] Brooks, R. A., and Lozano-Perez, T., 1985, “A subdivision algorithm in configuration space for

findpath with rotation.,” IEEE Trans. Syst. Man. Cybern., 2, pp. 224–233.

[56] Faverjon, B., 1984, “Obstacle avoidance using an octree in the configuration space of a

manipulator.,” Robotics and Automation. Proceedings. 1984 IEEE International Conference on,

IEEE, Atlanta, GA, USA, pp. 504–512.

[57] Asmara, A., and Nienhuis, U., 2006, “Automatic piping system in ship,” The 5th International

Conference on Computer and IT Applications in the Maritime Industries, pp. 269–280.

[58] Bhattacharya, B. Y. P., and Gavrilova, M. L., 2008, “Roadmap-based path planning-using the

voronoi diagram for a clearance-based shortest path,” IEEE Robot. Autom. Mag., 15(2).

[59] Khatib, O., 1986, “Real-time obstacle avoidance for manipulators and mobile robots,” Auton.

Robot Veh., pp. 396–404.

[60] Overmars, M. H., 1992, A Random Approach to Motion Planning, Utrecht, the Netherlands.

227

[61] Elbanhawi, M., and Simic, M., 2014, “Sampling-Based Robot Motion Planning : A Review,” IEEE

Access, 2, pp. 56–77.

[62] Warren, C. W., 1989, “Global path planning using artificial potential fields,” Robotics and

Automation, 1989. Proceedings., 1989 IEEE International Conference on, IEEE, pp. 316–321.

[63] Ge, S. S., and Cui, Y. J., 2000, “New potential functions for mobile robot path planning,” IEEE

Trans. Robot. Autom., 16(5), pp. 615–620.

[64] Luh, G., and Liu, W., 2008, “An immunological approach to mobile robot reactive navigation,”

Appl. Soft Comput., 8(1), pp. 30–45.

[65] Li, G., Yamashita, A., Asama, H., and Tamura, Y., 2012, “An Efficient Improved Artificial

Potential Field Based Regression Search Method for Robot Path Planning,” Mechatronics and

Automation (ICMA), 2012 International Conference on, Chengdu, China, pp. 1227–1232.

[66] Vadakkepat, P., Lee, T. H., and Xin, L., 2001, “Application of Evolutionary Artificial Potential

Field in Robot Soccer System,” IFSA World Congress and 20th NAFIPS International Conference,

2001. Joint 9th, IEEE, Vancouver, BC, Canada, Canada, pp. 2781–2785.

[67] Bohlin, R., and Kavraki, L. E., 2000, “Path Planning Using Lazy PRM,” Robotics and Automation,

2000. Proceedings. ICRA’00. IEEE International Conference on, IEEE, San Francisco, CA, USA,

USA, pp. 521–528.

[68] Kavraki, L. E., Svestka, P., Latombe, J.-C., and Overmars, M. H., 1996, “Probabilistic Roadmaps

for Path Planning in High-Dimensional Configuration Spaces,” IEEE Trans. Robot. Autom., 12(4),

pp. 566–580.

[69] Kavraki, L., and Lat, J.-C., 1994, “Randomized Preprocessing of Configuration Space for Fast Path

Planning,” Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on,

IEEE, San Diego, CA, USA, pp. 2138–2145.

[70] Geraerts, R., and Overmars, M. H., 2004, “A Comparative Study of Probabilistic Roadmap

Planners,” Algorithmic Found. Robot. V, 7, pp. 43–57.

[71] Saha, M., Latombe, J.-C., Chang, Y.-C., and Prinz, F., 2005, “Finding Narrow Passages with

Probabilistic Roadmaps : The Small-Step,” Auton. Robots, 19(3), pp. 301–319.

228

[72] Kuffner, J. J., and LaValle, S. M., 2000, “RRT-connect: An efficient approach to single-query path

planning,” Proc. 2000 ICRA. Millenn. Conf. IEEE Int. Conf. Robot. Autom. Symp. Proc. (Cat.

No.00CH37065), 2(April), pp. 995–1001.

[73] Lu, J., Diaz-Mercado, Y., Egerstedt, M., Zhou, H., and Chow, S. N., 2014, “Shortest paths through

3-dimensional cluttered environments,” Proceedings - IEEE International Conference on Robotics

and Automation, IEEE, pp. 6579–6585.

[74] Chow, S., 2013, “Global Optimizations by Intermittent Diffusion,” Chaos, CNN, Memristors

Beyond, pp. 466–479.

[75] Bhattacharya, B. Y. P., and Gavrilova, M. L., 2008, “Roadmap-based path planning-using the

voronoi diagram for a clearance-based shortest path,” IEEE Robot. Autom. Mag., 15(2), pp. 58–66.

[76] Sandurkar, S., and Chen, W., 1999, “GAPRUS - genetic algorithms based pipe routing using

tessellated objects,” Comput. Ind., 38(3), pp. 209–223.

[77] Masehian, E., and Sedighizadeh, D., 2007, “Classic and Heuristic Approaches in Robot Motion

Planning – A Chronological Review,” World Acad. Sci. Eng. Technol., 29(1), pp. 101–106.

[78] Zachariadis, E. E., Tarantilis, C. D., and Kiranoudis, C. T., 2009, “A Guided Tabu Search for the

Vehicle Routing Problem with two-dimensional loading constraints,” Eur. J. Oper. Res., 195(3), pp.

729–743.

[79] Gao, R., and Setup, A. C., 2016, “Complex Housing: Modelling and Optimization Using an

Improved Multi-Objective Simulated Annealing Algorithm,” ASME 2016 International Design

Engineering Technical Conferences and Computers and Information in Engineering Conference,

American Society of Mechanical Engineers, Charlotte, North Carolina, USA, pp. 1–12.

[80] Ahn, C. W., and R., R., 2002, “A Genetic Algorithm for Shortest Path Routing Problem and the

Sizing of Populations,” IEEE Trans. Evol. Comput., 6(6), pp. 566–579.

[81] Liu, Q., and Wang, C., 2011, “A discrete particle swarm optimization algorithm for rectilinear

branch pipe routing,” Assem. Autom., 31(4), pp. 363–368.

[82] Thantulage, G., Kalganova, T., and Wilson, M., 2006, “Grid Based and Random Based Ant Colony

Algorithms for Automatic Hose Routing in 3D Space,” Trans. Eng. Comput. Technol., 14, pp. 144–

229

150.

[83] Masoudi, N., Fadel, G., and Wiecek, M. M., 2019, “Planning the Shortest Path in Cluttered

Environments: A Review and a Planar Convex Hull-Based Approach,” J. Comput. Inf. Sci. Eng.,

19(4).

[84] Sharir, M., and Schorr, A., 1986, “On shortest paths in polyhedral Spaces,” SIAM J. Comput.,

15.1(1), pp. 193–215.

[85] Rohnert, H., 1986, “Shortest Paths in the Plane with Convex Polygonal Obstacles,” Information,

23, pp. 71–76.

[86] Yan, J., Zuo, D. W., Jiao, G. M., and Li, J. P., 2008, “Survey on the Design and Planning of Cable

Harness Assemblies in Electromechanical Products,” Appl. Mech. Mater. Vols., 10, pp. 889–893.

[87] Sheridan, H. C., 1976, “AN OVERVIEW OF A CASDAC SUBSYSTEM-COMPUTER-AIDED

PIPING DESIGN AND CONSTRUCTION (CAPDAC),” Nav. Eng. J., 88(5), pp. 87–98.

[88] Kang, S., Sehyun, M., and Han, S., 1999, “A Design expert system for auto-routing of ship pipes,”

J. Sh. Prod., 15(1), pp. 1–9.

[89] Roh, M. Il, Lee, K. Y., and Choi, W. Y., 2007, “Rapid generation of the piping model having the

relationship with a hull structure in shipbuilding,” Adv. Eng. Softw., 38(4), pp. 215–228.

[90] Billsdon, R., and Wallington, K., 1998, “Wiring harness design can a computer help?,” Comput.

Control Eng. J., 9(4), pp. 163–167.

[91] Mingji, H., and Dong, X., 2010, “Research on Flexible Cable Geometric Modeling Technology in

Virtual Maintenance Based on VRML,” Mechanic Automation and Control Engineering (MACE),

2010 International Conference on, IEEE, Wuhan, China, pp. 772–775.

[92] Han, N., and Guo, L., 2017, “THE RESEARCH ON ROUTING OPTIMIZATION METHOD

USING UNDIRECTED-GRAPH IN CABLE HARNESS DESIGN,” Proceedings of the ASME

2017 International Mechanical Engineering Congress and Exposition IMECE2017, Tampa, Florida,

USA, pp. 1–6.

[93] Lin, C., Rao, L., Ambrosio, J. D., and Sangiovanni-vincentelli, A., 2014, “Electrical Architecture

Optimization and Selection - Cost Minimization via Wire Routing and Wire Sizing,” SAE Int. J.

230

Passeng. Cars-Electronic Electr. Syst., 7(2), pp. 502–509.

[94] Valentini, P. P., 2011, “Interactive cable harnessing in augmented reality,” Int J Interact DesManuf,

5, pp. 45–53.

[95] Ritchie, J., Simmons, J., Holt, P., and Russell, G., 2002, “Immersive virtual reality as an interactive

tool for cable harness design,” Proceedings of PRASIC (2002), pp. 249–255.

[96] Simmons, J., Ritchie, J., and Holt, P. O. B., 2002, “Immersing the Human in the Design : Design-

for-Manufacture of Cable Harnesses,” Proceedings of SCI/ISAS 2002 Volume XXII.

[97] Ritchie, J. M., Robinson, G., Day, P. N., Dewar, R. G., Sung, R. C. W., and Simmons, J. E. L.,

2007, “Cable harness design, assembly and installation planning using immersive virtual reality,”

Virtual Real., 11(4), pp. 261–273.

[98] O’B Holt, P., Ritchie, J. M., Day, P. N., Simmons, J. E. L., Robinson, G., Russell, G. T., and Ng, F.

M., 2004, “Immersive Virtual Reality In Cable and Pipe Routing: Design Metaphors and Cognitive

Ergonomics,” J. Comput. Inf. Sci. Eng., 4(3), pp. 161–170.

[99] Park, H., Cutkosky, M. R., Conru, A. B., and Lee, S., 1994, “An Agent-Based Approach to

Concurrent Cable Harness Design,” AI EDAM, 8(1), pp. 45–61.

[100] Wu, Y., Champaneri, R., and Mehta, P., 1992, “Use of the expert system as a design tool for the

cable harness design.,” APPL ARTIF INTELL ENG., COMPUTATIONAL MECHANICS PUBL,

SOUTHAMPTON(ENGL), 1992, pp. 357–372.

[101] Shang, W., Liu, J., Ning, R., and Liu, J., 2012, “A Computational Framework for Cable Layout

Design in Complex Products,” Phys. Procedia, 33, pp. 1879–1885.

[102] Van Der Velden, C., Bil, C., Yu, X., and Smith, A., 2007, “An intelligent system for automatic

layout routing in aerospace design,” Innov. Syst. Softw. Eng., 3(2), pp. 117–128.

[103] Cerezuela, C., Cauvin, A., Boucher, X., and Kieffer, J.-P., 1998, “A Decision Support System for a

Concurrent Design of Cable Harnesses: Conceptual Approach and Implementation,” Concurr. Eng.,

6(1), pp. 43–52.

[104] Pemarathne, W. P. J., and Fernando, T. G. I., 2016, “Wire and cable routings and harness designing

systems with AI , a Review,” Information and Automation for Sustainability (ICIAfS), 2016 IEEE

231

International Conference on, IEEE, Galle, Sri Lanka, pp. 1–6.

[105] Teegavarapu, S., Summers, J. D., and Mocko, G. M., 2008, “Case Study Method for Design

Research: A Justification,” Proceedings of the ASME 2008 International Design Engineering

Technical Conferences & Computers and Information in Engineering Conference Proceedings of

IDETC/DTM 2008 IDETC/CIE 2008 ASME 2008 International Design Engineering Technical

Conferences August , Brooklyn, New York, USA, pp. 1–9.

[106] Ng, F. M., Ritchic, J. M., and Simmons, J. E. L., 2000, “The design and planning of cable harness

assemblies,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 214(10), pp. 881–890.

[107] Lin, M. H., Tsai, J. F., and Yu, C. S., 2012, “A review of deterministic optimization methods in

engineering and management,” Math. Probl. Eng., 2012.

[108] Prim, R. C., 1957, “Shortest Connection Networks And Some Generalizations,” Bell Syst. Tech. J.,

36(6), pp. 1389–1401.

[109] Kruskal, J. B., 1955, “On the shortest spanning subtree of a graph and the traveling salesman

problem.,” Proceedings of the American Mathematical society, pp. 48–50.

[110] Gilbert, E. N., and Pollak, H. O., 1968, “Steiner Minimal Trees,” SIAM J. Appl. Math., 16(1), pp.

1–29.

[111] Sankoff, D., and Rousseau, P., 1975, “Locating the vertices of a steiner tree in an arbitrary metric

space,” Math. Program., 9(1), pp. 240–246.

[112] Garey, M. R., and Johnson, D. S., 1977, “The rectilinear Steiner tree problem,” SIAM J. Appl.

Math., 32(4), pp. 826–834.

[113] Fonseca, R., Brazil, M., Winter, P., and Zachariasen, M., 2014, “Faster exact algorithms for

computing Steiner trees in higher dimensional Euclidean spaces,” 11th DIMACS Implementation

Challenge, Brown University.

[114] Suchý, O., 2017, “Extending the Kernel for Planar Steiner Tree to the Number of Steiner Vertices,”

Algorithmica, 79(1), pp. 189–210.

[115] Juhl, D., Warme, D. M., Winter, P., and Zachariasen, M., 2018, “The GeoSteiner software package

for computing Steiner trees in the plane: an updated computational study,” Math. Program.

232

Comput., 10(4), pp. 487–532.

[116] Kou, L., Markowsky, G., and Berman, L., 1981, “A fast algorithm for Steiner trees,” Acta Inform.,

15(2), pp. 141–145.

[117] Imase, M., and Waxman, B. M., 1991, “Dynamic Steiner Tree Problem,” SIAM J. Discret. Math.,

4(3), pp. 369–384.

[118] Kapsalis, A., Rayward-Smith, V. J., and Smith, G. D., 1993, “Solving the Graphical Steiner Tree

Problem Using Genetic Algorithms,” J. Oper. Res. Soc., 44(4), pp. 397–406.

[119] Koch, T., and Martin, A., 1998, “Solving Steiner tree problems in graphs to optimality,” Networks

An Int. J., 32(3), pp. 207–232.

[120] Warme, D. M., Winter, P., and Zachariasen, M., 2000, “Exact Algorithms for Plane Steiner Tree

Problems: A Computational Study,” Adv. Steiner trees. Comb. Optim., 6, pp. 81–116.

[121] Robins, G., and Zelikovsky, A., 2008, Minimum Steiner Tree Construction*.

[122] Byrka, J., Grandoni, F., Rothvo, T., and Sanità, L., 2010, “An Improved LP-based Approximation

for Steiner Tree,” Proceedings of the forty-second ACM symposium on Theory of computing, pp.

583–592.

[123] Kumar, S., 2014, “A Simple Algorithm for Steiner Tree Problem in Networks,” Int. J. Appl. or

Innov. Eng. Manag., 3(7), pp. 232–236.

[124] Lin, C. W., Rao, L., Giusto, P., D’Ambrosio, J., and Sangiovanni-Vincentelli, A. L., 2015,

“Efficient Wire Routing and Wire Sizing for Weight Minimization of Automotive Systems,” IEEE

Trans. Comput. Des. Integr. Circuits Syst., 34(11), pp. 1730–1741.

[125] Sommer, J., Doumith, E. A., and Duva, Q., 2009, “On Link Harness Optimization of Embedded

Ethernet Networks,” Industrial Embedded Systems, 2009. SIES ’09. IEEE International

Symposium on, IEEE, Lausanne, Switzerland, pp. 191–200.

[126] Vasko, F. J., Barbieri, R. S., Rieksts, B. Q., Reitmeyer, K. L., and Stott, K. L., 2002, “The cable

trench problem: Combining the shortest path and minimum spanning tree problems,” Comput.

Oper. Res., 29(5), pp. 441–458.

[127] Jeng, D. J. F., and Watada, J., 2007, “Non-deterministic algorithm for routing optimization: A case

233

study,” Second International Conference on Innovative Computing, Information and Control,

ICICIC 2007.

[128] Marianov, V., Gutiérrez-Jarpa, G., Obreque, C., and Cornejo, O., 2012, “Lagrangean relaxation

heuristics for the p-cable-trench problem,” Comput. Oper. Res., 39(3), pp. 620–628.

[129] Schwarze, S., 2015, “The multi-commodity cable trench problem,” 23rd European Conference on

Information Systems, ECIS 2015, Münster, Germany, pp. 1–14.

[130] Vasko, F. J., Landquist, E., Kresge, G., Tal, A., Jiang, Y., and Papademetris, X., 2016, “A Simple

and Efficient Strategy for Solving Very Large-Scale Generalized Cable-Trench Problems,”

Networks, 67(3), pp. 199–208.

[131] Calik, H., Leitner, M., and Luipersbeck, M., 2017, “A Benders decomposition based framework for

solving cable trench problems,” Comput. Oper. Res., 81, pp. 128–140.

[132] Zyma, K., Girard, J. N., Landquist, E., Schaper, G., and Vasko, F. J., 2017, “Formulating and

solving a radio astronomy antenna connection problem as a generalized cable-trench problem: an

empirical study,” Int. Trans. Oper. Res., 24(5), pp. 943–957.

[133] Winter, P., 1993, “Euclidean Steiner minimal trees with obstacles and Steiner visibility graphs,”

Discret. Appl. Math., 47(2), pp. 187–206.

[134] Zachariasen, M., and Winter, P., 2002, “Obstacle-Avoiding Euclidean Steiner Trees in the Plane:

An Exact Algorithm,” Goodrich M.T., McGeoch C.C. Algorithm Eng. Exp. ALENEX 1999. Lect.

Notes Comput. Sci., 1619, pp. 286–299.

[135] Müller-Hannemann, M., and Tazari, S., 2010, “A near linear time approximation scheme for

Steiner tree among obstacles in the plane,” Comput. Geom. Theory Appl., 43(4), pp. 395–409.

[136] Parque, V., and Miyashita, T., 2018, “Obstacle-avoiding euclidean steiner trees by n-star bundles,”

Proc. - Int. Conf. Tools with Artif. Intell. ICTAI, 2018-Novem, pp. 315–319.

[137] Chiang, C., Wong, C. K., and Sarrafzadeh, M., 1994, “A Weighted Steiner Tree-Based Global

Router with Simultaneous Length and Density Minimization,” IEEE Trans. COMPLITER-AIDED

Des. lNTEGRATED CIRCUITS SYSTRMS, 13(12), pp. 1461–1469.

[138] Ganley, J. L., and Cohoon, J. P., 1994, “Routing a multi-terminal critical net: Steiner tree

234

construction in the presence of obstacles,” Proceedings - IEEE International Symposium on

Circuits and Systems, pp. 113–116.

[139] Hu, Y., Feng, Z., Jing, T., Hong, X., Yang, Y., Yu, G., Hu, X., and Yan, G., 2004, “FORst: A 3-

step heuristic for obstacle-avoiding rectilinear Steiner minimal tree construction,” J. Inf. Comput.

Sci., 1(3), pp. 107–116.

[140] Wu, P. C., Gao, J. R., and Wang, T. C., 2007, “A fast and stable algorithm for obstacle-avoiding

rectilinear steiner minimal tree construction,” Proceedings of the 2007 Asia and South Pacific

Design Automation Conference, ASP-DAC, Yokohama, pp. 262–267.

[141] Lin, C.-W., Chen, S.-Y., Li, C.-F., Chang, Y.-W., and Yang, C.-L., 2008, “Obstacle-Avoiding

Rectilinear Steiner Tree Construction Based on Spanning Graphs,” IEEE Trans. Comput. Des.

Integr. Circuits Syst., 27(4), pp. 643–653.

[142] Ajwani, G., Chu, C., and Mak, W. K., 2011, “FOARS: FLUTE based obstacle-avoiding rectilinear

steiner tree construction,” IEEE Trans. Comput. Des. Integr. Circuits Syst., 30(2), pp. 194–204.

[143] Wędzik, A., 2014, “The Optimization of Cable Layout Design in Wind Farm Internal Networks,”

Acta Energ., 3(20), pp. 144–149.

[144] Fischetti, M., Leth, J., and Borchersen, A. B., 2015, “A Mixed-Integer Linear Programming

approach to wind farm layout and inter-array cable routing,” Proceedings of the American Control

Conference, American Automatic Control Council, pp. 5907–5912.

[145] Fischetti, M., and Pisinger, D., 2018, “Optimizing wind farm cable routing considering power

losses,” Eur. J. Oper. Res., 270(3), pp. 917–930.

[146] Wędzik, A., Siewierski, T., and Szypowski, M., 2016, “A new method for simultaneous optimizing

of wind farm’s network layout and cable cross-sections by MILP optimization,” Appl. Energy, 182,

pp. 525–538.

[147] Weber, A., 1929, Theory of the Location of Industries, University of Chicago Press.

[148] Hamacher, H. W., and Nickel, S., 1998, “Classification of location models,” Locat. Sci., 6, pp.

229–242.

[149] Nickel, S., 1993, Bicriterial and Restrictive Planar 2-Median Problems.

235

[150] Katz, I. N., and Cooper, L., 1981, “Facility location in the presence of forbidden regions, I

Formulation and the case of Euclidean distance with one forbidden circle,” Eur. J. Oper. Res., 6(2),

pp. 166–173.

[151] Aneja, Y. P., and Parlar, M., 1994, “Algorithms for Weber Facility Location in the Presence of

Forbidden Regions and / or Barriers to Travel,” Transp. Sci., 28(1), pp. 70–76.

[152] Hamacher, H. W., and Klamroth, K., 2000, “Planar location problems with barriers under

polyhedral gauges,” Ann. Oper. Res., 96, pp. 191–208.

[153] Klamroth, K., 2001, “A reduction result for location problems with polyhedral barriers,” Eur. J.

Oper. Res., 130(3), pp. 486–497.

[154] Bischoff, M., and Klamroth, K., 2007, “An efficient solution method for Weber problems with

barriers based on genetic algorithms,” Eur. J. Oper. Res., 177(1), pp. 22–41.

[155] Mcgarvey, R. G., and Cavalier, T. M., 2003, “A global optimal approach to facility location in the

presence of forbidden regions,” Comput. Ind. Eng., 45, pp. 1–15.

[156] Hansen, P., Peeters, D., and Thisse, J.-F., 1981, “On the location of an obnoxious facility,” Sist.

Urbani, 3(1), pp. 299–317.

[157] Kuhn, H. W., 1973, “A note on Fermat’s problem,” Math. Program., 4(1), pp. 98–107.

[158] Klamroth, K., 2006, Single-facility location problems with barriers, Springer Science & Business

Media.

[159] Butt, S. E., 1995, “Facility location in the presence of forbidden regions and congested regions.”

[160] Bischoff, M., Fleischmann, T., and Klamroth, K., 2009, “The multi-facility location-allocation

problem with polyhedral barriers,” Comput. Oper. Res., 36(5), pp. 1376–1392.

[161] Conru, A. B., 1994, “A genetic approach to the cable harness routing problem,” Evolutionary

Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the First

IEEE Conference on, IEEE, Orlando, FL, USA, pp. 200–205.

[162] Conru, A. B., and Cutkosky, M. R., 1993, “Computational Support for Interactive Cable Harness

Routing and Design,” Adv. Des. Autom., 65–1, pp. 551–558.

[163] Kimura, H., 2011, “Automatic designing system for piping and instruments arrangement including

236

branches of pipes,” International Conference on Computer Applications in Shipbuilding (ICCAS),

p. 93—99.

[164] Zhu, Z., Rocca, G. La, and Tooren, M. J. L. van, 2017, “A methodology to enable automatic 3D

routing of aircraft Electrical Wiring Interconnection System,” CEAS Aeronaut. J., 8(2), pp. 287–

302.

[165] Kabul, I., Gayle, R., and Lin, M. C., 2007, “Cable route planning in complex environments using

constrained sampling,” Proc. 2007 ACM Symp. Solid Phys. Model. - SPM ’07, 1(212), p. 395.

[166] Hermansson, T., Bohlin, R., Carlson, J. S., and Söderberg, R., 2016, “Automatic routing of flexible

1D components with functional and manufacturing constraints,” Comput. Des., 79, pp. 27–35.

[167] Klamroth, K., 2004, “Algebraic properties of location problems with one circular barrier,” Eur. J.

Oper. Res., 154(1), pp. 20–35.

[168] Ng, F. M., Ritchie, J. M., Simmons, J. E. L., and Dewar, R. G., 2000, “Designing cable harness

assemblies in virtual environments,” J. Mater. Process. Technol., 107(1–3), pp. 37–43.

[169] Lin, C., Rao, L., Giusto, P., Ambrosio, J. D., and Sangiovanni-vincentelli, A., 2014, “An Efficient

Wire Routing and Wire Sizing Algorithm for Weight Minimization of Automotive Systems,”

Proceedings of the 51st Annual Design Automation Conference. ACM, pp. 1–6.

[170] Conru, A. B., and Cutkosky, M. R., 1993, “Computational Support for Interactive Cable Harness

Routing and Design,” Adv. Des. Autom., 1, pp. 551–558.

[171] 2020, “paretosearch Algorithm,” MathWorks [Online]. Available:

https://www.mathworks.com/help/gads/paretosearch-algorithm.html.

[172] Deb, K., 2001, Multi-Objective Optimization using Evolutionary Algorithms, Wiley.

[173] 2020, “gamultiobj,” Mathworks [Online]. Available:

https://www.mathworks.com/help/gads/gamultiobj.html#bvf79ug-options.

[174] Haimes, Y.Y.; Lasdon, L.S.; Wismer, D. A., 1971, “On a Bicriterion Formulation of the Problems

of Integrated System Identification and System Optimization,” IEEE Trans. Syst. Man. Cybern.,

SMC-1(3), pp. 296–297.

[175] Redish, A. D., and Jacquenot, G., 2008, “Fast InPolygon detection MEX. Retrieved May 31, 2020.”

237

[176] Har-Peled, S., 1998, “Constructing approximate shortest path maps in three dimensions,”

Proceedings of the fourteenth annual symposium on Computational geometry, pp. 383–391.

[177] Choi, J., Sellen, J., and Yap, C. K., 1997, “Approximate euclidean shortest paths in 3-space,” Int. J.

Comput. Geom. Appl., 7(4), pp. 271–295.

[178] Gewali, L. P., Ntafos, S., and Tollis, I. G., 1990, “Path planning in the presence of vertical

obstacles,” IEEE Trans. Robot. Autom., 6(3), pp. 331–341.

[179] Jiang, K., Seneviratne, L. D., and Earles, S. W. E., 1993, “Finding the 3D shortest path with

visibility graph and minimum potential energy,” Proceedings of the 1993 IEEWSJ International

Conference on Intelligent Robots and Systems, IEEE, Yokohama, Japan, pp. 679–684.

[180] Frontera, G., Martín, D. J., Besada, J. A., and Gu, D. W., 2017, “Approximate 3D Euclidean

Shortest Paths for Unmanned Aircraft in Urban Environments,” J. Intell. Robot. Syst. Theory

Appl., 85(2), pp. 353–368.

[181] Omar, R., and Gu, D., 2010, “3D path planning for unmanned aerial vehicles using visibility line

based method,” ICINCO 2010 - Proceedings of the 7th International Conference on Informatics in

Control, Automation and Robotics, pp. 80–85.

[182] Liang, X., Meng, G., Xu, Y., and Luo, H., 2018, “A geometrical path planning method for

unmanned aerial vehicle in 2D/3D complex environment,” Intell. Serv. Robot., 11(3), pp. 301–312.

[183] Szykman, S., and Cagan, J., 1996, “Synthesis of Optimal Nonorthogonal Routes.pdf,” J. Mech.

Des., 118(3), pp. 419–424.

[184] Fan, X., Lin, Y., and Ji, Z., 2006, “The ant colony optimization for ship pipe route design in 3D

space,” Proc. World Congr. Intell. Control Autom., 1, pp. 3103–3108.

[185] Thantulage, G., Kalganova, T., and Fernando, W. a. C., 2006, “A Grid-based Ant Colony

Algorithm for Automatic 3D Hose Routing,” 2006 IEEE Int. Conf. Evol. Comput., pp. 48–55.

[186] Fernando, T. G. I., and Kalganova, T., 2012, “Multi-Colony Ant Systems for Multi-Hose Routing,”

Int. J. Comput. Appl., 59(2), pp. 1–14.

[187] Liu, Q., and Wang, C., 2010, “Pipe-assembly approach for aero-engines by modified particle

swarm optimization,” Assem. Autom., 30(4), pp. 365–377.

238

[188] LIU, Q. WANG, C., 2012, “Multi-terminal pipe routing by steiner minimal tree and particle swarm

optimisation.,” Enterp. Inf. Syst., 6(3), pp. 315–327.

[189] Liu, Q., and Wang, C., 2008, “A modified particle swarm optimizer for pipe route design,” Proc.

11th IEEE Int. Conf. Comput. Sci. Eng. CSE Work. 2008, pp. 157–161.

[190] Gong, D. W., Zhang, J. H., and Zhang, Y., 2011, “Multi-objective particle swarm optimization for

robot path planning in environment with danger sources,” J. Comput., 6(8), pp. 1554–1561.

[191] Redon, S., and Lin, M. C., 2005, “Practical local planning in the contact space,” Proc. - IEEE Int.

Conf. Robot. Autom., 2005(April), pp. 4200–4205.

[192] Barraquand, J., Kavraki, L., Latombe, J. C., Motwani, R., Li, T. Y., and Raghavan, P., 1997, “A

random sampling scheme for path planning,” Int. J. Rob. Res., 16(6), pp. 759–774.

[193] Ichter, B., and Pavone, M., 2019, “Robot Motion Planning in Learned Latent Spaces,” IEEE Robot.

Autom. Lett., 4(3), pp. 2407–2414.

[194] Yoshida, E., Esteves, C., Belousov, I., Laumond, J. P., Sakaguchi, T., and Yokoi, K., 2008,

“Planning 3-D collision-free dynamic robotic motion through iterative reshaping,” IEEE Trans.

Robot., 24(5), pp. 1186–1198.

[195] Yang, K., and Sukkarieh, S., 2008, “3D smooth path planning for a UAV in cluttered natural

environments,” 2008 IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS, (October 2008), pp. 794–800.

[196] Hong, R., and DeSouza, G. N., 2010, “A real-time path planner for a smart wheelchair using

harmonic potentials and a rubber band model,” IEEE/RSJ 2010 Int. Conf. Intell. Robot. Syst. IROS

2010 - Conf. Proc., pp. 3282–3287.

[197] Azzabi, A., and Nouri, K., 2019, “An advanced potential field method proposed for mobile robot

path planning,” Trans. Inst. Meas. Control, 41(11), pp. 3132–3144.

[198] Chen, X., and Zhang, J., 2013, “The three-dimension path planning of UAV based on improved

artificial potential field in dynamic environment,” Proc. - 2013 5th Int. Conf. Intell. Human-

Machine Syst. Cybern. IHMSC 2013, 2, pp. 144–147.

[199] Masehian, E., and Naseri, A., 2010, “Mobile Robot Online Motion Planning Using Generalized

Voronoi Graphs,” J. Ind. Eng., 5, pp. 1–15.

239

[200] Liu, L., and Zhang, S., 2009, “Voronoi diagram and GIS-based 3D path planning,” 2009 17th

International Conference on Geoinformatics, Geoinformatics 2009, IEEE, Fairfax, VA, pp. 1–5.

[201] Pehlivanoglu, Y. V., 2012, “A new vibrational genetic algorithm enhanced with a Voronoi diagram

for path planning of autonomous UAV,” Aerosp. Sci. Technol., 16(1), pp. 47–55.

[202] Wu, L., and Hori, Y., 2006, “Real-time collision-free path plannng for robot manipulator based on

octree model,” 9th IEEE International Workshop on Advanced Motion Control, Istanbul, pp. 284–

288.

[203] Hamada, K., and Hori, Y., 1996, “Octree-based Approach to Real-time Collision-free Path

Planning for R . obot Manipulator .,” Proceedings of 4th IEEE International Workshop on

Advanced Motion Control - AMC ’96 - MIE, Japan, pp. 705–710.

[204] Zhang, G., and Jia, H., 2013, “3D path planning of AUV based on improved ant colony

optimization,” Chinese Control Conference, CCC, TCCT, CAA, pp. 5017–5022.

[205] Dubins, L. E., 1957, “On Curves of Minimal Length with a Constraint on Average Curvature, and

with Prescribed Initial and Terminal Positions and Tangents,” Am. J. Math., 79(3), pp. 497–516.

[206] Hota, S., and Ghose, D., 2010, “Optimal geometrical path in 3D with curvature constraint,”

IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 -

Conference Proceedings, IEEE, Taipei, Taiwan, pp. 113–118.

[207] Shanmugavel, M., Tsourdos, A., White, B., and Zbikowski, R., 2010, “Co-operative path planning

of multiple UAVs using Dubins paths with clothoid arcs,” Control Eng. Pract., 18(9), pp. 1084–

1092.

[208] Hota, S., and Ghose, D., 2010, “Optimal path planning for an aerial vehicle in 3D space,”

Proceedings of the IEEE Conference on Decision and Control, IEEE, Atlanta, pp. 4902–4907.

[209] Kuwata, Y., and How, J., 2004, “Three dimensional receding horizon control for UAVs,” AIAA

Guidance, Navigation, and Control Conference and Exhibit, Providence, RI, pp. 5144–5157.

[210] Huang, S., and Teo, R. S. H., 2019, “Computationally efficient visibility graph-based generation of

3D shortest collision-free path among polyhedral obstacles for unmanned aerial vehicles,” 2019

International Conference on Unmanned Aircraft Systems, ICUAS 2019, IEEE, Atlanta, pp. 1218–

240

1223.

[211] Zeid, I., 2005, Mastering CAD/CAM, Mc Graw Hill.

[212] Owen, J., and Bloor, M. S., 1987, “Neutral formats for product data exchange: The current

situation,” Comput. Des., 19(8), pp. 436–443.

[213] Dibya Chakravorty, 2019, “The Most Common 3D File Formats” [Online]. Available:

https://all3dp.com/3d-file-format-3d-files-3d-printer-3d-cad-vrml-stl-obj/.

[214] Fadel, G. M., Kirschman, C., and Kirschman, C., 1996, “Accuracy issues in CAD to RP

translations,” Rapid Prototyp. J.

[215] “Multidimensional Arrays” [Online]. Available:

https://www.mathworks.com/help/matlab/math/multidimensional-arrays.html#f1-87418.

[216] “struct” [Online]. Available: https://www.mathworks.com/help/matlab/ref/struct.html.

[217] “Linked List Data Structure” [Online]. Available: https://www.geeksforgeeks.org/data-

structures/linked-list/.

[218] Micó, P., 2020, “stlTools (https://www.mathworks.com/matlabcentral/fileexchange/51200-stltools),

MATLAB Central File Exchange. Retrieved March 27, 2020.”

[219] Möller, T., and Trumbore, B., 1997, “Fast, minimum storage ray/triangle intersection,” J. Graph.

tools, 2(1), pp. 21–28.

[220] Tuszynski, J., 2018, “Triangle/Ray Intersection

(https://www.mathworks.com/matlabcentral/fileexchange/33073-triangle-ray-intersection),

MATLAB Central File Exchange. Retrieved March 28, 2020.”

[221] Moller, T., 1997, “Fast triangle-triangle intersection test,” J. Graph. Tools, 2(2), pp. 25–30.

[222] Tuszynski, J., 2020, “Surface Intersection

(https://www.mathworks.com/matlabcentral/fileexchange/48613-surface-intersection), MATLAB

Central File Exchange. Retrieved May 12, 2020.”

[223] Canny, J., 1987, “A new algebraic method for robot motion planning and real geometry,” 28th

Annu. Symp. Found. Comput. Sci. (sfcs 1987).

	Geometric-based Optimization Algorithms for Cable Routing and Branching in Cluttered Environments
	Recommended Citation

	tmp.1598623206.pdf.IkJvT

