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ABSTRACT 

The need for designing lighter and more compact systems often leaves limited 

space for planning routes for the connectors that enable interactions among the system’s 

components. Finding optimal routes for these connectors in a densely populated 

environment left behind at the detail design stage has been a challenging problem for 

decades.  

A variety of deterministic as well as heuristic methods has been developed to 

address different instances of this problem. While the focus of the deterministic methods 

is primarily on the optimality of the final solution, the heuristics offer acceptable solutions, 

especially for such problems, in a reasonable amount of time without guaranteeing to find 

optimal solutions. This study is an attempt to furthering the efforts in deterministic 

optimization methods to tackle the routing problem in two and three dimensions by 

focusing on the optimality of final solutions.  

The objective of this research is twofold. First, a mathematical framework is 

proposed for the optimization of the layout of wiring connectors in planar cluttered 

environments. The problem looks at finding the optimal tree network that spans multiple 

components to be connected with the aim of minimizing the overall length of the 

connectors while maximizing their common length (for maintainability and traceability of 

connectors). The optimization problem is formulated as a bi-objective problem and two 

solution methods are proposed: (1) to solve for the optimal locations of a known number 

of breakouts (where the connectors branch out) using mixed-binary optimization and 

visibility notion and (2) to find the minimum length tree that spans multiple components 
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of the system and generates the optimal layout using the previously-developed convex hull 

based routing. The computational performance of these methods in solving a variety of 

problems is further evaluated.  

 Second, the problem of finding the shortest route connecting two given nodes in a 

3D cluttered environment is considered and addressed through deterministically generating 

a graphical representation of the collision-free space and searching for the shortest path on 

the found graph. The method is tested on sample workspaces with scattered convex 

polyhedra and its computational performance is evaluated. The work demonstrates the NP-

hardness aspect of the problem which becomes quickly intractable as added components 

or increase in facets are considered.  
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Chapter One 

INTRODUCTION 

Finding the shortest path between two given points in an environment has been one 

of the classical problems in geometry. Without any obstacles to block the line of sight 

between the two points, the shortest path is trivially the line segment that connects the two. 

The problem, however, becomes challenging when the two points are not visible to each 

other due to the presence of obstacles blocking the direct path.  

Path planning emerges in a variety of real-world problems. For example, as new 

features are continuously added to complex electromechanical systems such as hybrid 

electric vehicles, the number of their wire or cable connectors is considerably increased 

and the wire harnesses are becoming heavier and more complex to be designed. According 

to studies (for example see [1]), cabling is the third heaviest and costliest component in a 

car after its engine and chassis. Traditionally, cables and hoses have been routed using a 

manual trial-and-error approach in CAD software. The routing might be tested on 

prototypes [2]; however, it mainly relies on the experience of skilled engineers [3]. This 

makes the process time-consuming, tedious, and error-prone [4]. In addition, it could result 

in non-optimal solutions. Therefore, an optimal cable routing method is required to reduce 

their length and therefore minimize the total weight of the system.   

While cable/wire routing is an example of path planning in cluttered environments 

and the main focus of the present study, other examples include robot motion planning, 

VLSI (Very Large Scale Integration) design, transportations, pipe routing (in ships and 

process plants), and navigation problems (e.g. vehicle routing, and UAV path planning). 

1 
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Tremendous effort has been made to address different instances of this problem in 

both two- and three-dimensional workspaces. All these studies have one element in 

common; they attempt to identify a finite number of waypoints between the path start and 

goal points and then connect the found waypoints in series to form piecewise linear and 

collision-free paths. While the waypoints can be located anywhere in the collision-free 

space, studies show that to minimize the length of the path, the waypoints should lie on the 

vertices (in 2D workspaces) or the edges of (in 3D workspaces) the intersecting obstacles 

or at an offset from their entities (if an object must not be touched; for example to avoid 

sharp edges or high-temperature surfaces). In cases where the path constructed by the 

waypoints is not unique, the points are concatenated in a graph, which is later searched 

using algorithms such as Dijkstra [5] or A*  [6] to find the global shortest collision-free 

path on the graph.  

In addition to the main objective, minimization of the path length, there might be 

other criteria such as minimizing the number of turns in the path. This could be critical in 

instances where turns in the path cause complications and should be avoided. The design 

of the layout of chemical process plants with thousands of pipes or motion planning of 

robots with arbitrary geometry in densely populated environments are examples of path 

planning problems where the number of turns should be minimized in addition to the path 

length.  

Besides avoiding intersection with any of the obstacles in the workspace, there 

could also be constraints on the path turn angle, further limiting the feasible space of the 

optimization problem. Other factors may also increase the complexity of the problem 
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including complexities in the shapes of the obstacles (e.g. holes or nonconvexities), 

increase in the number of intersecting obstacles, and maintaining a set clearance between 

the obstacles at all times. These factors, though not fundamental to this study, are 

occasionally discussed throughout this manuscript.   

The two-dimensional class of collision-free path planning has gained extensive 

attention by scholars and a variety of exact as well as non-exact methods have been 

developed to tackle its different instances.  

In our previous work, an exact geometric-based algorithm for planar routing in 

cluttered environments is presented. The effort is made to overcome the computational 

limitations of the classical visibility graph (the only exact path planning method available) 

by constructing candidate partial visibility graphs. The algorithm makes use of the convex 

hulls of the intersecting objects to construct collision-free graphs. The advantage of using 

the convex hulls is that it enables handling any free form obstacle in the workspace. The 

developed algorithm has a proven time complexity of 𝑂(𝑛𝑙𝑜𝑔(
𝑛

𝑓
)) for n vertices and f 

intersecting objects which is a significant improvement from the classical visibility and its 

variants. Further, the algorithm outperforms its competitors in constructing partial visibility 

graphs that are used to yield the globally optimum solution in addition to being faster.   

Apart from finding the shortest collision-free path between two given points, there 

are problems wherein multiple points in the environment are to be connected with the 

shortest segments. This can be seen in cable/wire routing in electromechanical systems that 

connect different system components or piping systems in chemical process plants and 

ships.  
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Other non-intuitive applications of multipath planning problems include but may 

not be limited to facility location in the presence of obstacles, layout design of wind farms, 

and design of transportation networks. Facility location is the problem of locating one or 

more new facilities in the proximity of existing facilities to minimize (or maximize) the 

distances between all facilities while avoiding both the placement of the new facilities 

inside and the travel through forbidden areas. These applications are further discussed in 

Chapter 3 along with the existing methods to address them.  

In multipath planning problems, instead of finding the shortest path between any 

pair of points separately, a more efficient approach is to create the main route which can 

then branch out to reach different nodes; this results in a shorter network of paths. The 

problem, therefore, can be deemed as finding a minimum length network in the presence 

of obstacles.  

Steiner Minimal Tree (SMT) and Minimum Spanning Tree (MST) are the most 

popular methods to find the minimum length tree (or network) that connects multiple points 

in a known network. These methods, however, do not deal with the collision avoidance 

constraint that is common in cluttered environments.  

Building on and extending our previous work on the 2D convex hull based path 

planning method, the present study addresses the multipath planning problem in two-

dimensional spaces by answering the question: what is the optimal layout of a network of 

points in the presence of obstacles?  

This is a cable harness design problem; the harness trunk includes the majority of 

the cables together, and then they are distributed to connect to their respective nodes. The 
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problem is formulated as a bi-objective optimization problem whose objectives are (1) to 

minimize the overall length of the network and (2) to maximize the common length of the 

paths.  

Most real-world path planning problems, however, are in 3D space. Nonetheless, 

moving to 3D space introduces more complexities that make most of the existing methods 

for 2D problems inefficient for three dimensions. Due to these complexities, most methods 

developed for 3D problems attempt to address the simplified version of the generic path 

planning problem in the presence of obstacles. The methods mainly make use of heuristic 

or stochastic techniques that may not be able to guarantee the attainment of the globally 

optimum solution. These methods are discussed in detail in Chapter Four. 

Based on this background, the second part of this study investigates the possibility 

of developing a deterministic optimization method to find the shortest collision-free path 

in cluttered 3D environments. As stated by Canny [7], the shortest collision-free path in 

3D cluttered environments passes through the edges of some of the obstacles if there is no 

direct path from start to end. This research, therefore, answers the questions of where and 

how the waypoints should be located on obstacle edges in a known 3D cluttered 

environment.  

Dissertation Organization 

The following provides an overview of the organization and content of each chapter 

in this dissertation, following Chapter One.  

Chapter Two begins with a description of the 2D path planning problem and the 

existing methods to address it. The chapter discusses the contributions and limitations of 
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the related work on 2D problems along with an explanation of our previously developed 

convex hull based approach for 2D planar problems in a cluttered environment. The 

extension of these studies to 3D problems is also briefly discussed.   

Chapter Three is allocated to the discussion of multipath planning problems with 

a particular focus on 2D problems. The review of the related work is provided and the 

specific application of this problem in cable harness design is explored. Finally, an 

optimization paradigm for cable harness layout in 2D cluttered environments is proposed 

and results are further presented.  

Chapter Four serves as the second part of the literature review on path planning 

problems as it focuses on 3D cluttered environments. The discussion of the existing 

methods to tackle this class of path planning problems leads to the identification of gaps in 

methods to address 3D path planning problems which is the basis of the hypothesis in this 

research.   

Chapter Five sets the stage for the development of the deterministic 3D path 

planning algorithm by stating the definitions used and assumptions made throughout this 

study. In addition, the workspace representation and data types/structures used to organize 

the geometric data of the workspace are also explained. Finally, the formulations of the 

graph construction and the shortest path problems are given.  

Chapter Six details the geometric algorithms used to detect two types of 

intersections in 3D space: (1) between a line and a 3D object and (2) between two triangles. 

The former is used to detect intersecting objects while the latter is used as a step in 

constructing the collision-free graph using the information of the intersecting objects on 
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the way to the path goal point. Intersection detection is at the core of the 3D graph 

construction algorithm proposed in this research.  

Chapter Seven portrays the steps in constructing the collision-free graph in a given 

workspace after the identification of the intersecting objects. It also presents the results of 

applying the developed 3D path planning algorithms on a variety of test cases. Further, a 

discussion of the contribution of this research in routing applications as well as the 

limitations of the method is provided. 

Chapter Eight concludes this dissertation by summarizing the major research 

findings and the limitations of the proposed methods to design cable harnesses and route 

3D connectors. It, additionally, presents research questions that can be explored in the 

future as potential extensions of the present study and research avenues that could be 

further explored.  
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Chapter Two 

AN OVERVIEW OF 2D PATH PLANNING PROBLEMS AND SOLUTION 

METHODS 

The Path Planning problem has been widely studied in the literature. Whether one 

is interested in solving a problem modeled on a network graph or a more real-world 

planning problem in 3D, the solution methods developed so far can be summarized and 

classified into four main categories that are explained in this chapter, though not all of them 

address the problem in full generality [8].  

This chapter is allocated to an overview of the related work on path planning 

problems in 2D environments in particular. First, different approaches to address path-

planning problems in a variety of environments are explained along with their assumptions 

and constraints. Next, the different approaches are compared based on the optimality of the 

solution they provide and their computational efficiency. Finally, the gaps in the literature 

are identified and our solution to bridge one gap is presented. The developed method is the 

basis of the 2D multipath planning problem that is explained in Chapter 3. The path 

planning problem in 3D environments is further discussed in Chapters 4 through 8. 

2.1 Roadmap techniques 

Roadmap techniques are among the first methods to address path planning 

problems. These methods map the free space to a connectivity graph that is later searched 

to find the shortest path. Roadmaps are geometric based methods, meaning they take into 

account the geometric properties of the obstacles when constructing the graph. According 

to Tran et al. [9], geometric-based path planning methods are more accurate than their 
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heuristic and stochastic competitors. The visibility graph and retraction method (using 

Voronoi diagrams) are examples of roadmap techniques. 

2.1.1 Visibility graphs 

Constructing the “visibility graph” to model the free space is deemed the first 

method in computational geometry to address the shortest path problem [10]. The method 

is introduced by Nilsson [11] to plan a safe path for a mobile robot.  

The visibility graph of a set of polygonal objects in 2D consists of visible vertices 

of the objects that are connected by non-intersecting line segments. Any two nodes that can 

be connected by a line segment not intersecting any obstacles in the workspace are visible. 

Figure 2.1 shows an example of a visibility graph created for an environment with two 

objects.  

 

Figure 2.1 Sample visibility graph for two objects 

 

The method is widely applied to different planning problems to reduce the routing 

problem to that of searching a graph of the feasible solutions, for example, see [12–16]. It 

is noteworthy that for robot motion planning, a configuration space introduced by Udupa 

[17] is first obtained that dilates the obstacles using the Minkowski sum of the robot’s 
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geometry and the obstacle space. Consequently, the polygonal robot is treated as a moving 

point instead of a moving object. For example, Lozano and Wesley [13] tackled the 

problem of planning a collision-free path for a moving object of a known geometry among 

polyhedral obstacles using visibility graphs. To find the configuration space of the 

problem, they considered the position as well as the orientation of the robot. After 

determining the configuration space, a visibility graph needs to be constructed and finally 

searched for the shortest path. 

Despite its simplicity and completeness, the brute-force algorithm to generate the 

visibility graph is computationally expensive since it explores all the obstacle vertices [18]. 

In fact, the classical algorithm to develop the visibility graph of an environment in 2D takes 

𝑂(𝑛3) time where 𝑛 is the total number of vertices [19]. Hence, researchers have attempted 

to improve the efficiency of the visibility algorithm in one of these two ways: (1) 

developing more efficient algorithms to create the complete visibility graph and (2) 

downsizing and creating the partial visibility graph by eliminating the unnecessary edges.   

2.1.1.1 Efficient algorithms for visibility graph construction 

The early efforts in generating the complete visibility graph through developing 

more efficient algorithms date back to the studies by Lee [20], Welzl [21], and Asano et al. 

[22,23]. Lee’s algorithm improves the complexity of classical visibility up to 𝑂(𝑛2𝑙𝑜𝑔 𝑛) 

while Welzl and Asano, in their separate research works, have further improved it to 𝑂(𝑛2).  

Sharir and Schorr [24] investigated the shortest paths in 2D spaces with polyhedral 

obstacles. They developed an algorithm that constructs the visibility graph of the 

environment with n total number of vertices in 𝑂(𝑛2𝑙𝑜𝑔 𝑛) time although they presented 
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some special cases for which the time complexity of the construction could be improved 

up to 𝑂(𝑛 𝑙𝑜𝑔 𝑛). 

Additionally, Ghosh and Mount [25] achieved an output-sensitive algorithm with 

𝑂(𝐸 +  𝑛 𝑙𝑜𝑔 𝑛) time that computes the visibility graph for E edges of the visibility graph 

and n obstacle vertices. Readers are referred to [15,24,26–28] for further examples of 

efficient algorithms for the visibility graph generation. 

2.1.1.2 Downsizing and partial visibility graph algorithms 

Since the classical visibility graph is comprised of all non-intersecting segments, 

some of them might not be useful to find the shortest path. As claimed by Wein [29], for 

example, the edges created by nonconvex vertices are never used in the shortest path, 

therefore, they can be simply removed. In this section, some of the developed algorithms 

to construct partial visibility graphs are presented.   

In a study by Clarkson [30], a method is proposed to improve the time complexity 

of the visibility-based shortest path algorithm. His developed technique works based on 

eliminating some of the unnecessary edges of the visibility graph. To construct the reduced 

visibility graph, he creates a family of cones per each vertex of the obstacles. The apex of 

the cones is the corresponding vertex of the obstacle. The edges of the reduced graph are 

segments between the apexes and the closest visible points in each cone. The reduced graph 

is a subset of the original visibility graph that needs to be augmented by the start and goal 

points of the path. The edges connected to the start and goal are added analogous to the 

other edges in the graph using the conical regions. A sample conical region is shown in 

Figure 2.2. He then applies the algorithm developed by Fredman and Tarjan [31] to find 
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the ε-shortest path. The ε-short path is the path that has a length no longer than (1 + 𝜀) 

times the shortest path. Clarkson’s algorithm is capable of constructing the data structure 

in 𝑂(𝑛 𝑙𝑜𝑔 𝑛) and finding the ε-shortest path in 2D cases in 𝑂(𝑛 𝑙𝑜𝑔 𝑛 + 𝑛/𝜀) time, with 

n vertices and ε, 0 ≤ 𝜀 ≤ .      

 

Figure 2.2 Sample conical region in Clarkson’s method [30] 

Hershberger and Guibas [32] considered downsizing the visibility graph. They 

developed a pruning heuristics decision making that removes the unnecessary edges based 

on mathematical rules and the triangle inequality. Their algorithm finds the shortest path 

for a moving convex body in 𝑂(𝑛2) time.  

Rohnert [33] in another study developed an algorithm that computes the shortest 

path in a Euclidean plane in the presence of disjoint convex polygonal obstacles in 𝑂(𝑓2 +

𝑛 𝑙𝑜𝑔 𝑛) time for f number of obstacles. His algorithm generates the local visibility graph 

that works efficiently for planes with convex obstacles. He introduced the supporting 

segments between polygons and claimed that the shortest collision-free path between two 

given points passes through both the polygon edges and supporting segments. A supporting 

segment as defined by Rohnert is the common tangent line segment between two polygons. 

The supporting segments between two convex polygons are depicted in Figure 2.3. He then 

suggested that the partial visibility graph needs to be constructed using only the supporting 
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segments and the polygon edges. However, the supporting segments that intersect with 

other polygons of the environment are removed from the visibility graph. The elimination 

of these supporting segments may, however, restrict the feasible region and cause difficulty 

in reaching the globally optimal path.  

 

Figure 2.3 Supporting segments defined by Rohnert [33] 

Following Rohnert’s approach to reducing the visibility graph, Priya and Sridharan 

[34] developed a faster algorithm to create the supporting segments. Their algorithm 

benefits from a coding paradigm that identifies the tangent segments. They assign binary 

codes to different inner and outer regions created by a polygon and identify tangents by 

operating on these codes. Similar to Rohnert’s technique, they remove the intersecting 

supporting segments from the visibility graph. Their algorithm can generate a reduced 

visibility graph in 𝑂(𝑓2 + 𝑙𝑜𝑔((𝑛/𝑓)2)) which is an improvement from Rohnert’s. 

More recently, Jan et al. [35] have proposed an algorithm based on the Delaunay 

triangulation to reduce the size of the visibility graph and find the near-shortest path.  
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Figure 2.4 Steps in Jan’s method [35] 
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Although the algorithm’s dominant time complexity is found 𝑂(𝑛 𝑙𝑜𝑔 𝑛), for 𝑛 

obstacles, it requires multiple post-processing refinements and it only generates the near-

shortest path [36]. The method also requires complete knowledge of the environment a 

priori to be able to perform the triangulation, which makes it inefficient for real-time 

planning problems. Moreover, as noted by Qureshi and Ayaz [37], Jan’s method is limited 

to low dimensional spaces as it works based on workspace discretization which makes it 

inefficient for higher dimensions. The general steps in Jan’s method are illustrated in 

Figure 2.4.      

In another planar path-planning study, Jafarzadeh et al. [38] developed an exact 

method that applies to static environments with convex as well as nonconvex shapes. Their 

algorithm reduces the size of the graph by identifying the effective polygons and 

eliminating their unnecessary vertices from the graph. This algorithm finds the shortest 

path in 𝑂(𝑛𝑛′2
), where n is the total number of vertices and 𝑛′ is the number of graph’s 

nodes.  

In addition to reducing the graph size, some scholars proposed methods to create 

the graph for a limited region in the workspace, i.e. restricting the feasible region to that of 

the shorter paths. For example, one algorithm computes a region by the extreme vertices 

of the intersecting obstacles [39]. In another study [40], a grouping technique is proposed 

to merge multiple smaller neighboring obstacles into a bigger one (see Figure 2.5). 

Although this method reduces the number of obstacles, it compromises finding the global 

solution as it excludes the regions in between the smaller obstacles. This situation may 

worsen in tighter workspaces wherein the path should go through narrow passages.  
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Figure 2.5 Steps in grouping obstacles in Toan’s method [40] 

Along with these efforts, Gasilov et al. [41] presented a technique that reduces the 

feasible region to an ellipse created by the start and goal points of the path as the two ellipse 

foci. They claim that based on the definition of an ellipse it is the right representative of 

the feasible region. Hence, paths found in the ellipsoidal region would be optimal. An 

example of such an ellipsoidal region with an optimal path is shown in Figure 2.6. 

 

Figure 2.6 Ellipsoidal bounding region for downsizing of visibility graph [41] 
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In a rather similar manner, Badariyah et al. [42] proposed a method that limits the 

graph generation to an equilateral area. They create the visibility graph on a rhombus-

shaped region, the diagonals of which are the baseline (the line connecting the start and 

goal points of the path), and the line perpendicular to the baseline at its midpoint. Despite 

the efficiency of the proposed algorithm in yielding the globally optimal path, it still 

generates unnecessary edges in the visibility graph of the limited region, and not all the 

obstacles that lie inside the region may be useful in finding the shortest path. 

In the aforementioned studies, if efficient, the proposed methods are only valid for 

special cases that involve convex objects and if the objects are non-convex, a 

convexification is performed a priori. In some applications [32,43], the complete visibility 

graph has to still be developed and then downsized via removing some of the edges. In 

addition, the free space graph is created using all obstacles in the workspace or by limiting 

its feasible region [40–42] regardless of their contribution to the shortest path which could 

result in near-optimal solutions. In other studies [35], graph construction needs pre or post-

processing steps to refine the final solution and obtain results closer to the global optimum.  

2.1.2 Voronoi diagrams    

Researchers have also utilized Voronoi diagrams in solving path-planning 

problems over the past decades [44]. Ó'Dúnlaing and Yap [45] are pioneers of using 

Voronoi diagrams for solving planning problems by introducing the “Retraction Method”. 

Simultaneously, though independently, Brooks [46], introduced the freeway technique, 

which is a more empirical version of the retraction by the notion of Voronoi diagrams.  
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As defined by O’Rourke [10], the Voronoi region of a point p, on a plane, is the set 

of all points that are closer to p than any other specified points or sites. By this definition, 

the Voronoi diagram of a set of n disjoint planar polygons divides the plane into n maximal 

clearance connected cells [47]. An edge of a Voronoi diagram is equidistant to two vertices 

or polygon edges while any Voronoi vertex is equidistant to vertices or edges of at least 

three polygons. Figure 2.7 illustrates a Voronoi diagram of four obstacles in a plane.  

 

Figure 2.7 Example of a Voronoi diagram with four obstacles [47] 

Bhattacharya and Gavrilova [48], undertook the problem of 2D path planning using 

Voronoi diagrams and developed a shortest-path algorithm that works in 𝑂(𝑛 𝑙𝑜𝑔 𝑛) time, 

n being the total number of vertices. They create the Voronoi diagram of the workspace by 

approximating the obstacles by their boundary points. They then dynamically add the start 

and goal points into the diagram and connect them to all Voronoi vertices to avoid 

intersections. Next, they define the minimum clearance, c, from the obstacles, and remove 

all the edges of the Voronoi diagram that result in a clearance less than c. Finally, they 

apply Dijkstra’s search algorithm to find the shortest path on the graph.  
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A downside to this method is that the solution found might require some smoothing 

and refinement since the shortest path includes redundant vertices and unnecessary turns. 

The Voronoi diagram is effective for cases where the maximal clearance or the 

safest path is of particular interest, for example, see [49–51]. Additionally, a generalization 

of this method is presented in [52]. Since the edges of the Voronoi diagram are created by 

the points equidistant from pairs of vertices and/or edges of the two closest obstacles, it 

results in the maximal clearance path, which is not necessarily the shortest.  

To achieve the shortest path and at the same time maintain a certain clearance from 

the obstacles, Wein et al. [47] proposed an algorithm applicable to small-sized workspaces. 

They improved the efficiency of their algorithm up to 𝑂(𝑛2𝑙𝑜𝑔 𝑛), over the time-expensive 

visibility graph construction. The algorithm evolves from a visibility graph to a Voronoi 

diagram as c grows from 0 to ∞. In the preprocessing phase, they grow the polygonal 

obstacles by c using the Minkowski sum of the polygon and a disk of radius c. They then, 

construct the visibility graph of the grown obstacles. In case a narrow passage is blocked 

by two or more of the grown obstacles, they find the intersection of the union of the grown 

obstacles and the Voronoi diagram, hence replacing the blocked portion by a Voronoi edge 

passing through the narrow passage. Although the clearance of the Voronoi edge from the 

blocking obstacles is less than c and it may yield sharp turns, to ensure the shortest path is 

achieved, this passage is allowed. The graph is later searched using Dijkstra’s algorithm to 

find the shortest path. Despite the proven efficiency of this algorithm, it may not be 

practical to apply it to larger-scale problems [48].    



 

20 

2.2 Cell decomposition 

Cell Decomposition method [53–55] aims at partitioning the collision-free space 

into a finite number of non-overlapping cells. The decomposition could be conducted either 

exactly or approximately [8]. The exact method decomposes the free space into cells of 

triangular and/or trapezoidal shapes [8]. Alternatively, the approximate decomposition 

starts with discretizing the workspace to a known number of cells of prespecified shape. 

The dividing of the cells is continued recursively until each cell is located completely inside 

or outside the obstacle space or a termination criterion is achieved.  

Quadtree and octree techniques [8] are examples of approximate cell 

decomposition where the decompositions are in four (for 2D) and eight (for 3D) cells 

respectively. After the decomposition is complete, the neighboring cells are connected in 

the form of a graph capturing their adjacency information to search for the shortest path. 

More applications of cell decomposition in routing problems can be found in [56,57].  

Neither exact nor approximate cell decomposition is efficient in finding the shortest 

path since the exact algorithm cannot provide the global solution and the approximate 

algorithm is not computationally efficient [58]. 

2.3 Potential Fields (PF) 

In the PF method, first developed by Khatib [59], scalar functions similar to 

electrostatic potentials are assigned to all nodes of the search graph. The potentials assigned 

to the obstacles are the highest. The objective is then to find the path with the minimum 

electrostatic potential, thus avoiding collisions.  
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Unlike roadmaps and cell decomposition, PF is a local optimization method for 

which the development of a graph from the free space is not needed[8]. Despite its 

efficiency in dealing with collisions in real-time, as Overmars [60] states, PF’s main 

drawback is the possibility of it getting stuck at local minima other than the goal, preventing 

the attainment of the true optimum. In addition to its main drawback, PF performs poorly 

in planning a path through narrow passages [61].   

However, in recent years some heuristic techniques are introduced to reduce the 

risk of being trapped at a local optimum, (for example see [62–66]) though the techniques 

are predominantly applicable to special cases or otherwise increase the computational time 

drastically [60]. 

2.4 Stochastic and Sampling-Based methods 

The probabilistic RoadMap (PRM) method, first presented by Overmars [60], 

generates a random graph in the free space. The probabilistic algorithm first adds the start 

and goal nodes to the graph; then introduces random nodes in the free space to be added to 

the graph until a complete path through the randomly generated nodes connects the start 

and goal. For more details and implementation examples, readers are referred to [67–71]. 

Also, other variants of PRM known as Rapidly-exploring Random Trees (RRTs) are 

presented in [37,72].  

Intermittent Diffusion is another stochastic method for solving shortest path 

problems [73]. Lu et al. developed a stochastic algorithm based on intermittent diffusion 

that solves the path-planning problem in cluttered dynamic environments. They used a 

mathematical approach and modeled the path as a curve, the length of which is to be 
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minimized. To achieve the global solution, they use Intermittent Diffusion that finds a good 

approximation of the global minimizer of a scalar function [74]. Since the method is 

stochastic, the probability of achieving the global solution increases by increasing the run 

time. According to Chow et al., the method is proven efficient in solving 3D path-planning 

in static as well as dynamic environments scattered by obstacles with C2 continuous 

boundaries.   

PRM and other stochastic methods may be effective in dealing with dynamic or on-

line path-planning problems. However, they may have difficulty meeting the optimization 

criteria of the path-planning due to the probabilistic nature of such algorithms in 

constructing the graph [75]. 

2.5 Heuristic methods 

  In addition to the four widely used algorithms for path planning problems, 

researchers have started integrating mathematical and heuristic methods to solve larger 

scale and real-time routing problems [76–82]. Most popular heuristic methods to solve path 

planning problems include the Genetic Algorithm, Simulated Annealing, and Ant Colony, 

although Tabu Search and Hill Climbing have also been used in the past. Despite their 

efficiency in solving NP-hard problems, they are not exact mathematical optimization 

methods; hence, there is no guarantee they can find the global solution.  

In the next section, a comparison of the path planning methods is provided followed 

by a discussion of the limitations of the previous work and a proposed solution to address 

such limitations.  
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2.6 Comparison of path planning methods 

The review of the related methods for 2D planning shows among all developed and 

practiced path planning methods, only visibility roadmaps have both properties of being 

able to guarantee the attainment of the globally optimal solution and being exact [60] as 

shown in Table 2.1. However, they could be computationally expensive. Although efforts 

have been made to improve the efficiency of the visibility method, they still fall short of 

yielding the global solution to the problem. A resolution to this challenge is suggested in 

the next section which is proven efficient for planar path planning problems. 

The C-hull based approach described in [83] reduces the complete visibility graph 

to a local graph without loss of generality and therefore improves the efficiency of the 

graph construction algorithm. Unlike the previous algorithms [34,39], this algorithm does 

not require any pre-processing such as the convexification of any of the obstacles, neither 

does it need post-processing steps [33,35] to prune the graph. Therefore, it applies to the 

generalized path-planning problems on a plane including routing through narrow passages 

between obstacles that may be non-convex and is proven to generate the globally optimal 

solution. 
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2.7 Planar convex hull based approach for 2D routing  

To overcome the above-mentioned challenges in roadmap development, Masoudi 

et al. [83] proposed an algorithm to construct the free space graph in a 2D environment 

scattered with arbitrarily shaped objects with the time complexity of 𝑂(𝑛 𝑙𝑜𝑔(
𝑛

𝑓
)) for n 

vertices and f intersecting objects. The algorithm benefits from the convex hulls of 

intersecting objects which contain the candidate nodes and edges of the roadmap.  

 

Figure 2.8 Generation of the convex hulls of the intersecting objects 

After the intersecting objects are determined, they are ordered from the closest to 

the start point to the farthest. The algorithm then starts with creating the convex hull with 

the start point and the first intersecting object as shown in Figure 2.8. On this convex hull, 

two extreme points are identified. The extreme points are the points on the convex hull 

with maximum distances from the line connecting the start and goal points (see Figure 2.8). 

by this definition, two extreme points are identifiable on each convex hull, one per each 

side of the line. After the extreme points are found, each is set as the new start point of the 

path. At this step the algorithm checks for a direct collision-free path between the new start 

point and the goal point. If one exists, the algorithm is terminated; otherwise, the new 
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intersecting objects are identified, and another convex hull is created using the new start 

point and the first intersecting object. This process is iteratively continued until a complete 

collision-free graph is formed. The nodes of this graph are vertices of the objects on the 

series of convex hulls while the graph edges are extracted from the edges of the convex 

hulls.  

Using convex hulls of only the intersecting objects leads to the construction of a 

smaller graph as well as handling both convex and non-convex obstacles by a more 

computationally efficient means, outperforming the previous methods. After the graph is 

completed, Dijkstra’s search algorithm is applied to output the shortest route from the start 

to the goal. A graph with the shortest path between the start and goal points for a workspace 

with four arbitrary objects is shown in Figure 2.9. 

 

Figure 2.9 The solution of C-hull based planning 
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Table 2.2 Comparison of methods to improve visibility algorithm 

 Reference  Approach Time complexity 

Efficient 

algorithms for 

complete 

visibility 

Welzl [21], Asano[23], Hershberger 

[32]  

Efficient Visibility 

algorithm 
𝑂(𝑛2) 

Lee [20], Wein[47], Sharir and Schorr 

[84]  

Visibility 𝑂(𝑛2𝑙𝑜𝑔 𝑛) 

Ghosh and Mount[25] Output-sensitive 

visibility 

𝑂(𝐸 + 𝑛 𝑙𝑜𝑔 𝑛) 

Reduced size 

visibility 

Rohnert [85] Partial visibility graph 𝑂(𝑛 + 𝑓2𝑙𝑜𝑔 𝑛) 

Priya et al. [34] Reduced Visibility 𝑂(𝑓2 + log ((𝑛/𝑓)2)) 

Jan [35] Delaunay Triangulation 𝑂(𝑛 𝑙𝑜𝑔 𝑛) 

Jafarzadeh et al. [38] Geometry-based  𝑂(𝑛𝑛′2
) 

C-hull Based Roadmap [83] Convex hulls 𝑂(𝑛 𝑙𝑜𝑔(𝑛/𝑓)) 

 

Table 2.2 summarizes and compares the attempts to downsize the visibility graph 

or improve the algorithm’s performance based on the time complexity and their ability to 

obtain the globally optimum solution. As seen in Table 2.2, the C-hull based roadmap 

outperforms the other efficient algorithms developed to date. The presented time 

complexities only include the graph construction step. 

Even though this algorithm is efficient in dealing with any planar routing problems 

among scattered obstacles, the exact algorithm may not be generalized to the 3D routing 

problems. Irrespective of the computational time, the idea of employing convex hulls to 

identify the next set of traveling points, while working efficiently for 2D problems, may 

not apply to 3D problems. 3D convex hulls contain more than two extreme points which 

make the identification of extreme points not as evident as in 2D. Hence, if an approach 

based on the convex hull notion is to be employed for 3D routing problems, a new method 

to identify the waypoints on the obstacle edges must be developed. This is further discussed 

in Chapter 7. For more details on the applicability of the convex hull based method to 3D 

problems, please refer to [83]. 
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The next chapter discusses multipath planning problems in 2D cluttered 

environments using the convex hull based approach.  
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Chapter Three 

2D MULTIPATH PLANNING AND THE CABLE HARNESS DESIGN PROBLEM  

Even though planning the shortest path between two points in a cluttered 

environment is essential in applications such as robot motion planning, real-world routing 

problems often require planning of multiple routes, e.g. pipe routing or cable harness 

design. In complex interconnected systems like automobiles and aircraft, hundreds to 

thousands of wires and cables are required to connect various components of the system. 

The routing of these wires, therefore, becomes the multipath planning problem where 

multiple wires or cables are to be routed while collision with any of the objects (or even 

other wires) is prohibited. Often, these wires are bundled to form a cable harness assembly 

and start to branch out at a breakout point to connect to a system component. The number 

and location of these breakouts can then determine the final layout of the cable harness 

assembly.  

Building on the results of Chapter 2, this chapter addresses the multipath planning 

problem in a 2D cluttered environment with a focus on cable harness design problems. The 

objective is to develop an optimization framework to determine the optimal locations of 

the breakouts in cable harness assemblies.  

The chapter starts with a review of the related work and the identification of gaps 

in the literature. Then, a solution is proposed and tested to address some of the limitations 

in the previous studies.  
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3.1 Review of the related work  

The design and routing of cable harness assemblies have been a challenging 

problem for decades. Yan et al. in a survey of design of cable harness assemblies [86] and 

Ng et al. [4] independently pointed out several challenges in the design process of cable 

harnesses such as being costly, time-consuming, complex, tedious, and often done by a 

trial-and-error approach in the late stage of detailed design that leaves limited space for 

harnesses. They claim that even though attempts have been made to fully automate the 

process, they were not completely successful and human input is still demanded at different 

stages of design.  

By this introduction, efforts to address cable branching and layout design are 

channelized in two main directions, each of which has their sub-branches: (1) Design 

process for cabling in different products/systems and (2) optimization of the cable layouts 

to satisfy various objectives including but not limited to the minimization of wire lengths, 

minimization of the number of branches, and minimization of the number of breakouts or 

junctions.  

It is also noteworthy that these categories are not mutually exclusive; for example, 

in some of the design-based studies that are discussed in the next section, optimization of 

the wire/cable routes are also considered as a step in the design process. The optimization 

class of approaches, on the other hand, mainly focuses on developing or deploying a 

mathematical framework to achieve the set objectives while satisfying the optimization 

constraints. Therefore, these efforts often overlook the actual design process that leads to 
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the development of the final product or system. A classified summary of the studies 

reviewed in this research is shown in Figure 3.1. 

 

Figure 3.1 The literature review of cable harness design 

3.1.1 Design of cable harnesses and piping systems 

Design of one-dimensional connectors such as wires or pipes is a complex problem 

as the designer is often left with a limited free space to squeeze a large number of 

components, the requirements are varied across the multiple disciplines involved, and the 

sizes of the components can also be different [3]. For example, there could be requirements 

on the bending stiffness and mass distribution in a cable, or some requirements may even 

change depending on a region in the environment such as a high-temperature zone that 

requires thicker cables or insulation [3]. Therefore, different tools have been developed 

over the years to assist the designer from modeling the design environments and connectors 
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to choosing the route and size of wires or pipes. In addition, design methods such as case 

studies have been followed in designing cabling and piping systems.   

While pipe routing and cable/wire routing may seem to be similar to the problems 

of planning paths for one-dimensional connectors in a system, the two have fundamental 

differences. For example, it is evident that the piping system is most often comprised of 

orthogonal routes for which the Manhattan distance metric is used, whereas, cables or wires 

have more flexibility in their shapes and therefore Euclidean metric is a more appropriate 

measure of distance for them. 

The remainder of this section is allocated to the review of the related work in the 

design and optimization of cable harness layouts and similar problems.  

3.1.1.1 Design tools 

CAD and computer-based models in the design process 

CAD and other computer-based models are helpful tools in the design process of 

pipes and wire harnesses. In this section, a review of the research efforts in this area is 

provided starting with the piping systems in ships or power plants.  

An integrated computer-aided piping design system for the design, planning, and 

fabrication of piping systems in ships is introduced in [87] as one of the early works in the 

computer-based design of piping systems.  

Another geometric modeling kernel is introduced in [88] based on documented 

design regulations and human designer’s knowledge, which aids designers in modeling 

ship pipes by providing a user interface.  
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Roh et al. [89] pointed out a shortcoming in the then-available CAD support 

systems for ship pipe designs. Even though CAD packages were available at the time to 

support the designers, there was a lack of relationship between the CAD model of the pipes 

and the hull structure, i.e., any changes in the hull structure would have not affected the 

pipe model and vice versa [89]. Hence, if any changes were made to the hull structure, the 

designer had to manually modify the piping model to reflect such changes. To overcome 

this limitation, Roh et al. proposed a method that generates the piping model considering 

its dependence upon the hull structure. The method, however, does not consider the effects 

of the changes in the piping model on the hull structure.  

Other studies explored CAD support systems specifically designed for wire/cable 

harness design, some of which are briefly explained here.  

For instance, Billsdon and Wallington developed a CAD package that assists human 

designers with selecting the parts to be connected in an attempt to address the lack of a 

standard CAD software package for wiring harness design [90]. At the outset, a harness 

assembly drawing, which can be created using Microsoft Visio, is inputted to the system. 

The software then outputs a design sequence to connect the chosen parts. It also provides 

guidance on selecting wire sizes and materials based on the imposed design constraints. 

Although the package is made to work interactively, the final path for wires may not 

necessarily be optimal. 

In another study, Lindfors et al. compared the cabling design done on physical 

prototypes with that of CAD software [2]. Although in their view, CAD packages save 
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designers’ time by removing the need to test the design on physical prototypes, hardly could 

these systems yield an optimal solution for the configuration design. 

Additionally, a flexible geometric model of cables with B-splines for virtual 

maintenance using VRML (Virtual Reality Modeling Language) is presented in [91]. 

A review of the CAD packages capable of routing cable harnesses is provided by 

Han and Guo [92] followed by a new cable harness modeling approach using design rules 

in Pro/E software.    

Design guidelines  

The focus on the design of cable harnesses mainly leads to developing a set of 

design guidelines rather than identifying ways to find the optimal configuration for the 

cable harness. For example, Lin et al. [93] developed a set of instructions for cost 

minimization of wire routing and wire sizing in electrical circuits while also considering 

the shortest routes for wires found using the depth-first method. 

Virtual Reality 

In recent years researchers have extensively studied the incorporation of Virtual 

Reality in the design and planning of cable harnesses [86,94]. This tool allows the designer 

to apply his/her knowledge and expertise in the design process especially where human 

input is required and makes a difference to the outcome of the design.  

Ng et al. in a series of research studies [4,95–98] proposed a possible 

implementation of a virtual reality environment to model the design process of cable 

harnesses with the use of a designer’s expertise. They claim that their approach enhances 
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the current automation degree in the process and enables the designer to develop the design 

schematic faster than using the previous methods [4].   

Park et al. [3,99] discussed other levels of human interaction and collaboration in 

the concurrent and often multidisciplinary design of cable harnesses from modeling the 

workspace to assessing the final design solution.   

Knowledge-based and Concurrent Engineering 

In line with virtual reality tools for the design process to benefit from the human 

designer’s input, some researchers also focused on the design and simulation of cables 

using human knowledge and Artificial Intelligence (AI) [100]. As in the past, cable layouts 

were carried out on prototypes or physical mockups based on human knowledge and 

experience, these researchers argue that this experience should not be overlooked. For 

example, in [101,102] different knowledge-based routing techniques are employed for the 

cable design problem. In this view, two approaches are generally taken: (1) the human is 

considered in the loop and can interact with the design environment, thus, the routing 

process is not fully automated or (2) the system captures human knowledge and imitates 

human behavior in design, hence automating the design process. However, in either case, 

there is no guarantee that the final solution is optimal since it only relies on human 

experience[93].  

Advocates of knowledge-based design of cable harnesses believe that the full 

automation of the process is infeasible and human knowledge must be the base of this 

dynamic and iterative activity [103]. A survey of the AI and nature-inspired algorithms to 
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tackle cable harness design problems can be found in [104]. For more studies using AI and 

knowledge-based or concurrent engineering see [103].   

3.1.1.2 Design methods 

In addition to tools that aid designers in their decision making on cable harness or 

pipe route design, research methods are deployed to further study and improve the design 

process for these components. Case study is among the common methods used for the cable 

harness design process. 

Case study has been highlighted as a design research method by Teegavarapu et al. 

[105]. As defined in [105], case study is “an empirical method that investigates a 

contemporary phenomenon,  focusing on the dynamics of the case, within its real-life 

context.” Research that benefits most from this method usually answers “why” and “how” 

questions. By this definition, it appears that the method can be suitably applied to cable 

harness design research.  

As an example, Ng et al. [106] used a case study method to observe and investigate 

how cable harness design is practiced across five British advanced manufacturing 

companies. With these case studies, they confirmed that the industrial design process is 

sequential and reliant on the designer’s expertise which involves a lot of trial-and-error. 

Additionally, they found out that the process is time-consuming, late in the design stage 

(which could even lead to the expensive re-design of the entire machine chassis to provide 

sufficient space for the cable routes) and still requires costly physical prototypes for 

validation. Figure 3.2 shows a generic model of the design and planning for cable harnesses 

developed by Ng et al. based on their case studies.  
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Figure 3.2 Generic cable harness design process [106] 

The harness path planning in the five studied companies was performed either 

manually or through CAD packages such as CATIA; either of which lacks optimality in 

the provided solution for the cable routes. They also mentioned that it is a common practice 

in industries to determine the cable lengths, paths, and locations of breakouts manually 

using the physical prototype.  

Based on the findings of this case study research, the authors finally made 

recommendations on the incorporation of a concurrent rather than sequential design 
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approach. They also pointed out the effectiveness of a virtual reality environment where 

cable harnesses can be designed using the expertise of a human designer.  

3.1.2 Optimization of harness layouts 

While the focus of design-based studies is mainly on the design process of the cable 

harness assemblies which requires some levels of human intervention, other studies focus 

primarily on generating optimal routes for cables or pipes and optimal locations for the 

breakouts in cluttered environments. The goal, herein, is to overcome the limitations in the 

overall design process of these components, namely the manual determination of paths and 

locations of breakouts for cable harnesses which often lacks optimality.   

The research efforts in this area have led to the introduction of several deterministic 

as well as heuristic optimization methods or algorithms. Benefiting from the analytical 

properties of an optimization problem, deterministic methods generate a series of solutions 

in the feasible domain that eventually converge to the global solution [107]. Heuristics, on 

the other hand, are often used when applying deterministic methods is not efficient. This 

mainly occurs in large-scale or non-convex optimization problems [107]. Heuristics, 

however, cannot guarantee to converge to the global solution.  

A brief review of the fundamental studies on the optimization of cable 

harness/piping assemblies is provided in this section starting with tree-based methods.  

3.1.2.1 Steiner and spanning trees 

Steiner Minimal Tree (SMT) and Minimum Spanning Tree (MST) are two popular 

methods for network optimization problems. Given a set of nodes, MST is the minimum 
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length tree that interconnects and spans all the nodes, which makes it an immediate solution 

to the wire routing problem [10]. Prim [108] and Kruskal [109] have independently 

developed methods to construct the MST for a given set of nodes.  

Steiner Minimal Tree also pertains to minimizing the overall length of a network. 

Steiner trees, however, introduce external nodes (often called Steiner vertices) into the tree 

in order to further minimize the length of the tree [110].  

Ever since the introduction of Spanning and Steiner trees, researchers have 

developed a variety of deterministic as well as heuristic algorithms to construct these trees 

for a given set of nodes, for example, see [111–123]. Due to the intrinsic advantages of 

minimizing the length of a network while spanning all or specified nodes, Steiner and 

Spanning trees are suitable candidates for cable harness layout optimization. As a result, a 

multitude of studies has looked into furthering the use of these methods in cable and pipe 

routing design, some of which are discussed in detail next.  

In one example, Lin et al. have formulated the wire routing problem as a Steiner 

Tree problem with capacity constraints on the breakouts (where more than two wires are 

connected)[124]. After constructing the Steiner tree, they reformulate the problem as an 

Integer Linear Program (ILP) to relocate the breakouts and satisfy the capacity constraint. 

Next, they relax the ILP to a linear program since there exist more solution methods to 

solve this type of optimization problem. Due to this relaxation, the final solution becomes 

suboptimal.  

 Sommer et al. in another study [125] developed a method that optimizes the 

topology of Ethernet networks by finding the optimal locations of junctions (breakouts) in 
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the network. They used Simulated Annealing (SA) on the initial solution generated by 

placing the junctions randomly on the network and applying the minimum Steiner tree to 

connect all the random nodes in a minimum length tree. Following this approach, a near-

optimal solution for the location and number of junctions on the network is achievable.  

Looking at the minimum spanning tree and the shortest path problem 

simultaneously, scholars in the field of operations research have defined the “cable trench 

problem” [126] and proposed various solution methods to address its instances [127–132]. 

The problem is defined as: let a connected graph with its known sets of vertices and edges 

be given. The objective is to minimize the weighted sum of two functions: the total length 

of the spanning tree and the total length of all paths from a specified vertex, v0 , to all other 

vertices in the graph. The name has originated from the application of this problem in 

connecting the buildings on a university campus to the building that houses the main 

computer [126]. Since only the edges from the edge set are allowed and all the vertices 

must be connected to v0, a Steiner tree cannot be the solution [126].  

For real-world problems of cable and/or pipe routing, the obstacle avoidance 

constraint must be satisfied when a spanning or Steiner tree is to be formed. It is noteworthy 

that for cabling, Euclidean Steiner or spanning trees are of interest while for piping the 

rectilinear (or Manhattan) trees are normally generated that reflect the orthogonality of 

pipes. 

Multiple solutions for the construction of obstacle-avoiding trees have been 

proposed by scholars over the past three decades. For instance, a Steiner visibility graph is 

introduced by Winter that produces suboptimal solutions to the Euclidean Steiner tree 
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problem with polygonal obstacles [133]. As mentioned by Winter, the Euclidean Steiner 

tree problem is NP-hard, even in the absence of any obstacles. Therefore, good heuristics 

ought to be sought to solve even small size Steiner trees with obstacles [133]. 

Winter’s idea was to break down the Euclidean Steiner Tree Problem with Obstacle 

(ESTPO) into subproblems of finding obstacle-avoiding Steiner trees for subsets of two, 

three, and four terminals. After these smaller subtrees are found, they are concatenated in 

the form of a spanning tree which is the final obstacle-avoiding Euclidean Steiner minimal 

tree. The problem of finding these subtrees becomes challenging when the number of 

terminals exceeds three or there remains more than one obstacle (or the only remaining 

obstacle is non-convex) after pruning the irrelevant obstacles. Therefore, Winter introduced 

heuristics to address such cases assuming the obstacles are convex, for simplicity. In 

addition, to avoid intersections with obstacles, his algorithm benefits from a geometric 

construct called Steiner visibility graph. An example of two Steiner visible points is shown 

in Figure 3.3 as described by Winter.    

 

Figure 3.3 Notion of Steiner visibility [133] 

By Winter’s definition, the point b is Steiner visible from a, iff a point s can be 

placed on the arc ab , such that a and b are both visible from s. For further details of 

constructing the graph and determining the arc ab , readers are referred to [133].  
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Building on the success of their obstacle-free Steiner tree construction [120], 

Zachariasen and Winter proposed an exact algorithm for the obstacle-avoiding Steiner 

minimal tree construction [134]. Similar to Winter’s [133], their algorithm also takes 

advantage of the generation and concatenation paradigms. In further detail, they generate 

full Steiner trees (FST), which are Euclidean Steiner trees where all the terminals are of 

degree one, for subsets of terminals and store the shortest obstacle-avoiding FST. The union 

of these FSTs involving the terminals and some of the obstacles’ vertices will form the final 

obstacle-avoiding Steiner tree. Contrary to Winter’s heuristic approach, they used a 

visibility graph that enables the computation of the shortest obstacle-avoiding distances 

between any two points in the plane. Though the use of visibility graphs may increase the 

overall computation time, it allows having non-convex obstacles while generating the FSTs 

and finally results in a more optimal solution. Another visibility-based obstacle-avoiding 

Steiner tree construction method is proposed in [135] which benefits from approximations 

to improve the time complexity up to nearly linear time. 

Parque and Miyashita while looking at constructing an obstacle-avoiding Euclidean 

Steiner tree, also considered preserving a known topology (or n-star topology for n 

terminals) in the tree [136]. As they claimed, this particular case is of importance in layout 

design when clutter-free visualization of networks is of interest (e.g. in VLSI design).  

In addition to obstacle-avoiding Euclidean Steiner trees, some scholars explored 

the construction of rectilinear Steiner trees in the presence of obstacles which has specific 

application in pipe routing optimization and circuit design. For example, Chiang et al. [137] 

introduced a weighted minimal Steiner tree to address the routing of wires in the presence 
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of obstacles and obtain the globally optimum solution. They assign infinity weights to 

obstacles as an indicator of a high-cost region and to avoid a path going through them. The 

weighted minimal Steiner tree then minimizes the weighted sum of the lengths. For more 

studies on the use and generation of obstacle-avoiding rectilinear Steiner trees, please see 

[138–142]. 

3.1.2.2 Mathematical programming for wind farm layouts 

The problem of cable layout design is also vital in applications like wind farm 

layout design and planning. The objective of wind farm layout design is to find the location 

of wind turbines to meet the problem requirements. A combination of different 

mathematical programming, as well as heuristic methods, have been presented to address 

the layout design of wind farms. Wędzik [143], for example, looked at the problem of 

designing a new wind farm from the perspective of locating the wind turbines. He 

compared the efficacy of a graph-based optimization using the minimum spanning tree 

against a Mixed Integer Program (MIP) when the problem is formulated as a cable trench 

problem. He concluded that while the difference between the length of cables produced 

using either method was negligible, the MIP method provided more flexibility in the 

selection of different components for the wind farm (e.g. the number of wind turbines in 

each section of the farm) which could be of high importance for designers.  

Wind turbine allocation and their optimal connection using cables for both onshore 

and offshore wind farm designs are investigated in [144]. The authors made use of Mixed 

Integer Linear Programming (MILP) to address the two problems while also considering 

physical constraints (including the wake models that affect downstream turbines) that, due 
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to their nonlinearity, are modeled using stochastic programs. Their proposed MILP model 

determines a feasible allocation of turbines while maximizing power production. The 

constraints pertinent to the layout optimization include the minimum and the maximum 

number of turbines that can be built, clearance between any two consecutive turbines (to 

ensure the blades do not interfere), and the foundation cost (for the offshore case). It is 

noteworthy that their optimization model benefits from a grid that comes with possible 

locations for the turbines and thus the decision variables are binary variables indicating 

whether or not a specific grid point is selected for a turbine location.  

After the layout is optimally determined, the next problem is to find an optimal 

cable connection between all turbines and the substations. The constraints imposed on this 

problem include the capacity constraints for cables, a no-crossing constraint between any 

two cables, and the constraint on the maximum number of strings that can be connected to 

a substation. This problem is also modeled and solved as a MILP. A sample layout 

generated by this method is shown in Figure 3.4 for 72 turbines and one substation.  

In their next study [145] Fischetti and Pisinger added the real-world constraint of 

avoiding obstacles and the objective of minimizing power losses to the wind farm layout 

optimization problem. To model the forbidden area imposed by an obstacle, they 

introduced “dummy” nodes at the vertices of the polygonal obstacle. To indicate the 

borders of the obstacle, they forced zero-cost cables in the problem formulation by setting 

the corresponding binary variables equal to 1. Thanks to the no-crossing constraint on the 

cables, the actual cables are not allowed to cross the obstacles. An example of the optimal 

layout for a wind farm in the presence of polygonal obstacles is illustrated in Figure 3.5. 
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Figure 3.4 Final optimal layout for a wind farm[144] 

Another MILP-based solution for the wind farm layout design is presented in [146] 

that considers the cost of energy losses and technical parameters of cables and turbines 

(e.g. number of feeders, cables’ cross-sections, and the number of turbines connected to 

one feeder) in the optimization model.  
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Figure 3.5 Obstacle-avoiding optimal wind farm layout[145] 

3.1.2.3 Location Theory 

There are instances where the primary focus in a cable harness layout optimization 

problem is on finding the optimal location of the path breakouts. Location theory (aka 

facility-location)in operations research (OR) deals with problems of this kind.   

Alfred Weber’s well-known location problem [147] aims at placing a new facility 

in the vicinity of a number of existing facilities to minimize the sum of its transportation 

costs to all facilities. Different versions of this problem are addressed in business and OR 

fields [147]. A classification of location problems is presented by Hamacher and Nickel 

[148]. For each location problem, they defined five attributes to classify the problems in 

the form of Pos1/Pos2/Pos3/Pos4/Pos5. The 5 properties are attributed to the number and 
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type of facilities, type of location topology, model specifics, the relation between facilities, 

and type of objective function, respectively. Continuous location, network location, and 

discrete location are three classes of location models based on Hamacher’s definition. They 

also provided a general approach to multicriteria planar location problems in the absence 

of obstacles for the single facility case though they have addressed the planar multicriteria 

multi-facility location problems in their other work [149]. 

The location problem in the presence of obstacles can be modeled analogously to 

the cable harness layout optimization when the decision variables are the locations of the 

breakouts. Therefore, it is worthwhile to review the related work in location problems in 

the presence of obstacles.  

Katz and Cooper are among the first researchers who considered the location 

problem in the presence of obstacles. They addressed the problem of locating a new facility 

in the presence of one circular forbidden region using the Euclidean distance metric [150]. 

They modified the distance function to geodesic distance using the calculus of variation to 

be able to find the shortest non-intersecting path between any two points and solved the 

nonlinear location problem using sequential unconstrained minimization technique.  

As an example of the continuous location problem, Aneja and Parlar looked into 

Weber’s location problem for the single facility in the presence of forbidden regions [151]. 

They deployed a visibility graph to create a network with the existing facilities and the 

barriers’ corners and applied Dijkstra’s algorithm with the source node being the location 

of the new facility to find the shortest routes to all existing facilities. Lastly, they used 

Simulated Annealing to find an approximate optimal location for the new facility.  
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Since the distance between any two points may no longer be calculated as simple 

Euclidean or Manhattan (or any other lp norms) when their direct path is blocked by a 

barrier, Hamacher and Klamroth redefined the distance metric for such cases by 

introducing polyhedral gauges [152]. The new distance function makes use of the 

piecewise continuous parametrization of the permitted path connecting the two points, i.e. 

a curve that does not intersect the interior of any objects. The length of this curve is 

equivalent to the shortest non-intersecting distance between any two points.  

To further simplify the computation of the non-intersecting distance, they used the 

polyhedral gauges instead of the parametrized curve between the two points. As described 

in [152], a polyhedral gauge is given by a convex symmetric polyhedron in the plane, 

containing the origin in its interior. They used the extreme points of this polyhedron to 

define the fundamental directions (see Figure 3.6). For any point X inside the cone spanned 

by two consecutive fundamental directions di and di+1, only these two fundamental 

directions need to be used to determine the norm of X (e.g. d1 and d2 can define ||X|| in 

Figure 3.6). 

 

Figure 3.6 Sample polyhedral gauge with 6 fundamental directions [152] 
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In addition, Hamacher and Klamroth noted that the presence of obstacles in the 

location problem destroys the convexity of the objective function. As a result, they 

proposed a discretization of the plane using the fundamental directions at the existing 

facilities and barriers’ extreme points. They proved that one of the grid points is optimal 

for the location problem in the presence of convex barriers using polyhedral gauges. A 

sample constructed grid, based on their algorithm, is depicted in Figure 3.7. 

 

Figure 3.7 Sample grid for location problem with barriers[152] 

In Figure 3.7, Exi denotes the ith existing facility (𝑖 = 1, . . ,4) and B is the shaded 

region occupied by the triangular barrier whose vertices are 𝑝1, 𝑝2, and 𝑝3. Also, in this 

figure an example of a cell created by the discretization of the plane is shown in the shaded 

area denoted by “a cell C.” 

Klamroth in another study [153], proposed a reduction of the nonconvex barrier 

problem to a set of convex location problems without barriers using a novel subdivision of 

the feasible region which led to an exact algorithm. The subdivision makes up a grid 

denoted by the boundaries of the shadows of all existing facilities and all extreme points 
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of the convex polygonal barrier. Given a distance function d, the set of all points in the 

region that are not visible from a point X in that region form the shadow of  X with respect 

to d [153]. An example of shadow shown in [153] is provided in Figure 3.8 followed by a 

final subdivision of the feasible region to decompose the non-convex location problem to 

a finite set of convex problems pictured in Figure 3.9.  

 

Figure 3.8 Illustration of the shadow of a point [153] 

 

 

Figure 3.9 Sample subdivision of the feasible space by Klamroth's method [153] 
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In Figure 3.9, the discretization of the plane is performed using the shadow of each 

existing facility, Exi, and the extension of the borders of the barrier B. The construction of 

the grid lines is therefore based on the notion of shadow described in Figure 3.8. The 

formation of the grid lines is further justified in Figure 3.10.  

 

Figure 3.10 Construction of the grid in the feasible domain 

To further improve the computational performance of the location algorithm in the 

subdivided region proposed in [153], Bischoff and Klamroth [154] found applying a 

heuristic (genetic algorithm) beneficial to solve a finite series of convex subproblems 

though the final solution is an approximation to the globally optimum.  

A global optimal approach to locating a facility in presence of convex forbidden 

region(s) is presented by Mcgarvey and Cavalier [155] using a version of the branch-and-

bound algorithm known as Big Square Small Square (BSSS) developed by Hansen [156]. 

BSSS divides the plane into discrete squared regions and provides global or near-global 

optimal solutions.  
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Kuhn proved two results from Weber’s location problem[157]. First, if the facilities 

are not collinear, the objective function is convex meaning any local optimum is also a 

unique global optimum [155]. And second, the location of the new facility is inside the 

convex hull of the existing facilities. This helps to limit the search region and to improve 

the computation time. In the case of location problems with barriers, it is not sufficient to 

only include the existing facilities when creating the convex hull as the boundary of the 

convex hull might intersect with an object. Thus, Klamroth [158] suggested an iterative 

convex hull approach that extends the boundary of the convex hull to include the 

intersecting objects. The boundary of the convex hull expands iteratively until all the edges 

of the convex hull are found non-intersecting.   

In the case of non-convex forbidden regions, Butt [159] has shown that the location 

of the new facility will never be within the convex hull of a non-convex forbidden region 

unless an existing facility locates inside this convex hull.   

Finally, a multi-facility location problem with polyhedral barriers is considered in 

[160]. They proposed two decomposition approaches to tackle the problem. The first 

approach reduces the multi-facility location problem for N new facilities to N single-facility 

location problems of the same type by fixing the assignment variables in the problem 

formulation to 1. The second approach, on the other hand, keeps the location variables 

constant and benefits from the set partitioning of the feasible domain based on visibility 

properties. In the latter case, they restrict each new facility to one of the candidate domains 

of the feasible space which could be deemed as the extension of the reduction results of 

[153] to multiple new facilities. These decompositions result in a finite number of mixed-
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integer programming sub-problems. They finally apply a genetic algorithm heuristic to 

solve the two problems.  

3.1.2.4 Heuristic methods 

Heuristic techniques are widely used to address the cable harness routing and 

similar problems since they are capable of handling the highly nonconvex search space of 

the routing problem [161].  

Of the early works on routing cable harnesses, Conru’s and Cutkosky’s method for 

concurrent design of cable harnesses using heuristics drew attention [162]. After voxelizing 

the workspace, to make the feasible space of the optimization problem convex, they 

initially neglect the obstacles and find a globally optimal solution for the locations of the 

harness transitions (breakouts). Next, if any of the transitions are placed in the obstacle 

space, it must be moved to the closest cell in the free space. Then, a heuristic path planning 

method locally optimizes the path between the endpoints of the cables and transitions. 

However, the final path may still not be optimal due to the local optimizations, and further 

human input is required to reroute the harness that is stuck in a local optimum. Additionally, 

some case-specific constraints such as minimum bend radii may not have been considered 

in the initial optimization problem and human user needs to take those into account to make 

the final solution feasible. Thus, human interaction is crucial in this method to guarantee 

the globality of the optimal solution. 

In another study by Conru [161], a genetic algorithm (GA) is utilized to route the 

bundles and locate the transitions between the end connectors that define the connection 

points on the components. The algorithm starts with an initial configuration for the harness 
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which includes the connection information between the nodes (nodes are the end 

connectors and transitions). Assuming the free space graph is known, Dijkstra’s algorithm 

is applied to generate the shortest route for the wire between each pair of the desired 

connectors. After the shortest routes are generated, an objective function is defined that 

minimizes the total cost of all the bundles consisting of a number of wires. GA is deployed 

to locate the transitions optimally using mutation and crossover operations on the initial 

configuration. After the optimal locations of the transitions are found locally, the algorithm 

explores the other configurations using another GA to develop close-to-global optima. 

Hence, the problem is decomposed into two domains and GA is applied to each to find the 

optimal solution.  

In another study [163], Kimura employed a GA technique to address the problem 

of finding an optimal arrangement for ship pipes with branches. He simplified the problem 

by removing the branches and considering them as equipment in the design space instead.  

Zhu et al. [164] have also innovated an approach to integrate optimization and 

knowledge-based engineering to optimize the location and number of harness breakouts. 

They proposed a two-step optimization method: initialization step, which benefits from a 

roadmap path planning to define an initial configuration for the harness, and a refinement 

step, which refines the locations to further improve the solution and satisfy all constraints. 

The initialization is solved as a bi-level optimization problem since the problem is multi-

destination path planning: a branch level and a harness level. The branch level finds the 

shortest path for each branch on a predefined roadmap using the A* algorithm on a 

predetermined grid. In the harness level, Hill Climbing heuristic is deployed to locate the 
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harness breakouts. To eliminate the likely violations of the constraints at the initialization 

step and improve the near-optimal solution achieved at initialization, the initial harness 

configuration is refined using Generalized Pattern Search (GPS) optimization.  

Most of the research studies done on the routing and design of cable harnesses 

consider cables as a series of rigid segments. However, Kabul et al. argued that in addition 

to geometric and collision constraints, physical and mechanical constraints of the cables 

need to be accounted for to obtain a more realistic routing solution [165]. They, 

consequently, asserted that cable must be considered as a deformable body for which a 

motion needs to be planned. Taking the functional and manufacturing constraints noted by 

Kabul et al, Hermansson et al. [166] presented a heuristic grid-based method for routing of 

flexible 1D components in three-dimensional space.     

3.1.3 Comparison of the methods 

To summarize, all the related work on the study of multipath connection systems 

including but not limited to cables and pipes classify into two main categories: design-

related research and optimization-related research. The design-related research primarily 

focuses on the design process that leads to the final layout for the connectors. Researchers 

over the past few decades have developed design tools such as CAD and computer-based 

models, virtual reality environments, and design guidelines that can assist designers in their 

decision-making pertinent to the selection of sizes and routes for multiple connectors in a 

densely populated region. Additionally, design methods such as case studies were followed 

to further investigate the industrial design of such systems in order to make improvements 

to the practiced processes. Regardless of all the efforts, the developed tools still require 
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different levels of human intervention and thus the process lacks automation. For example, 

as noted by Ng et al. [4], cable lengths, paths, and location of breakouts are decided based 

on trial-and-error using physical prototypes in final stages of design (detail design stage). 

More importantly, the design-based methods may not yield a final optimal layout which 

could bear significant costs for the manufacturing and maintenance of the cables or pipes 

[4].  

Unlike the design-based methods, the optimization methods are mainly concerned 

with optimizing the layout of the connectors though some of the proposed methods may 

not apply to all real-world problems in practice, as claimed in [89]. Of the relevant studies, 

tree-based methods have gained popularity in designing interconnected networks. Minimal 

Steiner trees, in particular, are extensively employed to address problems where adding 

extra nodes to a network is allowed to further minimize its total length. This fact makes the 

method a well-suited candidate for cable/pipe routing problems where branching is 

permitted. The original Steiner tree, however, does not deal with obstacle-avoiding 

constraints; hence, researchers have to make modifications to adopt the method for 

cable/pipe routing in the presence of obstacles. In fact, adding obstacles to the environment 

of a Steiner tree significantly increases the complexity of the problem [133]. Therefore, the 

research conducted to address these problems is limited to the use of approximations and 

heuristic to find an optimal solution. Although exact solution methods are proposed 

[134,135], they generally are computationally expensive and may not apply to large scale 

problems without using any approximations. Hence, the obstacle-avoiding Steiner tree may 

not be an efficient solution to the cable/pipe layout optimization problem.  
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Design and optimization of wind farm layout could be deemed analogous to cable 

harness layout problems as both may be simplified to a network of connected nodes. Wind 

farm layout design is mainly solved using MIP models. Often, the planar workspace of the 

problem is discretized to a grid. With a known number of wind turbines, their optimal 

locations are assigned from the grid points by solving the MIP. This is, however, unlikely 

to occur in the cable harness layout problem as the locations of the components need to be 

connected are known a priori. Further, the wind farm layout problem has multiple Start 

nodes but only one Goal node, known as the station, where all the wind turbines are 

connected. The cable harness layout problem, on the other hand, can have multiple Start 

and multiple Goal nodes connected via breakouts. Since not all the physical constraints of 

the cable layout problem may be mapped to the wind farm layout optimization problem, 

the corresponding solution methods are not further considered for potential applications to 

the cable layout optimization problem.   

When the focus in the cable layout problem is shifted from the length of the cables 

to the determination of the optimal location of the cable breakouts, an immediate set of 

candidate methods can be considered from the Location Theory. Location problems in the 

presence of obstacles have been among the challenging NP-hard problems in operations 

research[152]. Though many solution methods are presented over the past four decades, 

they still cannot address the problem in its entirety. For example, the methods can only deal 

with convex obstacles [150,151,167], since the objective function is non-convex, the 

discretization of the workspace is used [152] which results in locally optimal solutions, and 
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finally, the bi-objective multi-facility problem in presence of freeform objects remains 

unsolved.    

Last but not the least, heuristic methods are widely applied to solve different 

instances of multipath planning problems with branches due to their efficiency in solving 

NP-hard problems, although the solutions found are not necessarily global. Table 3.1 

summarizes the efforts in the design and optimization of multipath connectors applicable 

to cable harness layout optimization problem.  

The review of the literature shows a scarcity of research efforts in developing 

computationally efficient methods to tackle optimization of cable harness layout in 

presence of freeform objects to global optimality. Additionally, there exist few studies that 

consider other objectives besides the minimization of the total length of the cable layout.  

Apart from the limitations, it is understood that the chosen optimization method 

highly depends on the specifics of the problem which stems from its real-world application. 

For example, the constraints of cable harness layout optimization are different from wind 

farm design and pipe routing in ships. Hence, the problem must be well-defined in terms 

of its constraints and criteria to be aligned with its application so that the algorithm is 

practical for real-world problems and could assist designers in their decision making 

regarding the selection of connectors in a complex interconnected system.  

By this background, the objectives of the first part of the present study are outlined 

in the next section.  
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Table 3.1 Comparison of design and optimization methods for multipath connection 

problems  

Classification  Reference  Contributions  Limitations  

Design tools  

(CAD) 

[87–91] - human-computer 

interface for 

designers  

- geometric kernel for 

modeling cables/pipes 

- Sub-optimal 

solutions 

- lacks automation 

- Based on trial-and-error 

Design tools  

(VR) 

[4,86,94,95,97,98,168] - Consideration of 

human expertise in 

design 

- Design automation  

- Sub-optimal 

solutions 

- Designer-dependent  

Design Heuristics  Design guideline [93,169] - Instructions for cost 

minimization for wire 

routing and sizing 

- Sub-optimal 

solutions 

Knowledge-based and 

concurrent engineering 

[3,99,101,102,104] 

- Value human 

knowledge in 

design 

- Sub-optimal 

solutions 

- lacks automation  

Optimization-

Obstacle-avoiding 

Steiner/spanning 

trees 

Winter [133] - introduction of Steiner 

visibility 

- problem breakdown 

into subproblems 

- approximate solution 

- convex polygonal 

obstacles only 

Zachariasen and Winter 

[134] 

- exact visibility-based 

method for subtree 

problem  

- computationally 

expensive 

Parque and Miyashita 

[136] 

- Steiner tree with n-star 

topology 

- known topology, not 

applicable to the 

general layout design 

problem 

Optimization- 

Location theory  

Katz and Cooper [150]  

 

- first to consider 

obstacle in 

location problems  

- only one circular 

obstacle considered 

Aneja and Parlar[151] - multiple obstacles - applicable to single-

facility only 

Klamroth et al. [152–

154,158,160] 

- new distance metric 

- discretization of 

workspace 

- multi-facility 

- local optimal 

- convex obstacles 

only 

Heuristic 

optimization  

Conru and Cutkosky [170], 

Kimura[163], Zhu et al. 

[164] 

- Computationally 

efficient in solving 

NP-hard problems 

- Sub-optimal solutions 

3.2 Research objective and proposed solution 

The limitations of the existing methods in addressing cable harness layout 

optimization in its general form, drive the first part of this research to explore optimal 
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solutions to the following problem: For a given number of start and goal points that 

connect different components in a cluttered environment using flexible connectors (e.g. 

wires), a layout is to be found for the connectors defined by their routes and the locations 

of a finite number of breakouts to minimize the total lengths of needed connectors while 

maximizing their commonality such that the connectors do not cross any objects and the 

breakouts are not placed inside an occupied area.  

The optimization objectives are set to minimize the cost of the wiring connection 

systems while providing more accessibility and traceability for maintenance purposes 

through maximizing the common length of the connectors (or bundling as many connectors 

as possible for the longest possible distance).  

The goal is to provide this insight for the designer at any stage of design by being 

able to run the algorithm and based on the outcome, make appropriate recommendations 

regarding the final layout of cable connectors. The underlying assumptions based on which 

the problem needs to be formulated and solved are as the following: 

• The problem is modeled on a 2D plane. 

• Since the wiring connectors are flexible, the Euclidean distance metric is 

used to calculate distances between the points in the plane. 

• Obstacles are arbitrary polygons scattered on the plane. 

• The cartesian coordinates of the nodes that need to be connected are given. 

• The number of required breakouts is prespecified. 

In addition, the problem is bi-objective and constrained, and the decision variables 

of the optimization problem are the cartesian coordinates of the breakouts. 
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The first part of this research answers the question: How can this bi-objective 

nonlinear optimization problem be solved without approximating the lengths of cable 

routes? 

Two approaches are proposed to address this research question. First, looking at the 

limitations of the existing methods to tackle the location problem in presence of obstacles 

without approximating the distances (e.g. using polyhedral gauges), this work investigates 

the possibility of formulating the cable harness layout as bi-objective location problem in 

presence of obstacles using Euclidean norm and solving the problem with a suitable 

optimization method. Second, this study aims at investigating the potential of the convex 

hull based routing, introduced in Chapter 2, in solving the cable harness layout as a 

multipath planning problem with two objectives. The efficiency of this method in finding 

the shortest path between any two points of a cluttered planar environment is shown in the 

previous chapter. In this chapter, its extension and application to multipath planning 

problems with more than one objective are further discussed.   

The remainder of this chapter is allocated to the explanation of the two approaches 

proposed to address the cable harness layout optimization problem as well as a discussion 

on the results of applying the methods to sample problems.  

3.3 Mixed-binary layout optimization using Euclidean norm 

As discussed in the previous section, the goal is to develop an algorithm to find the 

optimal layout of a cable harness assembly by finding the optimal location(s) of the 

breakout(s). The problem, therefore, becomes analogous to the well-known Weber’s 

problem of locating a new facility in the vicinity of existing facilities and outside forbidden 
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regions to achieve minimum traveling cost or other objectives (e.g. maximum distance 

from existing facilities).  

One challenge of the location problem in the presence of obstacles is that the 

distances between the nodes that are not visible to each other changes and the conventional 

Euclidean norm can no longer be used to determine such distances. To overcome this 

challenge, Klamroth has introduced polyhedral gauges that approximate the distance 

between two points not visible to each other [152]. This approximation, however, affects 

the final optimal solution.  

That said, the objective of this section is to further investigate the possibility of 

formulating the objective functions of the cable harness optimization problem explicitly in 

terms of Euclidean norm and to solve the formulated optimization problem. The notion of 

visibility is utilized in defining the objective functions as discussed in the next section.  

3.3.1 Visibility map for location-allocation  

When an object blocks the direct path between a pair of points in an environment, 

the traveling distance between them also changes and a waypoint (or a series of waypoints) 

needs to be located in the unoccupied region to enable traveling from one point to the other. 

The direct path, as a result, is broken into segments between the found waypoints, Start, 

and Goal. The locations of these waypoints highly affect the distance to be traveled to reach 

the goal point or a node.  

Thus, the presence of an obstacle decomposes the free space into areas that are 

either visible or invisible with respect to each node. Knowing to which of these areas the 

Start/Goal node(s), the breakouts, or the waypoints belong, helps to determine the distance 
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between the points. For example, the location of a breakout is to be found for the cable 

harness of Figure 3.11 with one Start node and two Goal nodes while avoiding its 

placement on and traveling through the line barrier, 𝑂1𝑂2
̅̅ ̅̅ ̅̅ ̅ . The objectives are to minimize 

the overall distances between the respective start and goal nodes and maximize the 

common length of wires between the Start node and the breakout. As seen in this figure, 

the presence of the line barrier divides the workspace into two regions based on the 

visibility of points with respect to one another.  

The decomposition is inspired by Klamroth’s [153] subdivision using the shadows 

of the existing nodes (here 𝑆1, 𝐺1, and 𝐺2). Looking at Figure 3.11, the shadow of each 

node is outlined with dashed lines. In addition, the convex hull of the nodes and the 

intersecting obstacle is shown in a solid blue line to specify the bounded region inside 

which the breakout must be located based on Klamroth’s proof. 

 

Figure 3.11 Sample subdivision using shadows of existing nodes 

This subdivision based on visibility is then used to define a set of objectives and 

constraints per region. That is, depending on the region where the breakout is placed, the 

distances can be calculated and optimized. For instance Figure 3.11 shows that every point 
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in region 1 is visible to 𝑆1 but invisible to 𝐺1 and 𝐺2. Vice versa, every point in region 2 is 

invisible to 𝑆1 but visible to 𝐺1 and 𝐺2. We call this decomposition of the workspace on the 

grounds of visibility of the nodes, the visibility map of the workspace with respect to the 

breakout. The table below summarizes the visibility information based on the visibility 

map of Figure 3.11. The checkmark is for visible and the cross mark is for the invisible 

locus with respect to each node in the top row. 

Table 3.2 Summary of visibility information for Figure 3.11 

Breakout location  𝑺𝟏 𝑮𝟏 𝑮𝟐 

Region 1 ✓   

Region 2  ✓ ✓ 

It is noteworthy that the location of the existing nodes highly affects the subdivision 

of the feasible domain. Suppose, for instance, that the three nodes of Figure 3.11 were 

located as in Figure 3.12. The difference between the figures is that the node 𝐺1, previously 

inside the shadow of 𝑆1, now lies outside this shadow which creates more regions in the 

feasible domain based on the visibility information of Table 3.3.  

 

Figure 3.12 Effects of node locations on the subdivision of the workspace 
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Table 3.3 Summary of visibility information for Figure 3.12 

Breakout location  𝑺𝟏 𝑮𝟏 𝑮𝟐 

Region 1 ✓ ✓ ✓ 

Region 2 ✓ ✓  

Region 3 ✓   

Region 4  ✓ ✓ 

The visibility map of the workspace enables defining the objective function(s) 

explicitly using the Euclidean norm by introducing binary variables. Two sets of binary 

variables are introduced to formulate the problem based on a visibility map: the first set is 

used to activate the region housing the optimal location of the breakout and the second is 

used to activate the potential waypoints where the optimal path needs to make a turn to 

avoid an obstacle.  

For example, for the workspace of Figure 3.11, two binary variables, 𝑤1 and 𝑤2, 

are required to denote which region is activated to yield the optimal location of the 

breakout. Binary variables are deployed since they can serve as on/off switches which 

activate/deactivate a region if the value of the variable is equal to 1/0.  

Additionally, due to the presence of the line barrier in Figure 3.11, a waypoint is 

required to facilitate travel from the Start node to either of the Goal nodes. The optimal 

locations of the waypoint are the two ends of the line barrier, 𝑂1 and 𝑂2. Depending on 

which endpoint is decided in the final optimal solution, binary variables, 𝑦𝑖, can be 

introduced to reflect this decision and the calculation of the Euclidean distances. The 

problem can now be formulated as in Problem 1.  
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Where 

X : the breakout location in the plane; 

C : the convex hull of the set points S, G, and the intersecting obstacles. 

In Problem 1, the first objective is to minimize the total distances between the 

nodes and the breakout. Two functions, 𝐷1 and 𝐷2, are defined, respectively for regions 1 

and 2, to calculate the total lengths of wires. It is clear that distances change as the location 

of the breakout changes from region 1 to region 2, which entails the introduction of 𝐷1 and 

𝐷2 (e.g. 𝐷1 must be used if the breakout is located in region 1). The binary variable, w, 

serves as a switch for region selection in this problem. For example, if the breakout is 

placed in region 1, w activates 𝐷1, that is 𝑤 = 1, and deactivates 𝐷2, and vice versa. 

It should be noted that two binary variables, 𝑤1 and 𝑤2, are required to switch the 

distance metrics on/off. However, since at any time only one location for the breakout is 

plausible, only one variable can become active, therefore, 𝑤1 + 𝑤2 = 1. To minimize the 

number of variables used in the optimization problem, the relationship between the two 
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binary variables is taken advantage of and one variable is written in terms of the other,  

𝑤1 = 1 − 𝑤2 = 𝑤.  

As can be seen in Problem 1, all the distances are calculated using the Euclidean 

norm. In 𝐷1 distance function, the first term is to calculate the distance between the Start 

node and the breakout, X. The second term in this function benefits from the introduction 

of a new binary variable, 𝑦1, which indicates which route is taken to reach the first Goal 

node. Since the Goal nodes are in areas invisible to any point in region 1, there needs to be 

a waypoint to facilitate traveling to the Goal nodes. Two routes are conceivable to reach 

the Goal nodes, one that passes from 𝑂1 and the other that passes from 𝑂2 (for the proof 

that these points yield the optimal solution, please refer to [83]). If, in the second term of 

𝐷1, 𝑦1 = 1, the route that passes from 𝑂1 is activated which deactivates the path with the 

waypoint at 𝑂2. On the contrary, if 𝑦1 = 0, the path that passes from 𝑂2 becomes activated 

(third term). The same rationale is used to add the fourth and fifth terms to 𝐷1 by 

introducing another binary variable that switches between the two possible routes to 𝐺2. 

As discussed, the second distance function is activated in the objective function 

when the breakout is in region 2. Locating the breakout in region 2 makes it invisible to 

the Start node. Therefore, a turning point must be selected (similarly at 𝑂1 or 𝑂2) to enable 

traveling from 𝑆1 to 𝐺1 or 𝐺2 which results in the introduction of the third binary variable 

that works similarly to 𝑦1 and 𝑦2 and forms the first two terms in 𝐷2. The last two terms in 

this function calculate the distances from the breakout to either of 𝐺1 and 𝐺2 both of which 

are visible from X.  
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The second objective function is to maximize the common length, here the distance 

between 𝑆1 and X. It is observable in the formulation of Problem 1 that the choice of the 

region for placing the breakout as well as the routes to invisible points are reflected in the 

terms of the maximization function by the binary variables.  

The constraints force the breakout to lie inside the convex hull of the nodes and the 

barrier, but outside the barrier. Further, the decision variables are X, the cartesian 

coordinates of the breakout in the plane, and all of the binary variable, w and 𝑦𝑖.  

Following the same procedure and based on the visibility map of the workspace, 

Problem 2 is formulated for the cable harness in Figure 3.12. Since the visibility map of 

Figure 3.12 has four regions, four binary variables, 𝑤𝑖 , 𝑖 = 1, … ,4, are required to activate 

one and deactivate the other three at each time. In addition, the second set of binary 

variables, 𝑦𝑗  , 𝑗 = 1,2,3, is used to activate/deactivate the waypoints to be passed to reach 

the nodes in the invisible regions.  
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Where 

X : the breakout location in plane; 

C : the convex hull of the set points S, G, and the intersecting obstacles. 

A more complex example with a triangular obstacle is shown in Figure 3.13 with 

its visibility information summarized in Table 3.4. 

 

Figure 3.13 Sample visibility map for workspace with one triangular obstacle 

Table 3.4 Summary of visibility information for Figure 3.13 

Breakout location  𝑺𝟏 𝑮𝟏 𝑮𝟐 

Region 1 ✓   

Region 2   ✓ 

Region 3  ✓ ✓ 

Region 4 ✓ ✓  

As seen in Figure 3.13 and Table 3.4, four regions are created based on the 

visibilities of the existing nodes with respect to the breakout. Note that in Figure 3.13, 

multiple paths are conceivable to reach the breakout from 𝑆1 depending on the waypoint(s) 

taken to reach the breakout; hence, the distances can change. As a result, region 3 needs to 
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be further decomposed to areas inside each the distance from 𝑆1 to breakout is consistent. 

This second level of decomposition is shown in Figure 3.14.   

 

Figure 3.14 Level 2 decomposition of the workspace of Figure 3.13 

Looking at Figure 3.14, it is discernable that for the breakout in region 31 the path 

from 𝑆1 to X passes through 𝑶𝟏. Even though another route is feasible through 𝑶𝟐 and then 

𝑶𝟑, this route is longer and therefore discarded from the formulation of the optimization 

problem. It is also evident that the distance from 𝑆1 to X is different in the region 32 than 

in the region 31. This difference comes from the visibility of the waypoints 𝑶𝟏 and 𝑶𝟐 

from X in different subareas of region 3. For example, X in region 31 sees 𝑶𝟏 but not 𝑶𝟐 

while X in region 32 can see both 𝑶𝟏 and 𝑶𝟐. Therefore, two paths from 𝑆1 to an X in 32 

are plausible without clear superiority of one over the other (unlike the two paths from 𝑆1 

to an X in 31). The situation in the region 33 is closer to that of 31’s where the route 

traveling from 𝑆1 to 𝑶𝟐 to X is clearly shorter than the path from 𝑆1 to 𝑶𝟏 to 𝑶𝟑 and then 

X. 

Following the same logic in formulating Problem 1 and Problem 2 and using the 

visibility map of Figure 3.14, a formulation of the optimization problem is provided as in 

Problem 3.  
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Problem 3 

( ) ( )

( ) ( ) ( )
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 = =
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   
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   
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
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( ) ( )1 1 2 2 1 1 1 2, , , , ,D S X X O O G X O O G= + + + +  

( ) ( )2 1 1 1 3 3 1 2, , , , ,D S O O X X O O G X G= + + + +  

( )3,1 1 1 1 1 2, , , ,D S O O X X G X G= + + +  

( ) ( )3,2 1 1 1 1 1 1 2 2 1 2, , (1 ) , , , ,D y S O O X y S O O X X G X G= + + − + + +  

( )3,3 1 2 2 1 2, , , ,D S O O X X G X G= + + +  

( ) ( )4 1 1 2 1 1 2 2 2 2 2, , , , (1 ) , ,D S X X G y X O O G y X O O G= + + + + − +  

 

1 2 3. .   S t X O O O  

X C  
2X   

6

1

1i

i

w
=

=  

, , {0,1},    1,...,6,  1,2i jw y i j = =  

Where 

X : the breakout location in plane; 

C : the convex hull of the set points S, G, and the intersecting obstacles. 

3.3.2 Results and discussion 

The problems formulated in this section using the visibility map and binary 

variables can be solved with bi-objective optimization solvers that handle integer variables 

and nonlinear objective functions and constraints. A few solvers are developed that satisfy 

the aforementioned criteria to solve these problems. To the best of our knowledge, no 

software exists to solve this class of problems with exact optimization methods. Therefore, 
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a heuristic solver in MATLAB is sought to solve sample problems formulated in the 

previous section.  

Since the objective functions of a bi-objective optimization problem conflict with 

each other, meaning the increase in the value of one function could cause a decrease in the 

value of the other and vice versa, the problem does not have a unique solution. Instead, the 

Pareto set, or the set of non-dominated solutions, is generated that shows the tradeoff 

between the values of the objective functions. A Pareto non-dominated solution, shown in 

Figure 3.15, is the one in which improving one objective requires degradation of the other.  

 

Figure 3.15 Examples of Pareto non-dominated solutions 

MathWorks has released two multi-objective optimization solvers in MATLAB: 

ParetoSearch (PS) and Multi-Objective Genetic Algorithm (MOGA), both of which are 

heuristic-based and generate the set of non-dominated solutions. PS uses pattern search 

method on a set of points and iteratively searches for non-dominated points [171]. It 

requires an initial guess for the decision variables. MOGA, on the contrary, is developed 

based on Deb’s NSGA-II [172], an elitist genetic algorithm. Unlike PS, MOGA creates a 

random initial population for the decision variables to be selected from. Some parameters 
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can affect the creation of the initial population, e.g. population size or initial population 

range. For a list of user-defined parameters please refer to [173]. For this research, the 

MOGA solver is selected to solve all of the bi-objective optimization problems. It is 

noteworthy that using a heuristic-based solver cannot guarantee to find the true Pareto set 

and one may only be able to obtain non-dominated solutions up to a known number of 

generations. For this reason, in the remainder of this manuscript, the outcome of the MOGA 

is referred to as non-dominated solutions, not Pareto set.  

The default settings of MOGA do not allow having integer decision variables. Thus, 

in the properties function that MOGA solver reads, the initial population alongside the 

mutation and crossover functions are modified to accept binary variables1. A new set of 

constraints specifying the ids of the binary variables is added to the MATLAB functions of 

the initial population, mutation, and crossover. Also, in the main program, upper and lower 

bounds of 1 and 0, respectively, are added to specify the limits of the binary variables. The 

bounds as well as the modified functions are then sent to the solver to read and set up the 

variables accordingly during the optimization process.  

In addition to setting up the variables, following Problem 1, separate MATLAB 

functions are created to quantify the constraints’ violation and evaluate the objective 

functions. For the second objective function, which is the maximization of the common 

length, the negative of the distance between the Start node and the breakout is used. Since 

MATLAB’s default definition of an optimization problem comes only with the 

 
1 All codes are written in MATLAB and can be accessed from: https://github.com/nmasoud/Routing-algorithms.git 

https://github.com/nmasoud/Routing-algorithms.git
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minimization of a function, for maximization problems, the negative of the function is used 

to comply with MATLAB’s default definition.  

The GA parameters that affect the non-dominated solutions such as the population 

size and the number of generations must also be decided. For Problem 1, since the 

objective functions and constraints are rather simple (due to the few numbers of nodes and 

the presence of only one line barrier), the population size of 50 and 500 generations are 

considered in the MOGA solver. A sample workspace is generated to mimic the visibility 

map of Figure 3.11 wherein the coordinates of the Start and Goal nodes are 𝑆1 = (0,0), 

𝐺1 = (6,2), and 𝐺2 = (8, −5). Additionally, a line barrier with endpoints located at 𝑂1 =

(5,3) and 𝑂2 = (4, −4) is added to the workspace. Using the above-mentioned settings, 

Problem 1 is solved in MATLAB via gamultiobj solver.  

To solve this problem, the constraint of avoiding the placement of the breakout on 

the obstacle, 1 2X O O , is expanded and broken into two constraints that reflect the region 

the breakout belongs to as shown in Problem 1-2. Region 1 is to the left of the line and 

setting 𝑤 = 1 activates it, while region 2 is to the right and w must be zero to activate it.  

Problem 1-2 

( ) ( )
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2
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2 1 3 1 1 1 3 1 2 2
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

= + −

 = + − + + − + 
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       , , (1 ) , ,

D S X y X O O G y X O O G

y X O O G y X O O G
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+ + + − +
 

( ) ( )2 3 1 1 1 3 1 2 2 1 2, , (1 ) , , , ,D y S O O X y S O O X X G X G= + + − + + +  
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. .   ( ) 0

        (1 )( ) 0

S t w AX b

w AX b

+ 

− − − 
 

X C  
2X   

, {0,1},    1,2,3iy w i =  

Where 

X : the breakout location in the plane; 

C : the convex hull of the set points S, G, and the intersecting obstacles. 

After gamultiobj solver is applied, the set of non-dominated solutions is 

generated. The solver stopped at 202 generations since the average change in the spread of 

the non-dominated solutions becomes less than the set tolerance. The final set of non-

dominated solutions is shown in Figure 3.16, which corresponds to the objective space and 

the local optimal locations of the breakout (efficient solutions for the preimages of the non-

dominated solutions) corresponding to each of the non-dominated solutions are shown in 

Figure 3.17. A colormap is used to map every solution in the objective space (Figure 3.16) 

to its relevant solution in the feasible space (Figure 3.17) using the same color. It can be 

seen from Figure 3.17 that all the optimal locations are in region 2 of the visibility map 

which increases the maximum common length.   

Figure 3.18 shows the evolution of the non-dominated solutions from early 

generations to the final found at the 202nd generation. The solution set found at iteration 

(i+1)th dominates all the non-dominated points found previously at the 1st, 2nd, …, and ith 

generations.  
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Figure 3.16 Final set of non-dominated solutions for Problem 1-2 

 

Figure 3.17 Optimal (efficient) locations of the breakout for Problem 1-2 
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Figure 3.18 Evolution of non-dominated fronts 

Additional details of the optimal locations and their corresponding optimal values 

of the objectives are provided in Table 3.5. 

Table 3.5 Optimal values of decision variables and objective functions for Problem 1 

Optimal breakout 

location coordinates, 

X* (cm) 

Min total length 

with the breakout, 

𝒁𝟏
∗  (cm) 

Max common 

length, 𝒁𝟐
∗  (cm) 

(7.6456 -4.2147) 20.8059 13.5154 

(5.6618 1.3906) 15.0731 7.5712 

(7.6456 -4.2147) 20.8059 13.5154 

(6.186 -0.0907) 16.474 9.1413 

(6.1787 -0.3836) 16.7669 9.414 

(6.6784 -2.266) 18.7143 11.358 

(5.6618 1.3906) 15.0731 7.5712 

(5.9235 0.4521) 15.9251 8.5411 

(6.5375 -1.8523) 18.2815 10.921 

(7.3274 -3.3309) 19.8693 12.5761 

(6.3669 -1.0959) 17.4983 10.1489 

(7.2494 -3.0952) 19.6214 12.3279 

(6.8802 -2.7686) 19.244 11.8982 
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(6.4667 -2.1137) 18.5592 11.1508 

(7.3011 -3.5989) 20.1334 12.8195 

(6.2822 -0.6831) 17.0749 9.7308 

(6.8447 -3.0693) 19.5636 12.1744 

(6.7182 -2.4896) 18.9485 11.5831 

A more complex example of a location problem in the presence of an obstacle is 

Problem 3 where the line barrier is replaced by a triangular obstacle that increases the 

number of regions in the visibility map. In addition to the obstacle avoiding constraint 

presented in Problem 1, Problem 3 has a linear equality constraint that imposes the sum 

of the binary variables attributed to the region selection to be equal to one. MATLAB’s 

gamultiobj solver cannot handle linear equality constraints concurrent with integer 

variables. Therefore, an approach to solve the bi-objective problem by reducing it to a 

single objective problem must be followed. Two common methods of solving a multi-

objective optimization problem by converting it to a single objective problem are weighted 

sum and ε-constraint.  

The weighted sum method benefits from the introduction of a vector of weights 

multiplied by the objectives to convert the vectorized objectives to a scalar. The weights 

are chosen proportionately to the importance of the objective and their sum should be equal 

to one. Despite its simplicity, the weighted sum method has difficulty reaching the entire 

set of non-dominated solutions when the feasible domain is non-convex (like the non-

dominated set in Figure 3.15, right). Therefore, a portion of the Pareto front would never 

be found with the weighted sum.  

Unlike the weighted sum, the ε-constraint method, first introduced by Haimes 

[174], works with both convex and non-convex feasible sets and yields the Pareto set. The 
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method minimizes one of the objectives and expresses the other(s) in the form of inequality 

constraints (i.e. the value of objective 𝑖 expressed in the constraints must be less than or 

equal to 𝜀𝑖). Since the ε-constraint method has the advantage of obtaining solutions that are 

not reachable using the weighted sum, it is selected to solve Problem 3.  

Similar to Problem 1, the obstacle-avoiding constraint, 1 2 3X O O O , is further 

broken into six constraints to reflect each of the six regions the breakout can be located. 

The formulation of Problem 3 is therefore updated as in Problem 3-1.  

Problem 3-1 

2

6

1

1

 Zmin i i
X i

w D
 =

=  

( ) ( )1 1 2 2 1 1 1 2, , , , ,D S X X O O G X O O G= + + + +  

( ) ( )2 1 1 1 3 3 1 2, , , , ,D S O O X X O O G X G= + + + +  

( )3,1 1 1 1 1 2, , , ,D S O O X X G X G= + + +  

( ) ( )3,2 1 1 1 1 1 1 2 2 1 2, , (1 ) , , , ,D y S O O X y S O O X X G X G= + + − + + +  

( )3,3 1 2 2 1 2, , , ,D S O O X X G X G= + + +  

( ) ( )4 1 1 2 1 1 2 2 2 2 2, , , , (1 ) , ,D S X X G y X O O G y X O O G= + + + + − +  

 

( ) ( )

( ) ( ) ( )

1 1 1 1

1,6 2,3

4 1 1 1 1 1 1 2 2 5 1 2 2

. .   , , ,

         , , (1 ) , , , ,

i i

i i

S t w S X w S O O X

w y S O O X y S O O X w S O O X 

= =

   
+ +   

   
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1

1i

i

w
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, , {0,1},    1,...,6,  1,2i jw y i j = =  

Where 

X : the breakout location in the plane; 
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C : the convex hull of the set points S, G, and the intersecting obstacles. 

Following the ε-constraint method, the problem is converted to a constrained 

single-objective optimization problem with binary variables. The best solver in MATLAB 

that satisfies the requirements of Problem 3-1, is the GA solver. The magnitude of ε varies 

from 0.5 to 8.5 which is found based on testing the single objective of maximizing the 

common length. The optimal (efficient) locations of the breakout as well as the final set of 

non-dominated solutions are shown in Figure 3.19 and Figure 3.20 respectively.   

 

Figure 3.19 Optimal (efficient) locations of the breakout for Problem 3-2 
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Figure 3.20 Set of non-dominated solutions for Problem 3-2 

It is observed from Figure 3.19 and Figure 3.20 that the set of non-dominated 

solutions attributed to each of the four regions (color-coded in Figure 3.20) in the visibility 

map of the problem (Figure 3.13) is convex while the union of these sets shown in Figure 

3.20 is non-convex. This behavior is caused by using binary variables to reflect the region 

selection in the location problem. Once a region is selected for locating the breakout and 

the corresponding binary variables are set, the problem, within the chosen region, becomes 

convex; thus, the found non-dominated set in the outcome space also becomes convex. 

However, the original problem described in Problem 3-2 is a non-convex optimization 

problem. Therefore, when all the resulting non-dominated sets (created per each region) 

are combined to generate the overall set of non-dominated solutions, the outcome is a non-

convex set as in Figure 3.20.     
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In addition, the numerical values of the optimal locations of the breakout as well as 

the two objectives can be found in Table 3.6. 

Table 3.6 Optimal values of the decision variables and objective functions for 

Problem 3-2 

ε Optimal breakout 

location coordinates, 

X* (cm) 

Min total length 

with the breakout, 

𝒁𝟏
∗  (cm) 

Max common 

length, 𝒁𝟐
∗  (cm) 

0.5 (-1.5033, 0.9526) 15.6877 0.499 

1 (-1.0074, 0.8872) 15.8373 0.999 

1.5 (-0.5177, 0.7766) 16.103 1.499 

2 (-0.0322, 0.6479) 16.6294 1.999 

2 (-0.0807, 0.4407) 16.6274 1.999 

2.5 (0.2566, -0.0071) 16.8633 2.499 

3 (0.7565, -0.0126) 16.8841 2.999 

3.5 (1.2565, -0.0168) 16.9107 3.499 

4 (1.7565, -0.0184) 16.9457 3.999 

4.5 (2.2566, -0.0165) 16.9936 4.499 

5 (2.7566, -0.0086) 17.0629 4.999 

5.5 (3.2566, 0.0110) 17.1707 5.499 

6 (3.8520, 2.3200) 22.6108 5.999 

6 (3.7561, 0.0559) 17.3561 5.999 

6.5 (4.2552, 0.1056) 17.7107 6.499 

6.5 (4.3527, 1.5357) 17.8191 6.499 

7 (4.7543, -0.1526) 18.2701 6.999 

7 (4.7537, -0.1709) 18.27 6.999 

7 (4.7663, 0.9454) 18.354 6.999 

7.5 (5.2563, 0.0497) 19.1211 7.499 

7.5 (5.296, 1.046) 19.1422 7.499 

7.5 (5.2227, 0.5955) 19.136 7.499 

7.5 (5.3112, 1.1379) 19.1438 7.499 

7.5 (5.2462, 0.3285) 19.1249 7.499 

8 (4.5487, 0.7756) 18.2051 6.8566 

8 (5.8364, 2.4132) 20.1214 7.999 

8 (5.3853, 0.5404) 19.4329 7.6549 

8 (5.8259, 2.5028) 20.1237 7.999 

8.5 (6.000, 3.000) 20.6322 8.2546 

8.5 (5.4837, 0.9339) 19.7331 7.805 
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3.3.3 Final remarks  

In this section, sample location problems are formulated using binary variables and 

visibility maps. Even though the method has the advantage of providing a formulation of 

the optimization function with explicit Euclidean distances between the points, the 

complexity of the problem formulation (which indicates the complexity of the solution) 

highly relies on the problem structure. For example, as discussed, a change in the locations 

of the existing nodes can completely change the visibility map of the workspace provided 

the geometry of the workspace remains unchanged.  

In addition, it is shown that adding an obstacle or changing the shape of an obstacle 

can drastically increase the nonlinearity of the objectives and/or constraints which has a 

direct impact on the solution method. Therefore, this method is most efficient for 

workspaces with as few as one simple obstacle. Further, the obstacle must be polygonal 

and without any curved edges as having a curvature increases the nonlinearity of the 

constraints.  

Apart from the geometric structure of the workspace of a location problem, care 

must be taken when formulating the problem using binary variables. For example, looking 

at Figure 3.20, an outlier is present in the set of non-dominated solutions with objective 

values of (22.611, 5.999). As seen in Figure 3.19, this point is located in region 4 of the 

visibility map. The reason why the total length of the harness is 22.611 by placing the 

breakout on this outlier is that the distance from 𝑆1 to this breakout is calculated using the 

route passing from 𝑂1 and 𝑂3 instead of the shorter route passing from 𝑂2. Although from 

the mathematical point of view this solution is feasible, it may not be realistic or optimal 
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from the design perspective. Hence, to avoid the attainment of such solutions and outliers 

in the non-dominated set, additional constraints can be introduced to the problem 

formulation to block the longer routes. If, however, more layouts are preferred to choose 

from, considering other physical constraints of the wiring harnesses (e.g. accessibility), 

solutions like this can remain in the non-dominated set and the constraints may not be 

modified in the problem formulation.  

As future extensions of this work, the following research questions can be further 

investigated; (1) Is it possible to develop an algorithm that outputs the constraints and 

criteria of the problem using binary variables? (2) what is the effect of non-convex 

obstacles on the problem formulation and final optimal solutions? (3) can other criteria 

(e.g. minimizing the number of turns in the path) be added to the optimization problem?  

3.4 Layout optimization using convex hull based routing 

Although the method discussed in the previous section enables the formulation of 

the cable harness layout optimization problem with explicit objective functions, it may not 

be computationally efficient in solving complex problems where multiple freeform objects 

are scattered in the workspace. The convex hull based routing method explained in Chapter 

2, on the other side, is proven efficient in generating the shortest collision-free path between 

any two points in a cluttered planar environment. This section further investigates the 

potential of this method in optimizing the layout of a cable harness assembly with the 

constraints and criteria outlined in section 3.2.  
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3.4.1 Problem formulation  

Suppose a layout for a cable harness assembly needs to be generated to connect n 

components from a list of Start components to a Goal list of m components. It is assumed 

that two breakouts are required; the first is to bundle n wires from the Start list and extend 

to reach the second breakout, where the cables branch to reach the m components from the 

Goal list.  

The constraints are to avoid crossing the obstacles and placing a breakout inside an 

obstacle. The objectives are (1) to minimize the total lengths of wires needed to connect all 

the components including the breakouts and (2) to maximize the length between the two 

breakouts for the longest possible commonality. The general mathematical formulation of 

this problem is provided in Problem 4.  

Problem 4 

 
22

1 11 1
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Where 

B1, B2 : the two breakouts of the cable harness; 

iS  : ith start point, 𝑖 = 1,2, … , 𝑛;  

jG  : jth goal point, 𝑗 = 1,2, … , 𝑚; and  

kP  : kth polygonal obstacle, 𝑘 = 1,2, … , 𝑙; and 

nw: the number of wires passing through the length covered between B1 and B2. 

1

, (int )
( , )         

( , )

l

k

k

a b ab P
D a b

D a b
otherwise

=

  =
= 


  

( , )D a b : the shortest distance between a and b calculated on from the route found by 

applying the C-hull based roadmap 
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In Problem 4, the minimization objective function has three terms: the sum of the 

distances between each start terminal and the first breakout, the distance between the two 

breakouts multiplied by the number of wires passing through it, and the sum of the 

distances between the second breakout and each of the goal terminals. The number of 

wires passing from B1 to B2, nw, is found by taking the maximum of the number of Start 

and Goal nodes. In other words: 𝑛𝑤 = 𝑚𝑎𝑥{|𝑆|, |𝐺|}, where | • | is the cardinality of a 

set. The decision variables are the (𝑥, 𝑦) coordinates of the breakouts in
2

(plane). The 

constraints are to avoid locating a breakout inside a polygonal obstacle. 

It should be noted that the breakouts might be located on the borders of an obstacle 

depending on the potential application of the optimization problem. It is also noteworthy 

that the constraint of having wires not cross the interior of any obstacles is implicitly 

addressed by calling the convex-hull based routing function when any two points are 

invisible to each other. Therefore, the explicit representation of this constraint in the 

optimization problem is not further provided.  

The distance function, 𝐷(•,•) shown in Problem 4 outputs the Euclidean distance, 

‖•,•‖, if the two points are visible to each other. Otherwise, the modified distance 

function, 𝐷̃(•,•), calculated based on the shortest collision-free path that the convex-hull 

based routing finds, is utilized.  

The formulation shown in Problem 4 requires the solver to search the entire 

feasible space which is the 2 plane, except the areas occupied by the obstacles, to find the 

optimal locations of the breakouts. This could significantly slow down the optimization 

process, especially for large-scale problems. Hence, it is recommended to adapt Klamroth’s 
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iterative convex hull [158] to limit the feasible domain inside the convex hull created by 

the Start and Goal nodes. As explained previously, the boundary of this convex hull needs 

to expand iteratively by including obstacles crossing the convex hull boundaries, until all 

of the hull edges become collision-free. Using this idea, a new constraint is added to 

Problem 4, and the problem is reformulated as in Problem 5. 

Problem 5 
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Where 

C : the convex hull of the set points S, G, and the intersecting obstacles. 
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= 
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( , )D a b : the shortest distance between a and b calculated on from the route found by 

applying the C-hull based roadmap  

In Problem 5, C is a convex polygonal region defined by its vertices and edges. To 

form this new constraint, a set of linear inequalities is added to dictate the location of the 

breakouts inside this convex hull.  

3.4.2 Optimization solver   

This problem can be formulated and set up in MATLAB as an optimization 

problem. In the main program, the workspace geometric data that includes the VRML data 

of the obstacles alongside the Start and Goal sets of nodes with their coordinates are taken 

as inputs. Next, the linear constraints that impose the breakouts to stay inside the 
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Klamroth’s convex hull are created. The flowchart of Figure 3.21 describes the process 

used to create this convex hull.  

 

Figure 3.21 Flowchart for the iterative convex hull creation 

In this flowchart, first, the convex hull of all the nodes in the Start and Goal sets is 

created using MATLAB’s “convhull” function. Next, the edges of the convex hull are 

stored in the set E using their endpoints (denoted by their coordinates). Every edge in the 

set E is then checked for intersections with all the existing obstacles using the intersection 

detection algorithm developed in the convex-hull based roadmap [83]. If the edge is found 

crossing any of the obstacles, the corresponding obstacle is included to generate the 

updated convex hull. The process is continued until all the edges of the convex hull become 

collision-free. In the flowchart of Figure 3.21, 𝑃𝑗 is the jth obstacle, where 𝑗 = 1, … , 𝑚.  
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After the convex hull is created, its edges are extracted to define the linear 

constraints of the problem. These linear constraints specify a convex region inside which 

the breakouts can be located without the need to search the entire feasible region. Using 

this convex hull, the next step is to identify the obstacles that lie inside the convex hull. 

This information is to be passed to the nonlinear constraint function where the optimizer 

checks that the breakouts are not located inside or on the boundary of any obstacle 

(depending on whether the breakouts are allowed to be located on the boundary of a 

component or not). By determining the obstacles bounded inside the convex hull, the 

nonlinear constraint checks for every obstacle if the breakout is placed inside or outside 

this polygonal region.   

A separate MATLAB function is created to set up the nonlinear constraints. These 

constraints are vectorized. For example, if 𝑙 obstacles are identified inside the convex hull 

region, an 𝑙 × 1 vector is created that quantifies the output of the constraints using Boolean 

values. In more detail, if a breakout is located inside or on the boundary of obstacle k, 𝑘 ∈

{1,2, … , 𝑙}, the value of the kth row in the above-mentioned vector is 1; otherwise, it is zero. 

The pseudocode for setting up the nonlinear constraints as explained here is shown as in 

Algorithm 3.1.  
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This algorithm makes use of the InPolygon function [175] written by Redish and 

Jacquenot that detects if a set of points are inside a polygonal region. The function takes, 

as input, the coordinates of all the points to be checked and the vertices of the polygonal 

region in either clockwise or counterclockwise order. 

Since the geometric data of the obstacles is provided in the tessellated format of 

VRML, the triangles that form each obstacle can be used as the set of polygonal regions. 

This may, however, increase the computation time as the algorithm needs to check every 

breakout point against every single triangle of an obstacle. Additionally, placing a breakout 

inside the convex hull of a non-convex obstacle may cause sharp and often undesirable 

turns of wires at these breakouts (see Figure 3.22). 

Algorithm 3.1 

Input: The set P of 𝑃𝑘, 𝑘 ∈ {1,2, … , 𝑙}, the obstacles bounded inside the convex hull, and 𝑋 =
[(𝑥1, 𝑦1), (𝑥2, 𝑦2)], the coordinates of the breakouts (the decision variables  

 

Output: a Boolean vector C, showing which obstacles contain the breakout(s) 

C ← 𝑙 × 1 vector of zeros 

for (𝑘 = 1 to l), do:  

if 𝐼𝑛𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑋, 𝑃𝑘) true 

𝐶𝑘 ← 1  

endif 

 

end for 

return C 
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Figure 3.22 Example of a breakout located inside the convex hull of a nonconvex 

obstacle 

To avoid these unwanted turns and to improve the computation time, instead of 

using the triangles in each obstacle as the polygonal regions, this study uses the convex 

hull of each obstacle as the polygonal region. We, however, recommend using the exact 

border of the nonconvex obstacle (or the triangles defining the shape) for densely populated 

workspaces where there may exist a Start or Goal node that is inside the convex hull of a 

nonconvex obstacle. This case is further discussed in section 3.4.3.  

The output of the InPolygon function is a Boolean vector that shows whether 

any of the points is inside an obstacle. The code can be modified to output three types of 

vectors: strictly IN, which shows if a point lies in the interior of the polygon, IN/ON, which 

shows whether a point is in the interior or on the boundary of the polygon, and finally, ON, 

which turns to 1 if a point lies on the boundary of the polygon, not its interior. Since the 

purpose of this research is to avoid placing a breakout on a component of the workspace, 

the IN/ON check is used to output the nonlinear constraint value. The MATLAB code can, 
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however, be modified to use only the interior points such that placing a breakout on the 

boundary of a component is permitted. When searching for the feasible values of the 

decision variables, if any element in the C vector is found nonzero, the assumed decision 

variables become infeasible and must be excluded.  

Lastly, the objective functions need to be set up in the optimization problem. For 

this purpose, another MATLAB function is created that outputs a vector of objective 

function values when the decision variables are inputted. Algorithm 3.2 provides the 

pseudocode used to create this function.  

Algorithm 3.2 

Input: 𝑋 = [(𝑥1, 𝑦1), (𝑥2, 𝑦2)], the coordinates of the breakouts (the decision variables  

Output: Z, a 2 × 1 vector of integer values for the two objective functions 

Z ← 2 × 1 vector of zeros 

0L  

for (𝑖 = 1 to |𝑆|), do:  

1( , )iL L D S B= +   

end for 

1 2( , )wL L n D B B= +  

for (𝑗 = 1 to |𝐺|), do:  

2( , )jL L D B G= +   

end for 

1Z L   

2 1 2( , )Z D B B−  

return Z 

Following Problem 5, the first objective, the total lengths of wires, is decomposed 

into three segments: the length between each start node and the first breakout, the length 

between the two breakouts, and the length between the second breakout and each goal 

node. Analogous to the mixed-binary optimization, for the second objective function, 
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which is the maximization of the common length, the negative of the distance between the 

breakouts is used. 

After the objective and constraint functions are set up correctly in MATLAB, a 

solver should be called to solve the optimization problem. Since the two objective functions 

in the bi-objective optimization problem of Problem 5 conflict, it is expected to obtain a 

Pareto set of optimal solutions instead of a single value for the optimal functions.  

The present problem is NP-hard with nonconvex constraints and criteria; hence, 

hardly could it be solved using an exact solution method. Even if an exact method exists to 

solve this problem, it would not be computationally efficient. Therefore, we need to resort 

to heuristic techniques. Though they may not be the best approach in finding the global 

solution, their efficiency in addressing NP-hard problems outweighs their inability to 

guarantee to find the global optimum. For this research, the MOGA solver in MATLAB is 

deployed to solve problems in this section. 

 An example workspace with 12 scattered obstacles, 3 Start nodes, 4 Goal nodes, 

and 2 breakouts, the locations of which are to be found, is shown in Figure 3.23. In this 

figure, Si is the ith Start node and Gj is the jth Goal node. Also shown in this figure is the 

convex hull of the nodes and intersecting objects in blue. 
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Figure 3.23 Sample workspace with start and goal nodes 

The problem is solved using the explained setup and MATLAB’s MOGA solver 

with 100 generations and a population size of 50. The final set of non-dominated solutions 

can be seen in Figure 3.24. It should be reminded that due to the utilization of a heuristic 

solver, at each execution of the GA a new set of non-dominated solutions is generated and 

the non-dominated solutions at the last generation cannot be guaranteed to match the true 

Pareto set. 
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Figure 3.24 Non-dominated set of solutions for Figure 3.23 

For every point in the non-dominated or eventual Pareto set, there is an associated 

optimal layout for the cable harness found by locating the breakouts. Four sample layouts 

are depicted in the following figures.  
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Figure 3.25 Sample optimal layouts for Figure 3.23 example 

In examples of Figure 3.25, the layouts are selected from the set of non-dominated 

solutions (local Pareto optimal solutions) and drawn in a separate figure (right). It can be 

seen that changing the locations of the breakouts could change a layout significantly. It is 

evident that maximizing the common length of wires between the two breakouts will result 
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in an overall longer wire harness. An interesting case is layout 18 where the two breakouts 

coincide at the same location, zeroing the total common length. While this layout may not 

provide any commonality for bundles of wires, it can still bring insight to the designer 

when deciding about the final layout. It would, therefore, be worthwhile to compare this 

solution with the case where no breakout is used and the goal is to only minimize the total 

lengths of wires. The case of separate paths without any breakouts is created for the 

example in Figure 3.23 and the final layout is shown in Figure 3.26.  

 

Figure 3.26 No-breakout layout example for Figure 3.23 

In the next section, the effects of changing the number of Start or Goal nodes and 

the density of the workspace, measured by the ratio of the occupied regions inside the 

convex hull over the total area of the convex hull, on the optimal layout are further 

investigated.   
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3.4.3 Results and discussion  

This section evaluates the effects of the geometric structure of the workspace on 

the optimal solution to the cable harness layout problem. Since the optimal solution is not 

unique, to make the comparison of different layouts more meaningful, three solutions are 

selected from the Pareto set: the solution with the maximum distance between the two 

breakouts, the solution with the minimum total lengths of wires, and finally the solution 

with no breakouts.     

3.4.3.1 Effects of the number of nodes and the number of breakouts  

While having more components to connect evidently requires more wires and 

therefore increases the total length of wire harness, other factors such as the locations of 

the nodes (components) also affect the total and common lengths. Hence, it is inconclusive 

as to how increasing the number of nodes in the workspace alone could affect the optimal 

layout of the harness without considering where the new nodes are located.   

Further, analyzing the effects changing the number of breakouts has on the optimal 

solution requires the knowledge of the topology of the harness. The topology of the harness 

shows which nodes are connected to each breakout and how the breakouts are connected. 

For example, Figure 3.27 shows two different topologies for the case with 4 total nodes 

and 2 breakouts.  
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Figure 3.27 Two different topologies for 4 nodes and 2 breakouts 

Note that these are to show different topologies created with the same number of 

nodes and breakouts and they may not necessarily satisfy the physical requirements of a 

cable harness.  

3.4.3.2 Effects of the workspace density  

One of the challenges the designer of a cable harness layout faces is the limited 

feasible space remained to route all the wires and locate the breakouts in the detail design 

stage. Adding more objects to the same workspace results in a more densely populated 

environment. Therefore, the designer must know the effects of the density of the 

environment on the optimal layout of a cable harness assembly. The density of the 

workspace, in this research, is defined as the ratio of the area occupied by the obstacles 

inside Klamroth’s convex hull over the area of the convex hull: 

( )
(%) 100

(  )

area obstacles
density

area Conv hull
=   

(3.1) 
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Since the iterative convex hull is used to further bound and downsize the feasible 

domain for faster computation of the optimal solutions, it is reasonable to only consider 

the objects inside this convex hull as the obstacles to be avoided by the wire connectors.  

MATLAB’s convhull function, which is used for the calculation of the 2D 

convex hull in this research, also outputs the convex hull area. For the calculation of the 

area of each of the obstacles inside the convex hull, MATLAB’s polyarea function is 

used that is capable of finding the area of any polygonal region (convex as well as 

nonconvex) as long as the vertices of the polygon are in clockwise or counterclockwise 

order. The VRML format used to store and represent the obstacles’ geometry does not 

necessarily come with ordered vertices. Thus, an algorithm is developed that sorts the 

vertices of the obstacles in clockwise (or counterclockwise) order.  

To evaluate the effects of density on the optimal solutions, 11 different test cases 

are generated by varying the density from 14.25% to 52.36% in the feasible region of the 

workspace. Since the density of the workspace cannot be controlled, in this research, the 

density is increased by adding objects inside the convex hull until the computation time 

increased beyond one hour (for the density of 54.5%, which did not yield a solution within 

one-hour runtime of the algorithm). To make the comparison of the test cases possible, two 

Start and two Goal nodes are used with fixed locations across all the tests. The locations 

are 𝑆1 = (−25,10), 𝑆2 = (−20,20), and 𝐺1 = (25,15), 𝐺2 = (11, −4). 

Additionally, the number of required breakouts is kept at 2. The workspaces of these 

test cases are shown in Appendix A. The data of maximum common length, minimum total 
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wire lengths with and without the breakouts, and the total computation time for each test 

case is compiled and recorded in Table 3.7.  

Table 3.7 Results for testing the effects of density on optimal layout 

Test 

ID 

Workspace 

density 

(%) 

Max common 

length (cm) 

Min total 

length with 

breakout (cm) 

Min total length 

without breakout 

(cm) 

Total computation 

time (sec) 

1 14.25 39.1647 89.934 89.454 20.4921 

2 16.80 44.3307 90.942 89.6053 50.4038 

3 21.88 32.6631 89.9212 89.8316 73.0086 

4 28.65 44.0532 91.5033 90.2484 154.9674 

5 31.09 41.6997 91.2973 90.2484 174.2097 

6 34.64 47.7741 92.256 90.6393 262.6323 

7 37.75 49.4265 94.4517 91.8152 352.5452 

8 42.06 48.933 94.5502 91.8152 544.1885 

9 45.36 31.8739 95.3751 92.0603 595.7788 

10 49.12 36.1219 94.2169 92.3305 800.6291 

11 52.36 33.2051 97.5491 93.0223 1219.9532 

It can be seen in Table 3.7 that increasing the density increases the minimum total 

lengths of wires as well as the computation time (see also Figure 3.28, Figure 3.30, and 

Figure 3.31). The computation time seemingly increases exponentially with the increase in 

the density. Unlike the minimum total length, a trend is not observable in the changes to 

the maximum common length as density increases (see Figure 3.29). Since increasing the 

density beyond 52.36% in the same workspace results in the exponential growth of the 

computation time, cases with densities greater than 52.36% are not further explored.   
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Figure 3.28 Effects of the density of the workspace on the computation time 

 

 

Figure 3.29 Effects of the density of the workspace on the maximum common length 
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Figure 3.30 Effects of the density of the workspace on the minimum total length 

 

Figure 3.31 Effects of the density of the workspace on the minimum total length 

without a breakout 

While relative conclusions can be drawn, it should not be overlooked that the solver 

used for this optimization problem is heuristic-based. Therefore, the found solutions are 
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locally optimal and it cannot be expected to achieve the same results by solving the problem 

repeatedly. Thus, the values entered in Table 3.7 are subject to change by future executions 

of the algorithm.  

There might also be cases of densely populated environments where the convex 

hull of a nonconvex obstacle encompasses a part of another obstacle. An example of such 

a case is depicted in Figure 3.32 where a part of the second obstacle lies inside the convex 

hull of the first obstacle (dashed green lines).  

 

Figure 3.32 Example of interlocking obstacles in a dense environment 

In such a case, the convexification of the obstacles that is used as a step in the 

optimization process would result in entirely blocking the passage between the two 

obstacles. This blockage might further lead to the omission of some of the optimal solutions 

from the Pareto set. Therefore, it is suggested in this research to use the actual obstacles’ 

edges and vertices and avoiding convexification of the obstacles inside Klamroth’s convex 
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hull when the InPolygon function is called in such environments. Note that to be able 

to use the actual obstacle’s vertices in InPolygon function, the vertices must be in either 

clockwise or counterclockwise solution, as explained before.  

Using the actual vertices allows GA to include in the population the locations that 

are inside the convex hull but outside the actual boundary of a non-convex obstacle which 

was considered infeasible when the convex hull of the object was used instead. For 

example, a solution to the workspace of Figure 3.32 is outlined in Figure 3.33. The layout 

shown in this figure has two breakouts, B1 and B2, both of which are located inside the 

convex hull of the second object. Had the passage between the two interlocking objects in 

Figure 3.32 been blocked, the wires would have had to go around these objects to reach G1 

and G2, which would have lengthened their route. Also, the layout with no breakouts is 

shown in Figure 3.34 for comparison.  

 

Figure 3.33 Sample optimal layout for the workspace of Figure 3.32 



 

107 

 

Figure 3.34 Wire layout without breakouts for the workspace of Figure 3.32 

The convex hull based multi-path planning is also compared with the mixed-binary 

optimization using Problem 3-2 as the test case. The results are shown in Figure 3.35 and 

Figure 3.36. Even though the locations of the breakout in Figure 3.35 found by the convex 

hull based routing are quite different from Figure 3.19 generated by solving the mixed-

binary optimization problem with the ε-constraint method, the local Pareto fronts look quite 

similar.  

It should, herein, be reminded that despite the strength of the mixed-binary 

formulation of the problem using exact Euclidean distances, the approach is limited by the 

increase in the complexity of the workspace such as the number of obstacles, the shape of 

the obstacles, the number and locations of the existing nodes, and the number of breakouts.  
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Figure 3.35 Optimal locations of the breakout for Problem 3-2 found using convex-

hull based routing 

 

Figure 3.36 Non-dominated sets for Problem 3-2 found using convex-hull based 

routing vs. mixed-binary optimization 
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Chapter Four 

OVERVIEW OF THE RELATED WORK ON 3D PATH PLANNING METHODS 

Although plenty of methods have been introduced and implemented to address path 

planning problems in 2D environments, as reviewed in Chapter 2, due to the inherent 

challenges of 3D path planning, most of those methods are found inefficient in dealing with 

3D problems (e.g. the classical visibility graph) and some may not even apply (e.g. Voronoi 

diagrams). In fact, according to Canny and Reif [7], the path planning problem in its general 

form in 3D environments is an NP-hard problem, i.e. it cannot be solved in polynomial 

time. Therefore, to find a solution to 3D shortest path problems within a reasonable 

computation time, researchers mainly resort to stochastic and heuristic techniques for 

which there is no guarantee to find a globally optimal solution. Some, on the other hand, 

value the optimality of the solution higher than the computation time and attempt to adopt 

deterministic methods to solve 3D problems. In an effort to reach polynomial-time 

complexities, algorithms have been developed that generate approximate shortest paths 

[176]. These efforts have resulted in methods that either make simplifying assumptions and 

generate an approximate shortest path or address the special cases of the general 3D 

problem.  

This chapter highlights the two popular classes of methods for 3D path planning 

problems: variants of visibility graph, based on a deterministic method covered in Chapter 

2, and non-deterministic (including heuristics and stochastics) approaches.     
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4.1 3D Visibility graph  

While the discussed methods of constructing visibility graphs apply to 2D 

environments, the construction of a 3D visibility graph may not be as straightforward. The 

notion of visibility graph in 3D spaces may differ from its 2D counterpart. O’Rourke [10] 

provided different definitions for visibility graphs. According to him, a 3D visibility graph 

may be created between two objects instead of a pair of nodes, which can greatly simplify 

the graph construction. In that case, each object serves as a node. Using this definition of 

visibility may, however, result in non-optimal solutions to shortest path problems. 

Nonetheless, using the classical definition of a visibility graph, the construction of that 

graph requires the determination of all visible points of an object from a given point in the 

space. By the classical definition, in 2D planning, the graph nodes are the vertices of the 

intersecting polygonal obstacles as shown in [83]. In 3D, on the other hand, the visible 

points used in the shortest path lie anywhere on the edges of the polyhedral obstacles [24]. 

Therefore, the construction of visibility graphs in 3D becomes an NP-hard problem [10].  

In addition, moving from 2D to 3D, the definition of intersection also changes. In 

3D environments, the intersections occur between a line segment and an interior of a 

polyhedron, not a polygon. Therefore, intersections need to be checked between a line 

segment and an object’s edges as well as its surfaces. If tessellated models of objects are 

used, it suffices to only check intersections between the line segment and the triangles that 

compose the surface of the solid model. This fact alone can increase the time complexity 

of any graph construction algorithm drastically. Further explanation of the intersection 

detection algorithms used in this study is provided in Chapter 6. 



 

111 

Despite the discussed challenges, work has been done on developing construction 

algorithms for 3D visibility graphs with simplifying assumptions (e.g. the approximate 

shortest path) or for special cases. For example, Lozano-Pérez and Wesley [13] extended 

their approach to 3D path planning based on visibility graphs by introducing new vertices 

along the edges of polyhedral obstacles, further subdividing an edge. According to them, a 

3D visibility graph whose nodes consist only of the obstacles’ vertices is not guaranteed to 

contain the shortest collision-free path. The new vertices they introduce can lie anywhere 

on an edge of an obstacle (or its dilation in the configuration space) such that the length of 

each subdivision does not exceed a pre-specified value. The addition of the new vertices 

can lead to a reasonable approximation of the shortest path on the visibility graph though 

the computation time may be significant depending on the size of the graph.  

Sharir and Schorr [24] presented a doubly exponential (has the form of 𝑎𝑏𝑥
, where 

a and b are constants) algorithm in terms of the number of wall edges to find a sequence 

of edges of obstacles through which the shortest path passes. They identify the contact 

points on the edges of the obstacles by solving a system of m equations (for m segments of 

the shortest path) which sets the arriving and leaving angles of the path segments at each 

edge equal. They prove that the shortest path on a sequence of edges is unique and the ith 

turning point on an edge is such that the angle created between ith segment of the path and 

the edge is equal to the angle between (i+1)th segment and the same edge. Even though the 

analytical solution to this problem is computationally expensive (even numerical methods 

take 𝑂(𝑚𝑚) to solve a system of m equations), they considered a special case of finding 

the shortest 3D path along the surface of a convex polyhedral object which is solvable in 
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𝑂(𝑛3𝑙𝑜𝑔 𝑛) for n vertices of the polyhedron. This path is also known as a geodesic path 

[24]. 

To further improve the computational time of the 3D shortest path algorithm 

suggested by Sharir and Schorr, Papadimitriou [15] proposed an algorithm capable of 

finding approximate 3D shortest paths that are at most (1+ε) times longer than the globally 

shortest path. His algorithm can be run in the polynomial-time of 𝑂(𝑛4(𝐿 + log (𝑛/𝜀))2/

𝜀2), where n is the number of vertices and L is the precision of the integers used (for 

example for the coordinates of the vertices, L is the base 2 logarithm of the largest integer 

used in a coordinate). The proposed algorithm subdivides each edge into at most 𝑁 =

𝑂(𝑛(𝐿 + log (1/𝜀))/𝜀) segments. He defines visible edges as a pair of edges with two 

points, one on each edge, visible to each other. If such points exist, the segments are visible. 

Next, he calculates the distances between visible edges as the distance between their 

midpoints. Finally, applying Dijkstra’s algorithm to the visibility graph, the shortest path 

can be found.  

Clarkson’s method [30] discussed in Chapter 2 is also applicable to 3D path 

planning problems. In fact, he provided improvements to the time complexity of 

Papadimitriou’s algorithm for the 3D visibility graph. The idea here is analogous to the 2D 

problem. the conical regions are created for the nodes of the graph. This time, however, 

the nodes are not necessarily the vertices of the obstacles. Instead, the apex of the cones 

(or nodes of the reduced graph) lies on the edges of the obstacles which implies infinitely 

many vertices. To avoid this burdensome computation, Clarkson subdivides the edges to a 

finite number of segments. After the graph is constructed, the search algorithm presented 
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in [31] is applied to obtain the shortest path. In addition to Clarkson, Choi et al. [177] also 

revisited Papadimitriou’s algorithm and defined a new subdivision scheme to further lower 

its running time.  

An 𝑂(𝑛6𝑘−1) time algorithm is developed to find the 3D shortest collision-free path 

amidst vertical obstacles, resembling buildings in an urban setting, with a total of n vertices 

and k distinct heights [178]. Vertical obstacles are such that each of their faces is either 

parallel or perpendicular to the xy plane. The authors also proposed speedup techniques 

that improve the time complexity up to 𝑂(𝑛2) though the resulting paths are longer by a 

maximum of 8% due to the deployed approximations and simplifying assumptions.  

In this algorithm, a visibility graph is constructed per level. After all the graphs are 

found, they are connected to form a 3D graph which is searched for the shortest path. The 

algorithm benefits from the orthogonality of the objects when using their projections to 

construct visibility graphs and find the waypoints.  

A 3D Reduced Visibility Graph (3DRVG) is introduced in [179]. The proposed 

construction algorithm has polynomial computational time in terms of the number of 

vertices and exponential time in terms of the number of obstacles, 𝑂(𝑛3𝑣𝑓), where n is the 

number of vertices, f is the number of obstacles, and v is the maximum number of vertices 

in any one obstacle.  

To construct the 3DRVG, the authors explained a perspective projection referred 

to as collineation that projects the obstacles on a plane perpendicular to the line connecting 

the start and goal. The projection viewpoint is the start point. An example of the defined 

collineation is shown in Figure 4.1.  
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Figure 4.1: Illustration of collineation concept [179] 

Using the projected image of the obstacles, non-overlapping edges are identified by 

removing the hidden lines in the projected image. Using the information of visible edges 

in the 2D projection plane, the corresponding edges on the 3D obstacles are identified. 

After the visible edges are found, they are connected in a sequence starting from the start 

point, passing through the midpoint of each edge and ending at the goal point (see Figure 

4.2). However, since the midpoints of the edges may not yield the shortest path, an elastic 

string analogy is used to resemble each path to minimize the total potential energy of the 

elastic strings. This optimization leads to minimizing the length of the path by moving the 

path turning points on the visible edges of the obstacles.  

 

Figure 4.2: The shortest path through the midpoints of the found edge sequence 

[179]   
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A modification to Gewalli’s algorithm is provided in a more recent study by 

Frontera et al. [180]. Their modified algorithm, known as ApVL, reduces the number of 

vertices used to find the shortest path and as a result, improves the computation time to 

𝑂(𝑛3). Similar to [178], they construct 2D visibility graphs at different levels i, 1 ≤ 𝑖 ≤ 𝑘, 

for k distinct levels of obstacles. However, their classification of levels differs from that of 

[178] in that they have evenly spaced levels and no matter how many distinct heights the 

obstacles have, they keep k constant. They then use projections of the visibility nodes at 

different levels to create connecting edges between visibility graphs at different levels and 

find the shortest path in 𝑂(𝑘2𝑛3) which, assuming a constant value for k, is reduced to 

𝑂(𝑛3). A sample three-level visibility graph is shown in Figure 4.3. The first step in their 

algorithm is the determination of the intersecting obstacles. These obstacles are then passed 

to the approximate graph generation to build the visibility graph which is later searched 

using A*.  

 

Figure 4.3: Three-level visibility graph [180] 

A downside to their approach is the discarding of non-intersecting obstacles. This 

contributes to the intermittent collision between the final shortest path and the discarded 
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obstacles. To avoid this, they check for collisions once again after the shortest path is 

created to ensure the path is collision-free. If collisions are found, the process is performed 

iteratively to converge to a collision-free path between the two given points. This algorithm 

is also compared with the sub-sampling algorithm [13], approximations by Gewalli et al. 

[178], visibility line-based [181], and stochastic methods of PRM and RRT. The results 

show that it outperforms the rivals in finding the 3D shortest path in an urban environment 

with regular obstacles both in computation time and the path length.      

Looking at the same problem but adding extra constraints and criteria (such as the 

number of links and the maximum height of the obstacles), Tran et al. [9], developed an 

algorithm that generates even shorter paths than ApVL’s output, among convex vertical 

polyhedra. Their algorithm has two main steps: (1) the construction of a visibility graph 

based on the obstacle segments that are fully or partially visible to each other and (2) 

solving a Mixed Integer Linear Program (MILP) that attempts to find the location of 

waypoints on the nodes of the visibility graph. An example of two partially visible 

segments identified based on Tran’s algorithm is shown in Figure 4.4. It should be noted 

that the nodes of the visibility graph are in fact edges of the obstacles. Therefore, instead 

of constructing a visibility graph based on visible nodes, the authors construct the graph 

for visible edges. They also deploy a linear approximation of the Euclidean distance metric 

to be able to model the problem and solve it as a MILP.  
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Figure 4.4: The notion of partial visibility for segments [9] 

Although the method is competitive in finding reasonable approximate solutions to 

the shortest path problem using an exact geometric-based approach, hardly could it be 

applied to solve 3D path planning problems with non-vertical obstacles. The method of 

determining the visibility of obstacle edges is significantly simplified by using vertical 

obstacles that have either parallel or perpendicular faces to the xy plane. In addition, the 

distance metric used approximates the Euclidean metric, which requires post-processing 

steps to further refine the path for a shorter one.   

The methods developed in [178], [180], and [9] all make an assumption that 

traveling below the base surface of any obstacle is not permitted; hence mimicking an 

urban environment for finding the path. Although this assumption is valid for the case of 

UAV path planning in an urban setting, for the problem of wire routing it may not be 

realistic to assume wires can only extend over the top (or sides) of the obstacles. Therefore, 

the proposed approach may not apply to the general problem of 3D path planning.  

Liang et al. [182] developed a geometric-based path planning approach in two and 

three-dimensional workspaces scattered with regular objects including rectangles and 
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ellipses in 2D and cubes and cones in 3D. The algorithm starts with identifying the 

intersecting obstacles and ordering them based on their distance from the start point of the 

path. Then, the points of intersections with edges (2D) or faces (3D) are determined and 

the closest point to the path start point is selected. The distances from the selected point to 

the vertices (2D) or edges (3D) of the respective edge (2D) or face (3D), to which the point 

belongs, are calculated and the vertex or edge with the minimum distance is chosen as the 

sub-goal of the path. An example of a sub-goal is illustrated in Figure 4.5 (point A). 

 

Figure 4.5: The sub-goal for a cuboid obstacle[182] 

They showed that for any arbitrary point, B on the edge with minimum distance 

from P, the inequality of ‖𝑆𝐵‖ + ‖𝐵𝐹‖ ≥ ‖𝑆𝐴‖ + ‖𝐴𝐹‖ holds; therefore, A is on the 

shortest path from S to F. In the next iteration, the sub-goal is set as the new start point and 

the process is iteratively performed. These sub-goals act as the waypoints and if they form 

non-intersecting segments, they will be appended together to create a collision-free path. 

Figure 4.6 shows an example of the final shortest path in a 2D environment using this 

method.  
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Figure 4.6: The shortest path for a 2D workspace [182] 

Though claimed by the authors that the path found by this algorithm is a good 

approximation of the shortest path, no proof is provided that such paths are near-optimal. 

Comparisons are provided with 2D and 3D heuristic methods that show the superiority of 

the method in the optimality of the solution. However, the heuristics may not be a valid 

reference as they cannot guarantee to find a globally optimal solution. Further, the proposed 

algorithm can only handle regularly shaped obstacles and the process of determining the 

sub-goals highly depends on the obstacles’ shapes; therefore, it may not apply to a more 

general case of 2D problems or any 3D planning problems.  

4.2 Non-deterministic methods 

Heuristic and stochastic methods are popular in addressing 3D path planning 

problems as they can often generate an adequate solution in a reasonable time. If a solution 

exists, they generally find it, however, it could take drastically long for these methods to 

converge to the exact solution depending on the scale of the problem; thus, often there is 
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no guarantee the found solution is the global optimum. Stochastic methods (e.g. PRM and 

RRT) are useful for environments that contain levels of uncertainty where also real-time 

routing is required. Here we refer to a few examples of heuristic and stochastic planning 

approaches for 3D problems.  

One of the early efforts to use evolutionary algorithms for path planning problems 

was made by Szykman and  Cagan [183]. They proposed an approach based on Simulated 

Annealing (SA) to produce non-orthogonal routes for pipes in a 3D environment. Given 

the locations for a pair of terminals, an initial route, which is the straight line between the 

two terminals, is chosen. Then, the optimizer based on SA moves the locations of bend 

points, which are design variables, to minimize an objective that consists of the sum of 

three components: the total length of the route, the number of bends, and the degree of 

penetration inside obstacles. Weights are used to distribute the importance of the three 

objectives, and the aim is to drive the third one (obstacles interference) to 0. Figure 4.7 

shows an example of an optimal layout for a four-story chemical plant using the approach 

introduced in [183]. 

Later, Sandurkar and Chen [76] addressed the pipe routing problem in 3D space 

using the tessellated format (triangulated meshes for the surface approximation of solid 

models) to represent components in the workspace and implemented a Genetic Algorithm 

(GA) that determines angles and lengths of each segment of a single pipe. 
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Figure 4.7: Optimal layout for a chemical plant using SA[183] 

While GA and SA are among the most popular heuristic techniques for 3D routing, 

researchers have also applied Ant Colony (e.g. for pipe routing in ships [184] and 3D hose 

routing[185,186]), Particle Swarm (e.g. for pipe-assembly in aero-engine [187], pipe 

routing [188,189], and robot path planning [190]), and Tabu Search (e.g. for vehicle routing 

[78]). 

In addition to heuristics, other non-deterministic methods such as sampling-based 

methods of PRM (e.g. see [69,191,192]) and RRT (e.g. see [193–195]) have drawn a lot of 

attention by 3D path planning researchers and many have applied them to solve 3D 

planning problems in complex environments.  

Heuristics and sampling-based methods are popular due to their simple 

implementation and computational efficiency and therefore there is a multitude of studies 

on these routing methods for different applications. However, since the focus of the present 

work is on deterministic methods, we skip the further discussion of the related work based 

on non-deterministic methods.  
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4.3 Other methods for 3D path planning 

Although visibility based, heuristics, and sampling-based methods are popular 

among scholars for solving 3D routing problems, other methods discussed in Chapter 2 

have also been applied to 3D problems and their performance has been evaluated. In this 

section, a brief explanation of the most common of these methods is provided.    

Potential fields- As explained in Chapter 2, PF is a method that benefits from 

defining potential functions for various points in the workspace. The potential associated 

with the goal point is zero and the objective is to minimize the total potential function as 

the router moves from the start point toward the goal. By this definition, the PF method 

can be similarly applied to 3D path planning problems (for example see references [196–

198]). Despite the strength of the method in addressing dynamic environments, similar to 

2D, the PF method has a downside of trapping at local minima in 3D environments as well, 

especially in environments with closely spaced obstacles. Different solutions are proposed 

to overcome this problem by defining new potential functions [198] or placing an 

imaginary goal point near the trap for the router to escape the local minimum [65]. These 

potential functions may, however, approximate the shortest path, therefore, could result in 

sub-optimal paths.   

Voronoi- Retraction methods using the Voronoi diagram are the best candidates 

for planning the safest path among scattered objects. Although the method is more popular 

for 2D safe routing problems, some researchers have benefitted from generating Voronoi 

diagrams for 2.5D environments or 2D projections of 3D environments [199,200] while 
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others looked at blending the method with other planning methods (such as heuristics[201] 

or RRT[50]) to increase the path safety[50,201].     

Octree- Octrees are a subset of the approximate cell decomposition method 

reviewed in Chapter 2. Using octrees, the free space in a given environment is further 

decomposed into 8 cubic cells in multiple iterations, until a termination criterion is reached, 

or a cell is located completely inside or outside the obstacle space. Depending on the 

desired resolution for the decomposition, the method can have low to high computation 

time simultaneously trading off the optimal path found on the cellular map. The method is 

extensively used in the literature for collision avoidance in robot motion planning problems 

[56,202,203]. Some scholars went farther and combined octrees with other planning 

methods such as Ant Colony to benefit from both the collision avoidance capabilities of 

octrees and computational efficiency of Ant Colony [204]. 

Dubins- Named after its developer [205], Dubins path is the shortest curve that 

connects two points in a plane with a constraint on the radius of curvature and known 

velocity vectors (tangents) at the two points. Dubins further proved that for 2D Euclidean 

planes, the curve is continuously differentiable and the path consists of no more than three 

segments each of which is either an arc of a circle with the radius no greater than the set 

curvature (constraint) or a line segment [205]. Other researchers looked into adopting the 

method for 3D path planning by considering different planes for the initial and final 

configurations [206]. As a result, Dubins paths are commonly used to address UAV path 

planning in cluttered environments with known UAV configurations at the initial and final 

points of flight [207,208]. Figure 4.8 shows an example of a Dubins path with an initial 
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position at (0,0,0) and a final position at (51,18,51). As can be seen in this figure, the curved 

path consists of three segments: an initial arc, a straight line segment, and a final arc that 

lands on the final point of the path, consistent with Dubins’ proof.  

Contrary to roadmaps and cell decompositions where the workspace is mapped to 

a connectivity graph, akin to the discretization of the workspace, Dubins paths are 

continuous parametrized curves with predefined initial and final orientations (or 

configurations). In addition, due to considering velocity and position of the moving point 

(e.g. UAV), Dubins’ method is a suitable candidate for dynamic and time-dependent 

routing where in addition to the length of the path, the time it takes to complete the path 

may also need to also be minimized.     

 

Figure 4.8: An example of a Dubins path 
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In the next section, a comparison of the 3D path planning methods discussed in this 

chapter is provided followed by a discussion of their limitations which leads us to the 

research questions to be addressed in the remainder of this study.  

4.4 Comparison of path planning methods 

The planning methods discussed in this study are classified as in Figure 4.9 based 

on their approach to solving the problem and their optimization models. The three main 

classes are (1) representation-based methods, which make use of the graphical 

representation of the workspace, (2) reasoning-based methods that follow a logical instead 

of the geometric approach to solving the problem, and (3) hybrid, which uses a combination 

of the two previous methods to benefit from the advantages of both.  

 

Figure 4.9 Taxonomy of path planning methods 

The representation-based methods are further broken into two groups: methods that 

only generate a free space graph (pre-processes) and usually need a post-process that finds 
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the solution on the graph and methods that not only generate the graph but are also capable 

of determining the shortest path on the graph in an all-at-once approach.  

The methods are also color-coded following the legend on the bottom right corner 

of the figure based on the optimization models they use to address the problem. Three 

themes are found in the planning methods reviewed in the literature: deterministic models, 

heuristic models, and stochastic models. Deterministic models, as introduced in Chapter 3, 

generate the same fully determined output per each execution of the algorithm when the 

same input is provided. If an optimal solution exists, deterministic models can find it and 

prove its optimality.  

Heuristic models, on the other hand, define functions (e.g. fitness function in GA 

or potential functions in PF) to generate and score optimal solutions. The goal in heuristics 

is to find a solution with acceptable accuracy or optimality degree more quickly, which 

results in making approximations. Heuristics cannot guarantee to find the global optimum 

and may trap at local optima or take longer to converge to a global optimum.  

When some levels of randomness exist in the problem, stochastic methods are the 

best candidates for the mathematical model. Random variables are often used in the 

mathematical model of a stochastic optimization problem and instead of a single output, a 

distribution of possible outcomes may be generated as the solution. Unlike, heuristics that 

cannot provide proof of optimality, stochastic optimization methods can provide and prove 

the optimal solution with a known probability.   

Heuristic and stochastic approaches are the two widely used classes of methods to 

address 3D routing which provide an approximate solution. The popularity of these 
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methods comes from their computational efficiency that could overshadow the accuracy of 

the solution. Among the three classes of optimization methods, only deterministic methods 

are capable of finding the exact solution, though their time complexity can significantly 

increase as they explore the solution space more comprehensively. As shown in Figure 4.9, 

all representation-based methods, except PRM and RRT families of methods, are 

deterministic.  

Visibility methods are the most exact, among the deterministic methods, for the 

shortest path problem in 3D. Constructing the complete visibility graph in 3D workspaces 

is, however, computationally expensive, if at all possible. Hence, as discussed, the 

available methods can only address special cases (such as specific shapes [179,182], 

vertical obstacles [9], or only one convex polyhedron[24]) or generate approximate 

solutions by subdividing the obstacle edges [15,30,178] and therefore restricting the 

solution space. Table 4.1 below summarizes the studies on 3D visibility-based planning 

methods.  

Table 4.1 Comparison of 3D visibility-based planning methods 

Methodology  Reference Limitations 

Subdivision of obstacle 

edges  

Lozano-Pérez & Wesley [13], 

Papadimitriou [15], Clarkson [30],  

- Approximate solution 

- Computationally expensive 

Multi-level 2D visibility 

graph 

Gewali [178],  Frontera [180] - Approximate graph 

- Vertical objects only 

Kuwata and How [209] - Approximate path 

- Vertical block obstacles 

Projection on plane Jiang [179] - Specific shapes (pyramids, cubes) 

Huang [210], Omar and Gu [181] - Approximate 2D graph using 

rotational planes 

- Vertical block obstacles 

Visibility segment graph Tran [9] - Approximate Euclidean length 

- Vertical block objects 
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Shown in this table are the limitations of the visibility based methods which are one 

of the two categories: approximate paths on subdivided edges or special shapes/topologies 

of obstacles.  

4.5 Research objectives- Part II 

With the discussed limitations, a deterministic approach is required that does not 

subdivide obstacle edges and can apply to obstacles not limited to vertical or specific 

polyhedral shapes. Based on this discussion, the objective of the second part of this 

research is to develop and test a geometric-based and deterministic approach based on the 

visibility notion to generate optimal solutions to the 3D path planning problems. The focus 

is more on the optimality of the solution than the computation time while, when possible, 

speedup techniques are also implemented.  

As mentioned, the waypoints of the piecewise shortest path between start and goal 

points in a 3D cluttered space lie on the edges of the obstacles [24]. Therefore, an approach 

is sought that can produce the optimal edge sequence to be followed by the path and the 

optimal locations of turning points of the path on those edges. Different paths found are 

then appended together to form the 3D visibility graph and later Dijkstra’s search algorithm 

is applied to yield the shortest path on the graph.  
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Chapter Five 

3D PATH PLANNING PROBLEM SETUP, DEFINITIONS, AND FORMULATION 

This chapter provides an overview of the definitions of the fundamental terms and 

assumptions used to simplify the problem. Other preliminary steps taken toward 

constructing the 3D visibility graph are also explained here. These steps include the 

workspace geometric representation, data types/structures used, and finally the 

mathematical formulation of the problem.  

5.1 Definitions of fundamental terms 

See the following definitions for the terms used in the problem statement.   

Definition 1. As defined by O’Rourke [10], a polyhedron is “a region of space 

whose boundary is composed of a finite number of flat polygonal faces, any pair of which 

are either disjoint or meet at edges and vertices.” 

Definition 2. By Definition 1, a convex polyhedron is the one whose faces are all 

convex polygons. 

Definition 3. Intersection (or collision) between a line segment and a polyhedron 

occurs if and only if the line intersects with at least two faces of the polyhedron at points 

with different coordinates. Note that for a convex polyhedron, an intersection occurs if the 

line segment intersects with exactly two faces of the polyhedron at two distinct points.  

By this definition, in a 3D space, the direct path connecting two points X and Y is 

not collision-free if and only if the line segment 𝑋𝑌̅̅ ̅̅  intersects with the interior of at least 

one obstacle, that is: 
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: int( )i iP W XY P     (5.1) 

Where 𝑃𝑖 is the ith obstacle, W  is the 3D workspace, and 𝑖𝑛𝑡(𝑃𝑖) denotes the interior 

of the ith polyhedral obstacle.    

Definition 4. A path 𝑅 from the start (𝑠) to the goal (𝑔) is said to be the shortest 

collision-free if it is the shortest path among all the collision-free paths from 𝑠 to 𝑔.  

5.2 Assumptions  

Several assumptions are made to model the problem mathematically and 

geometrically to be able to solve it as an optimization problem. The assumptions are:  

Assumption 1. Obstacles are convex polyhedra (please see Definition 1 and 

Definition 2).  

Assumption 2. The location and geometry of all the obstacles are known a priori.  

Assumption 3.  The obstacles are static (their location does not change at any time) 

and disjoint, meaning no two obstacles touch. If any two obstacles touch, they are 

considered one obstacle. Since this new obstacle becomes non-convex, the methods 

developed in this research may not apply to those cases.   

Assumption 4. The obstacles are modeled using tessellations that approximate each 

object’s surface by triangular polygons.  

This assumption also simplifies the collision check between a line segment and a 

polyhedron as explained in the next chapter.  

Assumption 5. The obstacles can take any arbitrary convex shape and geometry. 

The shape is not constrained as long as it satisfies the definition of a convex polyhedron.  
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Assumption 6. The start and goal points of the path are not interior to any 

polyhedral obstacle. 

Note that this assumption together with Assumption 3 implies that there is always 

a collision-free path between the given points amidst the obstacles.  

Assumption 7. A path can touch the boundary of an obstacle or its configuration 

space; however, traveling through the interior of any of the obstacles is not allowed (see 

Definition 3). 

Assumption 8. Should the environment of the routing problem be enclosed, 

collisions will be avoided with the walls of the enclosure.   

Assumption 9. The wire routing problem is modeled as a 3D problem; however, 

the algorithm is capable of routing in 2.5D workspaces (such as robots moving on a floor 

plan or UAVs flying in an urban environment). For an exact algorithm for 2D routing 

problems, readers are referred to [83].  

Assumption 10. Collision-free paths between the given points are piecewise linear 

if the baseline connecting the endpoints regardless of the obstacles intersects with at least 

one obstacle. Otherwise, the shortest collision-free path is trivially the line segment 

connecting them.  

Although path smoothening is possible using B-Spline or NURBS parametric 

models of curves, the output path in this research is piecewise linear and no post-processing 

steps are taken to smoothen the path; therefore, focusing on the exact shortest paths.  

Assumption 11. The given environment is the configuration space of the problem. 

Therefore, the agent that is routing through obstacles is assumed to be a point.  
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This is critical in case the agent has a two or three-dimensional geometry (such as 

a robot or a wire with circular cross-section) which needs to be shrunk to a point and grow 

the obstacles correspondingly.  

5.3 Modeling the workspace: representation and exchange format 

The geometric representation of the workspace is at the core of the proposed path 

planning method. An appropriate geometric model contributes to speeding the collision 

detection between the path and the objects. The identification of the intersecting obstacles 

is the basis of the algorithm suggested in this manuscript. Therefore, it is of high 

importance to select the geometric representation and CAD format that best describe the 

geometric data of the workspace and facilitate the geometric operations including collision 

detection.  

Different geometric representation paradigms exist to define and model 3D objects, 

the two most common of these are Constructive Solid Geometry (CSG) and Boundary 

Representation (B-rep) [211]. 

According to Zeid [211], CSG benefits from primitives (or building blocks) that 

can be manipulated using Boolean operations to generate more complex 3D models. These 

primitives are typically basic shapes such as rectangular block, cylinder, cone, plane, and 

sphere. B-rep, on the other hand, is based on the idea that a physical object is bounded by 

a finite number of faces that are closed (i.e. no breaks or holes exists on their boundary) 

and orientable (i.e. the two sides of a face are distinct by having surface normals pointing 

to opposite directions). Therefore, faces, vertices, and edges are the building blocks of B-

rep that construct a physical object [211]. As path planning methods are generally 
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concerned with faces, edges, and vertices, the suitable geometric representation for this 

application is seemingly B-rep, and therefore this representation is adopted in this research.   

After the geometric representation is specified, the next step is to decide how the 

geometric data of this representation is to be stored and reported. CAD software packages 

provide a variety of data formats. An appropriate data format is the one that could be easily 

exchanged between these packages. Accordingly, to overcome the interoperability issues 

of using platform-specific 3D models (proprietary formats), this research benefits from 

open-source (neutral) formats. These are the formats of 3D models that are common among 

different CAD software packages. Examples of these neutral formats include IGES, XBF, 

SET (for shape data exchange), and STEP and PDES (for product data exchange) [212].  

Table 5.1 Common neutral CAD formats [213] 

Data format Geometric 

representation  

Shape and product data Application  

IGES CSG and B-rep Surface geometry and color 

data 

High precision 

engineering (e.g. 

aerospace) 

STEP CSG and B-rep Surface geometry, topology, 

and appearance data 

High precision 

engineering 

OBJ (neutral in 

ASCII format) 

Approximate and 

precise mesh in B-rep 

surface geometry, appearance 

data 

3D printing, 3D 

graphics 

STL 

(STereoLithography) 

Approximate mesh in 

B-rep 

Surface geometry only 3D printing, CAM 

VRML (Virtual 

Reality Modeling 

Language) 

Approximate mesh in 

B-rep 

Surface geometry and 

appearance data 

Internet and the web 

COLLADA B-rep surface geometry, appearance 

data, animation 

Graphics (gaming and 

film industries) 

 

As discussed by Owen and Bloor [212], some of the issues with the initial data 

exchange formats included storage and accuracy. The early versions of IGES, for example, 
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required more space to store the same data than the native CAD formats did. In addition, 

the accuracy of the transferred data in the early formats could be diminished. To alleviate 

these issues, more recently other formats are introduced. Table 5.1 provides the properties 

of some of the common neutral formats used both commercially and scientifically as 

described in [213]. 

As can be seen in Table 5.1, OBJ, STL, and VRML are the formats that use 

approximate meshes in a B-rep geometric representation. Approximate mesh formats 

render faster than precise mesh formats. STL is one of the primary tessellated based formats 

and is widely deployed in additive manufacturing industries. It approximates the surfaces 

of solid models by triangular meshes. An STL file of a solid model includes the X, Y, and 

Z coordinates of each triangle’s vertices as well as the outward normal vector to the surface 

of that triangle. An edge must be shared by no more than two triangles.  

For 3D printing applications, OBJ is gaining more attraction these days as it 

encodes color and appearance data in addition to the shape, which is useful if parts with 

multiple colors or textures are to be printed. Further, its approximate mesh is not limited to 

only triangular surfaces. It can, for example, use quadrilateral meshes to approximate 

surfaces. VRML is another tessellated based format that also encodes appearance data and 

is best for web applications.  

Following Assumption 3, obstacles are modeled using a tessellated format in CAD 

software. Thus, STL and VRML are two candidates for the format of the workspace data 

storage. As noted by Fadel and Kirschman [214], STL causes loss of accuracy due to round-

off errors when computing the approximations of curved surfaces by a series of triangles. 
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This error results in the generation of multiple very close points despite pointing to the 

same single point. This could cause a hole inside a tessellated object since the edge that 

two triangles share is no longer common due to different coordinates of the “common 

points”. This situation can be seen in Figure 5.1.  

 

Figure 5.1: Round-off error in tessellations 

Another issue relates to the chordal tolerance in a triangulation. Chordal tolerance, 

as defined by Fadel and Kirschman, is the distance from the surface of a solid model to the 

vector that represents a side of the triangle. To improve the accuracy of the tessellation, 

one needs to reduce the chordal tolerance by increasing the number of triangles. 

The STL creates a tessellated format by getting the coordinates of the points of each 

triangle and representing them. Hence, the coordinates of two points would be repeated as 

an edge is shared between the two triangles. The repetition of the coordinates of a point 

may increase the chance of getting the round-off error at that point. Additionally, it results 

in more space required to store the large data of STL format. VRML, on the other hand, 

first gets all the points and then creates the triangles, reducing the possibility of the round-

off error. This format, however, does not come with the normals to the triangles. If such 

normals are desired for an application, the user has to compute them numerically. Figures 
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5.2 and 5.3 below show, in ASCII format, an STL and a VRML representation of data of a 

cube modeled in SolidWorks, respectively.  

 
Figure 5.2:  Sample STL representation of CAD data in ASCII format 
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Figure 5.3: Sample VRML representation of CAD data in ASCII format 

 

Despite the discussed challenges with STL, since in this research appearance data 

is of little importance whereas surface normals are required for the next set of calculations, 

the selected format is STL to avoid further calculations of the normals by the cross products 

of the vectors defining triangle edges.   
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5.4 Data types and structures 

The types and structures of the data to be stored and manipulated affect the 

computational performance of an algorithm. Therefore, in this work, attempts are made to 

deploy the data types that facilitate the geometric and algebraic operations on the data of 

the tessellated objects. Here, an explanation of the data types as well as structures used is 

provided.   

5.4.1 Data types 

The three main types of data used in implementing the developed algorithms in this 

research include floating-point, integer, Boolean, and characters. The geometric data of 

the objects imported from the CAD software is composed of an n-by-3 matrix of 

coordinates of vertices, where n is the number of vertices per object, and an m-by-3 matrix 

of edges, where m is the number of triangles in the triangulated object. The data of the 

vertex coordinates has the type floating-point in double-precision while integer data type 

is used in the matrix of tringles that denote the ids of the vertices connected in each triangle. 

Boolean is another type of data used extensively in the algorithm implementation 

especially where the output of the operation is binary. For example, the output of whether 

or not an object is on the way is reported in Boolean. Last but not the least, characters are 

used to create the vertex ids. The id of each vertex in an object is denoted as “𝑎. 𝑏”, where 

𝑎 is the number associated with the object, and 𝑏 denotes the vertex number in that object. 

For instance, following the discussed identification method, the id “2.31” refers to the 

thirty-first vertex in the second object.   
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Now that the data types used in this research are introduced, the structures to 

organize this data for the most effective usage need to be explored.  

5.4.2 Data structures 

A list of data structures with their brief explanation is provided in this section 

starting with the most basic structure, arrays.  

5.4.2.1 Arrays 

Arrays are one of the basic data structures in every programming language. An 

array could store vector data of any primitive type so long as the type of the stored data is 

uniform. Reference to the data in each memory location is made by the index of the array 

element.  

Matrices could be created by concatenating multiple arrays of the same dimensions 

either in rows or columns depending on the dimension of the array. Arrays are indeed one-

dimensional matrices. Cell arrays, unlike matrices, are structures that could store and 

organize different data types including numerical and text data. The data in a single cell 

must, however, be of the same type. Arrays that have more than two dimensions are called 

multidimensional arrays [215]. In these array types, the first and second dimensions are 

associated with the row and column numbers while the third dimension is usually referred 

to as the page [215]. Figure 5.4 shows an example of a multidimensional cell array. Shown 

in the figure, each cell can contain data of different types. Additionally, it is noteworthy 

that cell arrays can have cells with different sizes as opposed to matrices. An example is 

shown in Figure 5.4 where cells 1,1,1 and 2,2,1 have dimensions 2x2 and 1x1 respectively.  
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Figure 5.4: Multidimensional Cell Array [215] 

Another important array type used extensively in this research is the dynamic array. 

A dynamic array is a variable-size array used when predefining an array is not feasible or 

the array size is not known a priori. For example, in creating a path consisting of a sequence 

of connected points, the number of waypoints is not known in advance. Therefore, defining 

the path as a dynamic array helps to construct the path by appending the next waypoint to 

the array at each iteration until the goal point is reached.  

5.4.2.2 Record or struct  

A struct (or structure) is a form of organizing data that consists of several fields. A 

“struct” groups the related data using these fields [216]. Each field can contain data of any 

type similar to a cell array. Both struct and cell can contain heterogeneous data. However, 

the two data structures differ in how they provide access to the data of each field or cell. 

To access the data in a field of a structure one should use dot notation in the form 



 

141 

“structName.fieldName” [216]. In a cell array, on the other hand, access to a cell is 

provided by numeric indexing.  

In this research, a struct is used to store the geometric data of the objects. Some of 

the fields in this struct are “vertices”, which contains the x, y, and z coordinates of the 

vertices, “faces”, which contains the surface triangle data by denoting the ids of the three 

nodes of each triangle, and “normals” to the triangular surfaces. 

5.4.2.3 Linked lists 

Lists are structures wherein data is not stored in contiguous memory locations. That 

means unlike arrays where data in each element is easily accessible by numeric indexing, 

access to the data of a random element in a list may require extra effort in implementing 

procedures and routines to perform such operations since linked lists can only provide 

sequential access from the first node[217]. As shown in the below figure, elements of lists 

are connected via pointers (links). Therefore, a linked list consists of nodes that contain a 

field for data and a link to the next node of the list [217].  

 

Figure 5.5: Graphical representation of a linked list[217] 

Despite the difficulty in accessing random elements of lists, insertion and deletion 

of elements of lists are easier than arrays since there does not exist continuous memory 

locations for elements of lists. This advantage of lists makes them a good candidate for 
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storing the data of the sequence of edges of obstacles to be traversed to achieve the goal 

point in the 3D path planning problem.  

5.4.2.4 Graphs 

Graphs are structures that contain the node (or vertex) and edge data of a known 

network. Edge data shows which nodes are connected in the network. This data structure 

is critical in any routing problem. Since geometric based planning problems mainly work 

based on the construction of graphs that are searched for the safe shortest path, the graph 

data structure needs to be defined and created correctly. In this research, the nodes of the 

graph include the start and goal as well as the waypoints identified on the obstacle edges 

for 3D path planning.    

5.5 Problem formulation 

The path planning problem considered in this research aims at minimizing the 

length of one-dimensional components (cables, wires, tubes, and hoses) in 

electromechanical systems. Therefore, the problem can be defined as: 

Primary problem: Given an environment scattered with static convex polyhedral 

obstacles and a start and a goal point, the objective is to develop a deterministic geometric-

based optimization algorithm that finds a minimum length path between the two points 

while avoiding collisions with any obstacles.  

Suppose there are f polyhedral obstacles, Pi, (i = 1, 2, …, f) scattered in the 3D 

space. Following the above-mentioned assumptions, the problem is to construct the free 

space defined as Eq.(5.2) in the form of a graph. 
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In Eq.(5.2) Cfree denotes the free space as a subset of the workspace, W, which could 

be generated by taking the complement of the union of all obstacles. Additionally, the 

contact space (Contact) can be defined as in Eq.(5.3) to capture the boundary space of the 

obstacles: 

1

f

contact i

i

C P
=

= 

 

(5.3) 

Where ∂Pi denotes the boundary of the polyhedron i.  

The graph G, defined by its set of vertices (V) and edges (E), is desired to capture 

a collision-free subset of the workspace.  

 ,  { , }free contactG C C G V E  =
 

(5.4) 

Definition 5. The set V is a set of vertices of the free space graph. These vertices 

are on the edges of the intersecting obstacles and augmented by the start and goal points of 

the path. 

Definition 6. The set E is a set of edges of the free space graph that connect the 

vertices in V. 

After the desired graph is constructed, the shortest path needs to be found by 

exploring the graph using Dijkstra’s algorithm. The formulation of Dijkstra’s problem is as 

below: 

Secondary problem: Given the connected graph 𝐺 = {𝑉, 𝐸}, find the shortest path between 

nodes 1 and 𝑚, 𝑚 ≠ 1 such that 
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𝑚𝑖𝑛 ∑ 𝐶𝑖𝑗𝑋𝑖𝑗

(𝑖,𝑗)∈𝐺

 

Subject to : ∑ 𝑋𝑖𝑗{𝑗:(𝑖,𝑗)∈𝐺} − ∑ 𝑋𝑗𝑖{𝑖:(𝑖,𝑗)∈𝐺} = {
1
0

−1

𝑖 = 1
𝑖 ≠ 1, 𝑚

𝑖 = 𝑚
 

Where:  𝑋𝑖𝑗 = {
1 𝑖𝑓𝑒𝑖𝑗 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐶𝑖𝑗: cost, the Euclidean length of arc 𝑒𝑖𝑗 
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Chapter Six 

INTERSECTION DETECTION ALGORITHMS 

Path planning in cluttered environments requires avoiding intersections with 

obstacles. Therefore, intersection detection is at the core of any path planning problem in 

the presence of obstacles. Indeed, the first step in constructing the free space graph in 

geometric-based path planning approaches is detecting the intersections between the direct 

path (the path connecting the start and goal) and the obstacles. If no intersection is detected, 

the shortest path is trivially the straight line between start and goal. Otherwise, the path 

needs to be re-routed until a collision-free path can be achieved. This chapter is allocated 

to the methods and algorithms of detecting the intersections between objects in 3D space. 

Readers are referred to Definition 3 for an intersection between a line segment and object 

in 3D space. In this chapter, two types of intersections are discussed: (1) line segment-

triangle intersection, which contributes to identifying the intersecting objects, and (2) 

triangle-triangle intersection, which is an intermediary step during the construction of the 

free space graph (discussed in the next section). Triangulated objects highly simplify the 

intersection calculations as instead of computing the intersections between polyhedra and 

a line (or between more than two polyhedra), it suffices to determine intersections between 

a line segment and several triangles (or between multiple triangles).   

6.1 Line segment-triangle intersection 

Since the shortest path in 3D space passes through the edges of the intersecting 

obstacles, the first step in constructing the free space graph is to identify the intersecting 

obstacles. As the obstacles are modeled using tessellations, it suffices to find intersections 
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between the line segment connecting the start and goal points and all the triangles in an 

object.  

The intersection detection in this research undergoes two main steps: (1) filtering 

the out-of-bound obstacles and (2) checking for line segment-triangle intersections only 

for obstacles whose coordinates overlap with the coordinates of the endpoints of the line 

segment. In what follows the steps to identify the intersecting obstacles alongside the 

pseudocode for intersection detection are presented.  

Step 1: Transformation of the coordinate system 

After the workspace is modeled using a tessellated-based solid model in CAD 

software, the data of the obstacles is imported in the path planning environment. MATLAB 

is selected for the computational environment of the path planning problem in this research. 

Therefore, the solid models of the obstacles are imported in MATLAB. Since STL is the 

selected format for data exchange of the obstacles’ solid model, the data needs to be 

converted to MATLAB-compatible STL data. To achieve this, “stlRead”, a MATLAB 

function developed by Micó [218], is used to read the STL data of each obstacle. The data 

is then stored in a struct whose fields are vertices, faces, and normals to faces the obstacles’ 

faces. 

After the geometric data is retrieved, the coordinates of the start and goal points are 

inputted to the program. Before the intersection check is performed, the coordinate system 

of the workspace is transformed such that the start point is coincident with the origin (0,0,0) 

and the start-goal vector is lined up with the Z-axis of the coordinate system. Though this 

may seem like an additional computation that could potentially affect the overall 
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computational efficiency of the method, this step is essential in simplifying the intersection 

computations and the determination of the edge sequence that follows the intersection. The 

latter is discussed in the next section.  

The coordinate transformation is performed in the following order. First, a linear 

translation is required to coincide with the start point with the origin of the coordinate 

system. To enable matrix multiplication that leads to the desired translation, homogeneous 

coordinates are used for the points to be transformed.  The homogeneous coordinates can 

be created by augmenting the original coordinates. Augmentation adds a nonzero fourth 

coordinate to the 3D coordinates of a point. For simplicity, the fourth coordinate is often 

set equal to one. 

Using the homogenous coordinates, the translation matrix is given as:  

1 0 0

0 1 0

0 0 1

0 0 0 1

T

X

Y
T

Z

 
 


 =
 
 
 

 
(6.1) 

With this translation matrix, a point P can be translated by the amounts X , Y ,

Z along the X, Y, and Z axes, respectively, using the equation: 

[ '] [ ].[ ]TP T P=  

Or 

 

' 1 0 0

' 0 1 0

' 0 0 1

1 0 0 0 1 1

x X x

y Y y

z Z z

     
     


     =
     
     
     

 

(6.2) 



 

148 

To translate the coordinates such that the start point and the origin coincide, one 

needs to set ∆𝑋 =  −𝑥𝑠, ∆𝑌 =  −𝑦𝑠, and ∆𝑍 =  −𝑧𝑠 where 𝑥𝑠, 𝑦𝑠, and 𝑧𝑠 are the 3D 

coordinates of the start point.  

After the coordinates are successfully translated, the start-goal vector needs to be 

rotated to lie within the YZ plane. This rotation is performed about the Y-axis and the angle 

of rotation is found using the projection of the vector onto the XZ plane as illustrated in 

Figure 6.1. 

 
Figure 6.1: Rotation about the Y-axis 

As can be seen from Figure 6.1, the projection of the vector on the XZ plane makes 

an angle θ with the X-axis. To project the vector onto the YZ plane, a rotation about Y-axis 

is required, the angle of which must be – (90 − 𝜃). Eq.(4.3) provides the rotation matrix 

about the Y-axis. In order to rotate the vector to make it lie on the YZ plane, one should 

substitute θ with – (90 − 𝜃) in Eq.(6.3).  

cos 0 sin 0

0 1 0 0
( )

sin 0 cos 0

0 0 0 1

yR

 


 

 
 
 =
 −
 
 

 
(6.3) 
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From Figure 6.1, it can be seen that the angle θ can be found as: 

2 2

'
sin

' '

z

x z
 =

+
 

(6.4) 

After the vector is rotated and lies in the YZ plane, it must be rotated a second time 

to line up with the Z-axis. To do so, the second rotation should be performed about the X-

axis. Figure 6.2 illustrates this rotation and the rotation angle.  

 
Figure 6.2: Rotation about the X-axis 

 

As can be seen from this figure, a rotation about the X-axis in the amount of φ will 

put the desired vector along the Z-axis. The rotation matrix and angle are given as in 

equations (6.5) and (6.6).  

1 0 0 0

0 cos sin 0
( )

0 sin cos 0

0 0 0 1

xR
 


 

 
 

−
 =
 
 
 

 
(6.5) 

2 2

"
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y z
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+
 (6.6) 
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After the angles are calculated, the three transformations can be performed at once 

using the below equation. 

2 1[ ] [ ].[ ( 90)].[ ( )].[ ]T y xP T R R P = −  
(6.7) 

This transformation is performed on the coordinates of every vertex in all obstacles 

as well as the start and goal points. A sample coordinate transformation is depicted in 

Figure 6.3 with 3 obstacles.  

 
Figure 6.3: Sample coordinate transformation 

Step 2: Filter I: out-of-bound obstacles 

After all the objects are transformed, it is time to filter out the ones that are out of 

the scope of the start-goal line. To achieve this, the Axis-Aligned Bounding Box (AABB) 

of each object is created. The orthogonal bounding box is created by the minimum and 

maximum x, y, and z values of the vertices of an object as shown in Eq (6.8).   
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min max

min max

min max
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AABB y y
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=
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(6.8) 

The coordinates of the bounding box should be checked against the coordinates of 

the start-goal line in the transformed coordinate system. Since the start-goal line is aligned 

with the Z-axis, it is only necessary to initially check the Z coordinates of each object. If it 

is found that the maximum z coordinate in the AABB is negative (less than the z coordinate 

of the start point) or the minimum z coordinate in the AABB exceeds the z coordinate of 

the goal point, the object is entirely out-of-bound of the line and therefore there is no chance 

that the line intersects the object. This situation is shown in Figure 6.4. If, however, it is 

found that the z coordinates of the object are between the z coordinates of the start and goal 

points, the next step is to check for the x and y coordinates.  

 
Figure 6.4: Sample out-of-bound AABB 



 

152 

Even if the AABB is within the boundary of the start-goal line, the object may lie 

entirely at one side of the line, zeroing the chance of intersecting the obstacle. For the object 

to lie on one side of the line it is sufficient to check whether all x coordinates or all y 

coordinates have the same sign. This helps since we know the line is aligned with the Z-

axis. Therefore, if all x coordinates are positive (or negative) the AABB has no chance to 

intersect the line. To check this, we merely need to compute the multiplication of minimum 

and maximum x (or y) coordinates: 

if (𝑥𝑚𝑖𝑛. 𝑥𝑚𝑎𝑥 ≥ 0) or (𝑦𝑚𝑖𝑛. 𝑦𝑚𝑎𝑥 ≥ 0) 

AABB ← non-interfering  

else  

AABB ← interfering 

endif 

 

An example of an AABB that lies at one side of the line is shown in Figure 6.5. 

 
Figure 6.5: Object lying at one side of the line 
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Step 3: Filter II: ray-triangle intersection check  

After filtering out the out-of-bound objects and objects that lie on a side of the line, 

the final check is to determine if the line intersects the interior of the object that passed all 

the filters. This step is crucial in separating the intersections from the cases where the line 

segment touches the object but does not pass through its interior or a case such as the one 

shown in Figure 6.6.  

This is the step where intersections need to be checked between the line segment 

and all the triangles in the above-mentioned object. Following Definition 3, if the line 

segment intersects with exactly two faces of the polyhedron at two distinct points, there is 

an intersection between the line and the object.  

 

Figure 6.6: Non-intersecting object not filtered in step II  

For the line segment-triangle intersection detection, the ray-triangle intersection 

algorithm developed by Möller and Trumbore [219] is used in this research. The algorithm 

takes a ray (defined by its origin and normalized direction) and a triangle (defined by its 
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vertices) as inputs and transforms the origin of the ray. The output of this transformation is 

a triplet (𝑡, 𝑢, 𝑣) where 𝑡 is the distance to the plane to which the triangle belongs and 𝑢 

and 𝑣 are the barycentric coordinates of intersection inside the triangle. The barycentric 

coordinates of a point on a triangle is given in [219] as:  

0 1 2( , ) (1 )T u v u v V uV vV= − − + +  
(6.9) 

Where 𝑉0, 𝑉1, and 𝑉2 are the three vertices of the triangle and 𝑢, 𝑣 ≥ 0 and 𝑢 + 𝑣 ≤

1. Using this equation, the transformation of the origin can be written as[219]: 

0 1 2(1 )O tD u v V uV vV+ = − − + +  
(6.10) 

Where 𝑂 is the origin and 𝐷 is the direction of the inputted ray. As shown in [219], 

the re-arrangement of Eq.(6.10) yields a system of linear equations which can be solved to 

determine the triplet (𝑡, 𝑢, 𝑣). The rearrangement is given in Eq.(6.11) below.  

 1 0 2 0 0

t

D V V V V u O V

v

 
 

− − − = −
 
  

 
(6.11) 

In this research, the implementation of Möller and Trumbore’s algorithm developed 

by Tuszynski [220] in MATLAB is used for the ray-triangle intersection step of the 

collision detection. A pseudo-code of the overall intersection detection algorithm is also 

shown in Algorithm 1. The pseudo-code assumes the transformations are performed and 

the objects, as well as the start and goal points, are given in the transformed coordinate 

system. Although in this research, it is assumed that all objects are convex, the explained 

intersection detection algorithm similarly applies to non-convex objects.   
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Algorithm 6.1 

Input: Workspace objects, start and goal points 

Output: an array of the ids for intersecting obstacles  

Step 1. Transform the coordinate system such that start-goal line becomes aligned with the Z axis. The 

new coordinates of start and goal are (0,0,0) and (0,0, 𝑧2) respectively 

Step 2.  

in-bound ← ∅ 

for (𝑖 = 1 to number of objects), do:  

Create the OBB for 𝑖:  
if (𝑧𝑚𝑖𝑛 ≥ 𝑧2) or (𝑧𝑚𝑎𝑥 ≤ 0) 

OBB ← out-of-bound  

else  

if (𝑥𝑚𝑖𝑛. 𝑥𝑚𝑎𝑥 ≥ 0) or (𝑦𝑚𝑖𝑛. 𝑦𝑚𝑎𝑥 ≥ 0) 

OBB ← non-interfering  

else  

OBB ← interfering 

in-bound ← 𝑖 
endif 

endif 

end for 
 

intersected ← ∅ 

𝑂 ← (0,0,0) 

𝐷 ← (0,0, 𝑧2) 

for (j= 1 to size(in-bound)), do 

𝑛 ← number of triangles in 𝑗 

𝑉0 ← n-by-3 matrix of the x,y,z coordinates of the first vertex of all triangles in 𝑗 

𝑉1 ← n-by-3 matrix of the x,y,z coordinates of the second vertex of all triangles in 𝑗 

𝑉2 ← n-by-3 matrix of the x,y,z coordinates of the third vertex of all triangles in 𝑗 

call TriangleRayIntersection (O,D, 𝑉0, 𝑉1, 𝑉2) 

return t 

if (𝑡 = 0) 

intersected ← 𝑗 

endif 

end for 

return intersected} 
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6.2 Triangle-triangle intersection 

Another type of intersection check that is extensively used in this research is the 

intersections between two triangulated surfaces. This type of intersection is extensively 

used throughout the graph construction algorithm. As explained in the next chapter, 

constructing the free space graph initially requires identifying a sequence of edges of 

obstacles to be explored. This edge sequence from the path start point to the goal point is 

determined in multiple steps. In one step, for example, a convex hull is created between 

the start point and the first intersecting obstacle. The edges that are connected to the start 

point on this convex hull are then extracted and stored as the first set of edges to be 

explored. For each of these edges, a plane is created that is perpendicular to the edge and 

contains the start-goal line. The intersection of this plane and the convex hull is then used 

to identify the next edges to be added to the edge sequence. Further details of this algorithm 

and other instances where intersections between surfaces need to be determined are 

explained in the next chapter.  

It is therefore clear that the previous ray-triangle intersection detection method can 

no longer be applied to identify intersections between surfaces. This section is, therefore, 

allocated to the explanation of the algorithm used for detecting such intersections.  

Moller has developed a fast triangle-triangle intersection test [221] that is suitable 

for collision detection between 3D triangulated objects. This algorithm works in a rather 

similar way to his ray-triangle intersection check. Here, however, instead of determining 

the distance between the ray and the plane of the triangle, he determines the distance from 

the vertices of the first triangle to the plane of the second triangle. The algorithm finds the 
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distances by simply substituting the vertices of the first triangle in the plane equation for 

the second triangle as in Eq.(6.12): 

1

2 2   1,2,3i iD N V d i=  + =  
(6.12) 

Where 2N  is the normal to the plane of the second triangle (plane equation: 

2 2 =0  N X d + where X is any point on the plane) and 
1

iV is the ith vertex in the first triangle. 

2N and 2d  can be found using equations (6.13) and (6.14) below. 

2 2 2 2

2 2 1 3 1( ) ( )N V V V V= −  −  
(6.13) 

2

2 2 1d N V= −   (6.14) 

This calculation is repeated between the plane of the first triangle and the vertices 

of the second triangle. If the calculated distances, iD , are not equal to zero and all are 

found to have the same sign, the triangle lies on one side of the plane. On the other hand, 

if all iD distances are equal to zero, the triangle and the plane are co-planar. Otherwise, the 

planes of the triangles intersect, and their intersection is a line segment, the direction of 

which can be found from 1 2N N . The common intervals between the line of intersection 

and each triangle determine if the two triangles also intersect. For example, as shown in 

Figure 6.7, when the intervals on the line do not overlap (Figure 6.7 right), the triangles do 

not intersect either.    
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Figure 6.7: Intersection between two triangles [221] 

The method goes on to determine the exact surface of intersection which can be 

represented by triangulated faces and vertices. For further details of the algorithm and the 

computation of different cases of intersection, readers are referred to [221]. In this research, 

Tuszynski’s implementation of Moller’s algorithm in MATLAB is borrowed [222]. 

Tuszynski has solved an example of intersections between two objects the results of which 

are shown in Figure 6.8. In this figure, the surfaces of intersection are shown on the right.   

   
Figure 6.8: Example of Moller’s intersection test [222] 
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Chapter Seven  

3D VISIBILITY GRAPH CONSTRUCTION AND THE SHORTEST PATH 

After all of the intersecting obstacles are identified using the algorithms of Chapter 

6, their information is stored and utilized to construct a 3D connectivity graph that 

represents the free space of the path planning problem. As discussed previously, the goal 

of geometric-based path planning methods is to map the workspace onto a connected graph 

and subsequently search the graph for the shortest path. This chapter details the process 

proposed in this research, to construct and search the free space graph. The method is tested 

on different workspaces to evaluate its computational performance and the results are 

presented in this chapter.  

7.1 3D graph construction 

As reviewed in Chapter 4, the 3D visibility graph must have turning points on the 

edges of the intersecting obstacle(s). The objective of this section is, therefore, to first find 

an optimal sequence (or sequences) of edges that house the waypoints. Next, the exact 

optimal locations of the waypoints on the edges need to be determined. This section details 

algorithms developed to address these two problems starting with the problem of finding 

the edge sequence(s).   

7.1.1 Algorithms to find the edge sequences 

Suppose the direct path from the Start point to the Goal point is blocked by a 

polyhedron in a 3D cluttered environment. To enable traveling to the Goal, there needs to 

be at least one waypoint to facilitate the detour around the intersecting obstacle. To 

minimize the path length, the waypoint must be on an edge of this obstacle as proven by 
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Sharir and Schorr [24]. This waypoint, as a result, breaks the path into two segments: the 

Start-waypoint and the waypoint-Goal segments. 

Based on this observation, the proposed algorithm for graph construction in this 

research is also broken into two parts: (1) the first leg identifies which edges should be 

visited first, after the Start point, and outlines how these edges can be found following a 

geometric-based approach; and (2) addresses how the Goal point is approached after the 

edge housing the first waypoint is reached? 

To answer the question of “what is the next traveling edge after the Start point?” 

the notion of the convex hull is revisited. Even though the convex hull created by a 

waypoint (or the Start) and an intersecting obstacle in 3D may not contain all the nodes of 

the final free space graph, in contrast to the 2D convex hull, it still provides practical 

information based on which the edge sequence can be extracted. Take Figure 7.1 as an 

example; the convex hull created between the Start and the intersecting obstacle in this 

figure contains the edges that are connected to the Start via triangles on the hull. These 

edges are (1.0005-1.0006), (1.0005-1.0007), (1.0007-1.0008), and (1.0006-1.0008) where 

the digits before and after the decimal show the object id and vertex id in that object, 

respectively.   

As shown in Figure 7.1, the convex hull between the Start and the intersecting 

obstacle can be used to extract all the potential edges that could house the first waypoint. 
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Figure 7.1 3D convex hull with the Start and the intersecting obstacle 

If the waypoint does not lie on any of these edges of the convex hull, it may either 

be inside the convex hull or outside its volume. In either case, the location of the waypoint 

will cause an increase in the path length. Thus, it is concluded that the first point to travel 

to after the Start, must be a point on one of the edges connected to the Start on the convex 

hull. The flowchart of Figure 7.2 follows this rationale to locate the waypoint and 

subsequently create the first leg of the path in a cluttered 3D environment.  
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Figure 7.2 Flowchart for determining the first leg of the path 

In the flowchart of Figure 7.2, the algorithm starts with taking the cartesian 

coordinates of the Start and Goal as well as the STL data of the obstacles. Since the 

transformation of the Start-Goal line and the workspace obstacles is the basis of the 

intersection detection algorithm discussed in Chapter 6, the first step in finding the set of 

edges to house the first waypoint is transforming the coordinate system. After the 

coordinate system is transformed appropriately, all intersecting obstacles can be identified 

by calling the intersection detection function written in MATLAB2. The intersecting 

 
2 All codes are written in MATLAB and can be accessed from: https://github.com/nmasoud/Routing-algorithms.git  

https://github.com/nmasoud/Routing-algorithms.git
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obstacles are then ordered from the closest to the furthest obstacle from the Start. This 

helps to identify the first intersecting obstacle to be bypassed.  

After the first intersecting obstacle is identified, its convex hull with the Start point 

is created. This convex hull is then used to extract the edges of the obstacle that may be 

traversed after the Start. Thus, all the edges of the obstacle on this convex hull that are  part 

of a triangle that includes the Start (similar to edges shown in Figure 7.1) are found and 

stored in the set E. For all the edges in E, If the triangle constructed with the Start and an 

edge from the set E is collision-free (which can be checked by calling the triangle-triangle 

intersection detection procedure discussed in Chapter 6), that obstacle edge is added to the 

set 𝑆𝐸 of the potential obstacle edges to house the first waypoint. Otherwise, the process is 

iterated by detecting the obstacle nearest to the Start that intersects the triangle and creating 

a new convex hull with the new intersecting obstacle. The process is continued until all the 

triangles that connect the Start to the edges in set E on the convex hull of the first 

intersecting obstacle at each iteration are collision-free. It is worth noting that the triangle 

between the Start and a respective edge is considered as it models the visibility between 

the Start point and all points on that particular edge.  
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Figure 7.3 Flowchart for determining the second leg of the path 

After the edges that could house the first waypoint are found, the second leg of the 

possible path, the segment between the first waypoint and the Goal, needs to be determined. 

For every edge in the set 𝑆𝐸 at least one sequence of edges, following this edge, can be 

found to connect the Start to the Goal with a piecewise linear path. 

Figure 7.3 lays out the flowchart for the algorithm developed in this research to find 

the sequences of edges to be traversed to reach the Goal from each of the identified first 

waypoints. Based on this algorithm, for each edge, 𝑒𝑖, in the set 𝑆𝐸, if the triangle created 

by this edge and the Goal is found collision-free (in other words, if the edge is visible to 
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the Goal) the edge sequence initiated by 𝑒𝑖 is completed and 𝑒𝑖 is the only edge that should 

be visited on the way from the Start to the Goal.  

If, on the other hand, the triangle intersects with at least one obstacle, other edges 

must be identified on the way to the Goal. Similar to the algorithm for the first leg of the 

path, the first intersecting obstacle (here, the obstacle closest to the edge 𝑒𝑖) is considered 

at the initial step. The algorithm identifies the next set of edges to be added to the sequence, 

based upon two types of intersections between the edge-Goal triangle and the obstacle: (1) 

the triangle including the edge, 𝑒𝑖 intersects the obstacle to which 𝑒𝑖 belongs and (2) the 

intersecting obstacle does not contain 𝑒𝑖.  

In the first case, a sequence of edges must be found to travel over the surface of the 

intersecting obstacle to avoid passing through its interior until an exit edge is achieved. The 

exit edge is the last edge identified on the obstacle from which the goal is visible, and from 

where the obstacle is left to reach the Goal. The “PlaneFinder” algorithm is developed 

that outputs the edge sequences on the surface of the intersecting obstacle.  

The PlaneFinder algorithm benefits from the convex hull of the intersecting 

obstacle with the Start and Goal points to extract the subsequent edges over the surface of 

the obstacle. Since the convex hull is the smallest convex set that contains all the members 

of the set, it provides insight on the connected entities (vertices, in the 2D hull, and triangles 

in the 3D hull). In 2D, the convex hull function of MATLAB outputs a clockwise or 

counterclockwise ordered set of points that identify the vertices of the hull. Therefore, it is 

evident which two nodes are the neighbors of a known point. This fact played a crucial role 

in developing the 2D convex hull based routing algorithm. The 3D convex hull function, 
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in contrast, outputs a set of triangles that cover the outer surface of the 3D hull (see Figure 

7.1). Thus, it may not be as clear as in the 2D hull case, which edges are directly connected 

to an edge of interest on this surface. To overcome this issue and facilitate finding the edges 

that follow the first edge on the obstacle, the PlaneFinder algorithm adopts the 2D 

convex hull to benefit from its potential to identify the neighboring entities.  

For instance, in Figure 7.1, it is observable that the edges connected to the edge 

(1.0007-1.0008) on the obstacle are (1.0007-1.0005), (1.0007-1.0003), (1.0007-1.0001), 

(1.0007-1.0004), (1.0008-1.0004), (1.0008-1.0006), and (1.0008-1.0005) (on the bottom 

of the obstacle). Figure 7.4 includes other angles of view of the workspace in Figure 7.1 to 

better visualize the connections of the edges. Suppose the edge (1.0007-1.0008) houses the 

first waypoint; it can be seen from Figure 7.1 and Figure 7.4 that not all the edges connected 

to (1.0007-1.0008) are useful in determining the edge sequence over the surface of the 

convex hull to progress towards the Goal. Thus, the less useful edges need to be filtered 

out from the sequence.  

 

Figure 7.4 Connected edges on the convex hull 
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To ensure that the unnecessary edges are filtered out, the 3D convex hull is 

converted to a 2D hull by making a cut through the 3D convex hull generated between the 

intersecting obstacle and the Start and Goal points. The cutting plane contains the Start-

Goal line and the line that is perpendicular to both the Start-Goal line and the originally 

identified edge. To find the perpendicular line, the PlaneFinder algorithm identifies the 

coordinates of two points, one on the Start-Goal line and the other on the discussed edge 

such that the line connecting the two points has the minimum length. This is a simple 

quadratic optimization problem that can be solved with MATLAB’s fmincon nonlinear 

optimization solver. Figure 7.5 shows two views of an example of the line perpendicular 

to the Start-Goal line-segment and the edge (1.0007,1.0008). Shown in this figure, the 

points 𝑃1 and 𝑃2 are found on segments Start-Goal and (1.0007,1.0008), respectively. 

 

Figure 7.5 Example perpendicular line to the Start-Goal line and the edge 
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After the perpendicular line is determined, the cross product of this line and the 

Start-Goal line is calculated which yields the cutting plane’s normal. Now that the normal 

is found, the plane is fully defined since the coordinates of at least one point in this plane 

are known (e.g. the Start or Goal). The final cutting plane for the example discussed in 

Figure 7.4 and Figure 7.5 is depicted in Figure 7.6.  

Although the plane’s normal along with the coordinates of one of its points can 

fully define a plane, since the purpose of the cutting plane is to determine the edges of the 

obstacle that intersect the plane, the plane’s dimensions must be selected such that it spans 

the entire height, width, and depth of the convex hull. For example, in Figure 7.7, if the 

plane was only extended up to the (1.0006-1.0008) edge, it could not have covered the edge 

(1.0002-1.0004); thus, this edge would have not been included in the edge sequence though 

it should evidently be present in the edge sequence.   

 

Figure 7.6 Example of cutting plane 
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Figure 7.7 Dimensional limits of the cutting plane 

As can be seen in Figure 7.6 and Figure 7.7, the cutting planes intersect the obstacle 

at edges that follow the initial edge with which the plane is created. Figure 7.8 further 

depicts the intersection of the cutting plane and the convex hull for the example in Figure 

7.5 using two angles of view. The plane of intersection in this figure passes from these 

edges: (1.0007-1.0008), (1.0007-1.0004), and (1.0007-1.0003). Also, it can be observed 

that this plane connects the Start with the Goal by traveling to these edges. The example 

of Figure 7.8 is the edge sequence based on one initial edge and this process needs to be 

repeated on all other edges found following the algorithm for the path’s first leg.  
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Figure 7.8 The intersection of the cutting plane and the convex hull 

  This procedure is sufficient to determine the edge sequence for cases with only 

one obstacle. If, however, the number of obstacles is greater than one, the same approach 

may not be able to output all possible edge sequences to the Goal and additional convex 

hulls may need to be generated with other intersecting objects.  

It should be noted that since the obstacles are disjointed, there is no need to check 

for intersections with obstacles when moving from one edge on the surface of the same 

obstacle to another.  

After the exit edge is found, the triangle between the exit edge and the Goal is 

checked for collisions with other obstacles. If no collision is reported between this triangle 

and any of the obstacles, the exit edge becomes the last edge in that sequence and the 

process goes on to check other edges from the set 𝑆𝐸. Otherwise, the algorithm is 

recursively iterated to find the collision-free edge sequence (see Figure 7.3) to reach the 

Goal. At this point, the triangle created by the exit edge and the Goal may intersect an 
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obstacle that does not contain the exit edge and thus a different approach must be followed 

to output the edge sequence.   

The second type of intersection between the edge-Goal triangle and the first 

intersecting obstacle, as shown in the flowchart of Figure 7.3, occurs when the initiating 

edge does not belong to the intersecting obstacle. In this case, a convex hull is generated 

between the edge, the closest intersecting obstacle to the edge, and the Goal, analogous to 

the first leg of the path, except that instead of having a start point, this time there is a start 

edge. Hence, similar to the algorithm of the first leg of the path, after the convex hull is 

created, the edges that are connected to the start edge must be detected. To avoid 

unexpected (and often undesired) twists in the final optimal path, only edges that form a 

plane with the start edge are considered to be added to the sequence. See Figure 7.9 for 

example of the second type intersection and connected edges. 

 

Figure 7.9 Illustration of type II intersection between an edge and an obstacle 
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The example shown in Figure 7.9 illustrates a type II intersection between the edge 

(1.0003-1.0004) and the second obstacle. As a result of this intersection, the convex hull is 

created which indicates the edges connected to (1.0003-1.0004). The connected edges are 

(2.0003-2.0004) and (2.0005-2.0006). Other edges could be misinterpreted as connected 

edges such as (2.0001-2.0003) which does not form a planar surface with (1.0003-1.0004) 

and therefore should not be included in the edge sequence.  

After an edge in the convex hull is found connected to the start edge (e.g. (1.0003-

1.0004) in Figure 7.9) and forms a plane with it, the planar surface made by the two edges 

needs to be checked for collisions with obstacles. If no collision is detected, the found edge 

is added to the sequence and the process moves on to the next connected edge. Otherwise, 

like the previous case, the algorithm is recursively iterated until the edge connected to the 

start edge forms a collision-free planar surface with the start edge. For example, both edges 

(2.0003-2.0004) and (2.0005-2.0006) found connected with (1.0003-1.0004) in Figure 7.9 

form collision-free planar surfaces. Thus, they can be added to the edge sequence without 

further deliberation.  

This procedure can be followed at each edge added to the sequence until an edge 

forms a collision-free triangle with the Goal which implies arriving at the final edge of the 

sequence. Example edge sequences are provided in Figure 7.10 and Figure 7.11 for 

workspaces of Figure 7.4 and Figure 7.9 respectively. While several sequences of edges 

are generated for each workspace, only two of them are shown per figure. For example, the 

two edge sequences in Figure 7.10 are: Sequence I = (1.0005-1.0006), (1.0006-1.0001), 

and (1.0001-1.0002) and Sequence II = (1.0005-1.0007) and (1.0007-1.0001).  
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Figure 7.10 Sample edge sequences for Figure 7.4 

 

 

Figure 7.11 Sample edge sequences for Figure 7.9 
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7.1.2 Optimal locations of the turning points of a path 

After all the edge sequences from the Start to the Goal are found, the exact locations 

of the paths’ turning points must be decided. To find the optimal locations of these 

waypoints an optimization problem is solved per each edge sequence from the Start to the 

Goal. The formulation of this optimization problem is as in Problem 7.1.  

In Problem 7.1, the decision variables are 𝑥𝑖 , 𝑖 = 1, … , 𝑛. For each edge in the 

sequence, an 𝑥𝑖 is assigned which has a value between 0 and 1. The parametric definition 

of a line segment is used in finding the location of the point 𝑃𝑖 on the ith edge. 𝑃𝑖 can be 

anywhere between 𝐸1
𝑖  and 𝐸2

𝑖 . For example, if 𝑥𝑖 = 0, 𝑃𝑖 = 𝐸1
𝑖  and if 𝑥𝑖 = 1, 𝑃𝑖 = 𝐸2

𝑖 . The 

objective function minimizes the total Euclidean distances between the waypoints, Start, 

and Goal. Since this is a constrained nonlinear optimization problem, MATLAB’s 

fmincon solver is a suitable candidate to solve the problem. Figure 7.12 and Figure 7.13 

present the optimal locations of waypoints for the edge sequences shown in Figure 7.10 

and Figure 7.11, respectively.  

Problem 7.1 
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3,S G : Cartesian coordinates of the Start and Goal respectively 

n : the number of edges in the edge sequence 
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3
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Figure 7.12 Optimal locations of waypoints for edge sequences of Figure 7.10 

 

Figure 7.13 Optimal locations of waypoints for edge sequences of Figure 7.11 

After all waypoints in an edge sequence are optimally located, the corresponding 

nodes and edges are added to the graph. The graph is completed by solving Problem 7.1 
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for every edge sequence and appending the generated nodes and edges to it. Final collision-

free graphs of Figure 7.4 and Figure 7.9 are shown in Figure 7.14 and Figure 7.15 

respectively.   

 

Figure 7.14 Final collision-free graph of Figure 7.4 

 

Figure 7.15 Final collision-free graph of Figure 7.9 



 

177 

7.2 Shortest path: 3D graph search 

After the free space graph is constructed using the edges of the intersecting 

obstacles, a search algorithm needs to be applied to find the shortest path on the graph. 

Various search algorithms exist with different accuracies and time complexities. For 

simplicity and exactness, Dijkstra’s search algorithm [5] is selected in this research. For 

the graphs of Figure 7.14 and Figure 7.15, the shortest route from the START to the GOAL 

is found and shown in Figure 7.16 and Figure 7.18 respectively. Additionally, the graphs 

and shortest paths are shown on the actual untransformed workspaces in Figure 7.17 and 

Figure 7.19.  

 

Figure 7.16 Shortest route on the graph of Figure 7.14 (after geometric 

transformation) 
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Figure 7.17 Shortest path on the untransformed workspace of Figure 7.4 

 

 

Figure 7.18 Shortest route on the graph of Figure 7.15 (after geometric 

transformation) 
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Figure 7.19 Shortest path on the untransformed workspace of Figure 7.9 

7.3 Results and discussion  

To evaluate the performance of the developed method in constructing the 3D free-

space graph and exploring the graph for the shortest path using Dijkstra’s method, several 

test cases are created which investigate the effects of the number of face/edges/vertices of 

the obstacles as well as the number of obstacles on the final optimal path and the 

computation time. This section presents the results of these tests followed by a discussion 

of their meaning from the computational perspective.  

7.3.1 Effects of the number of faces/edges/vertices 

The presented algorithm of constructing the collision-free graph relies substantially 

on identifying and manipulating some edges of the obstacles at each iteration. Hence, it 

can be predicted to observe an increase in the computation time when the number of 
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geometric primitives (faces/edges/vertices) of an obstacle also increases. In general, it can 

be predicted that increasing the number of any geometric primitive, defined as faces, edges, 

and vertices based on B-rep representation [211], will increase the computation time 

(regardless of the shape of the obstacle) and the path length (only if the obstacle has curved 

surfaces such as spheres where the curved surface is tessellated to be linearized and 

resemble a polyhedron). To prove (or disprove) this hypothesis, a test case is generated 

with one intersecting obstacle with a half-sphere shape. The number of faces in this 

obstacle is gradually increased (from 10 to 1000) and the final optimal path and the 

computation time are recorded for each model. 

Since it is assumed that all obstacles are convex (free of any non-convexities 

including holes) and non-self-intersecting and their surfaces are closed, Euler’s polyhedron 

law applies to these obstacles with F faces, E edges, and V vertices. 

 2F E V− + =  (Euler’s law) 

 Using Euler’s law, it is evident that the number of faces is linearly proportionate to 

the number of edges as well as the number of vertices for the obstacles used in this research. 

Thus, increasing one geometric primitive (e.g. the number of faces) will consequently 

increase the other two (the number of edges and vertices) at the same rate. Hence, it is 

sufficient to test the effects of increasing one of the geometric primitives and extrapolate 

conclusions on the effects of the other two. In this study, the number of faces of the obstacle 

is increased. To do so, the original solid model of the obstacle is imported into Autodesk 

Meshmixer (software designed to work with triangular meshes) where the number of its 

triangular faces can be changed and a new solid model is generated. Figure 7.20 shows a 
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sample of three different solid models generated by Meshmixer with 10, 100, and 1000 

triangles, respectively. Also, the Start and Goal points of the path are shown in this figure 

with respective locations at (15,15,20) and (10,-5,12). 

 

Figure 7.20 Tessellated models of half-sphere used for the test 

Additionally, the final collision-free graphs with the shortest path on each of the 

three models in Figure 7.20 are shown in Figure 7.21. 

 

Figure 7.21 Collision-free graphs on tessellated models of half-sphere 
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The results of the tests for evaluating the effects of the number of faces on the 

computation time are plotted in graphs of Figure 7.22 and Figure 7.23 in semilog and loglog 

scales, respectively. 

 

Figure 7.22 Computation time vs. the number of triangular faces (semilog scale) 

 

 

Figure 7.23 Computation time vs. the number of triangular faces (loglog scale) 
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From Figure 7.23, it can be concluded that for this obstacle, the computation time 

increases with the number of faces. A power curve fits the data of computation time vs. the 

number of triangles with 𝑅2 = 0.9965.  

Further, Figure 7.24 and Figure 7.25 indicate the effects of increasing the number 

of faces on the length of the final optimal path. From these figures, it is seen that the length 

of the optimal path increases logarithmically with increasing the number of triangles. The 

curve flattens at greater than 600 triangles and the optimal length eventually reaches the 

true length where it becomes independent of the number of triangles. A power curve with 

𝑅2 = 0.9654 is fitted to the data of path length vs. the number of faces.  

 

Figure 7.24 Path length vs. the number of triangular faces 
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Figure 7.25 Path length vs. the number of triangular faces (semilog scale) 

In addition to the examples of Figure 7.20, the half-sphere is oriented as in Figure 

7.26 and a different shortest path is obtained by varying the number of triangular faces 

from 10 to 1000 as shown in the same figure.  

 

Figure 7.26 Collision-free graphs and shortest paths on oriented half-sphere of 

Figure 7.20 

Similar to the example in Figure 7.20, the computation time and the optimal path 

length are plotted vs. the number of triangles as in Figure 7.27 through Figure 7.30. 
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Figure 7.27 Computation time vs. the number of triangular faces for oriented half-

sphere (semilog scale) 

 

 

Figure 7.28 Computation time vs. the number of triangular faces for oriented half-

sphere (loglog scale) 
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Figure 7.29 Path length vs. the number of triangular faces for oriented half-sphere 

 

Figure 7.30 Path length vs. the number of triangular faces for oriented half-sphere 

(semilog) 

Exponential functions with 𝑅2 = 0.9886 and 𝑅2 = 0.994 describe respectively the 

increase in computation time and path length as the number of triangular faces in the half-
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sphere grows as indicated in Figure 7.27 through Figure 7.30. Therefore, with changing the 

orientation of the half-sphere, the same conclusions can be drawn that the computation time 

and path length increase when the intersecting object has more faces to pass over. 

It should be noted that the outliers on the path length vs. the number of faces are 

resulted from adding the triangles with different sizes and orientations to the original model 

of the half-sphere with 10 triangles. These new faces can be added with an orientation that 

blocks the path, therefore increasing the length, or they may not interfere with the found 

shortest path.  

Even though the results of Figure 7.22 to Figure 7.25 and Figure 7.27 to Figure 7.30 

indicate that both computation time and path length increase with the number of triangular 

faces, this may not be extrapolated to the cases with more than one obstacle as the rate of 

increase could be steeper. One reason is that for the case with only one obstacle, it is 

sufficient to create one convex hull with the Start point and the obstacle. This convex hull 

alone can yield all possible edge sequences from the Start to the Goal without the need to 

create a second convex hull. This, however, is not true for more than one obstacle, as at 

each iteration, there might be a need to create a new convex hull which could increase the 

computation time more drastically.   

7.3.2 Effects of the number and shapes of the intersecting obstacles 

Adding more obstacles that block the path to the Goal will lead to generating 

additional convex hulls to extract the edges on the new intersecting obstacles to be visited 

and detour the obstacle. Therefore, the addition of intersecting obstacles increases the 

overall computation time and may also affect the optimal path length.  
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Consider the simple example of a cubic obstacle that blocks the path of the 𝑆𝑡𝑎𝑟𝑡 =

(−20,30,30) to the 𝐺𝑜𝑎𝑙 =  (280,20,20) in Figure 7.31. The shortest path is found in 0.6 

sec using the discussed method of section 7.2 and the solution is shown in Figure 7.31(a). 

Now, if a second obstacle with the same shape and orientation is added to the workspace 

with the fixed location of Start and Goal to further block the line of sight of the points, the 

graph and the respective shortest path will be changed as shown in Figure 7.31(b), which 

is found in 5.8 sec.  
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Figure 7.31 Effects of adding blocking obstacles 

Adding a third obstacle with similar geometry (shape and orientation), an increase 

in the computation time (15.2 sec) and a change in the graph alongside the shortest path 

are observable as illustrated in Figure 7.31(c). It is also expected to observe the same trend 

of obtaining a new graph in higher computation time and possibly a new shortest path as 

more obstacles are added that block the line of sight between the two points.  

It should be noted, however, that depending on the location and orientation of newly 

added obstacles, the shortest path may stay the same while certainly a new graph is 

generated. For example, if the second object in Figure 7.31(b) is added as in Figure 7.32, 

such that it does not interfere with the graph edge in the shortest path (shown with the 

arrow in Figure 7.32) that connects the first object to the Goal, the shortest path does not 

change on the new graph.  

If, however, the location of the second obstacle remains unchanged and is the same 

as in Figure 7.32, but it is rotated around the Start-Goal line, a new graph, as well as the 

shortest path, are achieved as shown in Figure 7.33. It can be seen that the graph is changed 

and the shortest path is slightly longer than the one found in Figure 7.32. Therefore, both 
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the location and the orientation of the new blocking obstacle(s) affect the final graph and 

possibly the shortest path.  

 

Figure 7.32 Effect of the location of the blocking obstacle 

 

 

Figure 7.33 Effect of the orientation of the blocking obstacle 

It is noteworthy that in generating the graph of Figure 7.33, the constraint of being 

co-planar for two consecutive obstacle edges (the second must belong to the next object), 

illustrated in Figure 7.9, is relaxed to allow having twists in the path. While this may not 

be desirable for some applications (e.g. pipe routing), it can be possible in the wire routing 

problem where the connectors are flexible.  

From these observations, it could be concluded that adding more blocking obstacles 

increases the computation time and results in a new graph or even a longer path. Assuming 

the shapes and orientations of all blocking obstacles are the same if n of these obstacles are 
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put in series to block the path and each has E number of edges at its largest cross-section 

(where it touches the convex hull), going from one obstacle to the next, at each iteration, E 

convex hulls are generated to extract the edges on the next object to be traversed. Thus, in 

total, 𝐸𝑛 + 1 convex hulls are generated, one convex hull between the Start and the first 

intersecting object and 𝐸𝑛 convex hulls between an edge of an obstacle and the next 

intersecting obstacle in the line. Therefore, the number of required convex hulls grows 

exponentially with the number of blocking objects which could directly influence the 

computation time. This conclusion may not, however, be generalized to cases that involve 

objects of different shapes/orientations.  

In the examples shown so far, the shapes of the obstacles remained the same while 

other effects (location, orientation, and the number of objects) were discussed. To have a 

more realistic evaluation of the effect of adding blocking objects, examples of Figure 7.34 

can be considered. In Figure 7.34(a), there is only one intersecting obstacle with 36 faces 

and the final graph and shortest path are found in 6.15 sec. 

The second object with fewer faces (12), is added as in Figure 7.34(b) and the 

shortest path is found (Figure 7.34(c)) on the collision-free graph (Figure 7.34 (b)) in 26.06 

sec. Finally, the third blocking object with even fewer faces (8) is added which still 

increases the computation time to 69.20 sec to generate the graph (Figure 7.34(d)) and 

search it for the shortest path (Figure 7.34(e)). This example shows that the addition of 

blocking objects to the path increases the computation time to generate the graph regardless 

of the shape and number of faces of the added object.    
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Figure 7.34 Effects of adding blocking objects of different shapes 

Figure 7.35 demonstrates the exponential increase in the computation time by 

adding more blocking objects in Figure 7.34. Even with fewer faces, the addition of a 

blocking obstacle increases the computation time. 



 

194 

 

Figure 7.35 Effects of the number of objects on the computation time 

While general conclusions cannot be made on the effects of the shape of an object, 

it is evident that the larger the blocking obstacle is, the more likely it is to be hit and the 

bigger detour needs to be made; thus a longer path can be anticipated. Figure 7.36 and 

Figure 7.37 show examples of path planning using the geometric-based method developed 

in this research on workspaces with different shapes of obstacles. As can be seen from these 

figures, the method is not limited to vertical objects; it, however, assumes the obstacles are 

convex polyhedra.  
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Figure 7.36 Example path planning in a workspace with three blocking objects 
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Figure 7.37 Collision-free graph of a workspace with multiple objects of random 

shapes 
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Figure 7.38 Shortest path on the graph of Figure 7.37 Collision-free graph of a 

workspace with multiple objects of random shapes 

7.4 Final remarks 

This chapter presented a geometric-based deterministic method for finding the 

collision-free (visibility) graph between two given points in a 3D cluttered environment. 
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The presented method makes use of the convex hulls of the blocking objects and the cutting 

plane method discussed previously to determine a set of obstacle edges to be traversed in 

a sequence from the Start point to the Goal point. The found edges are next used in an 

optimization problem to find the optimal locations of the graph nodes. 

 An integral assumption in developing the algorithm is that all objects must be 

convex polyhedra and should be triangulated before being fed to the algorithm. 

Consequently, if a non-convex object exists in a workspace, two approaches can be taken 

to tackle the problem: (1) the object can be convexified by using its convex hull (or 

bounding box) which may introduce some levels of approximation to the final graph or (2) 

the object can be decomposed into a few smaller convex objects that are in contact with 

each other and the discussed approach can be used to obtain a collision-free graph. Further, 

curved surfaces can be approximated with planar surfaces using tessellation-based 

modeling with the desired resolution.  

Unlike the methods developed for UAV routing in urban environments [178,180], 

there is no need for the edges of the obstacles to be parallel or perpendicular to the axes 

(like vertical objects) using this method. Also, the method does not subdivide the obstacle 

edges to locate the visibility nodes in contrast to some other visibility-based methods such 

as [15,24,30]. Subdivision of edges results in loss of information and limiting the location 

of the visibility nodes to only a sample of the edge while the entire edge may potentially 

house the waypoint. While Tran’s method [9] also does not use subdivision of obstacle 

edges to locate the visibility graph nodes, a key assumption in his algorithm is that all 
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objects are vertical, and therefore cannot handle cases illustrated in Figure 7.36 and Figure 

7.37. 

The developed method does not use heuristics in determining the graphical 

representation of the free space, contrary to RRT and PRM, which means if the inputs of 

the algorithm do not change (geometry and locations of the objects as well as locations of 

the path endpoints), it outputs the same shortest path.  

Last but not the least, even though the capability of the method in finding the 

shortest path in different cluttered environments with a number of blocking obstacles is 

shown in sample problems, it is demonstrated with examples that its computation time is 

substantial and will increase drastically with an increase in the complexity of the problem 

(e.g. with a higher number of obstacles or more complex shapes (more faces/edges)) 

demonstrating the NP-Hard aspect of this problem.  
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Chapter Eight 

SUMMARY AND FUTURE WORK  

The problems of finding an optimal layout for wire harnesses in two dimensions 

and defining a graphical representation of the free space in a 3D cluttered environment to 

enable searching for the shortest path are addressed in this research. This chapter presents 

a summary of the contributions made in this research and discusses potential research 

avenues that could be explored in the future.  

8.1 Cable harness design problem in 2D 

The design of cable harness assemblies requires the planning of optimal (or 

shortest) routes for the wiring connectors while avoiding collisions with the system 

components and satisfying physical constraints of the problem including keeping a distance 

from hot zones and sharp edges.  

The final design solutions are often in the form of a graph that captures the topology 

of the connected system showing where the breakouts are placed and which components 

are connected to each of them. As discussed in this study, the design of cable harnesses is 

often left to the detail design stage where the remaining feasible space for the connectors 

is limited. Therefore, solution methods to address this problem must apply to densely 

populated environments with freeform objects.  

In this work, a classification of the existing approaches to tackle the cable harness 

design (and similar multipath planning) problems is presented. According to this 

classification, the efforts belong to either the design category of solutions or the 

optimization category. While the efforts in the design category are focused on the actual 
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design process which may overlook the optimality of the solutions and require different 

levels of human intervention, the optimization methods attempt to provide the optimal 

solution to the problem. Among the optimization-based approaches, Steiner and spanning 

trees have gained popularity as they can find a minimum length tree that spans all the nodes 

of a graph (system components). Additionally, the approaches developed in the location 

theory are relevant in addressing the optimal locations of the breakouts. While offering 

exact solutions to the optimization problem, these deterministic methods fall short of 

addressing the collision avoidance constraint in a cluttered environment. Indeed, location 

problems in the presence of obstacles have been among the challenging problems in 

operations research which are considered to be NP-hard [152], and the proposed methods 

are limited to special cases with convex obstacles [150,151,167].  

In this research, two solution methods are proposed and tested to address the 

problem of “ having a given number of start and goal points that connect different 

components in a cluttered 2D environment using flexible connectors (e.g. wires), a layout 

is to be found for the connectors to minimize the total lengths of needed connectors while 

maximizing their commonality such that the connectors do not cross any objects and the 

breakouts are not placed inside an occupied area.” The two objectives of this problem are 

to first minimize the total lengths of wires and secondly, maximize the common length of 

wires to provide more accessibility and traceability for maintenance of wiring connections 

and/or system components.  

The first solution method focuses on the mathematical modeling of the problem 

and uses the visibility information of the Start and Goal nodes to explicitly define the 
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optimization objectives in terms of Euclidean distances between the nodes. The idea of a 

visibility map is introduced that subdivides the feasible domain into several regions 

depending upon the visibility of the points inside a region with respect to the existing 

nodes. Then, binary variables are used to reflect the decisions on the chosen route to take 

to reach a node and the chosen region to place a breakout. Examples are shown and solved 

using the MOGA solver in MATLAB, in the absence of linear equality constraints and 

using the ε-constraint method when linear equality constraints exist. The set of final non-

dominated solutions is generated which may not match the true Pareto set since the solver 

is heuristic-based and cannot guarantee the attainment of the global solution.  The wire 

lengths around the obstacles are however computed using deterministic approaches and are 

therefore exact. Despite the capability of this method in explicitly defining the objective 

functions using Euclidean norms, the complexity of the problem formulation (which 

indicates the complexity of the solution) highly relies on the problem structure. It is shown, 

for example, that adding more obstacles, changing the shape of an obstacle, or changing 

the locations of the existing nodes can drastically increase the nonlinearity of the objectives 

and/or constraints which has a direct impact on the performance of the solver. Therefore, 

this method is most efficient for workspaces with few simple obstacles. Further, the 

obstacles must be polygonal and without any curved edges as having a curvature increases 

the nonlinearity of the constraints. 

For this reason, a second solution method is proposed with the aim of solving the 

same problems with less computational effort. To achieve this, the convex hull based 

routing method, proven to be efficient in finding the shortest path in a planar densely 
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populated environment [83], is deployed to calculate the shortest collision-free distance 

between the two nodes when they are invisible to each other. The constraints and criteria 

of the optimization problem are the same and MATLAB’s MOGA solver is selected to 

solve different examples with two breakouts. Final non-dominated sets of solutions are 

generated. Any member of this set is associated with an optimal layout for the cable 

harnesses and designers can use this information in their decision making at different stages 

of design. 

 The efficiency of the method in dealing with workspaces of different densities is 

also evaluated. The results show that while increasing the density of an environment 

certainly increases the computation time and the total lengths of wires, general conclusions 

cannot be made on its impact on the common length of wires. Other factors that affect the 

final solution are the number and locations of nodes and the number of breakouts. The two 

methods are then applied to a sample problem. While both generate the same sets of non-

dominated solutions, the computational efficiency of the convex-hull based method is 

superior.     

8.1.1 Future work 

In the future, the following research questions can be addressed to further the 

capabilities of the developed methods to address the cable harness layout design and 

optimization problem. 

(1) Given all the existing nodes, is it possible to develop an algorithm that outputs 

the visibility map of a cluttered workspace as well as the constraints and criteria 

of the optimization problem? 
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(2) How does adding other constraints and criteria (e.g. minimizing the number of 

turns and the number of breakouts, constraining the bend radii of wires) affect 

the problem formulation and consequently the choice of the optimization 

solver? 

(3) How can the convex-hull based method be extended to also include rectilinear 

shortest path? For this purpose, the distance function needs to be modified to 

use Manhattan instead of Euclidean distance. The outcome of this can be 

applied to address pipe routing problem instances.  

(4) Where in the design process does the wire routing problem need to be 

considered and addressed? And do the requirements of the problem change 

depending on the stage of the design process wire harnesses are considered? 

When the wire harness design is considered in the detail design stage, the 

feasible domain of the problem becomes limited which reduces the design 

solutions. Therefore, it may be more reasonable to address this problem at the 

early conceptual design stage and update the solution at each iteration of the 

design process to reflect the decisions made and their effects on the optimal 

layout of the system.  

8.2 Graphical representation of the free space in 3D planning  

Planning the shortest collision-free path among multiple scattered obstacles is 

claimed to be an NP-complete problem [223]. Owing to the intrinsic complexities of this 

problem, researchers mainly resort to heuristic and stochastic methods that can output an 

acceptable (but not necessarily optimal) solution in reasonable computation time.  
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The NP-completeness assumption of the problem has not, however, discouraged 

researchers from developing deterministic solutions that provide approximations to the 

shortest path. These methods are, in general, complete meaning if a solution exists, they 

can find it, and if no solution exists they stop. Among the deterministic methods, visibility-

based approaches are the most popular. Since it might be impossible to generate the 

complete visibility graph for 3D cluttered environments, approaches are proposed to 

generate approximate graphs. According to studies [24], the turning points of the path (the 

nodes of the visibility graph) lie on the edges of the obstacles. These methods, hence, 

attempt to find possible edge sequences that house the turning points. The efforts were 

mainly centered around subdividing the edges of the obstacles and using a sampling of the 

obstacle edges to find the locations of the graph nodes (aka waypoints or turning points) 

[15,30], therefore, limiting the potential locations of the graph nodes to only a sample of 

an obstacle edge while the entire edge could potentially house the node. Other methods 

that do not use sampling on the obstacle edges are limited to special cases, e.g. vertical 

objects [9,178,180], specific shapes (only handling cubes and cones)[182], or geodesic 

paths on the surface of one convex polyhedron[24].  

To overcome these limitations and focus on the optimality of the solution, a 

deterministic geometric-based approach is developed in this research that yields possible 

sequences of obstacle edges to be visited to reach the Goal. These edges could be used to 

form the graphical representation of the free space between the Start and the Goal which 

is later searched by a search algorithm (here, Dijkstra), to find the exact shortest path on 

the graph.   
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The convex hulls were shown to be effective in determining the graph edges in 

planar routing problems [83]. Therefore, their applicability was considered in this research. 

The developed method divides the search for edge sequences into two segments: (1) finding 

the sequences of edges to reach the first set of waypoints and (2) finding the sequences of 

edges to reach the Goal from each of the first waypoints in the sequence.  

Cutting planes are used to find an edge sequence to be traveled on the surface of an 

obstacle when the waypoint is on an edge that is obscured by the object it belongs to. When 

traveling from one obstacle to the next is required, the convex hull between the last 

traveling edge on the previous obstacle is created with the next intersecting obstacle. This 

convex hull contains the information of edges of the next obstacle that are connected to the 

edge on the previous obstacle. If the surface connecting the edge on the previous obstacle 

to an edge on the next obstacle intersects any obstacles in the environment, the colliding 

obstacle needs to be considered and a new convex hull must be created to find edges on 

the colliding obstacle that needs to be traveled on before the edges on the next obstacle and 

the process is iterated until the surface connecting two edges of different obstacles is found 

collision-free. This is similar to the 2D convex hull based approach where convex hulls are 

recursively generated to avoid collisions with random objects that were not initially hit.  

After all possible sequences of edges are determined, the algorithm solves an 

optimization problem to find the exact optimal locations of each waypoint on its respective 

edge. Hence, the method does not require any subdivision of obstacle edges and benefits 

from the full capacity of an edge to house a waypoint. As a result, final locations of the 

waypoints are globally optimal.  
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The capability of the method in deterministically finding shortest collision-free 

paths in environments cluttered with different objects of convex shapes is shown in 

examples of Figure 7.36 and Figure 7.37. As seen in these figures, the method is not limited 

to specific shapes of obstacles (e.g. vertical only or a combination of cubes and cones) as 

long as the shape is a convex polyhedron.  

Since the objects are assumed to be convex disjoint polyhedral, a path always exists 

between two given points. Also, due to the presence of disjoint obstacles, the cutting plane 

method can always find an edge sequence on the surface on an obstacle and the convex 

hull can always generate the connected edges between two obstacles. Thus, it can be 

concluded that the method is complete and can always output a solution.  

8.2.1 Limitations of the method 

Even though the use of convex hulls in the 2D path planning is proven sufficient in 

determining all necessary edges of the free space graph [83], the generation of 3D convex 

hulls may not be sufficient in capturing all the necessary information that could be used to 

form the graph when non-convex obstacles are involved. For example, in Figure 8.1, a 

shorter collision-free route is available through the non-convex intersecting obstacle which 

cannot be obtained using the method developed in this research. Due to using convex hulls 

to extract the nodes of the collision-free graph, the method can only yield obstacle edges 

that are on the surfaces of these convex hulls, as seen in Figure 8.1. Therefore, the 

developed method may not be effective in finding an optimal solution for cases with non-

convex objects. As suggested in Chapter 7, in cases where a non-convex object is present, 

to avoid introducing additional approximations, the non-convex object can be split into 
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several convex objects that are in contact with one another and the proposed method can 

be similarly applied to the newly defined problem.    

 

 

Figure 8.1 Example of path planning in the presence of a non-convex object 

Additionally, the objects are modeled using tessellations that linearize curved 

features. Therefore, the final solution is an approximation to the shortest path. On this 

account, while STL-based data exchange format is used in this research, any other 

tessellation based formats can be handled with slight modifications to the program.  

Last but not the least, it should be reminded that the deterministic method 

developed in this research targets an NP-complete problem, the complexity of which grows 
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exponentially with the increasing complexity of the objects. Thus, it is expected to observe 

a significant increase in computation time as the problem complexity grows. As an 

example, the effect of increasing the number of edges of the intersecting obstacle on the 

computation time is shown in Figure 7.22 and Figure 7.23 which verify the growing 

complexity of the problem and its characterization as an NP-Hard problem.  

8.2.2 2D vs. 3D convex hull based routing 

In this study, two graph construction methods are presented for 2D and 3D routing 

problems. Despite the use of the convex hull geometric structure in both approaches, the 

two solution methods have fundamental differences in the ways they generate the collision-

free graphs. For 2D problems, it is proven that the use of the convex hull created by the 

intersecting object(s) is necessary and sufficient in extracting the graph edges [83]. This is 

due to the fact that non-convex vertices need to be excluded from the graph and therefore 

the corresponding edges connected to such vertices must also be removed from the graph 

to avoid lengthening the path. This property makes the approach equally applicable to 

convex and non-convex objects whereas the 3D convex hull falls short of this property. 

The exclusion of non-convexities in 3D objects (e.g. Figure 8.1) results in overlooking the 

optimality of the solution found on the constructed graph. Thus, it may not be sufficient to 

extract the edges of the graph from the convex hulls generated with non-convex objects 

unless the object is decomposed into multiple convex shapes.  

Moreover, at each step in the 2D routing method when a new convex hull is 

generated, exactly two extreme points are identified as the next traveling (turning) points 

of the path. This, however, is not the case for 3D routing. In the 3D routing method, when 
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a new convex hull is generated, the number of next possible traveling points (or edges) 

varies depending on the number of edges in the cross-section of the convex hull.  

In addition to the extreme points, when an intersection exists between a line 

segment connecting an extreme point and the Goal in 2D routing, the information of the 

convex hull can be used to identify the set of vertices to be traversed on the perimeter of 

the polygonal object to avoid intersecting its interior. This information, however, may not 

be helpful in determining the set of edges to be traversed over the surface of a polyhedral 

object when the triangle generated by an edge and the Goal intersects the interior of this 

object. Hence, in the 3D routing approach, the cutting plane is used as a guide to determine 

the necessary set of edges to be visited to avoid such an intersection.   

8.2.3 Future work  

The following research questions can be addressed as potential extensions of this 

research on the graphical representation of a cluttered workspace.  

(1) How can the method be modified to take non-convex shapes of the obstacles 

and provide the shortest paths? Two approaches are proposed in this study that 

are convexification and decomposition of the non-convex shapes. The effects 

of these operations can be evaluated on the final optimal solution.  

(2) How can the method be adapted to the changes in the environment? The 

changes can be on the shapes (configurable objects), locations, and orientations 

of the obstacles. If the method can be adapted, it can solve real-time routing, 

routing in dynamic environments, or routing under uncertainty. A possible 

approach to undertake this problem is to model the changes in the environment 
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as uncertainties or parameters whose values are to be determined. Following 

this approach, stochastic or parametric optimization methods can be utilized to 

solve dynamic routing problems.  

(3) Can the method of generating the 3D graphical representation be adopted in 

solving the 3D layout problem for cable harnesses? The capability of the 3D 

convex hull based routing method to address planning in the presence of a few 

convex objects is demonstrated. This approach can be adapted to the 

mathematical framework proposed for harness layout problems to yield optimal 

layouts for cable harness assemblies in 3D spaces.   

(4) What modifications can be made to the algorithm to be able to generate 

rectilinear shortest paths? A start point to tackle this problem could be the use 

of bounding boxed instead of convex hulls and Manhattan instead of Euclidean 

distances between points in 3D.  

(5) The 3D routing problem considered in this research is at the component level. 

In the actual design process, which is a multidisciplinary problem, the system 

components interact and affect the system-level and component-level decisions. 

For example, considering the wire routing problem in airplanes, the routing may 

not be addressed independently of the constraints and criteria of other 

disciplines such as propulsion and aerodynamic disciplines. Thus, the effects of 

and interrelationships among other disciplines need to be factored in when 

planning the optimal routes for wires. This research proposed a solution to 

finding an optimal graphical representation that captures the connectivity 
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information of a system at the component level. One research question toward 

addressing the discussed challenge is: can the results of this research be used to 

capture the interrelationships among different disciplines within an 

interconnected system?  And if so, what information can be used, depending on 

the system under the study, to model the interconnections among different 

disciplines? 

(6) The graph-based optimization method developed in this research aimed at 

solving the routing problem in 3D. What other problems in interconnected 

systems can be modeled and solved using a graphical representation of the 

environment?  

8.3 Broader Impact 

This research proposed geometric-based optimization methods for routing and 

laying out cable harnesses in cluttered environments. The mathematical framework 

proposed for the optimization of cable harness layouts is applicable to network 

optimization problems where multiple components of the network need to be connected 

using one-dimensional connectors (e.g. wires, cables, hoses, or pipes). Examples of such 

networks are electromechanical systems such as computing devices, automobiles, and 

aircraft. Optimization of the length of the connectors in such systems results in minimizing 

the weight of the system and reducing its energy consumption. In addition to 

electromechanical systems, the layout problem is omnipresent in wind farm design. The 

decision of allocating wind turbines to feasible locations in the farm is a mixed-integer 
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optimization problem that could be modeled and solved using the proposed method in 

Chapter 3 of this dissertation.  

In this study, also a graphical representation of the 3D cluttered environment of 

path planning problems is proposed. The generated graph is a representative set of design 

solutions for the routes of 3D flexible connectors. If the shortest route is desired, Dijkstra’s 

search algorithm is applied to the graph that finds the minimum cost (here cost is the length 

of the path) path. Otherwise, depending on other physical constraints of the problem, such 

as accessibility of wires/components, maintenance, bend radius of the connector, or thermal 

loading, other routes could be selected from the graph. The advantage of graph-based over 

reasoning-based methods is the generation of a solution set rather than a single solution. 

This is especially advantageous in design problems where alternative solutions are sought 

for the designers to have flexibility in their decision making. The additional constraints can 

either be considered later in the decision making or be introduced as penalty functions in 

the objective of the optimization problem.  

While the graph-based routing method can apply to workspaces with any convex 

shapes of obstacles, the fewer faces an obstacle has, the shorter it will take for the algorithm 

to determine the graph. Therefore, for problems with complex shapes of obstacles where 

an acceptable solution needs to be found in a reasonable amount of time, for example in 

automotive systems, the obstacles may be approximated by their bounding boxes to reduce 

the number of their associated faces. Other areas where the method can be applied to find 

routes of wiring connectors without major modifications to the algorithm include 

computers that contain components of regular convex shapes (e.g. rectangular blocks).  
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This dissertation shows that it may be possible to have optimization algorithms to 

deterministically identify the shortest routes in cluttered environments. As computing 

power keeps enhancing, larger and larger problems can be tackled and ultimately provide 

the designers with better tools to address such problems and eventually be confident in 

their design decisions. 
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APPENDIX A: ADDITIONAL RESULTS FOR LAYOUT OPTIMIZATION 

PROBLEM 

Workspaces of the test cases used to evaluate the effects of density 
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