1,053 research outputs found

    An Application of Path Sharing To Routing For Mobile Sinks In Wireless Sensor Networks

    Get PDF
    Power Conservation is one of the most important challenges in wireless sensor networks. In this paper, we present a minimum-energy routing algorithm. Our main goal is to reduce power consumed and prolong the lifespan of the network. The rotocol, named CODEXT: Coordinationbased Data dissemination for Sensor Networks eXTension, addresses the sensor networks consisting of mobile sinks. CODEXT which is an improvement over CODE protocol Coordination-based Data dissemination for sensor networks considers energy conservation not only in communication but also in idle-to-sleep state. Better informed routing decisions can often be made by sharing information among neighbouring nodes. To this end, we describe the CODEXT protocol, a generic outline for Wireless Sensor Network (WSN) protocols that focuses on locally sharing feedback with little or no overhead. This paper describes one instantiation of it, CODEXT protocol for optimizing routing to multiple sinks through reinforcement learning. Such a routing situation arises in WSNs with multiple, possibly mobile sinks, such as WSNs with actuators deployed in parallel to sensors. This protocol is based on GAF protocol and grid structure to reduce energy consumed. Our simulation results show that CODEXT gain energy efficiency and prolong the network lifetime. Keywords: Source, Sink, Coordination-based Data dissemination protocol, WSN

    Sink-oriented Dynamic Location Service Protocol for Mobile Sinks with an Energy Efficient Grid-Based Approach

    Get PDF
    Sensor nodes transmit the sensed information to the sink through wireless sensor networks (WSNs). They have limited power, computational capacities and memory. Portable wireless devices are increasing in popularity. Mechanisms that allow information to be efficiently obtained through mobile WSNs are of significant interest. However, a mobile sink introduces many challenges to data dissemination in large WSNs. For example, it is important to efficiently identify the locations of mobile sinks and disseminate information from multi-source nodes to the multi-mobile sinks. In particular, a stationary dissemination path may no longer be effective in mobile sink applications, due to sink mobility. In this paper, we propose a Sink-oriented Dynamic Location Service (SDLS) approach to handle sink mobility. In SDLS, we propose an Eight-Direction Anchor (EDA) system that acts as a location service server. EDA prevents intensive energy consumption at the border sensor nodes and thus provides energy balancing to all the sensor nodes. Then we propose a Location-based Shortest Relay (LSR) that efficiently forwards (or relays) data from a source node to a sink with minimal delay path. Our results demonstrate that SDLS not only provides an efficient and scalable location service, but also reduces the average data communication overhead in scenarios with multiple and moving sinks and sources

    Amorphous Placement and Retrieval of Sensory Data in Sparse Mobile Ad-Hoc Networks

    Full text link
    Abstract—Personal communication devices are increasingly being equipped with sensors that are able to passively collect information from their surroundings – information that could be stored in fairly small local caches. We envision a system in which users of such devices use their collective sensing, storage, and communication resources to query the state of (possibly remote) neighborhoods. The goal of such a system is to achieve the highest query success ratio using the least communication overhead (power). We show that the use of Data Centric Storage (DCS), or directed placement, is a viable approach for achieving this goal, but only when the underlying network is well connected. Alternatively, we propose, amorphous placement, in which sensory samples are cached locally and informed exchanges of cached samples is used to diffuse the sensory data throughout the whole network. In handling queries, the local cache is searched first for potential answers. If unsuccessful, the query is forwarded to one or more direct neighbors for answers. This technique leverages node mobility and caching capabilities to avoid the multi-hop communication overhead of directed placement. Using a simplified mobility model, we provide analytical lower and upper bounds on the ability of amorphous placement to achieve uniform field coverage in one and two dimensions. We show that combining informed shuffling of cached samples upon an encounter between two nodes, with the querying of direct neighbors could lead to significant performance improvements. For instance, under realistic mobility models, our simulation experiments show that amorphous placement achieves 10% to 40% better query answering ratio at a 25% to 35% savings in consumed power over directed placement.National Science Foundation (CNS Cybertrust 0524477, CNS NeTS 0520166, CNS ITR 0205294, EIA RI 0202067

    Strengths and Weaknesses of Prominent Data Dissemination Techniques in Wireless Sensor Networks

    Get PDF
    Data dissemination is the most significant task in a Wireless Sensor Network (WSN). From the bootstrapping stage to the full functioning stage, a WSN must disseminate data in various patterns like from the sink to node, from node to sink, from node to node, or the like. This is what a WSN is deployed for. Hence, this issue comes with various data routing models and often there are different types of network settings that influence the way of data collection and/or distribution. Considering the importance of this issue, in this paper, we present a survey on various prominent data dissemination techniques in such network. Our classification of the existing works is based on two main parameters: the number of sink (single or multiple) and the nature of its movement (static or mobile). Under these categories, we have analyzed various previous works for their relative strengths and weaknesses. A comparison is also made based on the operational methods of various data dissemination schemes

    Design of implicit routing protocols for large scale mobile wireless sensor networks

    Get PDF
    Strathclyde theses - ask staff. Thesis no. : T13189Most developments in wireless sensor networks (WSNs) routing protocols address static network scenarios. Schemes developed to manage mobility in other mobile networking implementations do not translate effectively to WSNs as the system design parameters are markedly different. Thus this research focuses on the issues of mobility and scalability in order to enable the full potential of WSNs to self-organise and co-operate and in so doing, meet the requirements of a rich mix of applications. In the goal of designing efficient, reliable routing protocols for large scale mobile WSN applications, this work lays the foundation by firstly presenting a strong case supported by extensive simulations, for the use of implicit connections. Then two novel implicit routing protocols - Virtual Grid Paging (VGP) and Virtual Zone Registration and Paging (VZRP) - that treat packet routing from node mobility and network scalability viewpoints are designed and analysed. Implicit routing exploits the connection availability and diversity in the underlying network to provide benefits such as fault tolerance, overhead control and improvement in QoS (Quality of Service) such as delay. Analysis and simulation results show that the proposed protocols guarantee significant improvement, delivering a more reliable, more efficient and better network performance compared with alternatives.Most developments in wireless sensor networks (WSNs) routing protocols address static network scenarios. Schemes developed to manage mobility in other mobile networking implementations do not translate effectively to WSNs as the system design parameters are markedly different. Thus this research focuses on the issues of mobility and scalability in order to enable the full potential of WSNs to self-organise and co-operate and in so doing, meet the requirements of a rich mix of applications. In the goal of designing efficient, reliable routing protocols for large scale mobile WSN applications, this work lays the foundation by firstly presenting a strong case supported by extensive simulations, for the use of implicit connections. Then two novel implicit routing protocols - Virtual Grid Paging (VGP) and Virtual Zone Registration and Paging (VZRP) - that treat packet routing from node mobility and network scalability viewpoints are designed and analysed. Implicit routing exploits the connection availability and diversity in the underlying network to provide benefits such as fault tolerance, overhead control and improvement in QoS (Quality of Service) such as delay. Analysis and simulation results show that the proposed protocols guarantee significant improvement, delivering a more reliable, more efficient and better network performance compared with alternatives

    Hierarchical routing protocols for wireless sensor network: a compressive survey

    Get PDF
    Wireless Sensor Networks (WSNs) are one of the key enabling technologies for the Internet of Things (IoT). WSNs play a major role in data communications in applications such as home, health care, environmental monitoring, smart grids, and transportation. WSNs are used in IoT applications and should be secured and energy efficient in order to provide highly reliable data communications. Because of the constraints of energy, memory and computational power of the WSN nodes, clustering algorithms are considered as energy efficient approaches for resource-constrained WSNs. In this paper, we present a survey of the state-of-the-art routing techniques in WSNs. We first present the most relevant previous work in routing protocols surveys then highlight our contribution. Next, we outline the background, robustness criteria, and constraints of WSNs. This is followed by a survey of different WSN routing techniques. Routing techniques are generally classified as flat, hierarchical, and location-based routing. This survey focuses on the deep analysis of WSN hierarchical routing protocols. We further classify hierarchical protocols based on their routing techniques. We carefully choose the most relevant state-of-the-art protocols in order to compare and highlight the advantages, disadvantage and performance issues of each routing technique. Finally, we conclude this survey by presenting a comprehensive survey of the recent improvements of Low-Energy Adaptive Clustering Hierarchy (LEACH) routing protocols and a comparison of the different versions presented in the literature

    A COMMUNICATION FRAMEWORK FOR MULTIHOP WIRELESS ACCESS AND SENSOR NETWORKS: ANYCAST ROUTING & SIMULATION TOOLS

    Get PDF
    The reliance on wireless networks has grown tremendously within a number of varied application domains, prompting an evolution towards the use of heterogeneous multihop network architectures. We propose and analyze two communication frameworks for such networks. A first framework is designed for communications within multihop wireless access networks. The framework supports dynamic algorithms for locating access points using anycast routing with multiple metrics and balancing network load. The evaluation shows significant performance improvement over traditional solutions. A second framework is designed for communication within sensor networks and includes lightweight versions of our algorithms to fit the limitations of sensor networks. Analysis shows that this stripped down version can work almost equally well if tailored to the needs of a sensor network. We have also developed an extensive simulation environment using NS-2 to test realistic situations for the evaluations of our work. Our tools support analysis of realistic scenarios including the spreading of a forest fire within an area, and can easily be ported to other simulation software. Lastly, we us our algorithms and simulation environment to investigate sink movements optimization within sensor networks. Based on these results, we propose strategies, to be addressed in follow-on work, for building topology maps and finding optimal data collection points. Altogether, the communication framework and realistic simulation tools provide a complete communication and evaluation solution for access and sensor networks

    Data Aggregation Based Proactive Data Reporting Protocol for Wireless Sensor Network

    Get PDF
    Wireless sensor networks are the grouping of tiny sensor nodes that gathers the information by sensing activeness from the surroundings similar lands, forests, hills, sea. Power saving is a critical issue in wireless sensor networks since sensor nodes are battery-powered. To achieve optimized network performance at collecting a small portion of sensed data in network is in current researches. There are many protocols available for the successful communication. Sink trail and sink trail-s are the two energy efficient proactive data reporting protocols for mobile sink based on data collection with low complexity and reduced control overhead. In wireless sensor networks, using mobile sinks mobility rather than static sink for data collection is the new trend. Recently the researches are giving the concentration on moving patterns of the mobile sink to achieve optimized network performance, collecting a small area of sensed data in the network and also reducing energy consumption is main motto of the recent searches. Sink trail and sink trail-S protocols aim to conserve energy by turning off unnecessary sensors while simultaneously preserving a constant level of routing fidelity. In the proposed system we proposed the system that provides solution over mobility problems in wireless sensor network with energy saving methodology using aggregation technique. DOI: 10.17762/ijritcc2321-8169.150616
    corecore