

An Application of Path Sharing To Routing For Mobile Sinks In Wireless

Sensor Networks

Okafor Friday Onyema+, Fagbohunmi Griffin Siji*

+Department of Computer Science

Michael Okpara University of Agriculture, Umudike Tel:+234-803-7172374 Email:

Revmachi_4@Yahoo.Co.Uk

*Department of Computer Science, Abia State Polytechnic, Aba Tel:+234-706-4808382. email:

oluwasijibomi1@hotmail.com

Abstract
Power Conservation is one of the most important challenges in wireless sensor networks. In this

paper, we present a minimum-energy routing algorithm. Our main goal is to reduce power

consumed and prolong the lifespan of the network. The protocol, named CODEXT: Coordination-

based Data dissemination for Sensor Networks eXTension, addresses the sensor networks

consisting of mobile sinks. CODEXT which is an improvement over CODE protocol

Coordination-based Data dissemination for sensor networks considers energy conservation not

only in communication but also in idle-to-sleep state. Better informed routing decisions can often

be made by sharing information among neighbouring nodes. To this end, we describe the

CODEXT protocol, a generic outline for Wireless Sensor Network (WSN) protocols that focuses

on locally sharing feedback with little or no overhead. This paper describes one instantiation of it,

CODEXT protocol for optimizing routing to multiple sinks through reinforcement learning. Such a

routing situation arises in WSNs with multiple, possibly mobile sinks, such as WSNs with

actuators deployed in parallel to sensors. This protocol is based on GAF protocol and grid

structure to reduce energy consumed. Our simulation results show that CODEXT gain energy

efficiency and prolong the network lifetime.

Keywords: Source, Sink, Coordination-based Data dissemination protocol, WSNs

__

1.0 Introduction

 A wireless sensor network is randomly
deployed by hundreds or thousands of
unattended and constrained sensor nodes in
an area of interest. These networking sensors
collaborate among themselves to collect,
process, analyze and disseminate data. In the
sensor networks, a data source is defined as a
sensor node that either detects the stimulus or
is in charge of sensing requested information.
The sources are usually located where
environment activities of interest take place.
A sink is defined as a user’s equipment such
as PDA, laptop, etc. which gathers data from
the sensor network.
 Limitations of sensors in terms of memory,
energy, and computation capacities give rise
to many research issues in the wireless sensor

networks. In recent years, a bundle of data
dissemination protocols have been proposed
[3]. Most of these efforts focus on energy
conservation due to the energy limitation and
the difficulty of recharging batteries of
thousands of sensors in hostile or remote
environment. Generally, the power
consumption of sensors can be used for three
functionalities - the power consumed for the:
(a) transmission of packets (b) reception of
packets and (c) the power consumed when
the network is idle. Besides, recent studies
have shown that radio communication
dominates energy consumption in the sensor
networks, rather than computation [7];
therefore, power conservation is an especially

important challenge at the communication
layers.
 Each sensor network possesses its own
characteristics to cater for different
applications. An example of such
applications is the monitoring and control of
safety-critical military, environmental, or
domestic infrastructure systems. Depending
on each application, the sinks may be mobile
while the sensors are stationary. On the other
hand, the number of sinks may be large since
many users may simultaneously access the
sensor networks. In this paper, we propose
an energy-efficient data dissemination
approaches which have been built as an
improvement over the CODE protocol.
These protocols individually address the
sensor networks consisting of mobile sinks
and the sensor networks consisting of a large
number of sinks.
 The algorithm, Coordination-based Data
Dissemination Protocol Extension (or
CODEXT for short), addresses mobile sinks.
The authors are motivated by the fact that
handling mobile sinks is a challenge of
large-scale sensor network research. Though
many researches have been published to
provide efficient data dissemination
protocols to mobile sinks [9]; they have
proposed how to minimize energy consumed
for network communication, regardless of
idling energy consumption. In fact, energy
consumed for nodes while idling cannot be
ignored [10], show that energy consumption
for idle:receive:send ratios are 1:1.05:1.4,
respectively. Consequently, they suggest that
energy optimizations must turn off the radio.
Doing this not only simply reduces number
of packets transmitted but also conserves
energy both in overhead due to data transfer,
and in idle state energy dissipation when no
traffic exists, especially in sensor networks
with high node density. In CODEXT, we
take into account the energy for both
communication and idle states. CODEXT
provides an energy efficient data
dissemination path to mobile sinks for
coordination sensor networks. CODEXT is
based on grid structure and coordination
protocol GAF [13]. The key observation

driving the CODEXT notion is that wireless
communication between neighbouring nodes
is not a private, point-to-point exchange
between them, but rather it is broadcast,
implying that it can be received by all nodes
within range. Extensive amounts of local
data exist on the single nodes in a wireless
network, which, if shared, could improve the
performance of the routing and or
application levels. This data is usually small,
such as residual energy, available routes to
sinks, route costs to specific sinks,
application role assigned to the node, link
quality information, etc. When shared with
neighbours, this information could be used
for adjusting existing routes and taking
routing decisions to minimize costs.
 To better understand the rest of the paper,
the authors first describe the general protocol
design goals of sensor networks in Section 2.
Then in section 3 and 4, we present the
protocol and its performance evaluation..
The discussion about benefit of the proposed
approach is given right after its evaluation.
Section 5 concludes the paper.

1.1 Protocol Design Goals

 The wireless sensor network has its own
constraint that differs from adhoc networks.
Such constraints make designing routing
protocol for sensor networks very
challenging [1]. Firstly, sensor nodes are
limited in power, processing capacities and
memory. These require careful resource
management. Secondly, sensor nodes may
not have global identifications (IDs).
Therefore, classical IP-based protocol can
not be applied to the sensor networks.
Thirdly, sensor nodes might be deployed
densely in the sensor networks. Unnecessary
nodes should turn off its radio while
guaranteeing connectivity of the entire
sensor field. Fourthly, generated data traffic
has significant redundancy in it since
multiple sensors may generate same data
within the vicinity of a phenomenon. Such
redundancy needs to be exploited (through
compression techniques) by the routing
protocols to improve energy and bandwidth

utilization. This will be addressed in the
clustering algorithm to be proposed later.
 In order to design a good protocol for the
sensor networks, such constraints should be
managed in an efficient manner. In this
paper, emphases was placed on three major
design goals in data dissemination protocol
for wireless sensor networks.

1.1.1 Energy Efficiency/Network

Lifetime

 Energy efficiency is the most important
consideration due to the power constraint of
sensor nodes. Recent studies have shown
that radio communication is the dominant
consumer of energy in the sensor networks.
Most of recent publications mainly focus on
how to minimize energy consumption for
sensor networks. Besides, multi-hop routing
will consume less energy than direct
communication, since the transmission
power of a wireless radio is proportional to
the distance squared or even higher order in
the presence of obstacle. However, multi-
hop routing introduces significant overhead
for topology management and medium
access control [1]. Another characteristic of
the common sensor networks is that sensor
nodes usually generate significant redundant
data. Therefore similar packets from multiple
nodes should be aggregated so that the
number of packets transmitted would be
reduced [8]. Several work, [7], [11], suggest
that unnecessary nodes should be turned off
to conserve energy and reduce collision.

1.1.2 Latency

 The user is interested in knowing about
the phenomena within a given delay.

Therefore, it is important to receive the data
in a timely manner [5], [7].

1.1.3 Scalability

 Scalability is also critical factor. For a
large scale sensor network, it is likely that
localizing interactions through hierarchical
and aggregation will be critical to ensure
scalability [5]. Keeping these design goals in
mind, in this paper we propose a data
dissemination protocols for large-scale
sensor networks to achieve energy efficiency
while guaranteeing a comparable latency
with existing approaches.

1.2 CODEXT: A Coordination-Based

Data Dissemination Protocols To

Mobile Sink

 CODEXT addresses the sensor networks
consisting of mobile sinks. In CODEXT, we
rely on the assumptions that all sensor nodes
are stationary. Each sensor is aware of its
residual energy and geographical location.
Once a stimulus appears, the sensors
surrounding it collectively process the signal
and one of them becomes the source to
generate data report. The sink and the source
are not supposed to know any a-priori

knowledge of potential position of each
other. To make unnecessary nodes stay in the
sleeping mode, CODEXT is deployed above
GAF-basic protocol [10]. Fig.1 depicts
CODE general model where the routing
algorithm is implemented above the GAF
protocol. In this paper, we only focus on
CODEXT routing algorithm. Details of GAF
algorithm can be referred in [13].

 Fig.1.CODEXT System Model

 The basic idea of CODEXT is to divide
sensor field into grids. Grids are indexed
based on its geographical location.
According to GAF, each grid contains one
coordinator which acts as an intermediate
node to cache and relay data. CODEXT
consists of three phases: data announcement,
query transfer and data dissemination. As a
stimulus is detected, a source generates a
data-announcement message and sends to all
coordinators using simply flooding
mechanism. Each coordinator is supposed to
maintain a piece of information of the source
including the stimulus and the source’s
location. As a mobile sink joins in the
network, it selects a coordinator in the same
grid to act as its Agent. When it needs data, it
sends a query to this Agent. The Agent is in
charge of forwarding the query to the source
based on the target’s location and grid IDs.
An efficient data dissemination path is
established while the query traverses to the
source. Receiving a query, the source sends
the data to the sink along the data
dissemination path. The Agent helps the sink
to continuously keep receiving data from the
source when the sink moves around.
Periodically, the sink checks its location. If
the sink moves to another grid, it first sends
cache-removal message to clear out the
previous data dissemination path and then re-
sends a query to establish a new route.

1.3 CODEXT Theory

A. Grid Indexing
 We assume that we have partitioned the
network plane in virtual MxN grids (for
example in Fig.2 that is 3x2 grids). Each grid
ID which has a typed [CX.CY] is assigned as
follows: at the first row, from left to right,
the grid IDs are [0.0], [1.0], and [2.0].
Likewise, at the second row, grid IDs are
[0.1], [1.1], and [2.1] and so forth. To do
this, based on the coordinate (x, y), each
node computed itself CX and CY:

 (1)

where r is the grid size and [x] is largest
integer less than x.

Fig.2.Grid Indexing

B. CODEXT Algorithms

a) Data Announcement

 When a stimulus is detected, the source
propagates a data-announcement message to
all coordinators using simply flooding
mechanism. Every coordinator stores a few
piece of information for the data
dissemination path discovery, including the
information of the stimulus and the source
location. In this approach, the source
location does not mean the precise location
of the source, but its grid ID. Since the
coordinator role might be changed every
time, the grid ID is the best solution for
nodes to know the target it should relay the
query to. To avoid keeping data-
announcement message at each coordinator
indefinitely, a source includes a timeout

parameter in data-announcement message. If
this timeout expires and a coordinator does
not receive any further data-announcement

message, it clears the information of the
stimulus and the target’s location to release
the cache.

b) Query Transfer

 Every node is supposed to maintain a
Query INformation Table (hereafter called
QINT) in its cache. Each entry is identified
by a tuple of (query, sink, uplink) (sink is the
node which originally sends the query;
uplink is the last hop from which the node
receives the query). By definition, two
entries in QINT are identical if all their

corresponding elements are identical. For
example in Fig.3, node n1 and node n2
receive a query from sink1 and sink2,
therefore it maintains a QINT as Fig.4.

Fig.3.Query Transfer And Data

Dissemination Path Setup

 Fig.4.Query Information Table Maintained At Nodes n1 and n2

 Receiving a query from an uplink node, a
node first checks if the query exists in its
QINT. If so, the node simply discards the
query. Otherwise, it caches the query in the
QINT. Then, based on target’s location
stored in each coordinator, it computes the
ID of next grid to forward the query. This
algorithm is described in Fig.5. In this figure,
NODE is the current node handling the query
packet and src_addr contains the target’s
location. If NODE is the source, it starts
sending data along the data dissemination
path. Otherwise, it finds the next grid which
is closest to the target to relay the query. In
case the next grid contains no node (so-
called void grid) or the next grid’s
coordinator is unreachable, it tries to find a
round path. To do this, it first calculates the
disparity, δCX, δCY_..

The next grid will be
NextGrid.CX = NODE.CX δCX

NextGrid.CY = NODE.CY δCY

Fig. 5. Pseudo-Code of Finding Next

Grid ID Algorithm

 Each node is supposed to maintain a one-

hop-neighbour table. (i.e. information about
its one-hop neighbours). If a node can not

find the next grid’s coordinator in this table,
it considers that grid as a void grid

.

Fig.6.Multi-Hop Routing Through Coordinators

For example in Fig.6, the sink1 sends query
to the source src along the path [4.1], [3.2],
[2.3], [1.3], [0.3]. However, with the sink2,
the grid [3.0]’s coordinator can not find grid
[2.1]’s neighbour (due to void grid) and grid
[3.1]’s coordinator also can not find grid
[2.2]’s neighbor (due to unreachable node) in
its one-hop-neighbour table. Therefore, it
finds the round path as [3.1], [3.2], [2.3],
[1.3], [0.3]. A data dissemination path is
discovered by maintaining a QINT at each
intermediate node. A query from a sink is re-
transmitted when the sink moves to another
grid. The path length of each neighbour for
each sink are stored in a Neighbour Table,
e.g.,
1: init:
2: CODEXT.init();
3: routeData(DATA):
4:
CODEXT.updateFitness(DATA.Routing,

 DATA.Feedback);
5: if (myAddr in Routing)
6: if (explore)
7: possRoutes =

PST.getAllRoutes(DATA.Routing.si
nks);

8: route = explore.select(possRoutes);
9: else
10: route =

CODEXT.getBestRoute(DATA.Rout
ing.sinks);

11: DATA.Feedback.value =
CODEXT.getBestCost(DATA.Routi
ng.sinks);

12: DATA.Routing = route;
13: sendBroadcast(DATA);

Fig. 7. CODEXT Pseudo Code

Initialization And Processing Of One

DATA Packet

c) Data Dissemination
A source starts generating and transmits

data to a sink as it receives a query. Upon
receiving data from another node, a node on
the dissemination path (including the source)
first checks its QINT if the data matches to
any query to which uplinks it has to forward.
If it finds that the data

matches several queries but with the same
uplink node, it forwards only one copy of
data. Doing this reduces considerable
amount of data transmitted throughout the
sensor network. For example in Fig.4, node
n1 receives the same query A of sink1 and
sink2 from the same uplink node (n2).
Therefore, when n1 receives data, it sends
only one copy of data to n2. Node n2 also
receives the same query A of sink 1 and sink
2 but from different uplink nodes (n3, n4).

Thus, it must send two copies of data to n3
and n4. Likewise, the data is relayed finally
to the sinks.

2.0 Handling Sink Mobility
 CODEXT is designed for mobile sinks. In
this section, the authors describe how a sink
keeps continuously receiving updated data
from a source while it moves around within
the sensor field.
 Periodically, a sink checks its current
location to know which grid it is located.
The grid ID is computed by the formula (1).
If it is still in the same grid of the last check,
the sink does nothing. Otherwise, it first
sends a cache-removal message to its old
Agent. The cache-removal message contains
the query’s information, the sink’s
identification and the target’s location. The
old Agent is in charge of forwarding the
message along the old dissemination path as

depicted in Fig.8. After receiving a cache-

removal message, a node checks its QINT
and removes the matched query. When this
message reaches the source, the whole
dissemination path is cleared out, i.e. each
intermediate node on the path no longer
maintains that query in its cache.
Consequently, the source stops sending data
to the sink along this dissemination path.
After the old dissemination path is removed,
the sink re-sends a query to the target
location. A new dissemination path is
established as described in section (b) above.
By doing this, the number of queries which
is needed to be re-sent is reduced
significantly compared with other
approaches. Hence, collision and energy
consumption is reduced. Also, the number of
lost data packet is decreased. In case the sink
moves into a void grid, it selects the closest
coordinator to act as its Agent.

Fig.8.Handling Sink Mobility

2.1 CODEXT Performance

A. Simulation Model
 Here, the authors developed a simulator
based on OMNET++ simulator to evaluate
and compare CODEXT to other approaches
such as Directed Diffusion (DD) and CODE.
To facilitate comparisons with CODE and
DD, we use the same energy model used in
n2 that requires about 0.66W, 0.359W and
0.035W for transmitting, receiving and
idling respectively. The simulation uses
MAC IEEE 802.11 DCF that OMNET++
implements. The nominal transmission range
of each node is 250m, [13].

 Our goal in simulating CODEXT is to
examine how well it actually conserves
power, especially in dense sensor networks.
In the simulation, we take into account the
total energy consumed for not only
transmitting, receiving but also idling. The
sensor network consists of 400 sensor nodes,
which are randomly deployed in a
2000mx2000m field (i.e. one sensor node per
100mx100m grid). Two-ray ground is used
as the radio propagation model and an omni-
directional antenna having unity gain in the
simulation. Each data packet has 64 bytes,
query packet and the others are 36 bytes

long. The default number of sinks is 8
moving with speed 10 m/sec (i.e. the fastest
human speed) according to random way-

point model (David B, J and David A.M
1996). Two sources generate different
packets at an average interval of 1 second.
Initially, the sources send a data-
announcement to all coordinators using
flooding method. When a sink needs data, it
sends a query to its Agent. As a source
receives a query, it starts generating and
sends data to the sink along the data
dissemination path. The simulation lasts for
200 seconds. Four metrics are used to
evaluate the performance of CODEXT. The
energy consumption is defined as the total
energy network consumed. The success rate
is the ratio of the number of successfully
received packets at a sink to the total number
of packets generated by a source, averaged
over all source-sink pairs. The delay is
defined as the average time between the time
a source transmits a packet and the time a
sink receives the packet, also averaged over
all source-sink pairs. We define the network
lifetime as the number of nodes alive over
time.

2.2 Performance Results

a) Impact of Sink Number

 The impact of the sink number on
CODEXT is first of all studied. In the default
simulation, we set the number of sink
varying from 1 to 8 with the max speed
10m/s and a 5-second pause time.

Fig.8.Energy Consumption For Different

Numbers Of Sinks

Fig.8 shows total energy consumption of
CODEXT. It demonstrates that CODEXT is
more energy efficient than other source
protocols. This is because of three reasons.
Firstly, CODEXT uses QINT to efficiently
aggregate query and data along data
dissemination path. This path is established
based on grid structure. Hence CODEXT can
find a nearly straight route between a source
and a sink. Secondly, CODEXT exploits
GAF protocol, so that nodes in each grid
negotiate among themselves to turn off its
radio. Thirdly CODEXT uses the concept of
SHARING TREE. The goal in CODEXT is
to route the data to multiple sinks. Because
standard routing tables show single sink
routes, we need a new data structure to
manage options for routing data through
different combinations of neighbours to
reach different combinations of multiple
sinks. For this, we use the CODEXT Sharing
Tree, a data structure that allows for easy
selection of the next hop(s) for a given set of
sinks. The name CODEXT sharing tree
derives from the tree shape of the data
structure, as well as our goal to allow a
single packet to share a path as it travels to
multiple sinks. This section outlines the key
properties of the CODEXT [5].

Figure 9: The Neighbour Table For A Sample

“Home Node” And Part Of Its Corresponding

CODEXT Sharing Tree

2.2.1 Functionality Of The CODEXT

Sharing Tree

 The CODEXT sharing tree is maintained
at each node to keep all possible routes to all
sinks through all combinations of
neighbours. It is worth noting that each node,
referred to as the home node in its CODEXT
sharing tree, maintains only one sharing tree,
independent of the number of sources, sinks,

CODEX
T

CODE

and neighbours. Here we explore the
CODEXT sharing tree through its interface.
init(): The CODEXT sharing tree is
initialized with data contained in the
Neighbour Table. Here, we illustrate the
CODEXT sharing tree contents through the
small example in Figure 9 where the home
node has 2 neighbours, N1 and N2, and the
system has 3 sinks, A, B, and C. The
intention is to use the CODEXT sharing tree
to select the neighbours to serve as the next
hop(s) for each of the destination sinks. As
the goal is to share the routes as much as
possible, the options of using a single
neighbour to serve multiple sinks are
considered. To illustrate the routing choices
available, we observe that N1 can route
packets toward any of the following
neighbour combinations: {A}, {B}, {C},
{A,B}, {A,C}, {B,C}, {A,B,C}. The same
subsets can be reached through N2. To select
the next hops for all sinks, we must choose
sets of these neighbour combinations, such
that their union includes all desired sinks
exactly once. For example, to route a packet
to all three sinks, we could select {A,B}N1
and {C}N2, where the subscript indicates the
neighbour to which the combination belongs.
Alternately, {A,B,C}N1 is sufficient. The set
of all possible routes for all three sinks is the
brute force combination of all neighbour
combinations. To structure these choices, a
tree is constructed where each node is a
neighbour combination. In this tree, a path
from any leaf to the root represents a routing
option to reach all of the sinks. For example,
in Figure 9, the path from the first leaf to the
home node (the tree’s root) corresponds to
the first selection above. The final
initialization step annotates each node of the
CODEXT sharing tree with it fitness value,
update Fitness(route, f). As previously
observed, fitness values are initial estimates
which are updated as the system receives
new fitness values through the feedback
mechanism of the CODEXT
FRAMEWORK.
 Therefore, whenever a packet is
overheard, its feedback values are used to
update the corresponding neighbour

combinations, the node(s) in the CODEXT
sharing tree. update Tree(): Each time the
Neighbour Table changes due to the
insertion or deletion of a neighbour or sink,
the CODEXT sharing tree must be updated.
Since the fitness values are calculated only at
initialization and updated later through
feedback, it is important not to lose them
during an update. Therefore, rather than
rebuild the CODEXT sharing tree from
scratch, an update function that makes only
the required changes is provided.

GetAllRoutes(sinkSet)

 Every packet carries the subset of sinks
that it should be routed to by the receiving
node. The CODEXT sharing tree has the
responsibility to take this subset and
enumerate the possible options for the next
hop(s). These options can be visualized as a
set of partial paths in the CODEXT sharing
tree starting at the home node. Each path
must include PST nodes, which union
includes exactly the destination sinks.
getBestRoute(sinkSet): During the stable
phase of our CODEXT protocol, we rotate
among all available best routes for a
specified sink subset. For convenience, we
place the responsibility for balancing the
selection among multiple options inside the
CODEXT sharing tree, providing a single
function that returns only one route.
Therefore, it reduces significantly energy
consumption. In contrast, DD (Direct
Diffusion) always propagates the new
location of sinks throughout the sensor field
in order for all sensor nodes to get the sink’s
location. In CODE, the new multi-hop path
between the sink and the grid is rebuilt. Also,
data dissemination path of CODE is along
two sides of a right triangle.
 Fig.10 demonstrates the average end-to-
end delay of CODEXT. As shown in this
figure, the delay of CODEXT is shorter than
CODE and slightly longer than DD. In
Fig.10, it shows that the success rate of
CODEXT is always above 90 percent. It
means that CODEXT delivers most of data
successfully to the multiple sinks.

Fig.10 .Delay For Different Numbers Of

Sinks

Fig.11. Success Rate For Different Numbers

Of Sinks
2.2.2 Impact of Sink Mobility

 In order to examine the impact of sink
mobility, CODEXT is measured for different
sink speeds (0 to 30 m/sec). In this
experiment, the network consists of 8 mobile
sinks and 400 sensor nodes.

Fig.13. Delay For Different Sink Speeds

Fig.14. Success Rate For Different Sink

Speeds

 Fig.12 demonstrates total energy
consumed as the sink speed changes. In both
low and high speeds of the sinks, CODEXT
shows the total energy consumed is better
than other protocols, about twice less than
CODE and three times less than DD. The
reason is that, aside from above
explanations, the mobile sink contact with
the coordinator to receive data while it is
moving. Thus, the query only needs to
resend as it moves to another grid. Fig.13
shows the delay of CODEXT which is
comparable with CODE and longer than DD.
In Fig.14, the success rate is also above 90
percent. These results show that CODEXT
handles mobile sinks efficiently.

2.2.3 Impact Of Node Density

 To evaluate the impact of node density on
CODEXT, we vary the number of nodes
from 300 (1 node/cell on average) to 600
nodes (2 nodes/cell). Eight sinks move with
speed 10m/sec as default. Fig.15 shows the
energy consumption at different node
densities. In this figure, CODEXT
demonstrates better energy consumption than

CODEX
T

CODE

CODEX
T

CODE

DD

DD

CODE CODEXT

other protocols. As the number of nodes
increase, the total energy consumption
slightly increases. This is because of turning
off node’s radio most of the time. Therefore,
energy is consumed mostly by the
coordinators. While in CODE and DD, nodes
which don’t participate in communication
still consume energy in sleeping mode.

Fig.15 .Energy Consumption For

Different Node Density

2.2.4 Network Lifetime

 In this experiment, the number of sinks is
8 moving with speed 10 m/sec. The number
of sensor nodes is 400. A node is considered
as a dead node if its energy is not enough to
send or receive a packet. Fig.15 shows that
number of nodes alive of CODEXT is about
60 percent higher than CODE at the time
600sec. This is due to two reasons: The first
is that CODEXT focuses on energy
efficiency. The second is that rotating
coordinators distribute energy consumption
to other nodes, thus nodes will not quickly
deplete its energy like other approaches.
CODEXT concentrates on dissemination
nodes to deliver data, therefore such nodes
will run out of energy quickly. We do
believe that when the node density is higher,
the lifetime of CODEXT will be prolonged
much more than other approaches.

Fig.16. Number Of Node Alive Over

Time

2.3 Conclusion

 Many sensor network protocols have been
developed in recent years. [2], [4], [12]. One
of the earliest work, SPIN [3] addresses
efficient dissemination of an individual
sensor’s observation to all the sensors in the
network. SPIN uses meta-data negotiations
to eliminate the transmission of redundant
data. Directed Diffusion [3] and DRP [7] are
similar in that they both take the data-centric
naming approach to enable in-network data
aggregation. In Directed Diffusion, all nodes
are application-aware. This enables diffusion
to achieve energy saving by selecting
empirically good paths and by caching and
processing data in-network. DRP exploits
application-supplied data descriptions to
control network routing and resource
allocation in such a way as to enhance
energy efficiency and scalability. GRAB
[14] targets at robust data delivery in an
extremely large sensor network made of
highly unreliable nodes. It uses a forwarding
mesh instead of a single path, where the
mesh’s width can be adjusted on the fly for
each data packet. GEAR [14], uses energy
aware neighbour selection to route a packet
towards the target region. It uses Recursive
Geographic Forwarding or Restricted
Flooding algorithm to disseminate the packet
inside the destination regions.
 While such previous work only addresses
the issue of delivering data to stationary
sinks, other work such as CODE [6], SEAD
[2] and SAFE [9], [3] target at efficient data

CODE

CODEXT CODE

dissemination to mobile sinks. CODE
exploits local flooding within a local cell of a
grid which sources build proactively. Each
source disseminates data along the nodes on
the grid line to the sink. However, it does not
optimize the path from the source to the
sinks. When a source communicated with a
sink, the restriction of grid structure may
multiply the length of a straight line path by
2. Also, CODE frequently renews the entire
path to the sinks. It therefore increases
energy consumption and the connection loss
ratio. SAFE uses flooding that is
geographically limited to forward the query
to nodes along the direction of the source.
SAFE uses geographically limited flooding
to find the gate connecting itself to the tree.
Considering the large number of nodes in a
sensor networks, the network-wide flooding
may introduce considerable traffic. Another
data dissemination protocol, SEAD,
considers the distance and the packet traffic
rate among nodes to create near-optimal

dissemination trees. SEAD strikes a balance
between end-to-end delay and power
consumption that favors power savings over
delay minimization. SEAD is therefore only
useful for applications with less strict delay
requirements.
 CODEXT differs from such protocols in
three fundamental ways. First, CODEXT
exploits GAF protocol [13] to reduce energy
consumption and data collision while the
nodes make decision to fall into sleeping
mode. Second, based on grid structure,
CODEXT can control the number of
transmitted hops and disseminates data along
a path shorter than others such as CODE.
Third, the number of re-transmitted queries
is reduced by maintaining an Agent to relay
data to the sink when it moves within a grid.
In addition, CODEXT takes into account of
query and data aggregation [5], [6] to reduce
the amount of data transmitted from multiple
sensor nodes to sinks like other approaches.

References
[1] Fan Ye et al (2002) “Sensor Networks: A Two-Tier Data Dissemination Model For Large-

Scale Wireless Sensor Networks” Proceedings of the Eighth Annual ACM/IEEE

International Conference on Mobile Computing and Networks (MobiCOM 2002),
Atlanta, GA.

[2] Hyung Seok Kim et al (2003) “Dissemination: Minimum-Energy Asynchronous

Dissemination To Mobile Sinks In Wireless Sensor Networks” Proceedings of the first

international conference on Embedded networked sensor systems.
[3] Intanagonwiwat C et al (2003: 2-16) “Directed Diffusion For Wireless Sensor Networking”

 Networking, IEEE/ACM Transactions Vol 11 Issue.1.
[4] Joanna Kulik et al (2002), “Negotiation-Based Protocols For Disseminating Information

In

 Wireless Sensor Networks” ACM Transaction on Vol 8 , Issue 2.
[5] Krishnamachari B, Estrin D, and Wicker S . (2002) “The Impact Of Data Aggregation In

Wireless Sensor Networks”. Proceedings of the 22nd International Conference on

Distributed Computing Systems Workshops.
[6] Maddes S et al (2002) “Supporting Aggregate Queries Over Ad-Hoc Wireless Sensor

 Network”. IEEE Workshop on Mobile Computing Systems and Applcation. .

[7] Nirupama B et al (2000:28-34), “Gps-Less Low Cost Outdoor Localization For Very Small

 Devices”. IEEE Personal Communications Magazine, Vol 7.
[8] Pottie G J and Kaiser W J (2000:51-58). “Embedding The Internet: Wireless Integrated

 Network Sensors”. Communications of the ACM, Vol 43.
[9] Sooyeon Kim et al (2003:228-234); “A Data Dissemination Protocol For Periodic Updates

In

Sensor Networks” Workshops, Proceedings. 23rd International Conference on
Distributed Computing Systems.

[10] Stemm M and Katz R H. (1997) “Measuring And Reducing Energy Consumption Of

 Network Interfaces In Hand-Held Devices”. IEICE Transaction and communication.
[11] Wendi B et al (1995) “An Application-Specific Protocol Architecture For Wireless

 Microsensor Networks” IEEE transactions on wireless communications.

[12] Wensheng Zhang et al (2003:305-314) ”Data Dissemination With Ring-Based Index For

Wireless Sensor Networks” Proceedings. 11th IEEE International Conference on
Wireless Netwoking.

[13] Xu Y et al (2001), “Geography-Informed Energy Conservation For Ad Hoc Routing”.
Proceedings . of the Seventh Annual ACM/IEEE International Conference on Mobile

Computing and Networking (MobiCom 2001), Rome, Italy.
[14] Yan Yu et al ,(2001) “Geographical And Energy Aware Routing: A Recursive Data

Dissemination Protocol For Wireless Sensor Networks”, UCLA Computer Science
Department.

