415 research outputs found

    Energy Aware Multipath Routing Protocol for Cognitive Radio Ad Hoc Networks

    Get PDF
    Cognitive radio networks (CRNs) emerged as a paradigm to solve the problem of limited spectrum availability and the spectrum underutilization in wireless networks by opportunistically exploiting portions of the spectrum temporarily vacated by licensed primary users (PUs). Routing in CRNs is a challenging problem due to the PU activities and mobility. On the other hand, energy aware routing is very important in energy-constraint CRNs. In addition, it is crucial that CR users efficiently exchange data with each other before the appearance of PUs. To design a robust routing scheme for mobile CR ad hoc networks (CRANs), the constraints on residual energy of each CR user, reliability, and the protection of PUs must additionally be taken into account. Moreover, multipath routing has great potential for improving the end-to-end performance of ad hoc networks. Considering all these evidences, in this paper, we propose an energy aware on-demand multipath routing (EOMR) protocol for mobile CRANs to ensure the robustness and to improve the throughput. The proposed routing scheme involves energy efficient multipath route selection and spectrum allocation jointly. The simulation results show that our approach improves the overall performance of the network

    Internet Traffic based Channel Selection in Multi-Radio Multi-Channel Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks(WMNs) are the outstanding technology to facilitate wireless broadband Internet access to users. Routers in WMN have multiple radio interfaces to which multiple orthogonal/partially overlapping channels are assigned to improve the capacity of WMN. This paper is focused on channel selection problem in WMN since proper channel selection to radio interfaces of mesh router increases the performance of WMN. To access the Internet through WMN, the users have to associate with one of the mesh routers. Since most of the Internet Servers are still in wired networks, the major dominant traffic of Internet users is in downlink direction i.e. from the gateway of WMN to user. This paper proposes a new method of channel selection to improve the user performance in downlink direction of Internet traffic. The method is scalable and completely distributed solution to the problem of channel selection in WMN. The simulation results indicate the significant improvement in user performance

    Efficient medium access control protocol for vehicular ad-hoc networks

    Get PDF
    Intelligent transportation systems (ITS) have enjoyed a tremendous growth in the last decade and the advancement in communication technologies has played a big role behind the success of ITS. Inter-vehicle communication (IVC) is a critical requirement for ITS and due to the nature of communication, vehicular ad-hoc network technology (VANET) is the most suitable communication technology for inter-vehicle communications. In Practice, however, VANET poses some extreme challenges including dropping out of connections as the moving vehicle moves out of the coverage range, joining of new nodes moving at high speeds, dynamic change in topology and connectivity, time variability of signal strength, throughput and time delay. One of the most challenging issues facing vehicular networks lies in the design of efficient resource management schemes, due to the mobile nature of nodes, delay constraints for safety applications and interference. The main application of VANET in ITS lies in the exchange of safety messages between nodes. Moreover, as the wireless access in vehicular environment (WAVE) moves closer to reality, management of these networks is of increasing concern for ITS designers and other stakeholder groups. As such, management of resources plays a significant role in VANET and ITS. For resource management in VANET, a medium access control protocol is used, which makes sure that limited resources are distributed efficiently. In this thesis, an efficient Multichannel Cognitive MAC (MCM) is developed, which assesses the quality of channel prior to transmission. MCM employs dynamic channel allocation and negotiation algorithms to achieve a significant improvement in channel utilisation, system reliability, and delay constraints while simultaneously addressing Quality of Service. Moreover, modified access priority parameters and safety message acknowledgments will be used to improve the reliability of safety messages. The proposed protocols are implemented using network simulation tools. Extensive experiments demonstrated a faster and more efficient reception of safety messages compared to existing VANET technologies. Finally, improvements in delay and packet delivery ratios are presented

    Routing Optimization in Vehicular Networks: A New Approach Based on Multiobjective Metrics and Minimum Spanning Tree

    Get PDF
    Recently, distributed mobile wireless computing is becoming a very important communications paradigm, due to its flexibility to adapt to different mobile applications. As many other distributed networks, routing operations assume a crucial importance in system optimization, especially when considering dense urban areas, where interference effects cannot be neglected. In this paper a new routing protocol for VANETs and a new scheme of multichannel management are proposed. In particular, an interference-aware routing scheme, for multiradio vehicular networks, wherein each node is equipped with a multichannel radio interface is investigated. NS-2 has been used to validate the proposed Multiobjective routing protocol (MO-RP) protocol in terms of packet delivery ratio, throughput, end-to-end delay, and overhead

    Energy efficient multi channel packet forwarding mechanism for wireless sensor networks in smart grid applications

    Get PDF
    Multichannel Wireless Sensor Networks (MWSNs) paradigm provides an opportunity for the Power Grid (PG) to be upgraded into an intelligent power grid known as the Smart Grid (SG) for efficiently managing the continuously growing energy demand of the 21st century. However, the nature of the intelligent grid environments is affected by the equipment noise, electromagnetic interference, and multipath effects, which pose significant challenges in existing schemes to find optimal vacant channels for MWSNs-based SG applications. This research proposed three schemes to address these issues. The first scheme was an Energy Efficient Routing (ERM) scheme to select the best-optimized route to increase the network performance between the source and the sink in the MWSNs. Secondly, an Efficient Channel Detection (ECD) scheme to detect vacant channels for the Primary Users (PUs) with improved channel detection probability and low probability of missed detection and false alarms in the MWSNs. Finally, a Dynamic Channel Assignment (DCA) scheme that dealt with channel scarcities by dynamically switching between different channels that provided higher data rate channels with longer idle probability to Secondary Users (SUs) at extremely low interference in the MWSNs. These three schemes were integrated as the Energy Efficient Multichannel Packet Forwarding Mechanism (CARP) for Wireless Sensor Networks in Smart Grid Applications. The extensive simulation studies were carried through an EstiNet software version 9.0. The obtained experimental simulation facts exhibited that the proposed schemes in the CARP mechanism achieved improved network performance in terms of packets delivery ratio (26%), congestion management (15%), throughput (23%), probability of channel detection (21%), reduces packet error rate (22%), end-to-end delay (25%), probability of channel missed-detection (25%), probability of false alarms (23.3%), and energy consumption (17%); as compared to the relevant schemes in both EQSHC and G-RPL mechanisms. To conclude, the proposed mechanism significantly improves the Quality of Service (QoS) data delivery performance for MWSNs in SG

    Distributed optimal congestion control and channel assignment in wireless mesh networks

    Get PDF
    Wireless mesh networks have numerous advantages in terms of connectivity as well as reliability. Traditionally the nodes in wireless mesh networks are equipped with single radio, but the limitations are lower throughput and limited use of the available wireless channel. In order to overcome this, the recent advances in wireless mesh networks are based on multi-channel multi-radio approach. Channel assignment is a technique that selects the best channel for a node or to the entire network just to increase the network capacity. To maximize the throughput and the capacity of the network, multiple channels with multiple radios were introduced in these networks. In the proposed system, algorithms are developed to improve throughput, minimise delay, reduce average energy consumption and increase the residual energy for multi radio multi-channel wireless mesh networks. In literature, the existing channel assignment algorithms fail to consider both interflow and intra flow interferences. The limitations are inaccurate bandwidth estimation, throughput degradation under heavy traffic and unwanted energy consumption during low traffic and increase in delay. In order to improve the performance of the network distributed optimal congestion control and channel assignment algorithm (DOCCA) is proposed. In this algorithm, if congestion is identified, the information is given to previous node. According to the congestion level, the node adjusts itself to minimise congestion
    corecore