5,341 research outputs found

    Connectedness of graphs and its application to connected matroids through covering-based rough sets

    Full text link
    Graph theoretical ideas are highly utilized by computer science fields especially data mining. In this field, a data structure can be designed in the form of tree. Covering is a widely used form of data representation in data mining and covering-based rough sets provide a systematic approach to this type of representation. In this paper, we study the connectedness of graphs through covering-based rough sets and apply it to connected matroids. First, we present an approach to inducing a covering by a graph, and then study the connectedness of the graph from the viewpoint of the covering approximation operators. Second, we construct a graph from a matroid, and find the matroid and the graph have the same connectedness, which makes us to use covering-based rough sets to study connected matroids. In summary, this paper provides a new approach to studying graph theory and matroid theory

    Graphs, permutations and topological groups

    Get PDF
    Various connections between the theory of permutation groups and the theory of topological groups are described. These connections are applied in permutation group theory and in the structure theory of topological groups. The first draft of these notes was written for lectures at the conference Totally disconnected groups, graphs and geometry in Blaubeuren, Germany, 2007.Comment: 39 pages (The statement of Krophollers conjecture (item 4.30) has been corrected

    Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices

    Get PDF
    We study the Steiner Tree problem, in which a set of terminal vertices needs to be connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively studied from the viewpoint of approximation and also parametrization. In particular, on one hand Steiner Tree is known to be APX-hard, and W[2]-hard on the other, if parameterized by the number of non-terminals (Steiner vertices) in the optimum solution. In contrast to this we give an efficient parameterized approximation scheme (EPAS), which circumvents both hardness results. Moreover, our methods imply the existence of a polynomial size approximate kernelization scheme (PSAKS) for the considered parameter. We further study the parameterized approximability of other variants of Steiner Tree, such as Directed Steiner Tree and Steiner Forest. For neither of these an EPAS is likely to exist for the studied parameter: for Steiner Forest an easy observation shows that the problem is APX-hard, even if the input graph contains no Steiner vertices. For Directed Steiner Tree we prove that approximating within any function of the studied parameter is W[1]-hard. Nevertheless, we show that an EPAS exists for Unweighted Directed Steiner Tree, but a PSAKS does not. We also prove that there is an EPAS and a PSAKS for Steiner Forest if in addition to the number of Steiner vertices, the number of connected components of an optimal solution is considered to be a parameter.Comment: 23 pages, 6 figures An extended abstract appeared in proceedings of STACS 201

    When Can Matrix Query Languages Discern Matrices?

    Get PDF
    We investigate when two graphs, represented by their adjacency matrices, can be distinguished by means of sentences formed in MATLANG, a matrix query language which supports a number of elementary linear algebra operators. When undirected graphs are concerned, and hence the adjacency matrices are real and symmetric, precise characterisations are in place when two graphs (i.e., their adjacency matrices) can be distinguished. Turning to directed graphs, one has to deal with asymmetric adjacency matrices. This complicates matters. Indeed, it requires to understand the more general problem of when two arbitrary matrices can be distinguished in MATLANG. We provide characterisations of the distinguishing power of MATLANG on real and complex matrices, and on adjacency matrices of directed graphs in particular. The proof techniques are a combination of insights from the symmetric matrix case and results from linear algebra and linear control theory
    • …
    corecore