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Abstract
We investigate when two graphs, represented by their adjacency matrices, can be distinguished
by means of sentences formed in MATLANG, a matrix query language which supports a number
of elementary linear algebra operators. When undirected graphs are concerned, and hence the
adjacency matrices are real and symmetric, precise characterisations are in place when two graphs
(i.e., their adjacency matrices) can be distinguished. Turning to directed graphs, one has to deal
with asymmetric adjacency matrices. This complicates matters. Indeed, it requires to understand
the more general problem of when two arbitrary matrices can be distinguished in MATLANG. We
provide characterisations of the distinguishing power of MATLANG on real and complex matrices,
and on adjacency matrices of directed graphs in particular. The proof techniques are a combination
of insights from the symmetric matrix case and results from linear algebra and linear control theory.
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1 Introduction

The integration of linear algebra functionalities inside relational database systems is currently
high on the agenda [4, 5, 6, 12, 19, 31, 33, 34, 35, 36, 39, 40]. The need for such an integration
is due to the increased importance of linear algebra for scalable machine learning and data
analytics. From a query language perspective, it is challenging to combine classical relational
data operators with linear algebra operators. The Lara language is one such proposal [29]
and its connections to classical database query languages has been recently explored [3].
Logics extended with linear algebra operators have been considered as well in an attempt to
find logics capturing PTIME and to study the descriptive complexity of linear algebra [15,
16, 17, 18, 22, 26, 27]. An even more basic question is to design a query language for
matrices and linear algebra alone. In recent work, a query language for matrices, MATLANG,
was introduced in which some basic linear operators are supported [8, 7]. The design of
MATLANG is motivated by operations commonly supported by linear algebra packages. It
can be seen as a linear algebraic counterpart of the relational algebra on K-relations [9],
where K is a semiring representing the domain of matrix entries. We here continue the
study of the expressive power of MATLANG. What is known so far is that when MATLANG
is regarded as a query language on graphs, i.e., queries in MATLANG take the adjacency
matrix of a (directed/undirected) graph as input and return an adjacency matrix, then its
expressive power is bounded by aggregate logic with only three non-numerical variables.
Furthermore, when asked whether two undirected graphs G and H are indistinguishable by
means of sentences in MATLANG, denoted by G ≡MATLANG H, then this precisely corresponds
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12:2 When Can Matrix Query Languages Discern Matrices?

to these graphs being C3-equivalent [20]. Here, C3 is the three-variable fragment of first-order
logic with counting. With a sentence in MATLANG one means a query which returns scalars
on input matrices, in analogy with sentences in logic. A more fine-grained analysis of the
impact of each of the operators in MATLANG as a graph query language was provided
in [20]. In particular, if L is a subset of the operators in MATLANG, then ML(L) refers to
the fragment of MATLANG supporting only those operators in L. Precise characterisations
were obtained for when two undirected graphs G and H are indistinguishable by sentences
in ML(L), denoted by G ≡ML(L) H [20]. In particular, a fragment ML(L) was identified
such that G ≡ML(L) H if and only if G ≡C2 H, where C2 is the two-variable fragment of
first-order logic with counting. We remark that G ≡C2 H is known to correspond to G and
H being fractional isomorphic [10, 30, 37, 38], i.e., there exists a doubly stochastic matrix
(non-negative and rows and columns sum up to one) S such that AG · S = S ·AH , where
AG and AH denote adjacency matrices of G and H, respectively. In [20], for each fragment
ML(L) a proper class of matrices was identified such that for undirected graphs G and H,
G ≡ML(L) H if and only if AG ·X = X ·AH for some matrix X in that class. For example,
for the fragment corresponding to C2-equivalence this class consists of all doubly stochastic
matrices. Such characterisations enable to assess the expressive power of the fragment ML(L).
Indeed, graph properties expressible by sentences in ML(L) should be invariant under such
transformations X. All of the above relates to undirected graphs only.

It seems natural to ask what changes when directed graphs (or digraphs, for short) are
considered, and this is the focus of this paper. More precisely, we investigate how the
operators in MATLANG interact with adjacency matrices of directed graphs. Compared to
the undirected graph case, the adjacency matrices are not necessarily symmetric anymore (i.e.
the entry Aij in a matrix A may be different from entry Aji). As a consequence, one cannot
rely on properties of symmetric matrices, the most important being that symmetric matrices
are diagonalisable. Some of the results in [20] relied on this. Furthermore, whereas algebraic
graph theory provides a comprehensive insight in the properties of undirected graphs, which
underly some of the results in [20], this is less so for directed graphs.

To obtain characterisations for digraphs, we are faced with the more general question of
when two general matrices (complex or real) can be discerned by sentences in our fragments
ML(L). We identify two techniques that allow us to answer this question:

A technique from linear algebra for testing when two matrices A and B are related by
means of an invertible matrix X, i.e., such that A ·X = X ·B holds. This technique
only works for fragments containing the trace operator (tr(·)), which takes the sum of
the diagonal entries of a matrix, and complex conjugate transposition (∗), which switches
rows and columns, followed by complex conjugation. We describe this technique in detail
and apply it for fragments ML(L) supporting tr(·) and ∗ in Section 5.
A technique originating from the study of linear systems in control theory which allows
to reduce matrices A and B to their so-called minimal realisations Â and B̂, for which
the existence of an invertible matrix X such that Â ·X = X · B̂ holds is guaranteed. We
show that this allows to link the original matrices A and B as well, and connect it to
indistinguishability by our fragments. Neither trace nor complex conjugate transposition
is needed here. We detail this technique and consider fragments without trace or complex
conjugate transposition in Section 6.

The main observation is that many of the results from [20] graciously generalise to general
matrices and to adjacency matrices of digraphs in particular. This is especially true for
fragments including the trace operator. The differences here are subtle and mostly relate
to the absence of complex conjugate transposition. This is not surprising. After all, this
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is the only operator in MATLANG that has access to the possible asymmetry of matrices.
For trace-less fragments, the generalisations are less straightforward, due to the minimal
realisation approach. We show, however, that the general results reported in this paper
collapse to precisely the same results as for the undirected graph case, when normal matrices
are used (normal matrices A satisfy A∗ ·A = A ·A∗ and they are known to inherit most of the
properties of symmetric matrices). As a pleasant side-effect, we thus recover results reported
in [20] as special cases of the more general approach used in this paper.

2 Background

We denote by R (C) the set of real (complex) numbers. The set of m× n-matrices over the
real (complex) numbers is denoted by Matm×n(R) (Matm×n(C)). Vectors are elements of
Matm×1(R) (or Matm×1(C)), or Mat1×m(R) (or Mat1×m(C)). The entries of an m×n-matrix
A are denoted by Aij , for i ∈ [1,m] and j ∈ [1, n]. The entries of a vector v are denoted by vi,
for i ∈ [1,m]. We often identify Mat1×1(R) with R, and Mat1×1(C) with C and refer to these
as scalars. The following classes of matrices are of interest in this paper: square matrices
(elements in Matn×n(R) or Matn×n(C)), symmetric matrices (such that Aij = Aji for all
i and j), doubly stochastic matrices (Aij ∈ R, Aij ≥ 0,

∑n
j=1Aij = 1 and

∑m
i=1Aij = 1

for all i and j), doubly quasi-stochastic matrices (
∑n

j=1Aij = 1 and
∑m

i=1Aij = 1 for all i
and j), orthogonal matrices (A ∈ Matn×n(R), At ·A = In×n = A ·At, where At denotes the
transpose of A obtained by switching rows and columns of A and In×n is the identity matrix
in Matn×n(R)), unitary matrices (A ∈ Matn×n(C), A∗ ·A = In×n = A ·A∗), and normal
matrices (A∗ ·A = A ·A∗). The matrix Jm×n ∈ Matm×n(R) denotes the matrix consisting
of all ones and Om×n ∈ Matm×n(R) denotes the zero matrix. We use I, J and O for In×n,
Jm×n and Om×n, respectively, when the dimensions are clear from the context. We assume
familiarity with standard concepts of linear algebra and refer to [2, 28] for more background.
A directed graph or digraph G = (V,E) is defined as usual. The order of a digraph is its
number of vertices. An adjacency matrix of a digraph G of order n, denoted by AG, is an
n × n-matrix whose entries (AG)ij are set to 1 if and only if (i, j) ∈ E, all other entries
are set to 0. We regard undirected graphs as digraphs such that (v, w) ∈ E implies that
also (w, v) ∈ E, i.e., their adjacency matrices are symmetric. Strictly speaking, to define an
adjacency matrix one requires an ordering on the vertices in G. In this paper, any ordering
will do and we thus speak about “the” adjacency matrix of a (di)graph.

3 Matrix Query Languages

As described in Brijder et al. [8], matrix query languages can be formalised as compositions
of linear algebra operators. By closing such operators under composition “matrix query
languages” are formed. More specifically, for a set L of linear algebra operators op1, . . . , opk

the corresponding matrix query language is denoted by ML(L) and consists of expressions
formed by the grammar:

e := X | op1
(
e1, . . . , ep1

)
| · · · | opk

(
e1, . . . , epk

)
,

where X denotes a matrix variable which serves to indicate the input to expressions and pi

denotes the number of inputs required by operator opi. We allow a single matrix variable X
in this paper, although some of the results can be generalised to multiple matrix variables.

The semantics of an expression e(X) in ML(L) is defined inductively, relative to an assign-
ment ν of X to a matrix ν(X) ∈ Matn×n(C), for some dimension n. In general, rectangular
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12:4 When Can Matrix Query Languages Discern Matrices?

Table 1 Linear algebra operators (supported in MATLANG [8, 20]) and their semantics. In
the last column, +, × and denote addition, multiplication and complex conjugation of complex
numbers, respectively.

matrix multiplication (op(e1, e2) = e1 · e2)
e1(ν(X)) = A ∈ Matm×n(C)

e1(ν(X)) · e2(ν(X)) = C ∈ Matm×o(C) Cij =
∑n

k=1 Aik ×Bkj
e2(ν(X)) = B ∈ Matn×o(C)
matrix addition (op(e1, e2) = e1 + e2)
ei(ν(X)) = A(i) ∈ Matm×n(C) e1(ν(X)) + e2(ν(X)) = B ∈ Matm×n(C) Bij = A

(1)
ij +A

(2)
ij

scalar multiplication (op(e) = ce, c ∈ C)
e(ν(X)) = A ∈ Matm×n(C) ce(ν(X)) = B ∈ Matm×n(C) Bij = c×Aij

Schur-Hadamard product (op(e1, e2) = e1 � e2)
e1(ν(X)) = A ∈ Matm×m(C)

e1(ν(X))� e2(ν(X)) = C ∈ Matm×m(C) Cij = Aij ×Bij
e2(ν(X)) = B ∈ Matm×m(C)
complex conjugate transposition (op(e) = e∗)
e(ν(X)) = A ∈ Matm×n(C) e(ν(X))∗ = A∗ ∈ Matn×m(C) (A∗)ij = Āji

identity (op(e) = Id(e))
e(ν(X)) = A ∈ Matm×m(C) Id(e(ν(X)) = Im×m ∈ Matm×m(C) Iii = 1, Iij = 0, i 6= j

one-vector (op(e) = 1(e))
e(ν(X)) = A ∈ Matm×n(C) 1(e(ν(X)) = 1 ∈ Matm×1(C) 1i = 1
transpose one-vector (op(e) = 1t(e))
e(ν(X)) = A ∈ Matm×n(C) 1(e(ν(X)) = 1t ∈ Mat1×m(C) 1i = 1
trace (op(e) = tr(e))
e(ν(X)) = A ∈ Matm×m(C) tr(e(ν(X)) = c ∈ C c =

∑m

i=1 Aii

matrices are allowed but we only focus on square matrices in this paper. We denote by e
(
ν(X)

)
the result of evaluating e(X) on ν(X). As expected, opi(e1(X), . . . , epi(X))(ν(X)) :=
opi

(
e1(ν(X)), . . . , epi

(ν(X))
)
for linear algebra operator opi. In Table 1 we list operators

supported in the matrix query language MATLANG [8]. In the table we also show the
semantics of the operators and indicate restrictions on the dimensions such that the operators
are well-defined.

I Remark 1. We use a slightly modified list of operators than used in [8, 20]. For example, we
leave out general function applications and only focus on the Schur-Hadamard product (�).
The reason is that once two matrices are indistinguishably with regards to fragments including
�, then adding more general function applications does not increase the distinguishing
power [20]. We also leave out the diagonalisation operator (diag) which turns a vector into
a diagonal matrix with the input vector on the diagonal. Previous results show that the
real distinguishing power for fragments including diag comes from its ability to simulate
the Schur-Hadamard product on vectors [20]. We therefore omit diag and use the Schur-
Hadamard product on vectors, denoted by �v, instead. We assume that all fragments include
matrix multiplication, addition and scalar multiplication and we do not list these explicitly
in the set L of supported operators. J

4 Problem statement

As mentioned in the introduction we want to understand when two matrices can be distin-
guished by a sentence in fragments ML(L). We define an expression e(X) in ML(L) to be a
sentence if e(ν(X)) returns a scalar in C for any assignment ν of X. We note that the type
system of MATLANG [8] allows to check whether an expression in ML(L) is a sentence.
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I Definition 2. Two matrices A and B in Matn×n(C) are said to be ML(L)-equivalent,
denoted by A ≡ML(L)B, if and only if e(A) = e(B) for all sentences e(X) in ML(L). J

For (di)graphs G and H, we write G ≡ML(L) H if and only if AG ≡ML(L) AH , where AG and
AH denote the adjacency matrices of G and H, respectively.

We aim to characterise when A ≡ML(L) B holds by determining how A and B relate to
each other. A typical characterisation will be similarity-based, stating that A ≡ML(L) B if
and only if A ·X = X ·B for some matrix X with some specific properties, depending on the
fragment ML(L) under consideration. We will see that for some fragments more complicated
relationships than A ·X = X ·B are needed. When digraphs are concerned, we also provide
characterisations in terms of graph properties.

5 Fragments with the trace operation

We start with the equivalence of matrices for the fragments ML(tr, ∗), ML(tr, ∗,1) and
ML(tr, ∗,1,�v), and sub-fragments without ∗ but with 1t(·) instead. We leave out the biggest
fragment ML(tr, ∗,1,�, Id) since an inspection of the proof for that fragment (sketched in [20])
shows that it works for arbitrary matrices. In particular, we have that for (di)graphs G
and H, G ≡ML(tr,∗,1,�,Id) H if and only if G ≡C3 H. For all fragments considered, pairs of
undirected graphs are known that separate them [20]. We provide new separating pairs when
there is a distinction between graphs and digraphs. We will see that this occurs when ∗ is
not supported. We next outline a general proof strategy for characterising equivalence for
fragments with the trace operation and complex conjugate transposition (Section 5.1). This
strategy will then be applied to the various fragments under consideration (Section 5.2).

5.1 Proof strategy
We use Specht’s Theorem (see e.g., [32] or Theorem 2.2.6 in [28]) as the basis for our proof
strategy. It can be stated as follows. Let A = A1, . . . , Ak and B = B1, . . . , Bk be two
sequences of k matrices in Matn×n(C) which are closed under ∗, i.e., each A∗i is in A, and
similarly, each B∗i is in B. Then, A and B are called (simultaneously) unitary similar if
there exists a unitary matrix U such that for all i ∈ [1, k], Ai ·U = U ·Bi. Specht’s Theorem
provides necessary and sufficient conditions for this to hold. More precisely, A and B are
simultaneously unitary similar if and only if tr(w(A1, . . . , Ak)) = tr(w(B1, . . . , Bk)) for all
words w(x1, . . . , xk) over variables x1, . . . , xk. As an example of what w(A1, . . . , Ak) means,
if A = A,A∗ and w(x, y) = xxyx, then w(A,A∗) = A ·A ·A∗ ·A. So, variables in words are
substituted by matrices and concatenation is interpreted as matrix multiplication. The real
analogue of Specht’s Theorem is as follows [32]: Let A and B be two sequences of k matrices in
Matn×n(R) which are closed under transposition. Then, A and B are called (simultaneously)
orthogonal similar if there exists a (real) orthogonal matrix Q such that Ai ·Q = Q ·Bi for
all i ∈ [1, k]. Again, this is equivalent to requiring tr(w(A1, . . . , Ak)) = tr(w(B1, . . . , Bk)) for
all words w(x1, . . . , xk) over variables x1, . . . , xk

1.
We can use Specht’s Theorem to characterise ML(L)-equivalence for fragments with trace

and ∗, as follows. Let A and B be two matrices in Matn×n(C). Let Σ = e1(X), . . . , ek(X)
be a finite sequence of expressions such that (i) each ei(X) is in ML(L); (ii) each ei(X) ∈ Σ

1 For both the complex and real version of Specht’s Theorem there are bounds on the length of words
that one needs to consider, a rough bound being 2n2 [32]. Some recent progress and tighter bounds are
reported in [41]. These quantitative bounds do not play a role in what follows.

ICDT 2020



12:6 When Can Matrix Query Languages Discern Matrices?

evaluates to a matrix, i.e., ei(A) ∈ Matn×n(C) (and hence also ei(B) ∈ Matn×n(C)); and
(iii) when ei(X) ∈ Σ also (ei(X))∗ ∈ Σ, i.e., Σ is closed under ∗.

Given Σ = e1(X), . . . , ek(X) and A and B, we then construct two sequences of matrices
in Matn×n(C): Σ(A) := e1(A), . . . , ek(A) and Σ(B) := e1(B), . . . , ek(B). Clearly, these
sequences are closed under complex conjugation by the definition of Σ. Let w(x1, . . . , xk) be
a word over x1, . . . , xk. For each such word we consider the ML(L)-sentence:

ew(X) := tr
(
w(e1(X), . . . , ek(X))

)
.

Then, A ≡ML(L) B implies that ew(A) = ew(B) for any word w(x1, . . . , xk) and hence, by
Specht’s Theorem, there exists a unitary matrix U such that ei(A) ·U = U · ei(B) for all
i ∈ [1, k]. We will always assume that in Σ, e1(X) := X, such that A ≡ML(L) B implies that
A ·U = U ·B and ei(A) ·U = U · ei(B) for i ∈ [2, k].

The sequences Σ of ML(L)-expressions which we will use ensure that the unitary/ortho-
gonal matrix is restricted such that similarity is preserved by the operators in ML(L). This
allows, by induction on the structure of expressions in ML(L), to show that when Σ(A) and
Σ(B) are simultaneously unitary equivalent, then A ≡ML(L) B. We will not detail these
inductive proofs as they are similar to those underlying the results in [20].

5.2 Results
ML(tr, ∗)-equivalence

For undirected graphs it is known that G ≡ML(tr,∗) H if and only if AG ·Q = Q ·AH for an
orthogonal matrix Q [20]. The proof relies on the Spectral Theorem of symmetric matrices
(see e.g., Theorem 2.5.3 in [28]), which does not apply for general matrices and, in particular,
for adjacency matrices of directed graphs. Instead, we here follow our proof strategy. Let
A and B be matrices in Matn×n(C). To apply Specht’s Theorem, we consider the sequence
Σ = e1(X) := X, e2(X) := X∗. Hence, Σ(A) = A,A∗ and Σ(B) = B,B∗ and A ≡ML(tr,∗) B

implies that A·U = U ·B and A∗ ·U = U ·B∗ for a unitary matrix U . This shows one direction
of the following proposition. The other direction is shown by induction on the structure of
expressions and uses that tr(·) is invariant under similarity, i.e., tr(A) = tr(P−1 ·A ·P ) for
any matrix A and invertible matrix P in Matn×n(C).

I Proposition 3. Let A and B be matrices in Matn×n(C). Then A ≡ML(tr,∗) B if and only
if A and B are unitary similar. When A and B are real matrices, then orthogonal similarity
can be used. J

Proposition 3 holds in particular for adjacency matrices representing digraphs, hereby
generalising the characterisation for undirected graphs. We can say a bit more by rephrasing
the trace conditions underlying Specht’s Theorem in terms of so-called semi-walks in digraphs.

Let π be a string in {←,→}∗ of length k. A semi-walk ρ of type π in a digraph G = (V,E)
is a sequence of k + 1 vertices v1, v2, . . . , vk+1 in V such that for each pair of consecutive
vertices vi and vi+1, (vi, vi+1) is an edge in G if πi =“→” or (vi+1, vi) is an edge if πi =“←”.
A closed semi-walk of type π is a semi-walk of that type which starts and ends in the
same vertex. Let w(x, y) be a word of length k over variables x and y. We define the
type of w(x, y) as the string π(w) ∈ {←,→}k such that π(w)i =“→” if the ith symbol in
w(x, y) is x, and π(w)i =“←” if the ith symbol of w(x, y) is y. It is now readily verified
that tr(w(AG, A

t
G)) counts the number of closed semi-walks of type π(w) in the digraph G

represented by adjacency matrix AG.
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I Corollary 4. Let G and H be digraphs of the same order. Then, G ≡ML(tr,∗) H if and only
if G and H have the same number of closed semi-walks of any type. J

We remark that when G and H are undirected graphs, semi-walks are simply walks and
the type is just the length of the walk. In this case, Corollary 4 implies that G ≡ML(tr,∗) H

if and only if G and H have the same number of closed walks of any length, as reported
in [20]. For undirected graphs, it was furthermore shown that G ≡ML(tr,∗) H if and only if
G ≡ML(tr) H [20]. After all, complex conjugate transposition on symmetric real matrices
does not have any effect. By contrast, we will see that the presence of ∗ has an impact on
digraphs. First, however, we look into ML(tr)-equivalence.

I Proposition 5. Let A and B be in Matn×n(C). Then, A ≡ML(tr) B if and only if A and B
have the same characteristic polynomial.

Proof. It is well-known that tr(Ak) = tr(Bk), for any k, is equivalent to A and B having the
same characteristic polynomial (and thus eigenvalues) (see e.g., Problem 2.4.P10 in [28]),
and having tr(Ak) = tr(Bk), for any k, is clearly equivalent to A ≡ML(tr) B. J

We can complement this proposition for digraphs G and H by: G ≡ML(tr) H if and only
if G and H have the same number of closed semi-walks of type “→k”, for any k.

Proposition 5 immediately implies that a simple similarity-based characterisation of
ML(tr)-equivalence does not exist. Indeed, suppose that A ≡ML(tr) B would be equivalent
to A ·X = X ·B for some unitary/orthogonal matrix X, then A and B must have the
same Jordan normal form (up to reordering of the Jordan blocks). Matrices with the same
characteristic polynomial, however, do not necessarily have the same Jordan normal form.

I Example 6. Consider the digraphs G1 ( ) and H1 ( ) with adjacency matrices
AG1 =

[
0 1 0
0 0 0
0 0 0

]
and AH1 =

[
0 1 0
0 0 1
0 0 0

]
, respectively. These matrices are in Jordan normal form,

but different. So AG1 and AH1 cannot be similar using an invertible matrix. From the
diagonals, however, we can see that both have z3 (eigenvalue 0 with multiplicity 3) as
characteristic polynomial. Hence, AG1 ≡ML(tr) AH1 by Proposition 5 (alternatively, one
simply observes that both digraphs have no closed semi-walks of type “→k” for any k.). J

We next show that ML(tr)- and ML(∗, tr)-equivalence of normal matrices relate just like
for undirected graphs. This is not surprising. Normal matrices are known to inherit many
properties of symmetric matrices (see e.g., Section 2.5 in [28]).

I Proposition 7. Let A and B be normal matrices in Matn×n(C). Then, A ≡ML(tr,∗) B if
and only if A ≡ML(tr) B.

Proof. (sketch) We note that A ≡ML(tr,∗) B trivially implies A ≡ML(tr) B. The reverse
implication holds because if A and B are normal matrices, then A∗ = p(A) and B∗ = p(B)
for some polynomial p(z) (see e.g., Problem 2.5.P26 in [28]). Intuitively, this implies that we
can eliminate occurrences of A∗ in tr(w(A,A∗)), hereby reducing such expressions to linear
combinations of tr(Ak) for some k’s, and ML(tr)-equivalence guarantees that tr(Ak) = tr(Bk)
for all k. Specht’s Theorem and Proposition 3 then imply that A ≡ML(tr,∗) B. J

The digraphs G1 ( ) and H1 ( ), with non-normal adjacency matrices, show that
Proposition 7 does not hold in general. Indeed, note that G1 has one closed semi-walk of
type “→←”, whereas H1 has two such walks. Hence, G1 6≡ML(tr,∗) H1 by Corollary 4.

ICDT 2020
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ML(tr, ∗, 1)-equivalence

Whereas the trace operator enables counting closed semi-walks in (di)graphs, the inclusion of
the 1(·)-operator enables to count the number of not necessarily closed (semi-)walks. Indeed,
one can use sentences (1(X))∗ ·w(X,X∗) · 1(X) in ML(tr, ∗,1) to count the number of semi-
walks of the type of the word w(x, y) when evaluated on an adjacency matrix of a digraph.
It was shown that for undirected graphs, G ≡ML(tr,∗,1) H if and only if AG ·Q = Q ·AH

for an orthogonal doubly quasi-stochastic matrix Q if and only if G and H have the same
number of closed and not necessarily closed walks of any length [20]. The proof relied on the
Spectral Theorem for symmetric matrices. Our proof strategy, however, allows to generalise
this result to digraphs and general matrices.

Let A and B be matrices in Matn×n(C). To apply Specht’s Theorem we use the sequence
Σ = e1(X) := X, e2(X) := X∗, e3(X) := 1(X) · (1(X))∗. Hence, Σ(A) = A,A∗, J and
Σ(B) = B,B∗, J and A ≡ML(tr,∗,1) B implies A ·U = U ·B (and thus also A∗ ·U = U ·B∗)
and J ·U = U · J for a unitary matrix U . We note that J ·U = U · J implies that U can be
chosen such that A ·U = U ·B and U · 1 = 1 hold (see Lemma 4 in [42]). In other words, U
can be chosen to be unitary and doubly quasi-stochastic. It is easily verified, along the same
lines as in [20], by induction on the structure of expressions, that the existence of such a
unitary matrix also implies A ≡ML(tr,∗,1) B. We thus have shown:

I Proposition 8. Let A and B be matrices in Matn×n(C). Then A ≡ML(tr,∗,1) B if and only
if A ·U = U ·B for a unitary doubly quasi-stochastic matrix U . When A and B are real
matrices, we can use an orthogonal doubly quasi-stochastic matrix instead. J

Specialised to adjacency matrices of digraphs G and H, we can further complement this by:

I Corollary 9. Let G and H be digraphs of the same order. Then, G ≡ML(tr,∗,1) H if and
only if G and H have the same number of semi-walks of any type and the same number of
closed semi-walks of any type.

Proof. (sketch) The only if direction requires some explanation. Suppose that AG and AH

have the same number of semi-walks of any type and the same number of closed semi-walks
of any type. We argue that tr(w(AG, A

∗
G, J)) = tr(w(AH , A

∗
H , J)) for any word w(x, y, z).

Specht’s Theorem together with Proposition 8 then imply that G ≡ML(tr,∗,1) H. It is easily
verified that tr(w(AG, A

∗
G, J)) is either of the form tr(w′(AG, A

∗
G)) (when J does not occur)

or can be reduced to an expression of the form c
∏

i∈[1,k] tr(wi(AG, A
∗
G) ·J) for some c ∈ N.

We note that tr(wi(AG, A
∗
G) ·J) = 1t ·wi(AG, A

∗
G) · 1. Hence, in both cases tr(w(AG, A

∗
G, J))

is fully determined by the number of semi-walks and closed semi-walks in G. Similarly, for
tr(w(AH , A

∗
H , J)). J

For undirected graphs, G ≡ML(tr,∗,1) H was also shown to be equivalent toG ≡ML(tr,1,1t) H [20]
and to AG and AH , and their complements ĀG and ĀH , having the same characteristic
polynomial [43]. Here, the complement Ā of a matrix A is defined as J −A− I, similarly for
B̄ of B. The latter equivalence extends more generally:

I Proposition 10. Let A and B be matrices in Matn×n(C). Then, A ≡ML(tr,1,1t) B if and
only if A and B, and Ā and B̄ have the same characteristic polynomial.

Proof. This is an immediate consequence of the following identity (see e.g., [21]) linking
characteristic polynomials of A and Ā to the walk generating function: pA(z)

pĀ(z) = 1−
∑

k≥0(−z−
1)ktr(Ak · J), where pA(z) and pĀ(z) denote the characteristic polynomials of A and Ā,
respectively. Indeed, when A ≡ML(tr,1) B holds, pA(z) = pB(z) (by Proposition 5) and also
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tr(Ak · J) = tr(Bk · J). Hence, the identity above tells that pĀ(z) = pB̄(z). Conversely, if
pA(z) = pB(z) and pĀ(z) = pB̄(z) we must have that tr(Ak · J) = tr(Bk · J). It is readily
verified, as in the proof of Corollary 9, that this implies that A ≡ML(tr,1,1t) B holds. J

Clearly, for digraphs, ML(tr,1,1t)-equivalence coincides with the digraphs having the same
number of semi-walks and closed semi-walks of type “→k”, for any k. However, no simple
similarity-based characterisation of ML(tr,1,1t)-equivalence for digraphs exists.

I Example 11. We use again the Jordan normal form argument as in Example 6. Indeed,

the digraphs G2 ( ) and H2 ( ) are easily seen to be ML(tr,1,1t)-equivalent (they have

no closed semi-walks of type “→k”, have both 7 semi-walks of length 0, 6 semi-walks of
type “→” and no semi-walks of type “→k”, for k > 1). Nevertheless, one can verify that
their Jordan normal forms are different. So no invertible matrix X can exist such that
AG2 ·X = X ·AH2 . J

We can say a bit more by allowing more complicated ways of linking A and B. We develop
this further in Section 6 when focusing on ML(1,1t)-equivalence. So, stay tuned.

A similar proof as for Proposition 7 shows that normal matrices simplify matters:

I Corollary 12. Let A and B be normal matrices in Matn×n(C). Then, A ≡ML(tr,∗,1) B if
and only if A ≡ML(tr,1,1t) B. J

We thus recover and generalise the characterisation for ML(tr,1,1t)-equivalence of undirected
graphs [20] to normal matrices. We note that graphs G2 and H2 show that Corollary 12
does not extend to non-normal matrices. Indeed, G2 ≡ML(tr,1,1t) H2 but G2 6≡ML(tr,∗,1) H2.
For example, G2 has 8 semi-walks of type “←→←→” while H2 has 48 semi-walks of that
type. So, Corollary 9 implies that G2 6≡ML(tr,∗,1) H2.

ML(tr, ∗, 1, �v)-equivalence

We next include pointwise vector multiplication (�v), i.e., the Schur-Hadamard product
on vectors. The proof of the characterisation of ML(tr, ∗,1,�v)-equivalence obtained for
undirected graphs in [20] generalises easily to digraphs and general matrices. The key insight
for undirected graphs was that pointwise multiplication of vectors allows to compute so-called
equitable partitions of undirected graphs. On graphs, equitable partitions correspond to
the partition obtained by vertex colour refinement [23]. For digraphs and general matrices,
equitable partitions and colour refinement have been considered as well (see e.g., [1, 25, 42, 24]).
We only need to use this general notion of equitable partition, and the proofs in [20] carry
over almost verbatim.

Let A ∈ Matn×n(C). A partition [n] =
⊎

i∈[1,q] Vi is row-equitable for A if there are
complex numbers rij such that for all k ∈ Vi,

∑
`∈Vj

Ak` = rij . That is, the sum of row
entries of A for columns in Vj is constant (rij) and independent of the chosen row in Vi.
Similarly, a partition [n] =

⊎
i∈[1,q] Vi is column-equitable for A if there are complex numbers

cij such that for all k ∈ Vi,
∑

`∈Vj
A`k = cij . A partition [n] =

⊎
i∈[1,q] Vi is equitable for A

if it is both row- and column-equitable2 for A. We remark that any matrix has an equitable
partition given by the trivial one consisting of singleton elements.

2 For symmetric matrices, such as adjacency matrices of undirected graphs, the notions of row- and
column-equitability coincide.

ICDT 2020



12:10 When Can Matrix Query Languages Discern Matrices?

In the following we represent partitions by indicator vectors. More specifically, if [n] =⊎
i∈[1,q] Vi is a partition, then we represent it by binary vectors 1V1 , . . . ,1Vq

such that 1Vi

holds a 1 at row j if j ∈ Vi and holds a 0 otherwise.
A matrix may have multiple equitable partitions, but only a unique coarsest one. That

is, there is unique equitable partition of which any other equitable partition is a refinement.
We can relate two matrices based on equitable partitions. More precisely, matrices A and
B in Matn×n(C) are said to have a common equitable partition if there exists partitions
[n] =

⊎
i∈[1,q] Vi and [n] =

⊎
i∈[1,q]Wj which are equitable for A and B, respectively, and

if rij and r′ij denote the complex numbers for row-equitability of the two partitions, and
cij and c′ij the complex numbers for column-equitability, then rij = r′ij and cij = c′ij for
i, j ∈ [1, q]. We can compute equitable partitions in ML(∗,1,�v) (the trace operator is not
needed) and we can test for the existence of a common equitable partition:
I Proposition 13 ([20]). Let A and B be matrices in Matn×n(C). Let [n] =

⊎
i∈[1,q] Vi be

the coarsest equitable partition for A. There exists expressions equitj(X) ∈ ML(1, ∗,�v),
depending on A, such that 1Vj

= equitj(A) for j ∈ [1, q]. Furthermore, A ≡ML(∗,1,�v) B

implies that A and B have a common equitable partition witnessed by the partitions represented
by equiti(A) and equiti(B), for i ∈ [1, q].
Proof. Compared to the proof for undirected graphs [20] we now need to use ∗ to ensure
both row- and column-equitability. The presence of �v allows one to simulate the colour
refinement process on matrices (see e.g., [24, 42]) by: extracting the indicator vectors from
matrices, and by intersecting indicator vectors in order to create a refined partition. J

A similarity-based characterisation of ML(tr, ∗,1,�v)-equivalence is obtained using
Specht’s Theorem. We consider the sequence Σ = e1(X) := X, e2(X) := X∗, equiti(X) ·
equit∗i (X), i ∈ [1, q], such that equiti(A) computes indicator vectors of an equitable parti-
tion [n] =

⊎
i∈[1,q] Vi of A. Hence, Σ(A) = A,A∗, E1 = 1V1 · 1t

V1
, . . . , Eq = 1Vq

· 1t
Vq

and
Σ(B) = B,B∗, F1 = 1W1 · 1t

W1
, . . . , Fq = 1Wq · 1t

Wq
, where [n] =

⊎
i∈[1,q]Wi is an equitable

partition of B. We have that A ≡ML(tr,∗,1,�v) B implies the existence of a unitary matrix
U such that A ·U = U ·B and Ei ·U = U · Fi for i ∈ [1, q]. The latter conditions imply
that U can be chosen such that 1Vi

= U · 1Wi
for i ∈ [1, q]. That the existence of such a

similarity between A and B implies that A ≡ML(tr,∗,1,�v) B holds, is not straightforward
but the argument given in [20] can be generalised to general matrices. We only need a
generalisation of Lemma 2.1 in [11] which states, translated to our setting, that all vectors
e(A) which can be computed by means of expressions e(X) in ML(tr, ∗,1,�v) can be written
as a linear combination of indicator vectors 1Vi

, for i ∈ [1, q]. Similarly for e(B). Since
1Vi = U ·1Wi , e(A) = U · e(B) and this can be used to show, by induction on the structure
of expressions, that A ≡ML(tr,∗,1,�v) B.
I Proposition 14. Let A and B be matrices in Matn×n(C). Then, A ≡ML(tr,∗,1,�v) B if and
only if A ·U = U ·B and 1Vi = U · 1Wi for i ∈ [1, q]. For real matrices A and B one can use
orthogonal matrices Q such that 1Vi

= Q ·1Wi
, for i ∈ [1, q] J

In the proposition, 1Vi
and 1Wi

, for i ∈ [1, q], witness that A and B have a common
equitable partition. This exactly matches the characterisation given for undirected graphs
in [20] but beware that row- and column-equitable partitions are used in this general setting.
We observe that 1Vi

= U · 1Wi
implies that U is doubly quasi-stochastic (simply note

that 1 =
∑

i∈[1,q] 1Vi
=
∑

i∈[1,q] 1Wi
). For undirected graphs G and H, we also have that

G ≡ML(tr,∗,1,�v) H if and only if G ≡ML(tr,1,1t,�v) H. This equivalence does not hold in
general, however. We remark that ML(tr,1,1t,�v)- and ML(tr, ∗,1,�v)-equivalence do
coincide when normal matrices are considered, just as for undirected graphs. It suffices again
to observe that ∗ can be eliminated for normal matrices (see e.g., the proof of Proposition 7).
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6 Fragments without the trace operator and/or complex conjugate
transposition

It should be clear by now that the absence of complex conjugate transposition has an impact
when digraphs and general matrices are concerned. Moreover, for fragments that do not
support tr(·), we cannot use the proof strategy based on Specht’s Theorem. We follow a
different route in this section, inspired by the theory of linear systems in control theory (see
e.g., [13]) and the notion of minimal realisation in particular. The fragments we consider
are: ML(1,1t), ML(∗,1), and ML(∗,1,�v).

6.1 Minimal realisations
In control theory, one analyses linear systems described by a triple 〈A,C,D〉 with A ∈
Matn×n(C), C ∈ Matm×n(C), and D ∈ Matn×o(C), and one wants to understand the
“dynamics” C ·Ak ·D, for k ≥ 0, of the system. To this aim, one typically finds a minimal
realisation of 〈A,C,D〉. That is, a system 〈Â, Ĉ, D̂〉 with Â ∈ Matq×q(C), Ĉ ∈ Matm×q(C),
and D̂ ∈ Matq×o(C) such that (i) C ·Ak ·D = Ĉ · Âk · D̂, for all k ≥ 0, i.e., it has the same
dynamics; and (ii) the dimension q, also called the order of the system, is minimal. The
importance of minimal realisations is that they are unique, up to unitary similarity. That
is, for any two minimal realisations 〈Â, Ĉ, D̂〉 and 〈Â′, Ĉ ′, D̂′〉 of 〈A,C,D〉, there exists a
unitary matrix Z ∈ Matq×q(C) such that Â = Z∗ · Â′ ·Z, Ĉ ·Z = Ĉ ′ and D̂ = Z∗ · D̂′. When
real matrices are concerned, they are unique up to orthogonal similarity. If one has given two
systems 〈A,C,D〉 and 〈B,C ′, D′〉 that have the same dynamics, i.e., C ·Ak ·D = C ′ ·Bk ·D′,
for k ≥ 0, then this implies that 〈A,C,D〉 and 〈B,C ′, D′〉 have the same minimal realisation
(up to similarity). We use this observation to link the matrices A and B. To see how this
relates to ML(L)-equivalence, consider the following examples.

I Example 15. Let A and B in Matn×n(C). Then, A ≡ML(1,1t) B implies 1t·Ak ·1 = 1t·Bk ·1
for all k ≥ 0. After all, we can consider sentences ek(X) := 1t(X) ·Xk · 1(X) in ML(1,1t)
and A ≡ML(1,1t) B implies that ek(A) = ek(B). So, when we consider the systems 〈A,1t,1〉
and 〈B, 1t,1〉, A ≡ML(1,1t) B implies that these have the same dynamics and hence, similar
minimal realisations. J

We note that for ML(1,1t)-equivalence we only need to consider systems of the form 〈A,C,D〉
with C = D∗. From now on, we denote such a system by 〈A,D〉 instead of 〈A,D∗, D〉.

I Example 16. Let A and B in Matn×n(C). Then, A ≡ML(∗,1) B implies 1t ·w(A,A∗) · 1 =
1t ·w(B,B∗) · 1 for all words w(x, y). We are here thus interested in the same systems as
before, i.e., 〈A,1〉 and 〈B, 1〉, but have in mind a more general notion of “dynamics” in which
arbitrary words w(x, y) are considered. J

One can show, following closely the proof for standard minimal realisations (see e.g., Chapter
25 in [14]), that results from control theory extend to this more general setting, provided that
we define a generalised minimal realisation of 〈A,D〉 as a system 〈Â, D̂〉 of minimal order
(i.e., the dimension of Â is minimal) and such that D∗ ·w(A,A∗) ·D = (D̂)∗ ·w(Â, (Â)∗) · D̂
for every word w(x, y). One can show that:

I Proposition 17. Let A ∈ Matn×n(C) and D ∈ Matn×o(C). Then, 〈A,D〉 has a unique
generalised minimal realisation, up to unitary similarity. Furthermore, orthogonal similarity
can be used when A and D are real matrices. J
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Standard minimal realisations can be computed in several ways. We here use the
Kalman decomposition method [13]. Let 〈A,D〉 and 〈B,D′〉 be two systems such that
D∗ ·Ak ·D = (D′)∗ ·Bk ·D′, for any k. The Kalman decomposition procedure can be used to
obtain two special unitary bases U and V in Matn×n(C), leveraging that minimal realisations
are similar, such that:

U∗·A·U =

Fp×p Fp×q Fp×r

Oq×p Â Fq×r

Or×p Or×q Fr×r

 , V ∗·B·V =

Fp′×p′ Fp′×q Fp′×r′

Oq×p′ Â Fq×r′

Or′×p′ Or′×q Fr′×r′

 ,
U∗·D =

Fp×o

D̂

Or×o

 , and V ∗·D′ =

Fp′×o

D̂

Or′×o

 ,
where each occurrence of F represents a different matrix of dimensions specified in the
subscripts. We can see that a minimal realisation 〈Â, D̂〉 (of order q) is embedded in
these matrices, albeit in different positions. The latter can be phrased by means of matrix
transformations. More specifically, one can show that

PA ·A ·S = S ·B ·PB , (1)

where PA and PB are matrices representing orthogonal projection operators on the controllable
and observable spaces of 〈A,D〉 and 〈B,D′〉, respectively, and S is a matrix such that

D = S ·D′ and D∗ ·S = (D′)∗. (2)

Intuitively, the controllable and observable space of a system 〈A,D〉, denoted by CO〈A,D〉,
consists of all vectors obtained by a linear combination of Ai ·D, for varying i, and which
are not in the null space of vectors obtained by a linear combination of D∗ ·Aj , for varying j.
When interested in the dynamics D∗ ·Ak ·D only those vectors matter and, in fact, Â is the
matrix representation of A restricted to this space3. So, equation (1) is just stating that A
and B are related (by matrix S) after appropriate projections are in place. Using properties
of projection operators PA and PB , and (2), the following can be verified:

I Theorem 18. Let A and B be in Matn×n(C) and D and D′ in Matn×o(C). Then, D∗ ·
Ak ·D = (D′)∗ ·Bk ·D′, for any k, if and only if there exists a matrix S such that D = S ·D′
and D∗ ·S = (D′)∗ and such that PA ·A ·S = S ·B ·PB for projection operators PA and PB

on CO〈A,D〉 ad CO〈B,D′〉, respectively. J

We can further show that this result also holds for our general notion of dynamics, using a
generalised notion of controllable and unobservable space based on words rather than powers
of matrices.

I Proposition 19. Let A and B be in Matn×n(C) and D and D′ in Matn×o(C). Then,
D∗ ·w(A,A∗) ·D = (D′)∗ ·w(B,B∗) ·D′ for all words w(x, y) if and only if there exists a
matrix S such that D = S ·D′ and D∗ · S = (D′)∗ and such that PA ·A · S = S ·B · PB

and PA ·A∗ ·S = S ·B∗ ·PB for projection operators PA and PB on C̃O〈A,D〉 and C̃O〈B,D′〉,
respectively. J

Here, C̃O indicates that we work with the generalised CO space. In all this, real matrices can
be used when A, B, D and D′ are real. These results directly translate into characterisations
of ML(L)-equivalence for the fragments considered in this section.

3 We refer to any textbook on linear systems, such as [13], for more background.
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6.2 Results
ML(1, 1t)-equivalence

For undirected graphs, G ≡ML(1,1t) H if and only if AG · S = S ·AH for a doubly quasi-
stochastic matrix S if and only if G and H have the same number of walks of any length [20].
For general matrices, we can say the following. Let A and B be matrices in Matn×n(C).
From Example 15, we know that A ≡ML(1,1t) B implies that the systems 〈A,1〉 and 〈B, 1〉
have the same dynamics. A direct application of Theorem 18 results in:

I Corollary 20. Let A and B be matrices in Matn×n(C). Then, A ≡ML(1,1t) B if and only
if there is a doubly quasi-stochastic matrix S such that PA ·A ·S = S ·B ·PB for projection
operators PA and PB. J

So, the only difference with the undirected graph case is the use of the projection operators.
This cannot be avoided, as shown in the example below. We also observe that for digraphs,
G ≡ML(1,1t) H is clearly equivalent to G and H having the same number of semi-walks of
type “→k” for any k, similar as in the undirected graph case.

I Example 21. Consider directed graphs G4 ( ) and H4 ( ). Both have 4 semi-walks
of type “→k” for any k, i.e., 1t ·Ak

G4
·1 = 4 = 1t ·Ak

H4
· 1, for all k ≥ 0. It is an easy exercise

to show that there is no doubly quasi-stochastic matrix S such that AG4 ·S = S ·AH4 . We
thus have to rely on Corollary 20. It can be verified that the minimal realisations of 〈AG4 ,1〉
and 〈AH4 ,1〉 consist of 〈Â = [1], 1̂ = [2]〉. So, indeed, 4 = [2]t · [1]k · [2] for any k, as desired.
Furthermore,
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.

That the same matrices are being used on both sides is just specific for this example. J

Corollary 20 begs the question why no projection operators are required when undirected
graphs are concerned. The reason is that for normal matrices, the transformation matrices
involved in the proof of Theorem 18 can be chosen to consist of eigenvectors of A and B
(recall that normal matrices have n independent eigenvectors). This allows to simplify the
expression PA ·A ·S = S ·B ·PB into A ·S = S ·B.

I Proposition 22. Let A and B be normal matrices in Matn×n(C). Then, A ≡ML(∗,1) B if
and only if A ≡ML(1,1t) B if and only if there exists a doubly quasi-stochastic matrix S such
that A ·S = S ·B. For real matrices, S can be assumed to be real. J

This is again analogous to the undirected graph case. We anticipated in Section 5 that
will say something more about ML(tr,1,1t)-equivalence. One can verify, by an analysis of
expressions, that A ≡ML(tr,1,1t) B if and only if A ≡ML(tr) B and A ≡ML(1,1t) B. Hence,
Proposition 10 and Corollary 20 result in:

I Corollary 23. Let A and B be matrices in Matn×n(C). Then, A ≡ML(tr,1,1t) B if and only
if A and B have the same characteristic polynomial and PA ·A ·S = S ·B ·PB for a doubly
quasi-stochastic matrix S. J
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In other words, compared to Proposition 10, we can replace the condition related to the
complements Ā and B̄ by the revised similarity condition.

I Example 24. The digraphs G2 ( ) and H2 ( ) from Example 11 are ML(tr,1,1t)-

equivalent. They have the same characteristic polynomial (pAG2
(z) = −z7 = pAH2

(z))
and one can verify that the minimal realisation of 〈AG2 ,1〉 and 〈AH2 ,1〉 is given by Â =[

6
7 − 1

7 (3
√

3)
4
√

3
7 − 6

7

]
and 1̂ =

[√
7

0

]
. We see that 1̂t ·1̂ = 7, 1̂t · Â·1̂ = 6 and for k ≥ 2, 1̂t · Âk ·1̂ = 0

because Â2 = O. This is in accordance with Example 11. We have seen that there is no
orthogonal similarity between AG2 and AH2 . One can also verify that no doubly quasi-
stochastic matrix links these matrices. We thus have to rely on Corollary 20 and one can
show that PAG2

·AG2 ·S = S ·AH2 ·PAH2
with

PAG2
= PAH2

=


1
4 0 1

4 0 1
4 0 1

4
0 1

3 0 1
3 0 1

3 0
1
4 0 1

4 0 1
4 0 1

4
0 1

3 0 1
3 0 1

3 0
1
4 0 1

4 0 1
4 0 1

4
0 1

3 0 1
3 0 1

3 0
1
4 0 1

4 0 1
4 0 1

4

 ,

and S the identity matrix. Again, that PAG2
= PAH2

is just a coincidence. J

ML(∗, 1)-equivalence

Consider two matrices A and B in Matn×n(C) and consider the systems 〈A,1〉 and 〈B, 1〉.
As we have seen in Example 16, A ≡ML(∗,1) B implies that 1t ·w(A,A∗) · 1 = 1t ·w(B,B∗) ·1
for every word w(x, y) and hence Proposition 19 applies, resulting in:

I Proposition 25. Let A and B be in Matn×n(C). Then, A ≡ML(∗,1) B if and only if
PA ·A ·S = S ·B ·PB and PA ·A∗ ·S = S ·B∗ ·PB for a doubly quasi-stochastic matrix S and
for projection operators PA and PB. J

We remark that PA and PB are now projection operators on the generalised controllable
spaces of 〈A,1〉 and 〈B, 1〉, respectively.

I Example 26. We do not have a digraph example at hand such that G ≡ML(∗,1) H holds
and which shows the necessity of the projection operators in Proposition 25. All efforts
resulted in AG ·S = S ·AH and At

G ·S = S ·At
H for a doubly quasi-stochastic matrix S, i.e.,

without needing the projection operators. Finding such a digraph example or showing that
the projection operators can be eliminated is left as an open problem. J

ML(∗, 1, �v)-equivalence

For undirected graphs, ML(∗,1,�v)-equivalence coincides with the graphs being fractionally
isomorphic, with having a common equitable partition, and with being C2-equivalent [37, 38,
10, 30, 20]. We recall that a fractional isomorphism between graphs G and H is a doubly
stochastic matrix S such AG ·S = S ·AH .

When considering ML(∗,1,�v)-equivalence of arbitrary matrices, we simply need to
use the corresponding notions of equitable partitions as in Section 5 for ML(tr, ∗,1,�v)-
equivalence. We can again use Proposition 19 to obtain a characterisation.
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I Example 27. Let A, B in Matn×n(C) and let 1Vi and 1Wi , for i ∈ [1, q], represent common
equitable partitions of A and B, respectively. We can obtain these indicator vectors by
expressions equiti(X) ∈ ML(∗,1,�v), for i ∈ [1, q] (Proposition 13). Hence, A ≡ML(∗,1,�v) B

implies that 1t
Vi
· w(A,A∗) · 1Vj = 1t

Wi
· w(B,B∗) · 1Wj for every word w(x, y) and any

i, j ∈ [1, q]. By letting D = [1V1 . . . 1Vp
] and D′ = [1W1 . . . 1Wp

], A ≡ML(∗,1,�v) B implies
that D∗ ·w(A,A∗) ·D = (D′)∗ ·w(B,B∗) ·D′ for every word w(x, y). Hence, 〈A,D〉 and
〈B,D′〉 have the same generalised dynamics. J

Hence, Proposition 19 implies that A ≡ML(∗,1,�v) B if and only if PA ·A ·S = S ·B ·PB

and PA ·A∗ ·S = S ·B∗ ·PB for a matrix S satisfying 1Vi
= S ·1Wi

and 1t
Vi
·S = 1t

Wi
, for all

i ∈ [1, q]. We remark again that this implies that S is doubly quasi-stochastic. We can do
better, however, and eliminate the projection operators and ensure that S is doubly-stochastic
and hence, A and B are fractionally isomorphic.

I Corollary 28. Let A and B be matrices in Matn×n(C). Then A ≡ML(∗,1,�v) B if and
only if there is a doubly stochastic matrix S such that A · S = S ·B and A∗ · S = S ·B∗,
1Vi

= S ·1Wi
and 1t

Vi
·S = 1t

Wi
, for all i ∈ [1, q], for indicator vectors describing a common

equitable partition of A and B.

Proof. (Sketch). It can be verified that the transformation matrices underlying the proof of
Proposition 19 for the systems 〈A,D〉 and 〈B,D′〉 from Example 27 are of a very particular
form. Indeed, using the fact that D and D′ represent equitable partitions, the column vectors
in these matrices can be shown to span the generalised controllable and observable space
of 〈A,D〉 and 〈B,D′〉. As a consequence, one obtains that PA = Π ·Πt, PV = Π′ · (Π′)t

and S = Π · (Π′)t, where Π = D · (Dt · D)−1/2 and Π′ = D′ · ((D′)t · D′)−1/2. Hence,
Π · (Πt) ·A ·Π · (Π′)t = Π · (Π′)t ·B ·Π′ · (Π′)t. A second crucial observation is that, in a
similar way as shown in the proof of Theorem 4.1 in [24], one can verify that Π ·Πt commutes
with A and similarly, Π′ · (Π′)t commutes with B, due to equitability. Further manipulation
then shows that PA and PB can be omitted, resulting in A ·Π · (Π′)t = Π · (Π′)t ·B. It now
suffices to observe that for S = Π · (Π′)t, we have that Svw = 1

|Vk| for the unique part Vk

such that i ∈ Vk and j ∈Wk, and Svw = 0 otherwise. It is now easy to verify that S satisfies
the conditions stated in the Corollary. J

For digraphs, the existence of a stochastic matrix S such that AG · S = S · AH and
At

G · S = S ·At
H hold is known to correspond to G ≡C2 H [1, 25]. Hence, the previous

Corollary implies that G ≡ML(∗,1,�v) H if and only if G ≡C2 H, just as for undirected graphs.
We also remark that Corollary 28 can be shown by relying on known correspondences between
fractional isomorphisms and equitable partitions of matrices [1, 25]. Nevertheless, proving it
by relying on minimal realisations (Proposition 19) further illustrates the usefulness of our
approach.

I Remark 29. We can obtain similar results for ML(1,1t,�v)-equivalence. In this case, we
have to use standard linear systems described by 〈A,Cc, Dr〉 where Cc consists of transposed
indicator vectors of a column-equitable partition of A and Dr consists of indicator vectors of
a row-equitable partition of A. Note that Cc is not necessarily equal to the transpose of Dr.
Then, given 〈A,Cc, Dr〉 and 〈B,C ′c, D′r〉, a generalisation of Theorem 18 allows to obtain a
relationship between A and B. We defer the precise analysis of ML(1,1t,�v)-equivalence to
future work. J
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7 Concluding remarks

While at first, it seemed daunting to understand the distinguishing power of MATLANG
on general matrices, we showed that moving to this more general setting (compared to
adjacency matrices of undirected graphs) makes the analysis more elegant. Of course, the
right tools are needed, such as the connection with Specht’s Theorem and mininal realisations
of linear systems. Considering the general setting has as additional advantage that previous
results can be seen as special cases. Although we focused on the setting where MATLANG
expressions only take a single matrix as input, some of our results can be generalised. This
is particularly true for cases relying on Specht’s Theorem. It is less clear how to deal with
multiple inputs by relying on linear systems theory.

In this work, we consider equivalence of matrices by sentences that allow an arbitrary
number of applications of the supported operators. In practice, one would like to understand
the impact of allowing, say only k matrix multiplications. Indeed, each operator application
has a computational cost attached. Developing the right tools for analysing such a quantified
setting is, we believe, an interesting line of research.
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