446 research outputs found

    The stochastic aeroelastic response analysis of helicopter rotors using deep and shallow machine learning

    Get PDF
    This paper addresses the influence of manufacturing variability of a helicopter rotor blade on its aeroelastic responses. An aeroelastic analysis using finite elements in spatial and temporal domains is used to compute the helicopter rotor frequencies, vibratory hub loads, power required and stability in forward flight. The novelty of the work lies in the application of advanced data-driven machine learning (ML) techniques, such as convolution neural networks (CNN), multi-layer perceptron (MLP), random forests, support vector machines and adaptive Gaussian process (GP) for capturing the nonlinear responses of these complex spatio-temporal models to develop an efficient physics-informed ML framework for stochastic rotor analysis. Thus, the work is of practical significance as (i) it accounts for manufacturing uncertainties, (ii) accurately quantifies their effects on nonlinear response of rotor blade and (iii) makes the computationally expensive simulations viable by the use of ML. A rigorous performance assessment of the aforementioned approaches is presented by demonstrating validation on the training dataset and prediction on the test dataset. The contribution of the study lies in the following findings: (i) The uncertainty in composite material and geometric properties can lead to significant variations in the rotor aeroelastic responses and thereby highlighting that the consideration of manufacturing variability in analyzing helicopter rotors is crucial for assessing their behaviour in real-life scenarios. (ii) Precisely, the substantial effect of uncertainty has been observed on the six vibratory hub loads and the damping with the highest impact on the yawing hub moment. Therefore, sufficient factor of safety should be considered in the design to alleviate the effects of perturbation in the simulation results. (iii) Although advanced ML techniques are harder to train, the optimal model configuration is capable of approximating the nonlinear response trends accurately. GP and CNN followed by MLP achieved satisfactory performance. Excellent accuracy achieved by the above ML techniques demonstrates their potential for application in the optimization of rotors under uncertainty

    Guidance, navigation and control of multirotors

    Get PDF
    Aplicat embargament des de la data de defensa fins el dia 31 de desembre de 2021This thesis presents contributions to the Guidance, Navigation and Control (GNC) systems for multirotor vehicles by applying and developing diverse control techniques and machine learning theory with innovative results. The aim of the thesis is to obtain a GNC system able to make the vehicle follow predefined paths while avoiding obstacles in the vehicle's route. The system must be adaptable to different paths, situations and missions, reducing the tuning effort and parametrisation of the proposed approaches. The multirotor platform, formed by the Asctec Hummingbird quadrotor vehicle, is studied and described in detail. A complete mathematical model is obtained and a freely available and open simulation platform is built. Furthermore, an autopilot controller is designed and implemented in the real platform. The control part is focused on the path following problem. That is, following a predefined path in space without any time constraint. Diverse control-oriented and geometrical algorithms are studied, implemented and compared. Then, the geometrical algorithms are improved by obtaining adaptive approaches that do not need any parameter tuning. The adaptive geometrical approaches are developed by means of Neural Networks. To end up, a deep reinforcement learning approach is developed to solve the path following problem. This approach implements the Deep Deterministic Policy Gradient algorithm. The resulting approach is trained in a realistic multirotor simulator and tested in real experiments with success. The proposed approach is able to accurately follow a path while adapting the vehicle's velocity depending on the path's shape. In the navigation part, an obstacle detection system based on the use of a LIDAR sensor is implemented. A model of the sensor is derived and included in the simulator. Moreover, an approach for treating the sensor data to eliminate the possible ground detections is developed. The guidance part is focused on the reactive path planning problem. That is, a path planning algorithm that is able to re-plan the trajectory online if an unexpected event, such as detecting an obstacle in the vehicle's route, occurs. A deep reinforcement learning approach for the reactive obstacle avoidance problem is developed. This approach implements the Deep Deterministic Policy Gradient algorithm. The developed deep reinforcement learning agent is trained and tested in the realistic simulation platform. This agent is combined with the path following agent and the rest of the elements developed in the thesis obtaining a GNC system that is able to follow different types of paths while avoiding obstacle in the vehicle's route.Aquesta tesi doctoral presenta diverses contribucions relaciones amb els sistemes de Guiat, Navegació i Control (GNC) per a vehicles multirrotor, aplicant i desenvolupant diverses tècniques de control i de machine learning amb resultats innovadors. L'objectiu principal de la tesi és obtenir un sistema de GNC capaç de dirigir el vehicle perquè segueixi una trajectòria predefinida mentre evita els obstacles que puguin aparèixer en el recorregut del vehicle. El sistema ha de ser adaptable a diferents trajectòries, situacions i missions, reduint l'esforç realitzat en l'ajust i la parametrització dels mètodes proposats. La plataforma experimental, formada pel cuadricòpter Asctec Hummingbird, s'estudia i es descriu en detall. S'obté un model matemàtic complet de la plataforma i es desenvolupa una eina de simulació, la qual és de codi lliure. A més, es dissenya un controlador autopilot i s'implementa en la plataforma real. La part de control està enfocada al problema de path following. En aquest problema, el vehicle ha de seguir una trajectòria predefinida en l'espai sense cap tipus de restricció temporal. S'estudien, s'implementen i es comparen diversos algoritmes de control i geomètrics de path following. Després, es milloren els algoritmes geomètrics usant xarxes neuronals per convertirlos en algoritmes adaptatius. Per finalitzar, es desenvolupa un mètode de path following basat en tècniques d'aprenentatge per reforç profund (deep Reinforcement learning). Aquest mètode implementa l'algoritme Deep Deterministic Policy Gradient. L'agent intel. ligent resultant és entrenat en un simulador realista de multirotors i validat en la plataforma experimental real amb èxit. Els resultats mostren que l'agent és capaç de seguir de forma precisa la trajectòria de referència adaptant la velocitat del vehicle segons la curvatura del recorregut. A la part de navegació, s'implementa un sistema de detecció d'obstacles basat en l'ús d'un sensor LIDAR. Es deriva un model del sensor i aquest s'inclou en el simulador. A més, es desenvolupa un mètode per tractar les mesures del sensor per eliminar les possibles deteccions del terra. Pel que fa a la part de guiatge, aquesta està focalitzada en el problema de reactive path planning. És a dir, un algoritme de planificació de trajectòria que és capaç de re-planejar el recorregut del vehicle a l'instant si algun esdeveniment inesperat ocorre, com ho és la detecció d'un obstacle en el recorregut del vehicle. Es desenvolupa un mètode basat en aprenentatge per reforç profund per l'evasió d'obstacles. Aquest mètode implementa l'algoritme Deep Deterministic Policy Gradient. L'agent d'aprenentatge per reforç s'entrena i valida en un simulador de multirotors realista. Aquest agent es combina amb l'agent de path following i la resta d'elements desenvolupats en la tesi per obtenir un sistema GNC capaç de seguir diferents tipus de trajectòries, evadint els obstacles que estiguin en el recorregut del vehicle.Esta tesis doctoral presenta varias contribuciones relacionas con los sistemas de Guiado, Navegación y Control (GNC) para vehículos multirotor, aplicando y desarrollando diversas técnicas de control y de machine learning con resultados innovadores. El objetivo principal de la tesis es obtener un sistema de GNC capaz de dirigir el vehículo para que siga una trayectoria predefinida mientras evita los obstáculos que puedan aparecer en el recorrido del vehículo. El sistema debe ser adaptable a diferentes trayectorias, situaciones y misiones, reduciendo el esfuerzo realizado en el ajuste y la parametrización de los métodos propuestos. La plataforma experimental, formada por el cuadricoptero Asctec Hummingbird, se estudia y describe en detalle. Se obtiene un modelo matemático completo de la plataforma y se desarrolla una herramienta de simulación, la cual es de código libre. Además, se diseña un controlador autopilot, el cual es implementado en la plataforma real. La parte de control está enfocada en el problema de path following. En este problema, el vehículo debe seguir una trayectoria predefinida en el espacio tridimensional sin ninguna restricción temporal Se estudian, implementan y comparan varios algoritmos de control y geométricos de path following. Luego, se mejoran los algoritmos geométricos usando redes neuronales para convertirlos en algoritmos adaptativos. Para finalizar, se desarrolla un método de path following basado en técnicas de aprendizaje por refuerzo profundo (deep reinforcement learning). Este método implementa el algoritmo Deep Deterministic Policy Gradient. El agente inteligente resultante es entrenado en un simulador realista de multirotores y validado en la plataforma experimental real con éxito. Los resultados muestran que el agente es capaz de seguir de forma precisa la trayectoria de referencia adaptando la velocidad del vehículo según la curvatura del recorrido. En la parte de navegación se implementa un sistema de detección de obstáculos basado en el uso de un sensor LIDAR. Se deriva un modelo del sensor y este se incluye en el simulador. Además, se desarrolla un método para tratar las medidas del sensor para eliminar las posibles detecciones del suelo. En cuanto a la parte de guiado, está focalizada en el problema de reactive path planning. Es decir, un algoritmo de planificación de trayectoria que es capaz de re-planear el recorrido del vehículo al instante si ocurre algún evento inesperado, como lo es la detección de un obstáculo en el recorrido del vehículo. Se desarrolla un método basado en aprendizaje por refuerzo profundo para la evasión de obstáculos. Este implementa el algoritmo Deep Deterministic Policy Gradient. El agente de aprendizaje por refuerzo se entrena y valida en un simulador de multirotors realista. Este agente se combina con el agente de path following y el resto de elementos desarrollados en la tesis para obtener un sistema GNC capaz de seguir diferentes tipos de trayectorias evadiendo los obstáculos que estén en el recorrido del vehículo.Postprint (published version

    Aeronautical engineering: A continuing bibliography with indexes (supplement 267)

    Get PDF
    This bibliography lists 661 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1991. Subject coverage includes design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; theoretical and applied aspects of aerodynamics and general fluid dynamics; electrical engineering; aircraft control; remote sensing; computer sciences; nuclear physics; and social sciences

    Design, Developement, Analysis and Control of a Bio-Inspired Robotic Samara Rotorcraft

    Get PDF
    THIS body of work details the development of the first at-scale (>15 cm) robotic samara, or winged seed. The design of prototypes inspired by autorotating plant seed geometries is presented along with a detailed experimental process that elucidates similarities between mechanical and robotic samara flight dynamics. The iterative development process and the implementation of working prototypes are discussed for robotic samara Micro-Air-Vehicles (MAV) that range in size from 7.5 cm to 27 cm. Vehicle design issues are explored as they relate to autorotation efficiency, stability, flight dynamics and control of single winged rotorcraft. In recent years a new paradigm of highly maneuverable aircraft has emerged that are ideally suited for operation in a confined environment. Different from conven- tional aircraft, viscous forces play a large role in the physics of flight at this scale. This results in relatively poor aerodynamic performance of conventional airfoil and rotorcraft configurations. This deficiency has led to the consideration of naturally occurring geometries and configurations, the simplest of which is the samara. To study the influence of geometric variation on autorotation efficiency, a high speed camera system was used to track the flight path and orientation of the mechan- ical samaras. The wing geometry is planar symmetric and resembles a scaled version of Acer diabolicum Blume. The airfoil resembles a scaled version of the maple seed with a blunt leading edge followed by a thin section without camber. Four mechan- ical samara geometries with equal wing loading were designed and fabricated using a high precision rapid prototyping machine that ensured similarity between models. It was found that in order to reduce the descent velocity of an autorotating samara the area centroid or maximum chords should be as far from the center of rotation as possible. Flight data revealed large oscillations in feathering and coning angles, and the resultant flight path was found to be dependent on the mean feathering angle. The different flight modalities provided the basis for the design of a control sys- tem for a powered robotic samara that does not require high frequency sensing and actuation typical of micro-scaled rotorcraft. A prototype mechanical samara with a variable wing pitch (feathering) angle was constructed and it was found that active control of the feathering angle allowed the variation of the radius of the helix carved by the samara upon descent. This knowledge was used to design a hovering robotic samara capable of lateral motion through a series of different size circles specified by precise actuation of the feathering angle. To mathematically characterize the flight dynamics of the aircraft, System identi- fication techniques were used. Using flight data, a linear model describing the heave dynamics of two robotic samara vehicles was verified. A visual positioning system was used to collect flight data while the vehicles were piloted in an indoor laboratory. Closed-loop implementation of the derived PID controller was demonstrated using the visual tracking system for position and velocity feedback. An approach to directional control that does not require the once-per-revolution actuation or high-frequency measurement of vehicle orientation has been demon- strated for the first time. Lateral flight is attained through the vehicles differing responses to impulsive and step inputs that are leveraged to create a control strategy that provides full controllability. Flight testing revealed several linear relationships, including turn rate, turn radius and forward speed. The steady turn discussed here has been observed in scaled versions of the robotic samara, therefore the open-loop control demonstrated and analyzed is considered to be appropriate for similar vehicles of reduced size with limited sensing and actuation capabilities
    • …
    corecore