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Abstract

This thesis presents contributions to the Guidance, Navigation and Control (GNC) systems for

multirotor vehicles by applying and developing diverse control techniques and machine learning

theory with innovative results. The aim of the thesis is to obtain a GNC system able to make

the vehicle follow predefined paths while avoiding obstacles in the vehicle’s route. The system

must be adaptable to different paths, situations and missions, reducing the tuning effort and

parametrisation of the proposed approaches.

The multirotor platform, formed by the Asctec Hummingbird quadrotor vehicle, is studied and

described in detail. A complete mathematical model is obtained and a freely available and open

simulation platform is built. Furthermore, an autopilot controller is designed and implemented

in the real platform.

The control part is focused on the path following problem. That is, following a predefined

path in space without any time constraint. Diverse control-oriented and geometrical algorithms

are studied, implemented and compared. Then, the geometrical algorithms are improved by

obtaining adaptive approaches that do not need any parameter tuning. The adaptive geometrical

approaches are developed by means of Neural Networks. To end up, a deep reinforcement

learning approach is developed to solve the path following problem. This approach implements

the Deep Deterministic Policy Gradient algorithm. The resulting approach is trained in a realistic

multirotor simulator and tested in real experiments with success. The proposed approach is able

to accurately follow a path while adapting the vehicle’s velocity depending on the path’s shape.

In the navigation part, an obstacle detection system based on the use of a LIDAR sensor is

implemented. A model of the sensor is derived and included in the simulator. Moreover, an

approach for treating the sensor data to eliminate the possible ground detections is developed.

The guidance part is focused on the reactive path planning problem. That is, a path planning

algorithm that is able to re-plan the trajectory online if an unexpected event, such as detecting an

obstacle in the vehicle’s route, occurs. A deep reinforcement learning approach for the reactive

obstacle avoidance problem is developed. This approach implements the Deep Deterministic

Policy Gradient algorithm. The developed deep reinforcement learning agent is trained and

tested in the realistic simulation platform. This agent is combined with the path following agent

and the rest of the elements developed in the thesis obtaining a GNC system that is able to

follow different types of paths while avoiding obstacle in the vehicle’s route.
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Resumen

Esta tesis doctoral presenta varias contribuciones relacionas con los sistemas de Guiado, Nave-

gación y Control (GNC) para veh́ıculos multirotor, aplicando y desarrollando diversas técnicas

de control y de machine learning con resultados innovadores. El objetivo principal de la tesis es

obtener un sistema de GNC capaz de dirigir el veh́ıculo para que siga una trayectoria predefinida

mientras evita los obstáculos que puedan aparecer en el recorrido del veh́ıculo. El sistema debe

ser adaptable a diferentes trayectorias, situaciones y misiones, reduciendo el esfuerzo realizado

en el ajuste y la parametrización de los métodos propuestos.

La plataforma experimental, formada por el cuadricóptero Asctec Hummingbird, se estudia y

describe en detalle. Se obtiene un modelo matemático completo de la plataforma y se desarrolla

una herramienta de simulación, la cual es de código libre. Además, se diseña un controlador

autopilot, el cual es implementado en la plataforma real.

La parte de control está enfocada en el problema de path following. En este problema, el veh́ıculo

debe seguir una trayectoria predefinida en el espacio tridimensional sin ninguna restricción tem-

poral. Se estudian, implementan y comparan varios algoritmos de control y geométricos de path

following. Luego, se mejoran los algoritmos geométricos usando redes neuronales para convertir-

los en algoritmos adaptativos. Para finalizar, se desarrolla un método de path following basado

en técnicas de aprendizaje por refuerzo profundo (deep reinforcement learning). Este método

implementa el algoritmo Deep Deterministic Policy Gradient. El agente inteligente resultante

es entrenado en un simulador realista de multirotores y validado en la plataforma experimental

real con éxito. Los resultados muestran que el agente es capaz de seguir de forma precisa la

trayectoria de referencia adaptando la velocidad del veh́ıculo según la curvatura del recorrido.

En la parte de navegación se implementa un sistema de detección de obstáculos basado en el uso

de un sensor LIDAR. Se deriva un modelo del sensor y este se incluye en el simulador. Además,

se desarrolla un método para tratar las medidas del sensor para eliminar las posibles detecciones

del suelo.

En cuanto a la parte de guiado, está focalizada en el problema de reactive path planning. Es

decir, un algoritmo de planificación de trayectoria que es capaz de re-planear el recorrido del

veh́ıculo al instante si ocurre algún evento inesperado, como lo es la detección de un obstáculo en

el recorrido del veh́ıculo. Se desarrolla un método basado en aprendizaje por refuerzo profundo

para la evasión de obstáculos. Este implementa el algoritmo Deep Deterministic Policy Gradient.

El agente de aprendizaje por refuerzo se entrena y valida en un simulador de multirotors realista.
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Este agente se combina con el agente de path following y el resto de elementos desarrollados en

la tesis para obtener un sistema GNC capaz de seguir diferentes tipos de trayectorias evadiendo

los obstáculos que estén en el recorrido del veh́ıculo.



Resum

Aquesta tesi doctoral presenta diverses contribucions relaciones amb els sistemes de Guiatge,

Navegació i Control (GNC) per a vehicles multirrotor, aplicant i desenvolupant diverses tècniques

de control i de machine learning amb resultats innovadors. L’objectiu principal de la tesi és

obtenir un sistema de GNC capaç de dirigir el vehicle perquè segueixi una trajectòria predefinida

mentre evita els obstacles que puguin aparèixer en el recorregut del vehicle. El sistema ha de

ser adaptable a diferents trajectòries, situacions i missions, reduint l’esforç realitzat en l’ajust i

la parametrització dels mètodes proposats.

La plataforma experimental, formada pel cuadricòpter Asctec Hummingbird, s’estudia i es de-

scriu en detall. S’obté un model matemàtic complet de la plataforma i es desenvolupa una eina

de simulació, la qual és de codi lliure. A més, es dissenya un controlador autopilot i s’implementa

en la plataforma real.

La part de control està enfocada al problema de path following. En aquest problema, el ve-

hicle ha de seguir una trajectòria predefinida en l’espai sense cap tipus de restricció temporal.

S’estudien, s’implementen i es comparen diversos algoritmes de control i geomètrics de path

following. Després, es milloren els algoritmes geomètrics usant xarxes neuronals per convertir-

los en algoritmes adaptatius. Per finalitzar, es desenvolupa un mètode de path following basat

en tècniques d’aprenentatge per reforç profund (deep Reinforcement learning). Aquest mètode

implementa l’algoritme Deep Deterministic Policy Gradient. L’agent intel·ligent resultant és

entrenat en un simulador realista de multirotors i validat en la plataforma experimental real

amb èxit. Els resultats mostren que l’agent és capaç de seguir de forma precisa la trajectòria de

referència adaptant la velocitat del vehicle segons la curvatura del recorregut.

A la part de navegació, s’implementa un sistema de detecció d’obstacles basat en l’ús d’un sensor

LIDAR. Es deriva un model del sensor i aquest s’inclou en el simulador. A més, es desenvolupa

un mètode per tractar les mesures del sensor per eliminar les possibles deteccions del terra.

Pel que fa a la part de guiatge, aquesta està focalitzada en el problema de reactive path planning.

És a dir, un algoritme de planificació de trajectòria que és capaç de re-planejar el recorregut del

vehicle a l’instant si algun esdeveniment inesperat ocorre, com ho és la detecció d’un obstacle en

el recorregut del vehicle. Es desenvolupa un mètode basat en aprenentatge per reforç profund per

l’evasió d’obstacles. Aquest mètode implementa l’algoritme Deep Deterministic Policy Gradient.

L’agent d’aprenentatge per reforç s’entrena i valida en un simulador de multirotors realista.

Aquest agent es combina amb l’agent de path following i la resta d’elements desenvolupats en
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la tesi per obtenir un sistema GNC capaç de seguir diferents tipus de trajectòries, evadint els

obstacles que estiguin en el recorregut del vehicle.
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Chapter 1

Introduction

1.1 Motivation

In recent years, the growing interest to develop fully autonomous aerial vehicles, known as

Unmanned Aerial Vehicles (UAVs), has seen a civil market demand increase compared to its

military applications. The increasing number of tasks and applications that UAVs can perform

is well known. The interest in automating these applications drives a continuous progress both

in the artificial intelligence and control areas.

Out of all UAVs, multirotors stand out for their good manoeuvrability and mechanical simplicity.

Throughout the education of the thesis’ author, focused on electronic engineering and automa-

tion, the research on this type of vehicles has become one of his main interests. This platform

permits to study, develop and implement approaches on diverse areas such as control, machine

learning, artificial vision or state estimation, which are aligned with the author’s background.

While studying physics, automatic control or artificial intelligence subjects, the UAV has always

been a baseline system to study and apply the author’s acquired knowledge. His final master’s

project was focused on the modelling and control of a coaxial helicopter UAV. Furthermore, the

radio controlled aerial vehicles have for long been one of the major author’s passions, having

expertise on piloting multirotors and small helicopters, as well as a wide knowledge on their

mechanical and electronic parts.

The Research Center for Supervision, Safety and Automatic Control (RS2AC), the research

group were this thesis was carried on, has a large expertise on the research on UAVs and other

type of autonomous vehicles. Furthermore, the group has different indoor and outdoor UAV

experimental platforms that become a great opportunity for implementing and testing the work

developed in this thesis. Moreover, the group is involved in projects in which the research focus

is put on security and control of autonomous vehicles.

The motivation of this thesis emerges from both the interest of the group on the UAV research

and its practical implementation as well as the author’s interests on this type of vehicles and in

the research and implementation of novel control and machine learning algorithms.

1



2 CHAPTER 1. INTRODUCTION

1.2 Thesis objectives

The principal objective of this PhD thesis is to study, develop and apply innovative control

techniques and machine learning algorithms to implement a Guidance, Navigation and Control

system for a multirotor vehicle. This system must be able to make the vehicle to follow predefined

paths while avoiding obstacles in the vehicle’s route. The aim of the thesis is to obtain a highly

autonomous system that can be adapted to different paths, situations and missions, reducing

the tuning effort and parametrisation of the proposed approaches.

Secondary objectives involved in the generation of the Guidance, Navigation and Control system

are:

● Control Structure: Define a structure of the Guidance, Navigation and Control system that

includes the required modules and their information flows for addressing the challenges

derived from the defined problem.

● Path Following: Study the path following problem of a multirotor vehicle. Implement and

compare state-of-the-art path following algorithms for multirotor vehicles and/or adapt

algorithms applied to other vehicles. Improve the algorithms or develop an approach that

will be proposed as solution. The proposed approach must be straightforwardly adaptable

to different reference paths without requiring any additional tuning of the algorithm pa-

rameters. Moreover, it must dynamically adapt the velocity of the vehicle to the shape of

the path, anticipating the curves to come.

● Path Planning & Obstacle Avoidance: Study the problem of planning a route online to

follow a predefined path while avoiding possible obstacles and propose a reactive path

planning approach. The proposed approach must integrate the information of the state

estimator, the perception systems and the given reference path to generate the reference

route. Also, it must be capable of replanning the route online when an unexpected event,

such as the detection of an obstacle, occurs. This approach must be integrated with the

path following algorithm.

● Obstacle Detection: Implement a perception system capable to detect obstacles in the

vehicle’s route. This system must be installed in the real platform and the perceived

information must be treated and adapted to send it to the reactive path planning algorithm.

● Real implementation: Implement and test in the real experimental platform the Guidance,

Navigation and Control System that integrates the work and contributions undertaken on

each area. This includes the setup of the experimental platform, the implementation of

inner controllers and the treatment of the sensor measurements to estimate the required

states.

1.3 Thesis Outline

This thesis is organised as follows:
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● Chapter 2: Guidance, Navigation and Control System

This chapter proposes the control structure for the Guidance, Navigation and Control

system that is developed in this thesis. The elements of this structure and their commu-

nication flow are described in detail. Next, a thorough literature review of the control,

navigation and control fields for multirotor vehicles is presented. This literature review

is focused on the problems that are studied in this thesis. These are the path following

problem, the obstacle detection problem and the reactive path planning problem.

● Chapter 3: Multirotor Environment

This chapter is focused on the multirotor platform. The Asctec Hummingbird quadro-

tor and the rest of the elements that form the experimental platform are carefully de-

scribed. Next, a complete and realistic mathematical model of the real multirotor platform

is derived. An autopilot controller is designed and implemented in the actual platform.

Path-Flyer, a freely available and open simulation benchmark for testing path following

algorithms on a quadrotor vehicle, is developed in this chapter. Experimental tests are

compared with the simulation results of Path-Flyer to prove its validity. To end up, the

RotorS/Gazebo platform is introduced and the modifications made to this platform to

emulate the real experimental one are explained in detail.

● Chapter 4: Control-oriented and Geometric Path Following

In this chapter, four of the most relevant path folowing algorithms reviewed in Chap. (2)

are implemented with the quadrotor model described in Chap. (3). These are, Backstep-

ping and Feedback Linearisation control-oriented algorithms and Nonlinear Guidance Law

and Carrot-Chasing geometric algorithms. The geometric algorithms are adapted to the

three-dimensional space. A complete comparison and discussion of these four path fol-

lowing algorithms is derived from the simulation results. Finally, a comparison including

qualitative and quantitative indicators is provided.

● Chapter 5: Adaptive Geometric Path Following

The geometrical algorithms implemented in Chap. (4) (Nonlinear Guidance Law and

Carrot-Chasing) are simple, effective and have only one tunning parameter. However,

their control parameter depends on various factors, such as the velocity of the vehicle, the

shape of the reference path and the dynamics of the vehicle. This chapter analyses the

effect of the control parameter of these algorithms on their performance. Next, an adaptive

version of both algorithms based on the use of Neural Networks is proposed. The proposed

approaches include a velocity reduction term. Stability proofs are also given. Simula-

tion results show that the proposed approaches improve the performance of the standard

geometric algorithms. Furthermore, they have no parameters to tune.

● Chapter 6: Path Following with Deep Reinforcement Learning

This chapter proposes a solution for the path following problem of a quadrotor vehicle

based on deep reinforcement learning theory. Three different approaches implementing

the Deep Deterministic Policy Gradient algorithm are presented. Each approach emerges

as an improved version of the preceding one. The first approach uses only instantaneous
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information of the path for solving the problem. The second approach includes a structure

that allows the agent to anticipate to the curves. The third agent is capable to compute

the optimal velocity according to the path’s shape.

A training framework that combines the tensorflow-python environment with Gazebo-

ROS using the RotorS simulator is built. The three agents are tested in RotorS and

experimentally with the Asctec Hummingbird quadrotor. Experimental results prove the

validity of the agents, which are able to achieve a generalized solution for the path following

problem.

● Chapter 7: Obstacle Detection

In this chapter, a study of obstacle detection solutions based on different sensors, such

as cameras, LIDARs, RADARs or ultrasound sensors, is carried out. From the reviewed

solutions, a LIDAR-based system is chosen to be implemented in the experimental platform.

A model of the LIDAR sensor is developed in the RotorS environment. Then, an algorithm

for processing the sensor measures to eliminate the possible ground detections is derived.

● Chapter 8: Obstacle Avoidance with Deep Reinforcement Learning

A deep reinforcement learning approach for solving the obstacle avoidance problem is pro-

posed in this chapter. This approach implements the Deep Deterministic Policy Gradient

algorithm. It uses the LIDAR processed information to detect obstacles around the vehicle.

If an obstacle is detected in the vehicle’s route, the agent modifies the reference path to

avoid it. The developed agent communicates with the path following agent by sending it

the modified reference path. A detailed description of the process of defining the state

vector, the reward function and the action of the agent is given. Different solutions are

obtained and compared. The agents are trained and tested in the RotorS/gazebo platform.

Simulations results prove the validity of the proposed approach.

● Chapter 9: Conclusions

This chapter summarizes the contributions of the thesis, gives conclusions and describes

the next steps.



Part I

Background
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Chapter 2

Guidance, Navigation and

Control System

The main topic of this PhD thesis is the multirotor Guidance, Navigation and Control (GNC)

systems. Hence, before presenting the methodologies, strategies and contributions related to

these systems, it is important to understand what is a Guidance, Navigation and Control sys-

tem and which are its main components. Moreover, it is necessary to elaborate an exhaustive

literature review on this area. These concerns are covered in this chapter.

2.1 Control Structure

One of the most important issues when designing or implementing a Guidance, Navigation and

Control system is to define a proper control structure. The control structure defines the main

elements of the system, and how they are connected with each other. This structure will depend

on the type of vehicle that we are using and also in the problem that is going to be solved.

The structure of the Guidance, Navigation and Control system proposed here is presented in

Fig. 2.1. This is a general and typical structure for a GNC system [90][88]. However, it includes

various blocks that are specific for the problem considered in this PhD thesis, as is the case of

the Obstacle Detection block. The introduction of this structure will be helpful to understand

the rest of the literature review presented in this chapter.

The main element of the structure of Fig. 2.1 is the Unmanned Aerial System (UAS). The UAS

is composed of the Unmanned Aerial Vehicle (UAV), the actuators of the vehicle and the set

of sensors. The description of the UAV platform employed in this thesis (i.e. the multirotor

vehicle, sensors, actuators, on-board PCs, software, etc.) as well as the mathematical model of

the system is found in Chap. (3).

The Control block is responsible for the stabilization of the vehicle (Autopilot) and for making

the vehicle follow a desired given trajectory (Path Following). These two elements receive the

7
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Figure 2.1: Guidance, Navigation and Control structure.

state information from the state estimation block and they end up controlling the UAV by

sending commands to the actuators of the vehicle. It is important to mention that the autopilot

is not always necessary, since some path following approaches deal with the stabilization of the

vehicle too.

The Navigation block includes tasks that process the information from the sensors. Those tasks

depend on the specific navigation problem being solved. It can be divided in two parts; the

one dedicated to obtain the state of the vehicle (State Estimator) and the perception block that

acquires information of the environment. In the perception block we include a task dedicated to

the localization or detection the target (Target Detection) and a task dedicated to detect any

obstacle in the vehicle’s route (Obstacle Detection).

The Guidance block is the responsible of determining the route that the vehicle has to complete

to follow a path, to follow a target or to get to a desired position. That is, to generate the

reference trajectory that receives the Control block. In this particular case, the Path Planning

task takes into account the location of the path and the state of the vehicle, both received from
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the Navigation block, to design the best route to follow the path. Furthermore, it includes an

Obstacle Avoidance task, that re-plans a new route when an obstacle in the vehicle’s trajectory is

detected. The Map Database gives a priori information of the path and environment, such as path

point coordinates or localization of obstacles, to the path planner. The Trajectory Generation

task is an optional block that is sometimes needed to adapt the reference trajectory generated

by the path planner to the control block requirements. That is, to modify the trajectory, such

as decreasing the vehicle’s velocity or smoothing the path curves [82][35], to fulfil the control or

vehicle constrains. This block is also responsible of generating additional trajectory parameters,

if they are required by the trajectory controller.

The blocks marked in black in Fig. 2.1 denote the elements that are studied in the PhD thesis.

They include tasks where contributions are produced (i.e. Path Following and Path Planning

& Obstacle Avoidance) and other tasks where state-of-the-art solutions are implemented (i.e.

Autopilot and Obstacle Detection). The UAS is also included in this list since it was necessary

to perform the modelling, identification, simulation and experimental set-up of the system. The

literature of the three main blocks of the GNC system is reviewed in detail in the rest of this

chapter.

2.2 Control

The control block includes the stabilization of the system and the trajectory control. The

autopilot is in charge of stabilizing the attitude of the multirotor, the fastest and most influential

dynamics. The stabilization control problem for the particular case of a quadrotor has been

solved using different techniques such as Backstepping, Feedback Linearisation, Sliding Mode

Control, PID, optimal control, robust control, learning-based control, etc [13][131][101]. Since

the stabilization control has already been widely studied, it is not studied in this thesis. However,

a simple and effective solution for the autopilot is implemented in Section 3.3.

The trajectory control problem, defined as making a vehicle follow a pre-established path in

space, can be solved mainly by two different approaches: using a trajectory tracking controller

or with a path following controller. For the trajectory tracking problem a reference specified

in time is tracked, where the references of the path are given by a temporal evolution of each

space coordinate. Whereas path following (PF) handles the problem of following a path with no

preassigned timing information, thus any time dependence of the problem is removed.

In [2] the authors demonstrate that following a geometric path is less demanding than tracking

a timed reference signal. They argue that, although it is possible to perfectly track any reference

with minimum phase stable systems, the tracking error increases in non-linear systems with

presence of unstable zero dynamics as the signal frequencies approach those of the unstable

zeros. PF controllers offer a number of advantages over trajectory tracking controllers, not only

these are easier to design [84] but also result in smoother convergence to the path and less

demand on the control effort [27], a smaller transient error and a stronger robustness [171] and

the control signals are less likely to be saturated [39].
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The PF problem [1][27][84] is defined as:

Definition 2.2.1. Path Following Problem: Let the desired path be described by a curve

in the three-dimensional space pd(γ) ∶= [xd(γ), yd(γ), zd(γ)]T , parametrized by the virtual arc

γ ∈ [0;γf ], where γf is the total virtual arc length. The control objective is to ensure the

convergence of the vehicle’s position p(t) to the path pd(γ) and p(tf) = pd(γf) for a finite time

tf .

It is important to mention that some control-oriented algorithms may need a timing law for the

virtual arc parameter, γ(t), since some of this techniques consist in an adaptation of a trajectory

tracking algorithm, such as Backstepping.

There are several approaches to define the desired path. Dubins defines the path as a combination

of circle’s arcs and lines tangent to them [47][10]. In the waypoint-based approach the sequence

of points is commonly connected by straight-lines [35][127] or splines [190][43]. The most generic

approach is a continuous function parametrized by the virtual arc length [27][4][84].

The guidance and control system’s design to solve the PF problem is done by applying two

different methodologies: the Separated Guidance and Control (SGC) approach and the Inte-

grated Guidance and Control (IGC) approach [37]. The SGC approach (Fig. 2.2) is based on

a separation between translational dynamics and rigid-body rotational dynamics. It consists

on an outer-loop guidance law for generation of the movement commands (Φcmd/vcmd) and an

inner-loop controller to track those commands, sometimes known as the autopilot. While the

IGC approach (Fig. 2.3) combines both controllers in the same control loop.

Path 

Following
Autopilot UAV

Figure 2.2: Separated Guidance and Control structure.

Path 

Following
UAV

Figure 2.3: Integrated Guidance and Control structure.
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The next subsections provide a literature review of the path following problem, the problem that

originated some of the main contributions of this PhD thesis. A thorough review of literature

related to PF control applied to quadrotors has been carried out. The algorithms are organized

in subsections and a qualitative comparison is given. It is important to mention that some papers

use the term path following when implementing controllers that track timed trajectory references.

As these papers do not follow Definition 2.2.1, they are not included in the bibliographic review.

The trajectory control problem, as opposed to the stabilization problem, is less dependent on

the plant. Therefore, PF techniques for other type of UAVs are also provided.

2.2.1 Backstepping

Backstepping (BS ) is a renowned technique widely used for control of non-linear systems [167][93].

This technique is based on the Lyapunov theory. Its control objective is to force the convergence

of a set of predefined errors to zero. For this purpose, a Lyapunov function is stated for each

error in such a way that if the time derivative of those functions is negative definite, the stability

of the system, and therefore the convergence of the error to zero, is assured. Then, the control

actions of the system are obtained as the ones that make negative definite the time derivative of

all the stated Lyapunov functions.

This control strategy is used in most of the trajectory tracking control literature, as stated in

[141]. Good performance in the reference tracking is achieved, as mentioned in [136], since Back-

stepping is able to provide larger regions of attraction than other types of controllers. However,

as quadrotors present an underactuated nature, the control laws that have been developed do

not assure global tracking. The solution to this problem is to eliminate the time dependence

of the reference path and thus transform the trajectory tracking problem into a path following

problem, in which it is possible to obtain a globally convergent Backstepping controller while

keeping a large control capability [28].

In several publications Backstepping technique was used to solve both path following and stabi-

lization problems. See [27] where a BS technique is applied using the IGC structure for the 3D

control of a quadrotor. The proposed solution consists of a non-linear state feedback controller

for thrust and torque control actions and a timing law that maintains the PF control law well-

defined. This controller guarantees global asymptotic convergence of the path following error to

zero for a wide class of desired paths and ensures that the actuation does not grow unbounded.

The performance of the proposed controller is validated with simulation results. In [28] the

authors improve their controller to deal with the presence of constant wind disturbance. This

controller includes an estimate of the external disturbance to mitigate its effect. Experimental

results demonstrate the robustness of the controller.

In [91] the problem of time cooperative PF for multirotors with a suspended payload is addressed.

A team of multirotors transporting a suspended payload. A robust PF controller is developed for

each vehicle in the system formed by an autopilot that controls the attitude and a BS controller

that ensures each vehicle follows the desired path along a given speed profile. Numerical results

verify path following accuracy and low coordination errors.
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2.2.2 Lyapunov-based

Similarly to Backstepping, these algorithms are based on the Lyapunov theory. They are devel-

oped by assuring the Lyapunov stability condition, and thus, the convergence of the controller.

The generated guidance control laws are usually simple and effective [33].

In [39] the authors propose a 3D path following control law based on Lyapunov theory by us-

ing the rotation matrix, that belongs to the 3D Special Orthogonal group (SO(3)), for attitude

representation. This results in a singularity-free solution and allows speed profile’s independent

adjustment. The control law generates angular rates and thrust reference commands. Experi-

mental results for the mission of following a desired path and for the time coordination problem

[40] are given to illustrate the efficacy of the proposed control law.

In [118] a Lyapunov-based PF controller is proposed and it is complemented with a velocity

observer and a constant disturbance estimator based on the immersion and invariance technique.

Experimental indoor results for 3D paths show that the proposed approach fulfils the geometric

specifications with an error that, according to the authors, is acceptable.

Some of the Lyapunov-based path following algorithms perform well against wind disturbances.

As in [121], where an adaptive non-linear path following method is applied on a fixed-wing

experimental platform. In this paper, the Lyapunov function is constructed based on the error

equations and desired path function applying the vector field theory. Experimental results show

good performance under wind disturbances. [32] presents another path following application

for a fixed-wing vehicle that also takes into account wind disturbances by including an Active

Disturbance Rejection Control (ADRC) for the attitude inner-loop combined with the Lyapunov-

based control for the outer-loop. Experimental flight tests verify the effectiveness of this method.

2.2.3 Feedback Linearisation

Feedback Linearisation, along with Backstepping, is one of the most commonly used techniques

for the control of quadrotors as discussed in [4]. The aim of this control technique is to linearise

a system in a certain region of the state space by applying a non-linear inversion of the plant,

so that non-linearities in the plant are cancelled and linear control theory can be applied [26].

Some of the advantages of this method are the simplicity in the control structure, the facility

of implementation [166] and formal profs of error convergence when appropriate conditions are

met. When applied to the PF problem, this method achieves the property of path invariance.

That is, to ensure that once the system reaches the path it will stay on it for all future time

[3][4].

In [141] the 3D path following problem for a quadrotor is solved by applying input dynamic

extension and input-output Feedback Linearisation (FL). The designed controller allows to spec-

ify the speed on the path and the yaw angle of the vehicle as a function of the displacement

along the path. Simulation results for a constant cruise speed along a circular path show that

the quadrotor converges to the path as well as the velocity and yaw angle converge to the de-

sired values. In [3] the authors propose an improvement of the previous stated controller by
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implementing a transverse Feedback Linearisation plus input dynamic extension. This enhanced

controller, which fully linearises the system, allows the quadrotor to move along the path in any

desired direction, and both closed and non-closed curves can be used for the path definition.

The capabilities of the controller are demonstrated with simulation results.

In [4], the authors of [3] adapted its PF controller to operate in the context of fault tolerant

control, in the particular case when one of the four motors is completely disabled due to a failure.

With the faulty system, only partial FL can be achieved. That is because the three rotor system

is not differentially flat and presents uncontrolled internal dynamics. However, the uncontrolled

non-linear dynamics are proved to be bounded, and thus it is shown that the system can be

made to stay precisely on the path while the quadrotor is running only on three rotors.

In [55], a 3D PF implementation of a helicopter UAV is described. They apply the Feedback

Linearisation technique basing it on the kinematic model of a helicopter. Six PID controllers

are employed to control the attitude angles and the velocities. The main contribution of such

approach is the consideration of the desired speed of the vehicle as a function of the assigned

path. Simulations compare the designed controllers with variable and fixed velocity profile.

Better performance is achieved whith variable speed profile.

2.2.4 Geometric

Geometric techniques were initially described in the missile guidance and control literature.

Some of them were adapted to other type of vehicles, such as UGVs or UAVs. Examples of

these techniques are: Carrot-Chasing algorithm, Non-Linear Guidance Law, Pure Pursuit, Line-

of-sight and Trajectory Shaping guidance law. Carrot-Chasing (CC ) [122] is a simple geometric

strategy that consists on steering the UAV toward a Virtual Target Point (VTP) located on the

path. The VTP is periodically updated and obtained by adding a constant distance along the

path to the vehicle’s closest point. Non-Linear Guidance Law (NLGL) [133] is also based on the

VTP concept. In this case the point is calculated by creating a circumference around the vehicle

with a constant radius and taking the point in which the circumference intersects the path.

The obtained VTP is at a distance from the vehicle equal to the radius of the circumference.

Next, the acceleration commands that steer the vehicle to the VTP are calculated. The Pure

Pursuit (PP) [11][130] algorithm tries to guide the vehicle straight to a target point on the path.

Line-of-sight (LOS ) [151][10] seeks to steer the vehicle directly towards the closest point on the

path. Pure Pursuit and Line-of-sight (PLOS ) [94] is the combination of PP and LOS. In the

Trajectory Shaping (TS) [137] guidance law, the commanded lateral acceleration is generated as

function of the vehicle heading angle, target heading angle and line-of-sight angle.

Two algorithms based on missile guidance laws, Pure Pursuit and Trajectory Shaping, have

been implemented on a quadrotor vehicle in [113]. The concept of VTP navigation has been

utilized to generate the required curved trajectories. A guidance algorithm based on the notion of

Differential Flatness (DF) was implemented as a baseline control-oriented algorithm. Simulation

and experimental results comparing these algorithms show that TS generates smaller position

errors and requires lower control effort than PP and DF approaches. Furthermore, it is proved

that missile guidance laws can be successfully utilized by a quadrotor.
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In [57] various geometric algorithms, such as PP, LOS and Proportional Navigation Guidance

(PPN) law, are applied to the problem of autonomous landing of a quadrotor UAV. Simulation

results suggest that the PPN algorithm performs the best in terms of time and control effort,

where LOS presents the worst performance.

In [172] a survey of some of the most common PF algorithms applied to fixed-wing UAVs is

presented. In addition to the control-oriented algorithms, Carrot-Chasing, NLGL and PLOS are

described. Simulation results comparing those algorithms show that the NLGL is the geometric

approach that achieves the best performance in terms of path distance error.

2.2.5 Model Predictive Control

Model Predictive Control (MPC) is a well-known technique [30][56][115] that transforms the

control problem into an optimization problem. At any sampling time instant, a sequence of

future control values is computed by solving a finite horizon optimal control problem. Only the

first element of the computed control sequence is used and the overall process is repeated at the

next sampling time. The most important drawback of this technique is that resources needed

for computation and memory grow rapidly with the time horizon.

In contrast to the most common path following approaches, such as the geometric algorithms

or the Backstepping technique, the MPC approach is able to handle constraints on states and

inputs, non-linear MIMO dynamics, and non-linear reference paths [51].

In [129] a cascaded control structure applying the Non-linear MPC technique for the PF outer-

loop control is presented. The inner-loop control for the acceleration tracking is based on non-

linear dynamic inversion. This controller allows multirotor vehicles to follow a path whose

geometry is defined as a spline in 3D space. Simulation results demonstrate the good per-

formance of this approach. Furthermore, the obtained runtimes, well below the sample rate,

suggest that it could be implemented in on-board embedded systems. An improvement of this

approach is presented in [5], where an adaptive augmentation scheme for the inner-loop con-

troller is designed. The adaptive augmentation is based on a non-linear design plant and uses

Model Reference Adaptive Control (MRAC). Simulation results show a stronger robustness of

the adaptive augmentation in relation to the baseline controller.

A trajectory optimization strategy for UAVs based on non-linear optimal control techniques

is presented in [148]. The approach is based on a Virtual Targed Vehicle (VTV) perspective

where a virtual target is introduced. Numerical computation results show that it is able to

compute aggressive manoeuvres. In [149] the authors extend and adapt the proposed strategy

for path following in presence of time varying wind disturbances by means of a sample-data MPC

architecture. Simulation results with a fixed-wing vehicle show the effectiveness of the predictive

PF approach.

In [63] a non-linear receding horizon guidance law is developed to solve the PF problem on a

fixed-wing vehicle. An extended Kalman filter is used to estimate wind velocities. The proposed
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law achieves efficient PF by making input constraints active. Its effectiveness is demonstrated

by flight tests.

In addition to path following approaches, several trajectory tracking implementations on quadro-

tor vehicles are found applying the Model Predictive Control technique. Some of them have

reported experimental results showing a good performance against disturbances [8][18].

2.2.6 Vector Field

In the Vector Field (VF ) based control, a set of vectors is virtually placed around the path in

such a way that if the vehicle follows the direction of those vectors it will converge into the path.

Those vectors are used to generate desired course inputs to the inner-loop attitude controllers.

The first application of a path following approach using this method for a UAV is found in [127].

In this paper Vector Field path following control laws are developed for straight-line paths and

circular arcs and orbits. Asymptotic decay of path following errors in the presence of constant

wind disturbances is demonstrated with Lyapunov theory. Experimental tests are carried out

with a fixed-wing UAV to show the effectiveness of this method.

In [200] the 3D path following problem is solved by implementing a velocity vector field following

controller based on the differential flatness notion. This approach is designed with an inner-loop

controller that makes the vehicle follow a specified velocity vector field. The validity of the

method is demonstrated by numerical simulations and experiments with a quadrotor for three

different vector fields.

A VF path following guidance for 2D and 3D twice differentiable curves is stated in [102].

The proposed approach is based on the Helmholtz theorem, which states that an arbitrary

vector field can be decomposed into two parts, conservative part (irrotational) and solenoidal

part (rotational). This approach combines both parts by using the conservative part for long

distances to the desired path and using the solenoidal part when the vehicle is along the path.

UAV input constraints and constant wind disturbances are assumed to be present. The method’s

performance is validated by simulation results.

In [199] an adaptive control scheme for UAVs path following under wind disturbances is proposed.

This control strategy integrates the Vector Field PF law with an adaptive term to deal with the

effect of unknown wind disturbances. Simulation results with wind conditions show that the

proposed method compensates for the lack of knowledge of the wind vector and, according to

the authors, it attains a smaller path following error than the state-of-art vector field method.

Refer to [183][58][44][83][184] for path following Vector Field implementations applied on different

types of aerial vehicles. In [172], simulation results comparing this algorithm to other geometric

and control-oriented algorithms show that the VF-based algorithm is the one with least cross-

track error. However, final remarks conclude that it can be difficult to implement.
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2.2.7 Learning-based

Learning-based algorithms constitute an emerging field that, due to the significant progress made

in recent years, has become a wise solution for different types of problems. In particular, it is

being introduced in the trajectory control problem on different types of vehicles, including UAVs.

This field includes supervised and unsupervised techniques, reinforcement learning algorithms,

data-driven approaches and other deep machine learning methods.

In [169] a MPC controller is used as a supervisor to train a neural network control policy to solve

the path following and obstacle avoidance problem on a quadrotor vehicle. With this algorithm

the computational efficiency problem of the MPC technique is solved while maintaining a similar

performance, as proved by experimental results. An Iterative Learning Control approach is

proposed in [197] to solve the PF problem on a quadrotor. The control scheme is composed

by a PD controller and an feed-forward controller. This approach focuses on repetitive flight

to learn from experience. Simulation tests and off-line experimental results are presented to

prove the effectiveness of the controller. In [195] a data-driven control approach is proposed

for the adaptive path following control of a fixed-wing vehicle. The reliability of the approach

is demonstrated through simulation results and flight tests. Other learning-based approaches

have been used to solve the path following problem on different types of vehicles, such as vessels

[62][114][160] or airships [128].

Various learning-based approaches are found in the literature solving the trajectory tracking

problem for a quadrotor vehicle [178][38]. Some of these approaches consider wind disturbances

in its design, as in [104] where an adaptive trajectory tracking control based on a reinforcement

learning algorithm is presented.

2.2.8 Optimal Control

The Optimal Control theory aims to operate a dynamic system at a minimum cost. That is, to

follow a path with a minimum error and control effort. The most well-known control techniques

to solve this problem are the Linear Quadratic Regulator (LQR) and the Linear Quadratic

Gaussian (LQG).

In [179] a general solution for the PF problem is presented. The proposed approach is developed

as a fixed end-time optimal control problem and it relies on a geometric formulation based on

the notion of differential flatness. The resulting controller is applied to a quadrotor simulation

system with the mission of performing aggressive manoeuvres and it is demonstrated that the

proposed problem formulation is solved efficiently.

A UAV guidance law using an adaptive LQR formulation is addressed in [95]. The LQR is

optimized using a genetic algorithm for tighter control of UAV errors in high disturbances.

Simulations for straight line and loiter paths under various wind conditions prove the effectiveness

of the approach.

Experimental results applying optimal control theory to solve the trajectory tracking problem on

a quadrotor vehicle can be found in [69]. In this paper, the authors propose a solution based on
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the definition of a path-dependent error space to express the dynamic model of the vehicle. The

controller is designed using LQR state space feedback and adopts the D-methodology integrated

with the anti-windup technique in order to achieve zero static error for the integral states and

avoid actuator saturation.

2.2.9 Sliding Mode Control

Sliding Mode Control (SMC) is a non-linear control method that attains the control objectives

by constraining the system dynamics to a pre-defined surface by means of a discontinuous control

law. This control technique is considered to be effective and robust [48]. However, it can present

implementation issues due to the chattering effect.

The bibliographic search revealed no SMC application solving the path following problem for a

quadrotor vehicle. However, it has been applied to solve the PF problem on other UAVs, such

as fixed-wing vehicles. In [159] a lateral guidance law for cross-track control based on the SMC

technique is developed. This guidance law includes a feed-forward component related to the rate

of change of the desired heading angle, which permits to improve the performance and achieve

accurate tracking while following curved paths. The proposed guidance scheme is evaluated

based on experimental flight results. According to the authors, it presents a good performance

in the presence of wind and parametric uncertainty. In [9] the controller presented in [159] is

improved by implementing a Partially-IGC strategy that includes a sliding mode control on the

inner and the outer loops using a non-linear sliding surface based on Second Order Sliding Mode

(SOSM ) control theory. Experimental tests compare the conventional SGC approach and the

proposed Partially-IGC approach to show that the second one presents a faster convergence of

the cross-track error toward zero.

In [190] the Second Order Sliding structure is used to develop a PF application. The proposed

controller provides smooth bank and turn coupled motions. To estimate the uncertain sliding

surfaces a High-Order Sliding Mode (HOSM ) differentiator is applied. The sliding surface struc-

ture is based on the Pure Pursuit algorithm through a set of intermediate control variables and

also introducing a virtual target point in the path. This approach eliminates time-consuming and

intensive computation. According to the authors, simulations show that it provides an excellent

performance even under wind turbulence conditions.

Regarding the trajectory tracking problem, numerous SMC quadrotor implementations are found

[196][20]. Some of these approaches are able to deal with wind disturbances [49][182].

2.2.10 Comparison

Refer to Table 2.1 for a comparison of the reviewed PF algorithms. The characteristics of these

algorithms are evaluated only in the context of the path following problem applied to UAVs and

are based on the reviewed literature. The columns refer respectively to: the control structure

(i.e. Integrated Guidance and Control or Separated Guidance and control); the type of results

(experimental or simulation); the application to quadrotors; good experimental results against
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external disturbances; including a Fault Tolerant Control (FTC) strategy; and implementing an

adaptive approach.

Table 2.1: Comparison of the PF techniques.

Structure Results Quadrotor Wind dist. FTC Adaptive

Backstepping IGC Experimental Yes Yes No No

Lyapunov-based SGC and IGC Experimental Yes Yes No Yes

Feedback Linearization SGC and IGC Simulation Yes No Yes No

Geometric SGC Experimental Yes No No No

Model Predictive Control SGC Experimental Yes Yes No Yes

Vector Field SGC Experimental Yes Yes No Yes

Learning-based SGC Experimental Yes Yes No Yes

Optimal Control SGC and IGC Simulation No Yes No Yes

Sliding Mode Control SGC and IGC Experimental No Yes No No

2.3 Navigation

Navigation can be defined as the process of data acquisition, data analysis and extraction of

information about the vehicle’s state and its surrounding environment with the objective of

accomplishing assigned missions successfully and safely [88]. This information is obtained by

means of the sensors of the Unmanned Aerial System. The most common sensors for UAS are

the accelerometers, gyroscopes, magnetometers, pressure sensors, GPS, cameras and LIDARs.

The raw measurements provided by these sensors are used to perform the state estimation and

for the perception algorithms.

In this thesis the navigation is mainly focused on the detection of an obstacle. There exist

different forms of performing this task in addition to the pure obstacle avoidance approaches,

as for instance with a Simultaneous Mapping And Planning method. The literature of these

perception algorithms are reviewed in this section. Furthermore, state estimation methodologies

and other important perception tasks are reviewed.

2.3.1 State Estimation

The state estimation concerns mainly the processing of raw sensor measurements to estimate

variables that are related to the vehicle’s state, such as attitude, position and velocity [88]. The

state estimation algorithms usually fuse information from many sensors to estimate this state.

The most common approach for fusing sensor data to estimate the state is the extended Kalman

filter (EKF) [155][72]. That is, using one filter with all the state variables that need to be

estimated. Sometimes, the state estimator is composed by two cascaded EKFs: one for attitude
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estimation using Inertial Measurement Unit (IMU) raw data, and the other for position and

velocity estimation using GPS raw measurements and translational accelerations.

Another widely used method that provides good results with the estimation of the attitude on

UAVs is the complementary filter [111][110][52]. This method is only applicable to the measure-

ments of accelerometers, gyroscopes and magnetometers of an IMU sensor. The measurements of

these sensors are combined to obtain an estimation of the orientation of the vehicle represented

in quaternions.

The GPS systems depend on the access to the signals from satellites. Since satellites are not

always available, as in the case of indoor and urban environments, other approaches to solve the

state estimation problem are needed. The ranging systems, like infrared [23] or ultrasonic [162]

sensors, are used to aid an state estimator for the stabilization of a vehicle relative to the walls in

an indoor environment. As the outdoor UAS generally fly in relatively large open spaces, there

is not sufficient environmental structure for the relative position estimation using this ranging

systems.

In outdoor environments where the GPS signal are not available, the vision-based state estimators

become a great solution. In the on-ground vision, cameras are placed externally to the vehicle

and are used to track it and to estimate its attitude and/or position. For example, [74] and [123]

use the VICON system in their research on flight control and for cooperative path following.

Visual odometry [12] consists on an incremental method that analyses a sequence of images

to estimate changes in position and/or orientation over time. In the target relative navigation

[78] [107] the position of the vehicle relative to a specific detected target is estimated. The

terrain relative navigation [41] estimates the vehicle’s position, and sometimes the velocity, by

comparing terrain measurements from on-board cameras with a terrain map.

2.3.2 Perception

Perception is the ability to use measurements from sensors to build an internal model of the

environment and to generate events of situations perceived in the environment [88]. The recog-

nition process involves comparing what is observed with the UAS a priori knowledge [80]. The

information is usually obtained by vision systems (i.e. with cameras) and by LIDAR sensors.

Typically, the information obtained by the perception algorithms is not directly used as measure-

ments in the flight controller, but as inputs to higher-level guidance systems. The perception

block can serve to several functions such as target detection, obstacle detection or mapping.

These functions are covered in next subsections, and a literature review on both vision-based

and LIDAR-based approaches is given.

Target Detection

Most of these perception algorithms are based on vision systems. These algorithms are similar

to the target relative navigation mentioned in the state estimation section. The main difference

is that here the information is used for guidance and the trajectory control relies on another
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state estimator algorithm, while in the target relative navigation the visual estimates are used

to control the vehicle.

One of the applications of target detection is the automatic landing. For example, in [156] a

vision algorithm is used to detect and recognize from a monocular camera a helipad for landing

a helicopter. In [71] a similar approach is presented to land a UAV on a stationary target using

vision and GPS.

The horizontal target approach is also a typical application of the target detection. That is, to

approximate to a frontal target and to hover at some distance from it. A vision-based velocity

controller for frontal target tracking is presented in [117]. The vision algorithm detects and

tracks building windows. It detects the target by using segmentation and square finding. The

tracking is made with template-matching and a Kalman filter.

Another application is the mobile ground target detection and tracking. In [180] a pursuit-evasion

game with a helicopter and UGVs is implemented by means of a vision-based approach. The

implemented vision system can actively track coloured objects. An indoor quadrotor application

for cooperative vision-based tracking of ground vehicles is presented in [22]. An optimization

technique and a Kalman filter are used by the vision tracking algorithm.

Obstacle Detection

This subsection introduces perception approaches for obstacle detection that do not perform

a mapping of the environment. The approaches of obstacle detection that include maps are

presented in the next subsection. Both vision-based and LIDAR-based systems are commonly

used to detect obstacles.

Computer vision can be applied to solve this problem by using optical flow, stereo vision systems

or monocular cameras. The optical flow estimates the motion of the elements of an image. The

stereo vision systems are commonly used to obtain the depth information. Different techniques

can be used to detect the obstacle with monocular vision. These techniques include estimating

the relative size or clarity of the obstacle, using a texture gradient, by means of interposition or

by motion parallax [17]. Also, the obstacle can be detected from the known characteristics of an

object (e.g. color or shape).

A single camera obstacle detection algorithm based on the estimation of an optical flow proba-

bility distribution is presented in [98]. The resulting algorithm provides distance to the obstacles

surrounding the UAV. This methodology was tested experimentally. In [79] the obstacle detec-

tion for the navigation of a UAV through urban canyons is solved by the use of an optic flow

(from a pair of sideways-looking fish-eye cameras) and a stereo vision. The environment is rep-

resented with a 3D point cloud map, and obstacles are detected by using a distance threshold.

A multi-obstacle detection algorithm based on stereo vision is presented in [189]. First, a depth

map of the scene is obtained, and then, another algorithm is used to find out five dangerous

objects and give them bounding boxes. The results show that the algorithm can detect at most

five obstacles in 15m. In [15] the obstacle global position is estimated by tracking some coloured
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flags on the obstacle and using a GPS and IMU for knowing the global position of the vehicle.

Other interesting application with monocular vision systems that estimate the size expansion [6]

or the relative direction of an obstacle [108], or the relative distance to an obstacle [152] can be

found in the literature.

Using LIDAR sensors for obstacle detection and avoidance is an interesting solution because

these approaches are less computationally expensive than vision-based approaches, providing a

fast reactive system that can prevent collisions in the last minute. In [119] the authors propose

a system that uses immediate LIDAR measurements to detect the ground and frontal obstacles

and computes a reactive action based on the current context. A collision avoidance approach

for an hexacopter UAV with a mounted LIDAR is presented in [132]. A Kalman filter is used to

estimate the position, velocity, and acceleration of the obstacle by using the data of the LIDAR

as the associated measurement. The estimation of the obstacle state is used to predict the future

trajectory of the moving obstacle. In [170] a simple obstacle detection and avoidance approach

for a quadrotor UAV is developed by using the information of a rotating LIDAR sensor. The

aim is to support the pilot during the manual flights avoiding possible collisions. The approach

is assessed by experimental results. A 2D-LIDAR based obstacle detection method for a UAV

is implemented in [198]. In this approach a velocity estimation method is used to estimate the

position of the LIDAR as it scans each point and then corrects the twisted point cloud. The

effectiveness of the methodology is proved by simulation and experimental results.

RADAR sensors are also used to detect obstacles in UAV systems [96]. However, this sensors

are very heavy, which limits their application to small multirotor vehicles. Applications using

acoustic sensors (ultrasounds) can also be found in the literature [138]. The problem of this

sensors is that they have a short operational range, which restricts their use to only indoor usage

and low-speed objects. Other multi-sensor applications [138][54] use information from several

sources to detect an obstacle.

Mapping

Mapping the environment consists of building some internal representation of the scene [88].

Mapping-based approaches allow the use of more sophisticated path planning and obstacle avoid-

ance algorithms. The mapping perception systems can be classified in three categories: the

simultaneous location and mapping (SLAM), the simultaneous mapping and planning (SMAP)

and the safe landing area detection (SLAD).

Simultaneous Localization And Mapping : Consists on building a map of an unknown

environment and localizing the vehicle on the map at the same time. This map is usually

represented by a set of features or a point cloud. Generally, SLAM approaches are not applied

to the detection and avoidance of obstacles.

In [16] the implementation of visual SLAM techniques to outdoors images taken from UAVs is

presented and tested experimentally. An optic flow-based vision system for autonomous local-

ization and scene mapping for a small and micro-UAVs is presented in [89].
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SLAM LIDAR-based approaches can be also found in the literature. They have been generally

developed for indoor navigation of small vehicles [61] [19]. However, in some cases LIDAR has

also been used on bigger UAVs for outdoor mapping, such as [85], where a 3D terrain mapping

from LIDAR on-board a helicopter is demonstrated.

Simultaneous Mapping And Planning : The maps built with this approaches are typically

used for obstacle avoidance and path planning. SMAP focuses more in efficiency and robustness

rather than accuracy. State estimates are generally available from the GPS-IMU.

Some interesting work on applying vision-based SMAP for UAVs can be found in the litera-

ture. Such as in [14] where SMAP is performed using a stereo vision system, or in [25] where

another perception system with stereo cameras combining depth image information with image

segmentation is presented.

However, the most successful approaches on SMAP for UAS have been done using LIDARs. [161]

proposes an obstacle detection and avoidance scheme based on building local obstacle maps and

designing object-free trajectories using MPC. In [176] a LIDAR system is used to develop a

effective 3D outdoor navigation system for an autonomous UAV. Safe autonomous flight with

3D obstacle avoidance capability is demonstrated in [157]. This method combines global planning

and reactive obstacle avoidance. [66] developed a navigation approach for a quadrotor to explore

and map unknown indoor environments.

Safe Landing Area Detection : These algorithms are needed when UAVs are commanded to

land on unknown terrains to accomplish their mission or to achieve an emergency landing.

[116] presents a stereo vision-based system for a UAV that combines terrain mapping with SLAD.

In [175] a stereo range map of the terrain is created and then a SLAD algorithm finds all safe

landing regions by applying a set of landing point constraints (slope, roughness, distance to

obstacles) to the map.

Typically, LIDAR sensors are used in situations with complex terrains or poor light conditions.

In [154], two different SLAD algorithms are compared; one using a monocular vision and the

other a hemispherical LIDAR. Although the algorithms reported similar results, the LIDAR-

based algorithm, unlike the vision-based, was able to run on-board the UAV due to its lower

computational cost. Moreover, the LIDAR-based approach proved its effectiveness in night

flights. In [185], another SLAD algorithm was applied to the 3D point cloud obtained from a

hemispherical 3D LIDAR to determine the safe landing regions. [158] investigated the effects of

factors such as smoke and dust on a LIDAR-based SLAD approach.

2.4 Guidance

Guidance is the part of the system that is in charge of carrying out the planning and decision-

making functions to achieve assigned missions or goals [88]. It takes inputs from the navigation

system and uses mission information to generate reference trajectories for the control system.

This block allows to replace the cognitive process of a human pilot or operator. Guidance can
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include different tasks such as path planning, mission planning, decision-making or trajectory

generation. This thesis focuses on the path planning and obstacle avoidance task. Thus, only

path planning literature is reviewed.

Path planning is defined as the process of using accumulated navigation data and a priori infor-

mation to allow the UAS to find the best and safest way to accomplish a specific mission [88]. In

most of the cases, the path planning is also responsible for the obstacle avoidance task [31][34].

In this section the most relevant and practical path planning techniques for UAS are presented.

Each technique is employed for different situations and problems. For example, reactive path

planing is commonly applied to perform real-time obstacle avoidance to avoid last instant colli-

sions.

2.4.1 Road Maps

A road map is generally represented as a connectivity graph. The nodes correspond to positions

of the vehicle and the edges represent obstacle-free paths between these positions. In these

algorithms the connectivity graph is first constructed and then the best path according to a

defined criteria is searched [163]. The most usual path planning methods using Road maps are

briefly described hereafter:

Visibility Graph : In this method obstacles are approximated by polygons and the edges of

these polygons are connected by straight line segments. It is a complete method but it only

works in two dimensions. In [73] visibility graphs are applied for path generation on a quadrotor

system.

Voronoi Diagrams: The road map is formed by a set of Voronoi edges. These edges are

equidistant from all the obstacles in the region. Voronoi paths are, by definition, as far as

possible from the obstacles. In [75] the authors developed an obstacle field route planner that is

based on Voronoi road maps.

Probabilistic Road Maps (PRM): It takes random samples from a set of discretized positions

from the vehicle’s space and it connects them with obstacle-free segments. This method is

adequate for large spaces, however, due to its slow searching rate it is inefficient for dynamic

obstacle avoidance. A path planner based on the PRM method for a UAV is presented in [76].

Rapidly Exploring Random Trees (RRT): This approach is a variant of the PRM method.

Instead of taking random samples, the planner starts at the initial vehicle’s position and randomly

expands a tree. That is, nodes are added successively to the tree, connected via edges, until a

termination condition is reached [163]. This method improves the efficiency of PRM since it is

able to rapidly search in large spaces. Furthermore, it is appropriate for unknown environments,

as demonstrated in [187], where the authors compare the performance of the PRM and RTT

planners with a helicopter UAS.
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2.4.2 Potential Fields

In this method the vehicle is considered under the influence of force fields generated by the goals

(attractive forces) and obstacles (repulsive forces) in the space. It has low computational cost

and is easy to implement. The principal limitation is that a local minima can appear depending

on the obstacle shape and size [163]. In [157], a variant of the Potential Field based path planning

algorithm implemented on a UAV is presented. The system relies only on LIDAR-based sensing

and perception.

2.4.3 Heuristic Search Algorithms

As they name denote they are based on heuristic rules. These rules are used for guessing which

path moves the vehicle closer to the defined objective. Heuristic Search Algorithms (HSA)

are able to provide reasonably good performance with low computational cost. A* and D*

algorithms are the most common HSA. These algorithms are based on a tree-search with nodes

that represent the possible solutions (i.e. positions of the vehicle). A* algorithm evaluates the

goodness of each node by estimating the distance to the goal. D* is an incremental version of the

A* algorithm that is able to re-plan the path in real time when changes in the environment occur.

The term incremental refers to the ability of reusing previous search effort in subsequent search

iterations. NASA researchers [176][185] have developed two 3D path planners for a multirotor

combining heuristic planning concepts and the A* search algorithm.

2.4.4 Optimization Methods

In these methods the path planning problem is considered as a numerical optimization problem.

Constraints such as obstacles or vehicle’s kinematic and dynamic limitations are represented

with mathematical relationships [60]. The main advantages are that, theoretically, they pro-

duce optimal solutions and they consider the limitations of the vehicle. Nevertheless, they are

computationally expensive. The most investigated optimization methods for UAS are Mixed

Integer Linear Programming (MILP), Receding Horizon Control (RHC) and Motion Primitive

(MP). MILP and RHC have been successfully applied for path planning of an indoor quadrotor

[42][120].

2.4.5 Planning Under Uncertainties

When finding the best path for a specific mission, uncertainties such as position, environment

knowledge or limited precision in tracking commands can become a serious problem [60]. To deal

with these uncertainties, the most common approach is to consider the worst case by introducing

a conservative safety margin. However, there are some works that consider uncertainties directly

in the planning algorithm, such as in [67], where this problem was addressed for autonomous
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indoor exploration using a quadrotor vehicle. NASA researchers [59] developed a 3D path plan-

ning algorithm based on risk minimization that allows the UAS to operate with reliability and

safety under uncertainties.

2.4.6 Reactive Path Planning

Most of the path planners previously presented are based on a global representation of the

environment and they are generally computationally expensive. Instead, reactive planning or

reactive obstacle avoidance algorithms run very fast and are useful for preventing collisions in

the last instant. The term reactive planning refers in general to a class of algorithms that use

only local knowledge of the obstacle field to plan the trajectory [60].

There exist different methodologies to implement a reactive path planning approach such as with

potential fields, by implementing optimization methods, machine learning approaches or other

methods based on geometric relations. Note that reactive path planning includes techniques that

are also used in global path planning (i.e. potential fields or optimization methods). However,

in the reactive approaches these methods only use local information of the environment. Some

of these techniques and other methodologies implemented on multirotors and other UAVs are

reviewed next.

In [45] a reactive obstacle avoidance approach based on the potential fluid flow theory is imple-

mented to a fixed-wing UAV. The algorithm computes the instantaneous local potential velocity

vector, which is used as a command of the inner controller. Manoeuvring constraints of the

UAV are included in the control design. Obstacles are approximated by bounding rectangles.

The efficacy of the proposed approach is demonstrated through numerical simulations. Another

UAV approach based in potential fields is presented in [46]. The proposed solution is based

on the dynamic artificial potential field (DAPF) algorithm, which generates real-time reactive

collision-free paths according to the threat level of moving obstacles. The effectiveness of the

proposed path planning method is assessed through simulations results.

A 3D reactive motion planner based on optimal control theory for a fixed wing UAV in a dynamic

workspace is presented in [21]. A virtual space representation is used to formulate the problem

and generate the locally optimal trajectories in real time. These trajectories are defined by the

vehicle’s speed, the flight path angle (pitch) and the heading angle. The dynamic and kinematic

constraints are taken into account. The effectiveness of the proposed methods are shown by

simulation results. [188] combines a reactive collision avoidance algorithm with global path

planning techniques for UAVs operating in unknown environments. The implemented global

path planning techniques are the Probabilistic Roadmaps and the Rapidly-Exploring Random

Trees. Additionally, the system includes a reactive controller based on Optimal Reciprocal

Collision Avoidance (ORCA) for achieving a fast sense-and-avoid behaviour. The proposed

system is evaluated in simulation and experimentally. The experimental platform is formed

by a quadrotor vehicle equipped with a structured-light depth sensor that is used to obtain

information about the environment in form of occupancy grid map. In [7] the OCRA algorithm

is used to develop a decentralized method for reactive avoidance with multiple aerial vehicles in a
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industrial environment. This algorithm computes an optimal solution for the near future. Both

static and moving obstacles are considered in a 3D environment. The approach was tested in real

indoor experiments with four quadrotors. The UAVs were able to fly in the presence of static

obstacles while avoiding potential collisions in real-time. In [105] a quadrotor LIDAR-based

collision avoidance algorithm is developed by combining an RRT path planner with a Signed

Distance Field (SDF) based collision checking algorithm. In this methodology the trajectory is

optimized by a short cut and Optimal Polynomial Trajectory algorithms. The proposed solution

is assessed in several simulating scenarios using RotorS Gazebo simulator in the presence of

static and dynamic obstacles. In [150] a 3D ocupancy grid map is build with the information of

a monocular camera and depth camera. Then, a receding horizon planning architecture is used

to obtain the optimal trajectory in the local horizon. The authors demonstrated the planner

capabilities with autonomous quadrotor flights in an urban environment.

Other approaches use geometrical notions to define the manoeuvre to avoid an obstacle. In [132]

the collision cone approach is used to avoid potential collisions with a moving obstacle detected by

a frontal LIDAR. A Kalman filter is used to estimate the state of the obstacle (position, velocity,

and acceleration), which allows to predict the future positions of the moving obstacle. Numerical

simulations with a multirotor vehicle are conducted to verify the performance of the collision

avoidance algorithm. In [77] a 3D occupancy map is defined in a cylindrical volume around the

UAV. Then, an expanding elliptical search is performed to find a waypoint that offers a collision

free route towards a goal waypoint. The proposed approach is validated in experimental flights

with an autonomous helicopter equipped with a stereo camera and LIDAR sensor. An optical

flow based obstacle avoidance planner is presented in [168]. The proposed approach predicts a

cylinder of free space into the image flow representation of the environment and steers the vehicle

by manoeuvring this cylinder through the upcoming environment. The approach is validated

with real experiments with a quadrotor flying in a forest environment. A reactive method for

static obstacle avoidance of a UAV is presented in [68]. The field-of-view of the obstacle detection

sensor is converted to a spherical occupancy grid map. The proposed method calculates collision-

free paths within the field-of-view of the sensor by applying approximated reachable sets and

the wavefront algorithm. The task of the wavefront algorithm is to find a short path from the

initial cell of the UAV to a goal cell. The approach is tested in a simulation environment with a

LIDAR sensor and with a stereo vision system.

Recent years showed an increase on the application of learning-based solutions to different prob-

lems, including reactive obstacle avoidance. In [153] an obstacle avoidance planner based on

deep reinforcement learning theory is presented. In this approach the implemented agent re-

ceives the information of a LIDAR sensor placed on a quadrotor vehicle. The reward function

of the agent is defined as a artificial potential field. The agent is trained in the RotorS Gazebo

simulator. The proposed system is evaluated in simulated and real indoor scenarios in the pres-

ence of static and dynamic obstacles with success. A UAV ground target tracking approach

under obstacle environments using a deep reinforcement learning algorithm is found in [99]. The

reward function is constructed based on the line of sight and an artificial potential field. Long

Short-Term Memory (LSTM) networks are used to approximate the state of the environment

that is fed as the state of the deep reinforcement learning agent. This networks improve the

approximation accuracy and the efficiency of data utilization. The proposed method is validated
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with simulation results. An imitation learning technique is used in [140] for solving the reactive

path planning problem. The system consists on a small quadrotor with a monocular camera

that flies at low altitude through natural forest environments. Given a small set of human pi-

lot demonstrations, the authors use imitation learning techniques to train a controller that can

avoid trees by adapting the yaw angle of the UAV. The performance of the proposed system is

evaluated in indoor experiments and in real natural forest environments outdoors. [193] presents

a quadrotor reactive obstacle avoidance system which employs an online adaptive Convolutional

Neural Network (CNN) that progressively improves depth estimation from a monocular camera

in unknown environments. The depth map computed from the CNN is transformed into Ego

Dynamic Space (EDS). Then, traversable waypoints are automatically computed. The presented

methodology takes into account the dynamic constraints of the quadrotor. This methodology is

validated through experimental indoor results.





Chapter 3

Multirotor Environment

The methodologies and algorithms developed in this thesis, as well as its simulation and exper-

imental results, are based on a multirotor vehicle. This chapter is focused on the multirotor

environment employed in this thesis, the Asctec Hummingbird quadrotor. The experimental

platform is described and a mathematical model of the plant is derived. Furthermore, this

chapter describes the quadrotor simulation benchmark produced within this thesis for an easier

algorithm development and test. Details of the designing process and implementation of the

autopilot are also given.

3.1 Experimental Platform

The experimental platform is formed by the Asctec Hummingbird vehicle (Fig. 3.1), a quadrotor

with a mass of 0.698 kg and a maximum airspeed of 15 m/s. Fig. 3.2 presents a scheme of the

main elements of this platform an how they are connected. The original Hummingbird platform

has two on-board processors that are connected to the sensor suit, the motor controllers (ESC)

and the radio control (R/C) receiver. In our platform a new on-board computer (Odroid-XU4) is

included. This PC is equipped with Robot Operating System (ROS) and can communicate with

the ground station through wifi. The most important components of the platform are explained

in this section.

3.1.1 Sensors

Sensors are the most important elements in order to perform a correct estimation of the vehicle’s

state and a proper perception of the vehicle’s environment. The Hummingbird vehicle has five

different data sources: the accelerometers, the gyroscopes, the magnetometers, the pressure

sensor and the GPS. These sensors are described next.

The Inertial Measurement Unit (IMU) of the Asctec platform, which includes the accelerome-

ters and gyroscopes, provides measures at fast rates, up to 1000hz. Three axial accelerometers

29
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Figure 3.1: Asctec Hummingbird Quadrotor with the Odroid XU4Q on-board PC (center
bottom of the UAV).
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Figure 3.2: Scheme of the elements of the experimental platform (based on an image from
wiki.asctec.de).

measure the acceleration of the forces acting on the vehicle on each axis of the body frame of ref-

erence. These forces are the generated by the rotors and the external forces. The angular velocity

on each axis of the body frame is measured by the gyroscopes. The angular velocity measures

provided by the IMU are treated in such a way the bias of the sensors are eliminated. That is,

a software eliminates any constant or low-frequency angular velocity of the raw measurement.

The magnetometers measure the strength of the local electromagnetic field. This measurements
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are easily disrupted by nearby ferric objects. Therefore, the quality of the measurements is

degraded in indoor environments. From the measured magnetic field vector and the acceleration

vector, the Asctec’s software computes an estimation of the attitude of the angle (i.e. the Euler

angles).

The pressure sensor provides an estimation of the altitude and velocity in the z axis of the world

frame of reference. This sensor is considerably affected by wind gusts, which may alter the

pressure in the sensor’s membrane.

Finally, GPS sensor serves measures of the position with respect to the earth frame at a rate of

10hz. This measurements are given by the latitude and longitude. The main problem of this

sensor is that it depends from the access to the signals from satellites. Furthermore, satellites

are not always available, such is the case of indoor or urban environments.

3.1.2 Actuators

The quadrotor is actuated by four rotors. These rotors are moved by X-BL-52S motors. Each

motor is controlled by a electronic speed controller (ESC). The ESCs receive digital signals from

the low-level processor. The dynamics of the controlled motors are very fast compared to the rest

of the quadrotor’s dynamics. Table 3.1 presents some parameters of the Asctec Hummingbird

motors extracted from the motor’s datasheet.

Table 3.1: Parameters of the X-BL-52S motor.

Description Value

Weight. 0.028 kg

Radius. 0.0139 m

Motor torque constant. 0.01638 Nm/A
Maximum motor speed. 10880 rpm

Armature resistance. 1.0467 Ω

Polar moment of inertia of armature. 1.0322 ⋅ 10−4 Nm/repm
Viscous damping in motor. 0.01832 Nms/rpm
Mechanical time constant. 5.634 ⋅ 10−3 s

Motor constant. 0.854 Krpm/V
Time constant. 5.957 ⋅ 10−3 s

3.1.3 On-board Computers

The original Hummingbird platform has a flight control unit named AutoPilot Board. In addition

to this unit, a new computer was included to the platform, the Odroid XU4. Both units are

described in this section.
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Asctec AutoPilot Board

The Autopilot Board has two processors (Fig. 3.2): the low-level processor and the high-level

processor. The low-level processor receives signals from the sensors (except the GPS) and it is in

charge of sending commands to the motor controllers. This unit is provided with a sensor fusion

software that treats the measures received by sensors and also gives an estimation of the attitude

angles. Furthermore, the low-level processor has an autopilot controller (attitude, altitude and

position controllers). This processor is not accessible for the user. However, the user can control

some of its functionalities through the high-level processor.

The high-level processor is connected to the GPS sensor. Also, it is connected to the low-level

processor by using a SPI protocol. This processor is user-programmable through the Asctec

software development kit (SKD). Nevertheless, in the experimental platform presented in this

thesis, this processor is only used as a bridge to communicate the low-level processor with the

the Odroid XU4, a more powerful computer that was included to the platform.

Odroid-XU4

The Odroid-XU4 (Fig. 3.3) is a small-size computer (83x58x20mm, weight: 60g) that, despite

its low cost, provides very good performance. This odroid has 2GB of RAM and the Sam-

sung Exynos5422 Cortex-A15 and Cortex-A7 CPUs. This computer was included on-board the

quadrotor to enhance its capabilities, as well as to permit a better monitoring of the plant. The

computer runs with linux Ubuntu 16.04LTS and it is equipped with Robot Operating System

(ROS). ROS is a standard framework in robotics and aerial vehicles, supported by a large com-

munity. One of the main advantages of ROS is that permits the user to build complex programs

without having a deep knowledge on the hardware system. The asctec mav framework ROS

package allows the communications between the Asctec’s high-level processor and the Odroid

computer. That is, it works like a driver to receive and send information to the Asctec AutoPi-

lot Board. To permit this communication, the high-level processor needs to be flashed with a

specific firmware (asctec hl firmware). This package provides the information about the sensors,

actuators, battery and other information that helps in the monitoring of the plant.

Figure 3.3: Odroid-XU4 computer (original from hardkernel.com).
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3.1.4 Ground Station

The ground station of this experimental platform is equipped by a laptop PC and a R/C trans-

mitter (Futaba FF7). The laptop runs with linux Ubuntu with the i7-8550U intel processor and

16GB RAM. The PC is also equipped with the ROS framework and it connects to the ROS core

in Odroid via a wifi communication. That is, ROS nodes can be launched from this PC and

topics with information of the quadrotor can be monitored as well. The R/C transmitter can be

used to pilot the aircraft manually. Typically, it is used in the take off and landing manoeuvrings

or in case of emergency.

Fig. 3.4 shows an image of the experimental platform. As it can be observed, it is a an outdoors

platform. The picture includes the vehicle platform detailed in this section and the ground

station R/C transmitter with the pilot prepared to perform manual manoeuvrings in eventual

case of emergency.

Figure 3.4: Outdoors experimental platform.

3.2 Mathematical Model

In this section, the mathematical model of the AscTec Hummingbird quadrotor is presented. The

coordinate systems as well as the axes labels and rotational conventions defined in this model

are shown in Fig. 3.5. Two coordinate systems can be found: The body frame of reference {B},

which is attached to the body of the quadrotor, and the world reference frame {W}, considered

inertial. Details of this model are given in next subsections.

3.2.1 Dynamic Equations

The quadrotor dynamic model is based on the standard Newton-Euler nonlinear model described

in detail in [112][24]. Additionally, the equations presented here include other effects such as

gyroscopic moments, drag forces and wind disturbance forces. The dynamic model has twelve
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Figure 3.5: States conventions and frames of references of the quadrotor model.

states that are the world position (x, y and z), the Euler angles (φ-roll, θ-pitch and ψ-yaw), the

body velocities (u, v and w) and the body angular velocities (p, q and r). Eqs. (3.1)-(3.4) define

the state equations of the dynamic model of the quadrotor.

ṗ = Rv = [ẋ ẏ ż]
T

(3.1)

Φ̇ = Hω = [φ̇ θ̇ ψ̇]
T

(3.2)

v̇ = 1

m
(F −Fd −Fw) + gB −ω × v = [u̇ v̇ ẇ]

T

(3.3)

ω̇ = (J)−1 [τ −ω × Jω] = [ṗ q̇ ṙ]
T

(3.4)

The position state vector (x, y and z) is calculated in Eq. (3.1). The term R is a rotation matrix

to transform from the body to the world frame using the rotational sequence zyx. Eq. (3.5) shows

how the construction of this matrix is made and used to transform the motion of the vehicle

from the body frame to the inertial frame of reference. The resultant rotational matrix R is

shown in Eq. (3.6).

vW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(φ) sin(φ) 0

− sin(φ) cos(φ) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 cos(ψ) sin(ψ)

0 − sin(ψ) cos(ψ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vB (3.5)
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R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(ψ) cos(θ) cos(ψ) sin(θ) sin(ψ) − sin(ψ) cos(φ) cos(ψ) sin(θ) cos(φ) + sin(ψ) sin(φ)

sin(ψ) cos(θ) sin(ψ) sin(θ) sin(ψ) + cos(ψ) cos(φ) sin(ψ) sin(θ) cos(φ) − cos(ψ) sin(φ)

− sin(ψ) cos(θ) sin(φ) cos(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.6)

Eq. (3.2) is the Euler kinematic equation that determines the rate of change of the Euler angles

(φ-roll, θ-pitch and ψ-yaw) in the world frame. The basic idea of the Euler angles is to represent

the orientation by decomposition the rotation in three consecutive simpler rotations about known

axes. Matrix H relates the angular velocity of the vehicle in the body frame with the Euler angle’s

rate of change. This rotation matrix (Eq. 3.8) is obtained by using sequential rotation matrices

with the roll-pitch-yaw sequence, as shown in Eq. (3.7) where angular velocity vector is obtained

from the Euler angles.

ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ̇

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

θ̇

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

ψ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟
⎠

= H−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ̇

θ̇

ψ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.7)

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 tan(θ) sin(φ) tan(θ) cos(φ)

0 cos(φ) − sin(φ)

0 sin(φ)/cos(θ) cos(φ)/cos(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.8)

Eq. (3.3) is the linear velocity state (u, v and w) equation. They are the linear velocities that

correspond to the x, y and z axis of {B}, respectively. F represents the thrust forces. Fd and Fw

are the drag and wind disturbance forces, expressed in the body axis. These forces are explained

in Section 3.2.3. The term gW represents the gravity acceleration constant expressed in the body

axis. Eq. (3.4) defines the angular velocity state update. p, q and r are the rate change of roll,

pitch and yaw, respectively, represented in the body frame.

Eq. (3.9) shows the thrust force generated by the ith motor. ωmi is the rotational velocity of

motor i, cT is the thrust coefficient, ρ is the air mass density and A is the area of the rotor.

kT is the thrust constant (1/2cT ρA), which relates the square rotational velocity of the motors

in rpm with the generated thrust force. The thurst force generated by the four motors of the

quadrotor is shown in Eq. (3.10). This force is always parallel to the z body axis. Eq. (3.11)

defines the generated aerodynamic, gyroscopic and thrust moments on each body axis. The four

motor rotational velocities are considered the inputs of the dynamic model.
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Ti =
1

2
cT ρA(ωi)2 = kT (ωi)2 (3.9)

F = [0 0 kT (ω2
m1 + ω2

m2 + ω2
m3 + ω2

m4)] (3.10)

τ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dm kT ω
2
m2 − dm kT ω2

m4 + Jm q (π/30) (−ωm1 + ωm2 − ωm3 + ωm4)

−dm kT ω2
m1 + dm kT ω2

m3 + Jm p (π/30) (ωm1 − ωm2 + ωm3 − ωm4)

−kQ ω2
m1 + kQ ω2

m2 − kQ ω2
m3 + kQ ω2

m4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.11)

The parameters of the model are defined in Table 3.2 and introduced in Section 3.2.4, where the

parameter identification process is described.

3.2.2 Motor Model and Control Mixing

The inputs of the dynamic model are the velocities of the motors (ωmi). However, in the real

AscTec Hummingbird platform, the inputs are four digital signals limited from 0 to 200 that

are associated to thrust (uz) and to roll (uφ), pitch (uθ) and yaw (uψ) rates. These inputs are

related to the square of the rotational velocity reference of the motors, ωn,ri, by Eq. (3.12).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ωn,r1
2

ωn,r2
2

ωn,r3
2

ωn,r4
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 −1

1 1 0 1

1 0 1 −1

1 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uz

uφ − 100

uθ − 100

uψ − 100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.12)

The motor’s rotational velocity references (ωn,ri) obtained from Eq. (3.12) are normalised from

0 to 200. Thus, they are still digital signals. According to the Asctec’s manual, the velocity

reference of the motors in rpm (ωr1) can be obtained from the linear expression of Eq. (3.13),

being 8600 rpm the maximum velocity and 1075 rpm the minimum. The process of calculating

these motor velocity references from the quadrotor digital inputs is performed by a software

block known as the control mixing.

ωri = 37.625ωn,ri + 1075 rpm (3.13)

The motors of the quadrotor are controlled to follow the references computed by the control

mixing block. The dynamics of the motors are modelled by a first order differential equation.

Real velocities of the motors, ωmi, are obtained by Eq. (3.14).

ωmi =
ωri

τms + 1
(3.14)
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3.2.3 Other Effects

In addition to the basic dynamic behaviour, other effects are included in the model. For instance,

the gyroscopic effects (τgyr), apparent in the moment vector (Eq. 3.11) with the terms shown

in Eq. (3.15).

τgyr,x = Jm q (π/30) (−ωm1 + ωm2 − ωm3 + ωm4)
τgyr,y = Jm p (π/30) (ωm1 − ωm2 + ωm3 − ωm4)

(3.15)

The drag and wind disturbance forces are obtained by a simple aerodynamic equation (Eq. 3.16)

which calculates the drag experienced by the quadrotor due to movement through the air. This

force is calculated from the flow velocity relative to the vehicle, where ρ is the air mass density, S

is vehicle’s surface on the xz plane, cD is the drag coefficient and vw is the wind velocity vector.

Fd +Fw = 1

2
ρScD(v − vw)2 (3.16)

3.2.4 Parameter Identification

The parameters of the model (Table 3.2) are obtained from the Hummingbird vehicle. The mass

of the vehicle and distances are directly measured. Motor parameters are acquired from the

datasheet of the motor (see Section 3.1.2).

The thurst constant (kT ) is computed from the data obtained with different experimental tests in

Hover (i.e. experiments around the equilibrium point). Knowing the mass of the vehicle and the

average rotational velocity of the motors during these experiments, kT can be obtained as shown

in Eq. (3.17). Fig. 3.6 shows the normalized speed of each motor during a hover experiment of

1 minute. In this experiment the average normalized speed is 98.2094, which is equivalent to

4760.3 rpm (Eq. 3.13), and applying Eq. (3.17) we obtain a kT of 7.5543 ⋅ 10−8. Taking into

account more Hover experiments in different conditions permits to obtain a more accurate value

of kT = 7.1103 ⋅ 10−8. On the other hand, torque constant (kQ) is obtained from [87], where

aerodynamic parameters of Hummimgbird quadrotor are estimated through wind tunnel tests.

kT = mg

ω2
m1 + ω2

m2 + ω2
m3 + ω2

m4

(3.17)

The mass moment inertia matrix has been calculated applying the Huygens–Steiner theorem

assuming body of the quadrotor as solid cylinders, the arms as cylindrical rods, the ESCs as flat

plates and the motors as solid cylinders. Masses and dimensions of each component are measured

directly on the vehicle. The obtained mass moment inertia matrix is shown in Eq. (3.18).
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Figure 3.6: Normalized motor speed in a hover experiment.

J = 10−3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.4313 0 0

0 3.4313 0

0 0 6.002

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

kgm2 (3.18)

Table 3.2: Parameters of the model.

Symbol Description Value

m Mass of the quadrotor. 0.698 kg

J Mass moment of inertia matrix. Eq. (3.18)

dm Distance from a motor to the c.o.g. 0.171 m

Jm Inertia of each motor’s rotating components. 1.302 ⋅ 10−6 kgm2

τm Motor time constant 5.634 ⋅ 10−3 s

kT Thrust constant. 7.1103 ⋅ 10−8

kQ Torque constant. 1.0088 ⋅ 10−9

3.3 Autopilot

This thesis is not focused in the study of the stabilization problem. However, it is necessary to

implement an autopilot controller if separated guidance and control PF strategies are going to
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be studied. An autopilot based on a set of Proportional-Integral-Derivative (PID) controllers is

developed. Fig. 3.7 shows the control structure of the autopilot with the path following controller.

The autopilot is formed by a velocity controller and an altitude & attitude controller. The

controllers have been tuned by pole-placement technique and re-adjusted experimentally in the

real platform. Table 3.3 presents the final parameters of these PIDs. Altitude controller includes

a feed-forward gravity offset term, calculated in Eq. (3.19), that is added to the PID output. This

autopilot with the parameters of Table 3.3 is used in the simulation and experimental results

presented in this thesis.

Path 

Following 

Algorithm

Quadrotor

Altitude 

&

Attitude 

Controller
Velocity 

Controller

Autopilot

Figure 3.7: SGC structure for path following algorithms.

goffset =
√
mg/4kT − 1075

37.625
(3.19)

Table 3.3: Constants of the PID controllers of the autopilot.

Kp Ki Kd

u 0.32 - 0.1

v 0.32 - 0.1

φ 4 2.2 2.4

θ 4 2.2 2.4

ψ 8 1 7

z 4 2.2 6.6

This autopilot is programmed as a ROS package. Four ROS nodes are implemented: attitude

controller at 100Hz, velocity controller at 50Hz, altitude controller at 20Hz and path following

controller at 5Hz. PID controllers of the autopilot are discretized using the Tusting approxima-

tion. This package has a modular structure in the sense that each of the control blocks can be

easily activated/deactivated or substituted by another controller. Also, new controllers can be

incorporated to the structure straightforwardly.
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3.4 Path-Flyer: A Benchmark of Quadrotor Path

Following Algorithms

Before implementing and testing a control approach experimentally, its performance and func-

tionality should be studied from numerical simulations. Moreover, nowadays the solutions pro-

posed for problems as the obstacle or collision avoidance, given the impact and costs of an

experimental failure, are only validated in simulation. For these reasons, it becomes extremely

important to have a complete, realistic and validated simulation platform of the multirotor and

its environment.

There exist various real-time simulators implemented in ROS, as for instance the RotorS Gazebo

UAV Simulator [53]. ROS is a programming framework for robots and autonomous vehicles, but

is not focused on simulation tasks. Therefore, programming in ROS can become tedious for

those users that only require a simulator. Apart from ROS-based platforms, there are few

simulation models described in the literature but, most of them are not available on-line, they

are little user-friendly, little customizable and very general purpose, in the sense of not being

focused to any particular control problem. Nevertheless, there can still be found some interesting

simulation platforms dedicated to different problems such, for instance, visual tracking [126] or

path planning [174]. However, to the best of my knowledge, there is no simulation platform

aimed to the path following problem, which is one of the main research topic of this thesis.

A simulation benchmark, named Path-Flyer [146], is developed with the double objective of

procuring a platform to perform simulations presented in this thesis and provide to the commu-

nity a user-friendly quadrotor simulation tool. Path-Flyer, is a simulation benchmark for testing

path following algorithms on a quadrotor vehicle. This benchmark allows to compare multiple

path following algorithms in the same scenarios with flexibility. The model of the vehicle is

complete and realistic. An identification process has been carried out to obtain its parameters.

Also, the model has been validated experimentally. Path-Flyer is modular and programmable,

meaning that new algorithms, blocks and/or simulation scenarios can be easily incorporated. For

all these reasons, I consider this platform to be of interest for research as well as for education.

What is more, it has been successfully used as a support tool for lab sessions in various subjects

at the Automatic Control Department in UPC.

Path-Flyer accomplishes the next key features:

1. The mathematical model of the quadrotor and its environment is complete, realistic and

experimentally validated.

2. The benchmark is designed to allow the incorporation of new path following algorithms

and reference paths with ease.

3. The benchmark facilitates to change simulation scenarios and it helps the user to explore

and analyse relevant information of simulation results.

Path-Flyer is built upon the Quad-Sim platform, a MatLab simulation tool developed in Drexdel

University for simulation and control of quadrotors [65]. To this end, the objective is to improve
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and modify this tool to have a realistic mathematical and dynamic model of the quadrotor and

its environment, to implement a proper structure to solve the path following problem and include

various PF algorithms, and to incorporate new functionalities suited for this benchmark.

3.4.1 Quadrotor Model

The mathematical model implemented in this platform is exactly the same as the one described

in Section 3.2. That is, the same dynamic and motor equations, as well as the same control

mixing and parameters are used. The magnitude and direction of the wind velocity vector, vw

apparent in Eq. (3.16), has been modelled as a random walk by adding a constant value to the

integral of a band-limited white noise. An example of the resultant wind disturbance signal is

shown in Fig. 3.8. This random walk is fully customizable. Furthermore, the user can decide

whether to perform simulations with wind disturbance or without. User can also program their

own wind profile.
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Figure 3.8: Wind disturbance generated with a random walk.

On the other hand, a band-limited white noise signal is added to each of the twelve measured

states. Those signals have been adjusted to resemble the noise of the sensors of the real quadrotor

platform. Moreover, Path-Flyer allows the user to customize each noise signal and to enable each

one separately.

3.4.2 Implemented Algorithms

Four path following algorithms are implemented in this benchmark: Non-Linear Guidance Law

(NLGL), Carrot-Chasing and an adaptive version of both algorithms. These are geometric
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algorithms, which means that they compute the control actions from geometric relations. More

information about these two algorithms and the adaptive approaches is found in Sections 4 and

5.

Since the implemented algorithms present a separated guidance and control structure, Path-Flyer

uses the same structure of Fig. 3.7. Furthermore, the same Autopilot described in Section 3.3

is implemented. The quadrotor state vector, x (x, y, z, u, v,w,φ, θ,ψ, p, q, r), is assumed to be

available for every control block.

Non-Linear Guidance Law

This algorithm is based on the Virtual Target Point (VTP) concept. That means that the vehicle

is moved towards a point on the path (the VTP) which is constantly being updated. In NLGL

[133] the VTP is calculated as the point on the path that is at a distance L from the vehicle

(assuring that γ at V TP > γ at pdmin), as shown in Fig. 3.9. Summarizing, the vehicle is required

to travel at a reference speed, Vref , on the x-body axis and the vehicle’s direction is controlled

with the yaw angle, which is always controlled to face the vehicle to the VTP. The altitude

reference (zcmd) is set as the altitude of the point on the path with minimum distance to the

vehicle (z at dmin).

Figure 3.9: NLGL: Obtaining the VTP for a straight line path.

Carrot-Chasing

Carrot-Chasing algorithm [122] is similar to NLGL. The main difference is that the target point

is calculated differently, as shown in Fig. 3.10. That is, the VTP is obtained as the point that is

at a distance δ along the path from the point on the path at a minimum distance to the vehicle

(pdmin). This slight difference results in a variation of the path following performance and the

convergence time. The rest of the algorithm works the same way as NLGL.
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Figure 3.10: Carrot-Chasing: Obtaining the VTP for a straight line path.

Adaptive-NLGL and Adaptive-CC

Both geometric algorithms have one parameter to tune (L and δ). These parameters define the

performance of the path following algorithm and their optimal selection depends on variables

such as the velocity of the vehicle or the path’s shape [172][70]. In the present thesis, an adaptive

approach of the NLGL algorithm is developed (see Chap.5). The Adaptive NLGL uses a Neural

Network to calculate the parameter L from the two mentioned external variables. This approach

is also included in the Path-Flyer, as well a similar approach for the Carrot-Chasing algorithm.

3.4.3 Functionalities

Path-Flyer is formed by several Simulink blocks (Fig. 3.11). These are, the blocks which imple-

ment quadrotor dynamics, control mixing and altitude & attitude controller, that were present

in the original simulator but have been modified in this benchmark, and velocity controller and

path following controller blocks, which have been aggregated to the platform. Each of these

blocks is implemented as explained in previous sections.

Also, there are additional blocks included in the original Quad-Sim platform that implement

different functionalities. Among the original functionalities the Quad-Sim platform permits to

change model parameters or create an initial conditions vector. It presents plots for the evolution

of all the states and motor velocities and it includes a simple 3D flight animation that displays

the evolution the orientation and trajectory of the quadrotor along the last simulation.

As already mentioned, the functionalities that have been incorporated in Path-Flyer are the

noise on the measurements and the wind disturbance, both customizable features. These two

features are present in the quadrotor dynamics block. Furthermore, the platform is provided

with a user interface that gives the user the possibility to set diverse simulation parameters and

analyse significant information of simulation results.

User Interface

The user interface, shown in Fig. 3.12, is divided in two parts: the Path Following Control (left)

and the Path Following Evaluation (right). In the first one the user can select, from a list,

the path following algorithm and the reference path to be simulated. Four reference paths are
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Figure 3.11: Benchmark simulink blocks.

available: circle, eight-shaped, spiral and a line plus circle path. Also, it is possible to modify

the path or the path amplitude and length.

The Path Following Evaluation permits the user to run an evaluation after a simulation. That

is, the user can select which plots to be generated, for instance the three-dimensional trajectory

followed by the vehicle, the path distance error or the control effort. Also, it gives values

of relevant information of simulation results, such as the total time that the vehicle took to

complete the path or the average path distance error.

Figure 3.12: User interface.
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Program your own Algorithm and Path

One of the most important characteristics of the Path-Flyer benchmark is that it has been

prepared to add new algorithms in the platform straightforwardly. That is, users only need to

program their algorithms on a pre-structured matlab function which already has the set of inputs

and outputs defined. Next, this function needs to be called in another matlab file and the new

algorithm will be then available.

Similarly, Path-Flyer also allows to program new reference paths. The user needs to define the

reference path (inside a case condition) on a matlab function where all paths are defined.

Repository and Documentation

Path-Flyer is available online [142]. It has been uploaded followed by a set of documentation

that, among other things, explains the user how to add new algorithms and new reference paths,

how to use the user interface and how to modify parameters such as initial conditions, wind

disturbance profile and measurements noise.

3.4.4 Validation of the Platform with Real Experiments

To validate the benchmark, real experiments have been replicated with the Path-Flyer platform,

and both simulation and experimental results have been compared. Experiments consist on

following a Lemniscate path (Eq. 3.20) of 4 meters of amplitude (A) at a velocity reference of 1

m/s with the NLGL algorithm (L = 2m).

xd = 2A cos (γ)
yd = A sin (2γ)

(3.20)

The experiments are performed with the experimental platform described in Section 3.1. Attitude

measures are estimated by the IMU sensor, position and velocity measures on the xy plane are

obtained by the GPS sensor and altitude measure is obtained by the pressure sensor. The

autopilot presented in Section 3.3 is used in both real and simulation tests. It is important

to mention that the response obtained by the inner-loop controllers in the experiments is very

similar, in terms of settling time, overshoot and steady-state error, to the one obtained in the

Path-Flyer. This is shown in Fig. 3.13 and Fig. 3.14, where the performance of pitch and yaw

is tested with step references.

Fig. 3.15 shows the trajectory of the vehicle in the real experiment (red), in the Path-Flyer

platform (blue) and the path reference (black). Note that real experiments present wind dis-

turbances, for this reason simulations have been carried out including a wind disturbance signal

according to the meteorological data at the day and hour of the experiment (wind magnitude:

3m/s, direction: North-East -xy-). Magnitude and direction have been set in the benchmark

generating a random realistic wind signal from these parameters.
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Figure 3.13: Results performing a 10 degrees step during 0.5 seconds of pitch: Experimental
(red) and simulation (blue).

Figure 3.14: Results performing a 30 degrees step of yaw: Experimental (red) and simulation
(blue).

Figure 3.15: Trajectory on the xy plane of NLGL algorithm: Benchmark simulation with
wind (blue) and experimental (red) (Eight-shape path reference (black), Vref = 1m/s).
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Table 3.4 shows relevant parameters of Fig. 3.15 tests. These parameters are: the total time

needed to perform a lap to the path, the mean distance to the path error (d), the mean yaw

error (∣eψ ∣) and the mean velocity of the vehicle (∥v∥).

Table 3.4: Results for one lap of the Lemniscate with NLGL: Experimental and Simulation.

time (s) d (m) ∣eψ ∣ (deg) ∥v∥ (m/s)

Experimental 57.9986 0.2216 3.8503 0.8493

Path-Flyer 50.8911 0.2047 1.923 0.9631

Path-Flyer (no wind) 47.4449 0.1727 1.983 0.97481

As observed in Table 3.4, the values obtained by the Path-Flyer simulation are quite similar to

the ones exhibited in the real experimental results. Particularly, the distance to the path error

parameter, which is the main indicator of the path following performance. Considering that the

uncertainty of the sensors of the plant is not taken into account in the model, but is present in real

experiments (especially in the GPS sensor), the authors consider that the presented experiments

prove the validity of the Path-Flyer benchmark.

3.5 RotorS

The simulation results presented in Chaps. (4) and (5) are performed with the Path-Flyer bench-

mark, described in Section 3.4. However, in Chaps. (6) and (8) another multirotor simulator

is used to perform the simulation and training of the developed deep reinforcement learning

approaches. This is RotorS, a simulator built in the Gazebo/ROS platform. Since the pro-

posed approaches are programmed in the tensorflow/python environment, integrating them into

the Gazebo/ROS framework rather than in MatLab presents some advantages, as discussed in

Chap. (6).

RotorS [53] is a realistic multirotor simulator. It includes, within the available vehicle models,

a model of the Asctec Hummingbird, the quadrotor employed in this thesis. This simulator

has a graphic interface, built in Gazebo, and permits the incorporation of complex sensors,

such as cameras or LIDARs, as well as the generation of different objects, obstacles and urban

or indoor environments. It provides both ground truth measurements (ideal sensors) and the

measurements of the modelled sensors. This sensor models can be modified or new sensors can

be included.

The autopilot ROS package developed in Section 3.3 is also implemented in this platform, re-

porting a similar performance as in the real experimental results. Since the names and structure

of the topics (messages in ROS) of RotorS do not correspond to the ones of the real platform,

in order to use the same exact ROS code of the Autopilot, a ROS node that acts as a driver be-

tween RotorS and the Autopilot package was programmed. This node generates the topics with

the same structure, name and format that the asctec mav framework package (Section 3.1.3)

generates. This node can either provide ground truth or sensor measurements, depending on

the value of an argument of the node’s function. Furthermore, another node that emulates the
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interaction of the R/C transmitter present in the real platform is also included in the RotorS

environment.

A scheme of the structure of the nodes and topics programmed in the RotorS environment is

presented in Fig. 3.16. This scheme shows each of the nodes implemented in this simulation

environment represented as a single block. The set of topics generated by each of these nodes

is also included inside every block. The RotorS platform is included in the scheme as well.

The RotorS block represents the UAS of the control structure in Fig. 2.1. RotorS is formed by

several nodes, however, in this scheme it is represented as a unique block. Furthermore, RotorS

generates a large number of topics but only the topics that are used in this thesis are included.

This topics are, essentially, the topic of the LIDAR sensor, the topics of the other modelled

sensors, the topics that provide the ground truth measurements and the topic that receives the

commands of the quadrotor’s motors speeds.

The LIDAR is the sensor added in the platform to detect obstacles in the vehicle’s route. It is

used to perform the perception task. A realistic model of the LIDAR sensor that is installed

on the real quadrotor is employed to generate the LIDAR topic. More information about the

selection, installation and modelling of this sensor is found in Section 7.

The translate topics node communicates the RotorS platform with the guidance and control

nodes. That is, this node generates the topics with the same structure, name and format of

those in the real platform. The topics that this node publishes as well as the set of topics of

RotorS that it is subscribed to are denoted in light green in the scheme of Fig. 3.16. Note

that two groups of topics of RotorS are highlighted with this color. These correspond to the

set of topics that provide the measurements of the modelled sensors and the set of topics that

provide the ground truth measurements. The scheme of Fig. 3.16 presents the structure when

ground truth measurements are used. Nevertheless, it is important to mention that, when sensor

measurements are used, another node is required. This node computes the position of the vehicle

in the world frame (x and y coordinates) from the latitude and longitude measurements received

by the gps sensor. The emulate rcdata node is used to emulate the data of a R/C transmitter.

The topics generated by both the translate topics and emulate rcdata nodes are sent to the

rest of the nodes that form the GNC structure; translate topics provides the measurements and

emulate rcdata is used to manage the mission control. That is, mission control in the sense that

the R/C data is used to define when to perform trajectory control, hover control or manual

control (controlled manually by a pilot), just as in the real experiments. The R/C data can be

modified by the user by using different ROS services.
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Figure 3.16: Scheme with nodes and topics programmed in the RotorS environment.
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The rest of the nodes form the Guidance, Navigation and Control structure (Fig. 2.1). The

control block is formed by the PF algorithm (PF node) and the autopilot. The path following

block sends commands of velocities, yaw angle and altitude to the velocity controller and altitude

controller of the autopilot. These two controllers provide the angle commands and the altitude

action (uz) to the attitude controller, respectively. Then, the attitude controller generates the

digital inputs of the Asctec Hummingbird vehicle. These inputs are treated in the translate topics

node, which computes the commands of the motor velocities that are sent to the RotorS block.

The guidance block is formed by the obstacle avoidance node (OA node). This node sends a

topic to the path following block that contains the path following state, used for knowing the

path to follow, and the status, that tells whether to perform path following control or hover

control.

More information about the design, training, implementation and results of the developed deep

reinforcement learning approaches for path following and for obstacle avoidance is found in

Chaps. (6) and (8), respectively.



Part II

Control

51





Chapter 4

Control-oriented and Geometric

Path Following

The path following problem consists on following a trajectory defined in space without any

temporal constraint. Path following can be solved by implementing a separated guidance and

control structure (SGC) or with a integrated guidance and control structure (IGC). The SGC

control is divided in two elements: the path following and the autopilot. The autopilot is the inner

controller that is in charge of tracking the commands generated by the path following controller.

In this thesis, the autopilot is solved by a set of PID-based controllers (Section 3.3). The main

contributions of this thesis in the control part are made in the path following problem. More

information about the control structure and the path following problem are found in Chap. (2)

where an exhaustive literature review of UAV path following algorithms is presented.

In this chapter, four path following algorithms have been chosen from the literature review

made in Section 2.2 to be implemented and compared. They were selected for their popularity

and performance. These algorithms are described in detail, harmonizing the nomenclature of

different approaches, and then, they are applied to the realistic quadrotor simulation model.

A comprehensive comparison of the PF algorithms on the same scenario in equal conditions is

provided. This chapter is divided in two sections; first, the implementation of the algorithms,

and then, the comparison with simulation results.

4.1 Implementation of Path Following Algorithms on a

Quadrotor

In this section, four path following algorithms are implemented on the quadrotor vehicle. First,

Backstepping and Feedback Linearization, which are the two most referenced algorithms applied

to quadrotors, as reported in Section 2.2. Next, Non-Linear Guidance Law (NLGL) and Carrot-

Chasing geometric algorithms.

53
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In the reviewed literature, no application to quadrotors has been reported of the NLGL and

Carrot-Chasing algorithms. However, they are commonly used on fixed-wing vehicles [172][133],

as well as on Unmanned Ground Vehicles (UGV) [122][130], and sometimes on other types of

unmanned vehicles. They are simple and they typically provide feasible solutions with good

path following performance. These geometric algorithms are very similar. They differ in how

the VTP is calculated. In this chapter such simple and fruitful algorithms are implemented to

evaluate their performance.

Developing my own implementation of these four algorithms will permit to evaluate and compare

them under the same conditions. This is shown in the Section 4.2, where the simulation results

are presented.

These algorithms are designed and tuned only considering the dynamic equations of the body

(Eqs. 3.1-3.4). Thus, the equations of the motors, control mixing and effects such as gyroscopic

effects or wind disturbance have been omitted to perform the calculations to obtain the control

laws. However, to validate the algorithms properly, they are taken into account in the simulation

model. The inputs of this model are the total thrust (T ) and the torques applied on each

rotational axis (τφ, τθ, τψ). Eq. (4.1) presents the relation between the rotation speed of the

motors (ωm1−4) and these inputs.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T

τφ
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(4.1)

4.1.1 Backstepping

The Backstepping controller developed in this chapter is an adaptation of the one used in [27].

Note that the UAV model used in [27] is slightly different from the one defined in Section 3.2.

The frames of reference considered in each model are different and [27] uses a rotation matrix to

represent the attitude.

In this algorithm, S() represents the skew symmetric matrix that verifies S(x)y = x × y. And

p′d is the partial derivative of pd with respect to γ, ∂pd

∂γ
. It is important to recall that γ is the

scalar parameter of the virtual arc that parametrizes the path (Definition 2.2.1).

To solve the path following problem, four backstepping error vectors are defined, each one of

three components. The first error vector, Eq. (4.2), is the position error. The second error vector,

Eq. (4.3), includes a term of position error and a term of velocity error in the world frame. The

sigmoidal function σ(⋅), Eq. (4.4), limits the growth of e2 when there are large position errors,

where pmax is the allowed limit. This guarantees that the actuation does not grow unbounded.

e1 = p − pd(γ) (4.2)
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e2 = σ(e1) +
1

k1
ė1 (4.3)

σ(x) = pmax
x

1 + ∥x∥ (4.4)

The convergence of e1 and e2 to zero is assured by defining two control Lyapunov functions,

whose derivatives are negative definite if the thrust force, T , follows Td, Eq. (4.5), with the

direction r3d, Eq. (4.6), where u3 = [0 0 1]
T

.

Td =m ∥k21k2e2 + k1σ̇(e1) + gu3 − p̈d∥ (4.5)

r3d =
k21k2e2 + k1σ̇(e1) + gu3 − p̈d

∥k21k2e2 + k1σ̇(e1) + gu3 − p̈d∥
(4.6)

The control law expression for the thrust force is calculated as shown in Eq. (4.7). r3 is the

third column of R, which represents the direction of the z body axis of the vehicle. Thus, if r3 is

equal to the desired thrust direction r3d, the thrust force will be the same as the desired thrust

force Td. For this reason, the third error vector is defined as the error of the thrust direction, as

stated in Eq. (4.8).

T = rT

3dr3Td (4.7)

e3 = r3 − r3d (4.8)

A third control Lyapunov function, which includes the first and second Lyapunov functions as

well as a term for the third backstepping error, is defined. With the aim of making the first

three errors tend to zero, the expression of the fourth error vector, Eq. (4.9), is defined in such a

way that if this error becomes zero, the time derivative of the third Lyapunov function remains

negative definite. In Eq. (4.9) Rd represents the desired orientation matrix and ωd stands for

the desired angular speed of the vehicle.

e4 = − k3S(u3)2RTr3d + S(u3)(ω −RTRdωd)
− Td

mk1
S(u3)2RTe2

(4.9)

Finally, a fourth Lyapunov function is defined for the fourth error. To assure the stability

of the system with this Lyapunov function, the expression of the angular acceleration of the

vehicle is calculated as stated in Eq. (4.10). In this expression ω̇c stands for the calculated

angular acceleration and ω̇3c(t) is an arbitrary function that defines the dynamics of the yaw
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angle. Then, the control law of the torque can be calculated from this expression by means of

Eq. (4.11).

ω̇c = − S(u3)( − k4e4 −RTr3d

+ k3S(u3)2(ṘTr3d +RT ṙ3d)

+ 1
mk1

S(u3)2(ṪdRTe2 + TdṘTe2 + TdRT ė2))

+ ṘTRdωd +RTRdω̇d + [0 0 ω̇3c(t)]
T

(4.10)

τ = Jω̇c + S(ω)Jω (4.11)

It can be noticed that constants k1−4 appear in the calculated control laws. These constants

define the dynamics of each backstepping error.

More details about the derivation of these control laws and about their stability proofs are given

in [27].

Notice that defining the error vectors this way sets only the third column of Rd. This is evident

by checking the definitions of error e3 (in Eq. 4.8) or function ω̇3c(t), that appears in the

expression of the calculated angular velocity (Eq. 4.10). Thus, the direction of the x and y axis

can be assigned arbitrarily, as long as the orthogonality of the frame of reference is satisfied. That

is to say, a degree of freedom appears for the evolution of yaw. Exploiting this degree of freedom,

the desired rotation matrix Rd has been defined as the one that makes the velocity vector of

the vehicle tangent to the path, as shown in Eq. (4.12). To assure this control specification, a

PD-like controller is designed as a control law for function ω̇3c, as shown in Eq. (4.13), where r1

is the first column of the rotation matrix R and r2d is the second column of the desired rotation

matrix Rd.

Rd = [− S(r3d)
2p′d

∥S(r3d)2p′d∥

S(r3d)p
′

d

∥S(r3d)p′d∥
r3d] (4.12)

ω̇3c = −l2 (ω3 − ω3d + l1rT

2dr1) + ω̇3d − l1 ddt (r
T

2dr1) (4.13)

Parameter γ is present in the definition of e1, Eq. (4.2), and implicit in the rest of the controller

expressions. This parameter defines the desired trajectory position, velocity and acceleration at

a certain time instant. Therefore, the controller algorithm needs to have this parameter properly

scheduled to work correctly. This is known as the timing law. The timing law stated in this

algorithm is given by the second time derivative of γ, defined in Eq. (4.14). Matrix W
T RT (γ)

represents the rotation matrix from a frame {T} tangent to the path to the world frame, obtained

as shown in Eq. (4.15), where ξ(γ) is a function that changes sign in the inflection points of the

path. This timing law has been defined to make the time derivative of γ converge to its desired

value γ̇d, and also to preserve the stability of the system as long as the condition stated in
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Eq. (4.16) is satisfied. That condition assures the ascending behaviour of the path. γ̇d is a

control specification that can be related to the path’s shape. Examples of the definition of this

variable are given in Section 4.2.

γ̈ = −kγσ(γ̇ − γ̇d) +uT

1
W
T RT (k21k2e2 + k1σ̇(e1) − γ̇p′′d) (4.14)

W
T RT (γ) = [ p′d(γ)

∥p′
d
(γ)∥

ξ(γ) S(p′d(γ))
2p′′d(γ)

∥S(p′
d
(γ))2p′′

d
(γ)∥

ξ(γ) S(p′d(γ))p
′′

d(γ)

∥S(p′
d
(γ))p′′

d
(γ)∥

] (4.15)

∣p′d(γ)Tu3∣ > α (4.16)

Some of the mathematical expressions stated for the Backstepping algorithm require derivatives

that have to be estimated in order to avoid their arduous analytical calculations. In this chapter,

a first order filter was used to obtain a time derivative estimation of a known variable. The scheme

of this filter is shown in Fig. 4.1, where x is the known variable, x̂ is the filtered variable, ˙̂x is

the time derivative estimation of x and x0 is its initial value.

Figure 4.1: General derivative estimation diagram

The filter was used to estimate the time derivative of the thrust (Ṫd) and the three components

of the direction vector of this force (ṙ3d). With ṙ3d it is possible to calculate Ṙd as shown

in Eq. (4.17). The angular speed vector ωd can be obtained from its skew symmetric matrix,

calculated as shown in Eq. (4.18). The time derivative of the desired angular speed ω̇d can be

estimated using an estimation filter for each component of vector ωd.

Ṙd =
∂Rd

∂r3d
ṙ3d +

∂Rd

∂p′d
p′′d γ̇ (4.17)

S(ωd) = RT

d Ṙd (4.18)

The control structure of the BS controller is shown in Fig. 4.2. It is an IGC structure, as it is

implemented without any inner loop controller. The second derivative of γ, calculated by the

timing law, is integrated twice to obtain γ̇ and γ. The derivative estimation filters have been

omitted to clarify the scheme.
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Figure 4.2: Backstepping control structure.

The implementation of the Backstepping controller is given in Algorithm 1. This algorithm

requires the state vector of the system (x), the estimated derivative parameters ( ˆ̇Td, ˆ̇r3d, ˆ̇ωd),

the values of γ, its derivative γ̇ and its desired derivative γ̇d, the control design parameters

(k1−4, pmax, l1−2, kγ), the desired path (pd(γ)) and the first and second partial derivatives of

the desired path with respect to γ (p′d(γ),p′′d(γ)). The algorithm returns the control signals of

thrust and torques (T, τφ, τθ and τψ). The first step of this algorithm obtains the position (p),

velocity (v) and angular velocity (ω) as well as the rotational matrix (R) from the system’s

states. Next, the set of equations of the algorithm are applied in a specific sequence aiming to

obtain the control actions of the thrust and torque forces.

Notice that the components of the y and z axis of each state are made negative to obtain the

vectors and rotational matrix and so are these components of the torque vector once the control

actions are obtained. This is equivalent to a 180○ rotation of the reference frame around the

x axis. As explained at the beginning of this section, both models consider different frames of

reference. In order to use the equations as stated in [27] this rotation is applied to the states

before and after applying the algorithm.

4.1.2 Feedback Linearisation

The Feedback Linearisation path following algorithm implemented in this chapter is based on

the development found in [3], which is an improvement of the one in [141]. The employed

mathematical model is very similar to one defined in Section 3.2. Thus, the same control design

process can be used. Nevertheless, note that in [3] the velocities of the vehicle are defined

with respect to the world frame. Therefore, Eq. (4.19) is now used to define the evolution of

these states, where the W on the superscript indicates that it is referenced to the world frame.

And thus, the evolution of the world position is equivalent to the world velocities, as shown in

Eq. (4.20). Also, note that in this thesis a zyx -sequence is used to define the rotation matrix

(section Section 3.2), while [3] uses a zxy-sequence. However, the selection of this matrix does

not affect the behaviour of the system as long as the matrix is well-defined.
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Algorithm 1 Backstepping

Require: x ∶= {x, y, z, u, v,w, p, q, r, φ, θ,ψ},
ˆ̇Td, ˆ̇r3d, ˆ̇ωd, γ, γ̇, γ̇d, k1−4, pmax, l1−2, kγ ,
pd(γ) ∶= [xd(γ), yd(γ), zd(γ)]T , p′d(γ), p′′d(γ)

Create the vectors and rotation matrix from the states:
1: p = [x,−y,−z]T , v = [u,−v,−w]T ,
ω = [p,−q,−r], R(φ,−θ,−ψ)

Calculate ṗd
2: ṗd = p′dγ̇

Calculate e1, ė1, σ(e1), σ̇(e1) and e2
3: e1 = p − pd, ė1 = Rv − ṗd
4: σ(e1) = pmax e1

1+
√

e211+e
2
12+e

2
13

5: σ̇(e1) = ∂σ(e1)
∂p

Rv + ∂σ(e1)
∂pd

ṗd

6: e2 = σ(e1) + 1
k1
ė1

Calculate W
T RT , γ̈ and p̈d

7: WT RT from Eq. (4.15)
8: γ̈ = −kγσ(γ̇ − γ̇d) +uT

1
W
T RT (k21k2e2 + k1σ̇(e1) − γ̇p′′d)

9: p̈d = p′′d γ̇2 + p′dγ̈

Calculate Td, r3d and T
10: Td =m ∥k21k2e2 + k1σ̇(e1) + gu3 − p̈d∥
11: r3d = k21k2e2+k1σ̇(e1)+gu3−p̈d

∥k21k2e2+k1σ̇(e1)+gu3−p̈d∥

12: T = rT

3dr3Td

Calculate ë1 and ė2
13: ë1 = − TmRu3 + gu3 − p̈d
14: ė2 = σ̇(e1) + 1

k1
ë1

Calculate Rd, Ṙd and ωd

15: Rd = [− S(r3d)
2p′d

∥S(r3d)2p′d∥

S(r3d)p
′

d

∥S(r3d)p′d∥
r3d]

16: Ṙd = ∂Rd

∂r3d
ṙ3d + ∂Rd

∂p′
d
p′′d γ̇

17: S(ωd) = RT

d Ṙd → ωd = [S(ωd)23,S(ωd)31,S(ωd)12]

Calculate ω̇3c, e4, ω̇c and τ
18: ω̇3c = −l2 (ω3 − ω3d + l1rT

2dr1) + ω̇3d − l1 ddt (r
T

2dr1)
19: e4 from Eq. (4.9)
20: ω̇c from Eq. (4.10)
21: τ = Jω̇c + S(ω)Jω

Obtain real torque inputs
22: τφ = τ1, τθ = −τ2, τψ = −τ3

return T, τφ, τθ, τψ



60 CHAPTER 4. CONTROL-ORIENTED AND GEOMETRIC PATH FOLLOWING

v̇W = ( 1

m
)RF − [0 0 g]

T

= [Wu̇ Wv̇ Wẇ]
T

(4.19)

ṗ = vW = [ẋ ẏ ż]
T

(4.20)

Eq. (4.21) defines the system that will be used to apply the FL control, where J1, J2 and J3 are

inertial terms defined in Eqs. (4.22 - 4.26); R1, R2, R3 and R4 are auxiliary terms, Eqs. (4.27 -

4.30); and Cx, Cy, Cz are the inverse of the inertia in each coordinate axis, Eq. (4.31).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ

ż

Wu̇

Wv̇

Wẇ

ṗ

q̇

ṙ

ψ̇

θ̇

φ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Wu

Wv

Ww

0

0

−g

q r J1

p r J2

p q J3

p + tan(θ)R4

q cos(φ) + r sin(φ)

sec(θ)R4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

R1 0 0 0

R2 0 0 0

R3 0 0 0

0 Cx 0 0

0 0 Cy 0

0 0 0 Cz

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T

τφ

τθ

τψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.21)

J1 = (Jyy − Jzz
Jxx

)

J2 = (Jzz − Jxx
Jyy

)

J3 = (Jxx − Jyy
Jzz

)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

R1 =
sin(φ) sin(ψ) + cos(φ) sin(θ) cos(ψ)

m
(4.27)

R2 =
− sin(φ) cos(ψ) + cos(φ) sin(θ) sin(ψ)

m
(4.28)

R3 =
cos(φ) cos(θ)

m
(4.29)
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R4 = sin(φ) q + cos(φ) r (4.30)

Cx =
1

Jxx
, Cy =

1

Jyy
, Cz =

1

Jzz
(4.31)

Besides the dynamics of the system, the outputs of interest need to be defined. In this case, a

set of four virtual outputs, Eq. (4.32), are stated. This algorithm depends explicitly on the path

projection on the xy plane. According to the simulations planed in Section 4.2, this projection

must be a circumference.

h(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1(x)

h2(x)

h3(x)

h4(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2 + y2 −A2

z − fz(x)

Aarctan (y/x)

ψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.32)

The virtual output h1 tracks the position error of the vehicle in the xy plane, where A is the radius

of the circumference. h2 tracks the position error in the z coordinate, where fz(x) is a function

that defines the altitude reference. The third virtual output returns a scalar, h3 ∈ [0,2πA] in

meters, that is the position on the path at a minimum distance in the xy projection. Finally, h4

is the yaw angle.

Defining the outputs this way, the position error can be eliminated by making h1 and h2 converge

to zero. The point on the path to be tracked by the vehicle can be controlled with h3, as well

as the velocity of this point if the time derivative of h3 is regulated too. And clearly, the yaw

angle can be regulated by controlling h4.

The vector relative degree of the system given by the dynamics in Eq. (4.21) and the outputs

in Eq. (4.32) is equal to {2, 2, 2, 2}. This vector represents, for each output, the number of

time derivatives that need to be done to h to get an explicit relation with one of the inputs.

However, as demonstrated in [141] and [3], the vector relative degree is not well-defined. This is

because the so called decoupling matrix becomes always singular. That means that the linearised

system is not fully controllable. Two new states (ζ1 and ζ2) are added to the system to solve

this problem. These states satisfy Eq. (4.33). The total thrust, T , is now a state of the system

and the new input u1 is equivalent to the second derivative of this state.

T = ζ1, ζ̇1 = ζ2, ζ̇2 = u1,
τφ = u2, τθ = u3, τψ = u4

(4.33)

Adding these states to the system, the vector relative degree becomes {4, 4, 4, 2}, which derives

in a well-defined decoupling matrix. Since the total number of states of the system is 14 (12

states of the original system and 2 new states) and the vector relative degree adds up to 14,
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it is known that this system is fully linearisable with this set of outputs. Thus, the Full State

Feedback Linearisation problem can be solved now for the system defined in eqs. (4.21), (4.32)

and (4.33).

To solve the Full State FL problem, the vector function Ψ(xe) that transforms the states of the

system to a set of linear states is obtained as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1i

ξ2i

η1i

η2k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Ψ(xe) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Li−1f h1(xe)

Li−1f h2(xe)

Li−1f h3(xe)

Lk−1f h4(xe)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.34)

for i ∈ {1, 2, 3, 4} and k ∈ {1, 2}. Where xe is the set of 14 states of the extended system, ξ1i

and ξ2i are the linear states that are required to converge to zero (h1 and h2 subsystems), η1i

and η2k are the linear states that have to be regulated to control the position or velocity on the

path (h3 subsystem) and the yaw angle (h4 subsystem). Moreover, Lmf hn(xe) refers to the mth

Lie derivative of hn(xe) with respect to f .

It is important to mention that Ψ(xe) is a diffeomorphism. That is, a derivable function defined

in a certain region whose inverse exists and is derivable as well.

Once the transformation of Eq. (4.34) is applied to the extended system, the resulting system is

ξ̇11 = ξ12
ξ̇12 = ξ13
ξ̇13 = ξ14
ξ̇14 = α1(ξ,η) + β1(ξ,η)u
ξ̇21 = ξ22
ξ̇22 = ξ23
ξ̇23 = ξ24
ξ̇24 = α2(ξ,η) + β2(ξ,η)u
η̇11 = η12
η̇12 = η13
η̇13 = η14
η̇14 = α3(ξ,η) + β3(ξ,η)u
η̇21 = η22
η̇22 = α4(ξ,η) + β4(ξ,η)u

(4.35)

where the vector formed by each α function is calculated as shown in Eq. (4.36) and the β

functions conform the (4x4) decoupling matrix of the system, which is obtained in Eq. (4.37).
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α(ξ,η) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1(ξ,η)

α2(ξ,η)

α3(ξ,η)

α4(ξ,η)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L4
fh1

L4
fh2

L4
fh3

L2
fh4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.36)

β(ξ,η) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1(ξ,η)

β2(ξ,η)

β3(ξ,η)

β4(ξ,η)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

LgL
3
fh1

LgL
3
fh2

LgL
3
fh3

LgLfh4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.37)

It can be observed that the resulting system of Eq. (4.35) is composed by four canonical con-

trollable subsystems. Thus, if the inputs of the system (u1−4) are chosen to be

u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1(ξ,η)−1 [v1 − α1(ξ,η)]

β2(ξ,η)−1 [v2 − α2(ξ,η)]

β3(ξ,η)−1 [v3 − α3(ξ,η)]

β4(ξ,η)−1 [v4 − α4(ξ,η)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.38)

the system results in a pure multiple integrator of ri-order for each virtual output hi, where

ri is the relative degree. Then, the virtual input, vi, is obtained by applying a state feedback

control with the respective linearised states as shown in Eq. (4.39). The feedback gains Kij can

be calculated using the pole-placement method.

v1 = ξ11K11 + ξ12K12 + ξ13K13 + ξ14K14

v2 = ξ21K21 + ξ22K22 + ξ23K23 + ξ24K24

v3 = (η11 − ηref11 )K31 + (η12 − ηref12 )K32

+ η13K33 + η14K34

v4 = (η21 − ηref21 )K41 + η22K42

(4.39)

The control structure of the FL controller is shown in Fig. 4.3. It is an IGC structure as the

Backstepping algorithm. As shown, there is a block that transforms the states of the extended

system (x, ζ1, ζ2) into the set of linear states (ξ,η). Then, another block calculates the virtual

inputs (v) from these linear states. Later, the virtual inputs are transformed into the inputs of

the extended system (u). And finally, the first input (u1) is integrated twice to obtain the total

thrust applied on the quadrotor (T ), which is the actual input of the system. Note that this

scheme does not include the path as an external reference, since it must be embedded in the

algorithm calculations.
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Figure 4.3: Feedback Linearization control structure.

The implementation of the Feedback Linearisation controller is stated in Algorithm 2. This

algorithm requires the full state of the extended system (xe), the radius of the circumference

(A), the desired velocity of the vehicle (Vref ) and the feedback gains of the linear controller (Kij).

It returns the four inputs of the quadrotor. The algorithm starts by an axis transformation of

the velocities to the world frame. Later, the outputs of the system are obtained by means of

Eq. (4.32). Note that the arctan is implemented using the atan2 function. Next, the references

of the linear states (ηref11 , ηref12 and ηref21 ) are calculated. These define the experiment references

and are detailed in theSection 4.2. Note that it is ensured that ηref21 , the yaw reference, satisfies

the condition ∣ ηref21 −ψ ∣⩽ π, since it is expected that the vehicle moves the smallest angle towards

its reference yaw angle. Final steps are the calculation of the linear states (ξ, η), α and β (Eqs.

4.34, 4.36 and 4.37), to obtain the virtual inputs (Eq. 4.39), and to calculate the inputs used to

control the system (Eq. 4.38). It is important to note that the input of the total thrust of the

quadrotor is obtained by double integrating the u1 input of the extended system.

4.1.3 Three-dimensional NLGL

NLGL, as mentioned in Section 2.2.4, is a geometric PF algorithm based on the Virtual Target

Point (VTP) concept. The VTP is a target reference point placed on the desired path, which

is updated periodically. The NLGL algorithm obtains the VTP as the point on the path at

a predefined distance L from the vehicle (Fig. 3.9), where L is a scalar constant parameter

that affects the performance of the NLGL controller. Once the VTP is obtained, the algorithm

calculates the needed yaw angle to face the vehicle towards the VTP on the path. Since the

vehicle is required to move at a constant predefined speed, it will end up moving to the path.

From the algorithm description it can be seen that it is designed to work only in the two-

dimensional space given by the xy plane. For this reason, as the two previous algorithms operate

in three dimensions and the objective of this chapter is to compare the algorithms in the same

conditions, NLGL algorithm presented in [172] has been adapted to operate in 3D as well. To

this end, the 3D-NLGL algorithm has been stated in Algorithm 3.

The Algorithm 3 requires the current position p of the vehicle and its yaw angle (ψ), as well

as the desired velocity of the vehicle (Vref ) and the scalar parameter of the guidance law (L).
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Algorithm 2 Feedback Linearization

Require: vecxe ∶= {x, y, z, u, v,w, p, q, r, φ, θ,ψ, ζ1, ζ2},
A, Vref , Kij

Transform velocities axis:
1: [Wu Wv Ww]T = R [u v w]T

Calculate outputs:
2: h1 = x2 + y2 −A2

3: h2 = Z − fz(xe)
4: h3 = Aatan2(y, x)
5: h4 = ψ

Calculate linear state references:
6: ηref11 = 0 (K31 = 0)
7: ηref12 = Vref
8: ηref21 = h3/A + π/2
→ ensure that ∣ηref21 − ψ∣ ⩽ π

Calculate linear states (ξ, η), α and β
9: {ξ1i,ξ2i,η1i,η2k} ∶= Ψ(xe)

10: αi = Lmf hi
11: βi = LgLm−1

f hi
→ i ∈ {1, 2, 3, 4}, k ∈ {1, 2}

Calculate virtual inputs
12: {v1, v2, v3, v4} from Eq. (4.39)

Calculate inputs of the extended system
13: ui = β−1i [vi − αi]
→ i ∈ {1, 2, 3, 4}

Obtain real inputs
14: ζ̇2 = u1, ζ̇1 = ζ2, T = ζ1,
15: τφ = u2, τθ = u3, τψ = u4

return T, τφ, τθ, τψ

It returns the commands for the velocities in the x and y axis, the altitude and the yaw angle

of the quadrotor. In this algorithm, γprev represents the value of γdmin saved from the previous

execution of the algorithm, where γdmin is the point on the path, given by the value of γ, that

is at a minimum distance to the location of the vehicle. The value of γprev is initialized to 0 in

the first execution of this algorithm.

As seen in the algorithm, the first step after the initialization of the variables is to calculate the

point on the path that is at a minimum distance from the vehicle, given by γdmin , and the value

of this distance. Then, if the distance to γdmin is larger than L, the VTP is defined as γdmin ,

making the vehicle move directly towards the path. When the vehicle is closer to the path, the

algorithm will find the first point on the path, starting from γdmin , that is at an L distance from

the vehicle, and will set it as the VTP. The fact that it starts to search the VTP from the point
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Algorithm 3 Three-dimensional NLGL

Require: p ∶ (x, y, z), ψ, L, Vref ,
pd(γ) ∶= [xd(γ), yd(γ), zd(γ)]T , γf

Initialize (First execution):
1: γprev = 0

Calculate dmin, γdmin :
2: dmin ∶= min

γ
(∥p − pd(γ)∥) ∣ γ ∈ [γprev; γf ]

3: γdmin ∶= argmin
γ

(∥p − pd(γ)∥) ∣ γ ∈ [γprev; γf ]

Calculate γV TP :
4: if dmin > L then
5: γV TP ∶= γdmin

6: else
7: γV TP ∶= argmin

γ
(∣∥p − pd(γ)∥ −L∣) ∣ γ ∈ [γdmin ; γf ]

Calculate commands:
8: ψcmd ∶= atan2(yd(γV TP ) − y, xd(γV TP ) − x)
→ ensure that ∣ψcmd − ψ∣ ⩽ π

9: zcmd ∶= zd(γdmin)
10: vcmd ∶= 0
11: ucmd ∶= VrefdV TP,xy

L

return ψcmd, zcmd, vcmd, ucmd

at a minimum distance (γdmin) going forwards, ensures that the vehicle moves always forward

on the path.

The next step of this algorithm is to calculate the commands, which are the outputs of the

controller. This is important to ensure the correct adaptation of the algorithm from 2D to 3D.

First of all, similarly to the 2D-NLGL algorithm, the yaw command angle is calculated as the

angle that would face the vehicle towards the VTP, projected in the xy plane of the vehicle.

Then, as in the Feedback Linearisation controller, it is ensured that ψcmd satisfies the condition

∣ ψcmd−ψ ∣⩽ π. The altitude command zcmd is obtained as the desired Z in the point of minimum

distance γdmin .

As in the two-dimensional algorithm, the velocity command vcmd in the y body coordinate is set

to zero, as no movement is required on this coordinate. In the 2D-NLGL algorithm the velocity

command ucmd in the x body coordinate has a constant value (Vref ). Considering the vertical

distance to the VTP, in this 3D algorithm the value of ucmd is set proportional to dV TP,xy,

that is the projection on the xy plane of the distance L to the VTP. Line 11 of the algorithm

calculates this command. It can be seen that when the VTP is on the xy plane ucmd = Vref .

The outputs of this controller are the ucmd and vcmd velocity command, the yaw command (ψcmd)

and the altitude command (zcmd). That is, this algorithm uses a SGC structure (Fig. 3.7) for

solving the path following problem. Thus, the autopilot of Section 3.3 is implemented. It is

important to mention that, with an SGC structure, the path following controller’s behaviour



4.1. IMPLEMENTATION OF PF ALGORITHMS ON A QUADROTOR 67

Algorithm 4 Three-dimensional Carrot-Chasing

Require: p ∶ (x, y, z), ψ, δ, Vref ,
pd(γ) ∶= [xd(γ), yd(γ), zd(γ)]T , γf

Initialize (First execution):
1: γprev ∶= 0

Calculate dmin, γdmin :
2: dmin ∶= min

γ
(∥p − pd(γ)∥) ∣ γ ∈ [γprev; γf ]

3: γdmin ∶= argmin
γ

(∥p − pd(γ)∥) ∣ γ ∈ [γprev; γf ]

Calculate γV TP :

4: γV TP ∶= argmin
γ

(∣(∫
γ

γdmin
∥p′d(γ)∥dγ) −L∣) ∣ γ ∈ [γdmin ; γf ]

Calculate commands:
5: ψcmd ∶= atan2(yd(γV TP ) − y, xd(γV TP ) − x)
→ ensure that ∣ψcmd − ψ∣ ⩽ π

6: zcmd ∶= zd(γdmin)
7: vcmd ∶= 0
8: ucmd ∶= VrefdV TP,xy

dV TP

return ψcmd, zcmd, vcmd, ucmd

will always be affected by the performance of the inner-loop controller. Other techniques, such

as LQR, could be applied to design the autopilot controller with different results. However,

the PID controllers, which do not require the full state estimation, have been chosen by their

simplicity which is aligned with the simplicity of the geometric algorithms. This allows to make a

comparison of the control algorithms (Backstepping and Feedback linearisation) with the simplest

PF algorithms.

4.1.4 Three-dimensional Carrot-Chasing

Carrot-Chasing is also a geometric algorithm based on the VTP concept. In the CC approach,

the VTP is called carrot and is obtained as the point at constant length δ along the path from

the point at a minimum distance to the vehicle (Fig. 3.10). That is, δ is computed along the

path arc length, and therefore it is not equivalent to the Euclidean distance computed in the

NLGL algorithm. The vehicle, which is required to move at a constant speed, is faced to the

VTP by changing its yaw angle, and thus it is said to chase the carrot.

Again, it can be noted that the algorithm is designed to operate in the two-dimensional space.

Thus, in this chapter it has been modified and adapted to work in the three-dimensional space.

The resulting developed 3D approach is found in Algorithm 4. This algorithm is very similar

to the 3D-NLGL algorithm, since the structure and the operations to calculate the commands

are identical. However, in this case the VTP is obtained as the point on the path that is at

a δ length from the γdmin point, where this length is computed along the path arc. Another

difference between CC and NLGL algorithms is that in CC the VTP is always calculated the

same way, regardless of the distance from the UAV to the path.
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The control structure used to apply the 3D-CC is the same as the 3D-NLGL, represented in the

Fig. 3.7. Thus, the same autopilot has been used.

4.2 Algorithm Comparison Based on Simulation Results

In this section a set of simulation results comparing the four algorithms described previously is

presented. The simulations have been performed on the simulation model presented in Chap. (3).

Thus, the dynamics of the motors, the control mixing and aerodynamic effects, such as gyroscopic

effects and drag forces, are included. Noise on the measurements and wind disturbances are not

included unless otherwise specified. The desired path is a helix defined by

pd(γ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A cos(γ)

A sin(γ)

γ + 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.40)

where A is the radius of the helix, which is 3 meters. Note that with this definition the path

starts at 3 meters of altitude. Additionally, the vehicle is required to travel at a constant velocity

Vref on the path and with a yaw angle tangent to the path.

To meet the velocity specification with the Backstepping controller, the desired evolution of γ

has been set as defined in Eq. (4.41). The yaw requirement is assured by defining the rotational

matrix as in Eq. (4.12) and including the PD-like controller for the angular acceleration on the

z axis as defined in Eq. (4.13).

γ̇d =
Vref

A
(4.41)

Assuming that the vehicle’s orientation is tangent to the path, γ can be obtained subtracting

π/2 to the yaw command (ψcmd). Thus, function fz(x) (Eq. 4.32 of Feedback Linearisation

algorithm) becomes

fz(x) = γ + 3 = ψcmd −
π

2
+ 3 (4.42)

In the FL controller the desired velocity requirement is met by making the reference of the first

derivative of h3 (ηref12 ) equal to Vref . The feedback gain K31, which regulates the position of the

vehicle along the path, is set to zero. Hence, h3 is only in charge of controlling the velocity of

the vehicle along the path. On the other hand, to follow the yaw specification, the reference for

h4 is calculated as the path tangent angle on the closest point of the path to the vehicle, as seen

on line 8 of the Algorithm 2.

For the 3D-NLGL and 3D-CC algorithms, the velocity and yaw specifications are accomplished

by construction.

The control parameters for each of the four algorithms have been tuned as those that achieve

the least mean absolute error (MAE) in terms of distance to the path error. This MAE has
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been evaluated in the simulation platform. These parameters are presented in Table 4.1. For the

geometric algorithms, as they only have one parameter to tune, a parameter sweep was performed

in order to find the value which procures the minimum distance MAE for the defined path. It is

important to remark that those parameters depend on the velocity of the vehicle and the path

shape. Regarding the FL algorithm, the constants that control each of the four linear subsystems

(xy-position, altitude, path velocity and yaw) were tuned separately minimizing the error of each

variable. It was done by means of an iterative redesign through the pole placement technique,

assuring stability on each iteration. Once the constants of each subsystem were obtained, it

was verified that the complete system still behaved with minimum path following error and that

it was stable. In the BS algorithm, the stability of the controlled system is very sensitive to

changes in the control parameters (k1−4). As they were difficult to tune, they were empirically

set to make the system stable. The rest of the parameters of this algorithm were obtained by

means of a parameter sweep search.

Table 4.1: Control parameters for each algorithm.

Algorithm Parameters

Backstepping k1 = 2, k2 = 1, k3 = 50, k4 = 2, kγ = 50,

l1 = 10, l2 = 2, pmax = 1, kf = 10

Feedback k11 = −18.75, k12 = −40, k13 = −32.25, k14 = −10,

Linearization k21 = −1 250, k22 = −1 650, k23 = −435, k24 = −36,

k31 = 0, k32 = −104, k33 = −124, k34 = −21,

k41 = −29, k42 = −10

3D-NLGL L = 0.59

3D Carrot- δ = 0.59

Chasing

Three types of results are reported in this section. First, on the steady state regime, when the

vehicle has converged to the path. Next, on the transient regime, changing the initial state

conditions. Last, with time-varying wind disturbances.

4.2.1 Steady State Regime

This section shows results about the steady state regime of the vehicle’s response with each

controller. Steady state refers to the controller’s error being constant. The performance of the

four algorithms for one full lap of the helix is compared in Table 4.2. The columns relate to:

the time to travel one lap, the mean of the distance to the path (d), the mean absolute yaw

error, the mean velocity of the quadrotor and the computational effort of the algorithm. The

path distance is the minimum distance between the path and the vehicle, the mean absolute

yaw error is calculated from the error between the vehicle’s yaw angle and the path tangent

angle and the computational effort (Compeff ) is a dimensionless parameter that represents the

normalized computation time of each algorithm.
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The computational effort was calculated as follows: A discrete time simulation with a time step

of 1ms was performed for each of the four algorithms and the execution time of each block of

the simulink model was monitored. The total runtime dedicated to execute the calculations

of the control (tcontrol) part were divided by the total runtime needed for the calculations of

the dynamics of the system (tmodel) for each algorithm (Eq. 4.43). Assuming that the time

dedicated to compute the dynamics of the quadrotor is similar on each execution, the obtained

quotient is considered a representative value to evaluate the computational effort. Finally, result

was normalized, setting to 1 the lowest one which corresponds to the NLGL algorithm. The

implementation of the algorithms was not optimized in terms of computation time. Nevertheless,

none of them includes especially intensive calculations (such as solving optimization problems or

matrix operations). Thus, they are subject to slight changes on the computation effort term.

Compeff =
tcontrol
tmodel

(4.43)

Table 4.2: Results for one lap in steady state regime.

time (s) d (m) ∣eψ ∣ (deg) ∥v∥ (m/s) Compeff

Backstepping 44.6306 0.0016 1.6094 0.4451 57.3895

Feedback Linearization 40.7400 0.0078 3.0522 0.4874 1.4877

3D-NLGL 40.3800 0.0198 2.6953 0.4897 1

3D-Carrot-Chasing 40.3800 0.0194 2.6949 0.4897 1.0147
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Figure 4.4: 3D trajectory for one lap of the helix in steady state regime: 3D-NLGL algorithm.

The three-dimensional trajectory for one lap of the helix in steady state regime using the 3D-

NLGL algorithm is shown in Fig. 4.4. The performance of this algorithm and the 3D-CC al-

gorithm is poor compared to the control-oriented algorithms where the vehicle stabilized closer

to the path. Nevertheless, it can still be considered that both algorithms present an accurate

behaviour as evidenced by Fig. 4.4.

4.2.2 Transient Regime

In these simulations the initial state conditions are modified to observe the transient behaviour

of the algorithms. In particular, the effects of changing the initial x-coordinate of the vehicle

and the effects of varying its initial yaw are analyzed.

In the simulations where the initial x-coordinate position changes, the quadrotor starts on the

position given by x = {0.5k ∣ k = 1..12}, y = 0 and z = 3. The initial yaw angle is 90 degrees

in the case of the BS and FL controllers whereas in the geometric algorithms the vehicle faces

the VTP. This orientations result in a minimum initial yaw error. The initial vehicle’s linear

velocities, angular velocities, accelerations, roll and pitch angles are zero.

Fig. 4.5 shows four performance indicator graphs, for each algorithm and for each initial position.

First, the time the quadrotor takes to converge to the path. Convergence condition is defined as

the vehicle remaining at path distance less than 10 times the stable state regime error. Second

plot shows the accumulated distance to the path during this convergence period. Note that the

periods are different for each algorithm, since their stabilization time are different. The third
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graph, shows a parameter for the control effort, i.e. the mean of the absolute value of the control

action derivative. Note that the control action of motors (umi) is given in percentage. Finally,

the convergence position on the path given by γ is represented, where the magnitude of γ is

given in number of radius along the path (A). The mathematical definition of these indicators is

stated in Eqs. (4.44)-(4.47), where tconv is the stabilization time, d is the distance to the path,

dss is the distance error on the steady state regime, dint is the integral of the path distance on

the convergence time, ceff is the control effort term, umi is the control action of the ith motor

and γconv is the convergence position given by the virtual arc parameter.

tconv ∶ d < 10dss ∀ t > tconv (4.44)

dint = ∫
tconv

tinit

d(t)dt (4.45)

ceff =
(∣dum1

dt
∣ + ∣dum2

dt
∣ + ∣dum3

dt
∣ + ∣dum4

dt
∣)

4
(4.46)

γconv = γ(tconv) (4.47)

Fig. 4.6 and Fig. 4.7 show the three-dimensional trajectory when the initial x-coordinate is 0.5m

and 6m, respectively, comparing the response of the four algorithms for one lap. In both figures,

circles indicate the convergence point of each algorithm. A solid line represents the convergence

trail, and a dotted line where the vehicle has converged.

The simulation results changing the initial yaw angle are shown in Fig. 4.8. In these simulations

the vehicle starts at the initial point of the path (x = 3, y = 0, z = 3) and the yaw orientation varies

from 0 to 180 degrees in steps of 22.5○ in each simulation. The rest of the initial state conditions

are identical to the previous simulations. Furthermore, the plots represented in Fig. 4.8 are

equivalent to the ones found in Fig. 4.5. Since the convergence criterion only takes into account

the distance to the path, in some cases it is considered that the quadrotor has converged to the

path while there is still significant yaw error.

Once more, the three-dimensional trajectory plots comparing the behaviour of each algorithm are

presented in figures 4.9 and 4.10, for the extreme cases of the initial yaw angle. The convergence

point, represented with a circle, divide the convergence trail (solid line) and the rest of the

trajectory (dotted line).
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Figure 4.5: Simulation results varying the initial x position from 0.5 to 6 meters: Backstep-
ping (red), Feedback Linearisation (blue), 3D-NLGL (purple) and 3D Carrot-Chasing (green).
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Figure 4.6: 3D trajectory comparing the four algorithms for one lap of the helix. Initial
position: x = 0.5, y = 0, z = 3.

Figure 4.7: 3D trajectory evolution comparing the four algorithms for one lap of the helix.
Initial position: x = 6, y = 0, z = 3.
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Figure 4.8: Simulation results varying the initial yaw angle from 0 to 180 degrees: Backstep-
ping (red), Feedback Linearisation (blue), 3D-NLGL (purple) and 3D Carrot-Chasing (green).
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Figure 4.9: 3D trajectory evolution comparing the four algorithms for one lap of the helix.
Initial position: x = 3, y = 0, z = 3. Initial yaw = 0○.

Figure 4.10: 3D trajectory evolution comparing the four algorithms for one lap of the helix.
Initial position: x = 3, y = 0, z = 3. Initial yaw = 180○.
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4.2.3 Wind Disturbance

In the real world, UAVs deal with diverse environmental influences, such as wind disturbances.

Thus, it is of utmost importance that path following algorithms show robustness to these external

disturbances. The performance of the implemented algorithms in the presence of time-varying

wind is analysed in this section.

To carry out these simulations a wind force has been created. Both its magnitude and direction

changes randomly, ranging from 0 to 1 Newton and from π/8 to 3π/8 radians (i.e. north-east

direction), respectively. The performance of each of the four algorithms following the helix path

with this wind disturbance force is shown in Fig. 4.11. In these simulations the vehicle starts

from the initial point of the path at hover conditions (i.e. zero linear and angular velocities),

and it is requested to follow the path for 100 seconds.

The first and second plot of Fig. 4.11 show the wind magnitude and direction, respectively,

changing every 10 seconds. The third plot shows the evolution of the path distance error for

each algorithm during the 100 seconds experiment.

The results of the simulation experiment of Fig. 4.11 are summarized in Table 4.3: the average

path distance error, the average yaw error, the average velocity and the path travelled (given by

the virtual arc γ), for each algorithm.
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Figure 4.11: Path distance error against wind disturbances.
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Table 4.3: Results for 100 seconds in time-varying wind conditions.

d (m) ∣eψ ∣ (deg) ∥v∥ (m/s) Path traveled (γ)

Backstepping 0.0859 2.5096 0.3935 12.3731

Feedback Linearisation 0.4491 0.8709 0.1761 2.7191

3D-NLGL 0.1396 14.9657 0.4381 13.6861

3D Carrot-Chasing 0.1377 14.0547 0.4385 13.8209

4.2.4 Realistic Flight Conditions

In this section, Backstepping and Carrot-Chasing algorithms are tested on a simulation set under

realistic flight conditions. That is, with a different and more complex path, with higher velocity

references, including noise in the measured states and with a more realistic wind disturbance.

These two algorithms have been chosen as they are the control-oriented algorithm and the

geometric algorithm that provide the best performance, as seen in previous results.

The desired path in this simulations is a 3D Lemniscate (eight-shaped path) defined by

pd(γ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2A cos(γ)

A sin(2γ)

γ + 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.48)

where A is the amplitude of the path, and takes a value of 5 meters. As before, it starts at a

height of 3 meters and constantly increases the altitude. Again, the vehicle is required to follow

the path at a speed of Vref and with a yaw angle tangent to the path.

To fulfil the velocity requirement in the BS algorithm, the desired derivative of γ is defined as

the velocity reference divided by the module of the partial derivative of the path with respect to

the scalar parameter (∂pd(γ)/∂γ), as shown in Eq. (4.49).

γ̇d =
Vref√

(2A sin(γ))2 + (2A cos(2γ))2 + 12
(4.49)

A noise signal has been added on the measured states to assess the robustness of the controllers.

The measured states are the position and the orientation angles (typical measured outputs on

an indoor vision-based platform). The linear and angular velocities are assumed to be estimated

states, and thus, the noise is filtered. In the present section, the noise signal of the position has

a variance of 3cm while the variance on the angles measurement noise is of 2 degrees. In both

cases, the signals are sampled at 100Hz.

Regarding the wind disturbance, instead of having a stair-like wind as in section 4.2.3, here the

wind magnitude and its direction is generated by integrating a white noise signal. That is, the
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wind speed is obtained by integrating a white noise of 10Hz and 0.2 m/s of amplitude, and adding

it to a constant value of 3 m/s. And its direction is generated by integrating a white noise signal

of the same frequency and 0.0025 rad magnitude added to a π/4 constant angle (i.e. north-east

direction). Fig. 4.12 shows the obtained wind speed and direction during 40 seconds. Note that

the wind is computed as a wind velocity, and not as a force as in section 4.2.3. Therefore, the

disturbance force is obtained by the vehicle’s equations given a wind profile.
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Figure 4.12: Realistic wind disturbances.

The three-dimensional evolution of the vehicle following the Lemniscate path, with the Back-

stepping and with the 3D-Carrot-Chasing algorithms, is shown in Fig. 4.13. The vehicle starts

at hover conditions on the initial point of the path and it is required to perform a lap at a

velocity of 2 m/s under the noise and wind conditions explained above. The results comparing

both algorithms are shown in Table 4.4. That is, the total time necessary to accomplish a lap,

the average path distance error, the mean absolute yaw error and the average velocity of the

vehicle.

Table 4.4: Results for one lap under realistic flight conditions (2 m/s).

time (s) d (m) ∣eψ ∣ (deg) ∥v∥ (m/s)

Backstepping 35.93 0.2081 3.7344 1.6997

3D-Carrot-Chasing 39.88 0.4437 10.5275 1.6310

To end up, the same aspects shown in Table 4.4 are evaluated for both algorithms and for different

path velocity references in Fig. 4.14. The velocity references range from 1 to 4 m/s, in 0.5 m/s
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Figure 4.13: 3D trajectory evolution comparing Backstepping and 3D-Carrot-Chasing for
one lap of the Lemniscate under realistic flight conditions (2 m/s).

steps. Each point on the graphs corresponds to a simulation of a full lap of the Lemniscate as

in Fig. 4.13.

4.2.5 Discussion

From the steady state regime simulation results, in Table 4.2, it can be observed that the

Backstepping algorithm is the one that achieves the best performance in terms of distance to

the path, which is usually the most important parameter. BS presents a little more than 1.5mm

of error, compared to the 8mm of the Feedback Linearisation algorithm or the almost 2cm of

the geometric algorithms. However, the BS algorithm presents a very large computational effort

in comparison to the other algorithms, which obtain similar values of this indicator. Another

drawback of the BS algorithm is that it reduces the cruise velocity in order to achieve this

great precision. This is observed in the higher time that it takes to accomplish one lap of the

helix. Regarding the yaw error, again the Backstesping algorithm has the best response with

a mean yaw error of 1.6○. The geometric algorithms have a larger yaw error than BS because

these algorithms are not designed to keep the vehicle tangent to the path but to face it to the

VTP. FL algorithm shows a yaw error even larger than the geometric algorithms, although it is

designed to be tangent to the path.

Regarding the transient regime results, in the simulations where the initial x-coordinate changes,

the 3D-NLGL algorithm presents the worst transient behaviour. It has wide oscillations along

the path that increase its convergence time. The 3D Carrot-Chasing algorithm also presents an

oscillating performance. However, the oscillations are smaller, as can be noticed from the 3D
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Figure 4.14: Simulation results varying the velocity reference from 1 to 4 m/s under realistic
flight conditions: Backstepping (red) and 3D Carrot-Chasing (green).

plots of Fig. 4.6 and Fig. 4.7. This performance distinction between the two geometric algorithms

is due to the way they approach to the path. The 3D-NLGL algorithm moves directly to the

minimum distance point on the path (γdmin), while the 3D-CC moves always to a δ distance

from this point. This slight difference becomes significant on the final performance. From our

experience, these oscillations on the geometric algorithms, and thus the convergence time, can

be reduced by increasing the geometric control parameters (L and δ). However, this results in

an increment of the path distance error too.

The modified initial x-coordinate simulations also reflect that the control-oriented algorithms (BS

and FL) obtain very similar stabilization times. Neverthelles, FL results in higher path distance

errors because it converges to a further point on the path, as evidenced by the convergence path

position plot (Fig. 4.5).

The control-oriented algorithms, especially the FL algorithm, make a higher control effort to

remain on the path (Fig. 4.5) than the geometric algorithms. Control effort results at x = 3

should not be considered as some algorithms converged with as few as 2 or 3 time steps.

Analysing the results in which the initial yaw orientation is varied, it can be seen again that

the control-oriented algorithms obtain better performance than the geometric ones. 3D-NLGL

and 3D-CC perform similarly in terms of convergence time and path position. That is because,
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when the vehicle is close to the path, the distinct behaviour between these two algorithms on

the approach to the path takes no remarkable effect. Also, it is important to note that the

control-oriented algorithms make a significantly larger control effort to correct the yaw angle

than the geometric algorithms. That is due to the aggressive yaw control that the BS and FL

algorithms produce.

When the quadrotor deals with the effect of time-varying wind disturbances, represented in

Fig. 4.11 and Table 4.3, FL algorithm performs worst. BS is the algorithm that handles best

the external forces in terms of path distance error. Note that, apparently, the FL does not have

sufficient strength to cope with wind, evidenced by its low average speed and the short distance

along the path (γ = 2.72) that it is able to cover, compared with the other algorithms. The

yaw error of geometric algorithms is larger than the one of BS, while the path distance error is

similar.

From the results of the simulations with realistic flight conditions (Fig. 4.14), it can be seen that

with a velocity reference of 1 m/s the path distance error of the BS and 3D-CC algorithms is quite

similar, but when the velocity reference increases, the gap between the algorithms increases and

3D-CC starts behaving worse. Regarding the yaw error, it behaves similarly in both algorithms,

although it is always larger in 3D-CC. It is also observed that the average velocity of the vehicle

is almost identical for both algorithms, having always nearly the same relative error. However,

it is possible to notice that the time spent by the BS algorithm is slightly shorter due to its

smaller path distance error.

Table 4.5: Qualitative comparison of the path following algorithms.

BS FL NLGL CC

Path Distance Control 1 2 4 4

Yaw Control 1 4 2 2

Velocity Control 4 3 1 1

Convergence to the Path 1 2 4 3

Computational Effort 4 3 1 1

Wind Disturbance 1 4 2 2

Control Effort 3 4 2 1

Design & Tuning Effort 3 4 1 1

Path Adaptability 3 4 1 1

State Information Requirements 3 3 1 1

Model-Based 3 3 1 1

Domain of Attraction 1 4 2 2

Table 4.5 presents a comparison between the four algorithms summarizing the simulation result
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analysis and other qualitative indicators. This table sorts from best (1) to worst (4) the four

algorithms on each qualitative aspect.

Regarding the design & tuning effort, the geometric algorithms (3D-NLGL and 3D-CC ) are easier

to implement and they require only one parameter to tune. In contrast, the implementation of the

control-oriented algorithms (BS and FL) is tedious since both present several complex derivatives

and they have more parameters to tune. Furthermore, in the FL algorithm it is necessary to

define a mathematical function (h3) that calculates the minimum distance point on the path

(γdmin) given the position of the vehicle. This function depends exclusively on the geometry of

the path and no solution is guaranteed to exist for every path.

The path adaptability defines the capability of each algorithm to adapt to different types of

paths. The requirement of finding h3 makes FL the worst for adapting to new path shapes. The

BS algorithm is rated third since the defined path (pd(γ)) needs to be continuous and derivable.

The geometric algorithms are again the best rated because they can be adapted to any path by

changing only their specific control parameter.

The control-oriented algorithms require the full state information, while the geometric ones

(along with the PIDs of the autopilot) only require the position, attitude and the velocities on

the x and y axis. Furthermore, the design of the control-oriented algorithms is model-based,

while it is model-free in the geometric algorithms. Because of this, they can be applied to

different kinds of vehicles. Both qualitative aspects are reflected in Table 4.5.

To end up, the domain of attraction of each algorithm is evaluated. The behaviour of the

algorithms with the vehicle away from the path and in different initial conditions is analysed.

Backstepping is global since it is based on the non-linear model and it includes a saturation on

the position error term that results also in a saturation on the control actions. The BS algorithm

is rated first on this characteristic since when the vehicle is far from the path and independently

of the initial condition it is always able to converge to the path. Feedback Linearisation should

be a global algorithm as well, since it is based on a full-state non-linear dynamic inversion.

Nevertheless, the simulation results show that it is not really global, since it becomes unstable

in specific initial conditions. That is, opposite to the BS case, the approach velocity of the FL

algorithm grows unbounded as the distance to the path increases. Moreover, it gets unstable

when the vehicle is in position x = 0, y = 0 since the third output (h3) is indeterminate. This is

the reason why the transient experiments start on x = 0.5m and not on x = 0. For these reasons,

the FL algorithm is rated worst in the domain of attraction aspect. Regarding the geometric

algorithms, the NLGL has a domain of attraction defined by the distance L. When the vehicle is

further away a special procedure must be performed, which may not assure stability. The CC is

considered global, as the convergence to the path is assured for any position of the vehicle. Note

that the analysis of the domain of attraction for the geometric algorithms depends exclusively

on the position states, since the rest of states (velocity, orientation and angular velocity) are

controlled by the autopilot.





Chapter 5

Adaptive Geometric Path

Following

In Chap. (2) several control-oriented, geometric and learning-based algorithms for UAV path

following are reviewed and compared. The most prominent and popular are implemented in a

realistic quadrotor model in Chap. (4). Conclusions reveal that, in spite of its slightly worse

performance in comparison with the control-oriented algorithms, geometrical algorithms are

easier to implement, require less state information and result in a lower computational and

control effort. Therefore, they become a wise solution for the path following problem.

Geometric guidance algorithms were originally described in the missile guidance literature, but

most of them were adapted to other type of vehicles, such as UGVs [122][70] or UAVs. Examples

of geometric algorithms that are applied to UAVs are: NonLinear Guidance Law (NLGL) [172],

Trajectory Shaping [137], Vector-field based [127] and Pure Pursuit [57]. Some of those geometric

guidance algorithms have very few (1 or 2) parameters to tune. These parameters define the

performance and the stability of the controller [172][70]. The choice of the proper values of those

parameters depends on factors such as the velocity of the vehicle or the reference path shape,

and needs to be done manually each time the experiments conditions vary. In [134] the authors

adjust these parameters for different path following algorithms by means of an optimization

procedure based on Genetic Algorithms. However, this optimization is performed off-line and

needs to be redone when path conditions vary.

The present chapter is focused on the study of the parameter selection for the NonLinear Guid-

ance Law and Carrot-Chasing algorithms, and presents an adaptive approach based on the use of

neural networks. That is, the parameters of the geometric algorithm are automatically generated

(on-line) depending on the path shape and the vehicle’s velocity. Stability proofs of the pro-

posed approach are given. The performance of the adaptive algorithms are assessed by numerical

simulations.

All the results and graphs reported in this chapter were obtained with the Path-Flyer quadrotor

simulator, which implements a Separated, Guidance and Control structure (Fig. 3.7) along with

85
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the standard nonlinear dynamic equations. It also includes the dynamics of the motors and

other aerodynamic effects, such as drag forces. In this simulator the autopilot (Section 3.3)

is implemented by a set of PID controllers. More information of the Path-Flyer platform in

Section 3.4.

5.1 Adaptive NLGL

The aim of this section is to develop an adaptive strategy for the NonLinear Guidance Law

(NLGL) applied to a quadrotor vehicle to solve the path following problem. The algorithm

corresponds to the three-dimensional version of the NLGL developed in Section 4.1.3.

5.1.1 Performance of NLGL Depending on the Parameter Selection

This subsection analyses the performance of NLGL as a function of parameter L. The mean

absolute error (MAE) in terms of distance to the path, noted d hereafter, is used to evaluate the

performance of the algorithm. The dynamics of the autopilot and the vehicle are not modified

throughout the chapter. That is, it is not analyzed how having different inner dynamics affects

on the optimal selection of L.

Path distance MAE as a function of parameter L

The simulation scenario is a circular path of radius R and a constant velocity reference of 1

m/s. The vehicle starts in a point on the path at hover condition (i.e. zero linear and angular

velocities) and it is requested to perform a full lap of the path. The average distance of the

vehicle to the path (d) is measured in each simulation.

Figure 5.1: MAE of d on a full lap of a circular path varying L. Constant speed: 1m/s.
Different radius: 1.5m, 3m and 20m.
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Fig. 5.1 shows the results for three different path radius (1.5m, 3m and 20m) when parameter

L is varied in each simulation by steps of 0.01m. Each point on the graph corresponds to a full

lap simulation. The initial value of L on each of the three cases, denoted with a square on the

plot, is the first one that does not make the system unstable. That is, smaller values of L make

the vehicle’s trajectory become unstable. Note that for each radius, there always exists a value

of L that achieves the minimum error. In this section, this value is represented by Lopt, which

stands for optimal L.

Optimal L value in function of vehicle’s velocity and path radius

The results showing how Lopt changes with the vehicle’s reference velocity (Vref ) and the path

radius (R) are presented in Fig. 5.2. The reference paths are circumferences again. Each point

on the graph shows the value of Lopt for a given velocity reference and path radius. Lopt was

obtained with an exhaustive discrete search (step of 0.01m). The behaviour of Lopt in function

of Vref and R can be divided in three zones, represented by A, B and C in Fig. 5.2. Zone C

shows constant Lopt with regard to the path radius. The speed of the vehicle here is slow enough

to assume the path as a straight line. Thus, the value of Lopt corresponds to the value of the

optimal L for a straight path. Zone B corresponds to the regular behaviour of Lopt for a circular

path. Finally, zone A is the one where the vehicle moves too fast for the given path radius and

it is not able to follow the path correctly. There is no value of L that makes the vehicle converge

to the path and follow it, due to the kinematic constrains of the plant.

A B

C

Figure 5.2: Lopt in function of the path radius and vehicle’s velocity.

The average of the path distance error (d) achieved with Lopt when the vehicle is requested to

perform a full lap starting from hover conditions is reported in Fig. 5.3. To make it clearer, a

surface was chosen to represent this error, however, this plot is obtained with the same values
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Figure 5.3: MAE of d with Lopt in function of the path radius and vehicle’s velocity.

of R and Vref of Fig. 5.2. From this plot, it is clear that the vehicle is unable to follow the path

in Zone A, as evidenced by the very high path distance error exhibit on this zone.

5.1.2 Adaptive Parameter Selection

As seen in the previous section, the selection of parameter L depends on the velocity of the vehicle

and the radius of the path. To develop an adaptive approach for the NonLinear Guidance Law

it is necessary to define a function (or algorithm) that computes the value of Lopt given the

vehicle’s velocity and path radius. The output of this function has to be as similar as possible

to the set of points obtained in Fig. 5.2.

In this chapter a neural network (NN) is employed to fit a surface to the given set of points.

This problem can also be solved using other types of approximations (polynomial, wavelets, etc.),

however, since the shape of the surface to be fitted is similar to a sigmoidal function the NN

seems to be the best option. The details of this NN are explained below.

Neural network

The network architecture consists in three hidden layers full connected in feedforward sequence.

The inputs of the NN are the radius of the path and the velocity of the vehicle. The output is

parameter Lopt. The hidden layers have 3, 6 and 3 neurons, respectively. The activation function

of the neurons is sigmoidal, chosen mainly because of its resemblance with the surface required to

fit. This architecture was found as the one that fits better the surface minimizing the overfitting

problem. The training algorithm used is the Levenberg-Marquardt method with a regularization
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term. The regularization term is included to reduce the average generalization error, in other

words, to avoid the overfitting problem. Fig. 5.4 shows the surface function obtained by the

neural network with the training points denoted in red. These points correspond to the points of

Zone B and Zone C of Fig. 5.2. That is, points of Zone A were removed, since this zone presents

inaccurate performance for any value of L.

Note that the real velocity (u) was used as input to the NN, instead of the reference velocity

plotted in Fig. 5.2. That is because, despite these two velocities are quite similar in the analysed

simulation scenarios, they can differ significantly in other circumstances, e.g., when the vehicle

is required to move on the z direction, due to a bad performance of the inner velocity controller

or because of external disturbances.

Figure 5.4: Neural Network surface and its training points (NLGL).

Obtaining the path radius

With the developed NN it is possible to obtain the optimal value of L, given the current x-body

velocity of the vehicle and the radius of the path. The radius of a continuous parametrized path

(pd, Definition 2.2.1), can be calculated with the inverse of the path curvature (k), given by

k(γ) = 1

R(γ) =
∥dpd(γ)

dγ
× d2pd(γ)

dγ
∥

∥dpd(γ)
dγ

∥
3

(5.1)

The value of γ used to calculate k (or equivalently, R) must be chosen carefully. One could be

tempted to use γdmin (i.e. γ at minimum distance to the vehicle), but that is not a sensible

choice. It would be equivalent, when driving a car, to steer it when you are already on the
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curve. For that reason, it is necessary to have an anticipation distance to have the capability of

adapting to the curves that come.

A new simulation scenario was designed to determine the optimal anticipation distance for each

curve. This scenario is represented in Fig. 5.5. It consists on a straight path of 10 meters long

followed by a semicircle of radius Rc. The vehicle is required to follow the path at constant speed.

In each simulation case, the reference velocity and the radius of the semicircle are changed. An

anticipation distance (da), computed along the path, is used to obtain R, which is fed to the NN.

The instantaneous value of parameter L, determined by the neural network, is used afterwards

to obtain the VTP.

Figure 5.5: Simulation scenario to obtain the optimal anticipation distance (da
∗).

From the described simulations, an optimal anticipation distance for each case given by the

vehicle’s velocity and semicircle radius is obtained. The optimal anticipation distance is the one

that achieves the best performance in terms of path distance error. The results of this set of

simulations are presented in Fig. 5.6. This plot represents the relation of the optimal distance

of anticipation, noted by da
∗, with the average of the x-body velocity (u) and the radius of the

semicircle (Rc). It is important to mention that only the Zone B (Fig. 5.2) was analysed in

these simulations, since in the straight line zone (Zone C) the same value of L is obtained with

any anticipation distance. That is because the line and the semicircle will always have the same

value of Lopt in this zone.

The set of optimal anticipation distances (da
∗) is approximated by a linear function of speed (u)

and radius (R), Eq. (5.2), which is also represented in Fig. 5.6. The regression mean absolute

error of the approximation is 0.1316m. Note that, the anticipation distance increases as the

vehicle’s velocity increases or the radius of the curve decreases.

da
∗ = 1.5544u − 0.1787R + 0.2053 (5.2)
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Figure 5.6: Optimal anticipation distance in function of the vehicle’s velocity and radius of
the curve.

Figure 5.7: Optimal anticipation distance can not be used to obtain the path radius (input
of the NN).

Eq. (5.2) computes the optimal anticipation distance. This distance determines the point of

the path to be evaluated to obtain the R (with Eq. 5.1) that is fed to the NN (Fig. 5.7).

Paradoxically, it is not possible to calculate the optimal anticipation distance without knowing

R in advance (da
∗ depends on the radius R). Therefore, using da

∗ to obtain the point to evaluate

R is not possible. Instead, the solution undertaken in this work consists on using Eq. (5.2) to

generate an anticipation distance window along the path, and then, implement an algorithm

to find the most restrictive curve (depending on its radius and the distance to it) inside this

window. The anticipation window for a given velocity u is created by considering the extreme

values of R. That is, the maximum anticipation distance (dA) of this window is given when the

radius is 0 and the minimum anticipation distance (da) is obtained with the maximum possible

radius, noted Rmax. This maximum radius is equivalent to the maximum radius of Zone B of

Fig. 5.2, since for all R > Rmax, the Lopt remains constant. The value of this radius is obtained

by approximating the edge between B and C zones by a linear function. Eqs. 5.3 and 5.4 show

how the minimum and maximum distances are computed, respectively. With these distances the

anticipation distance window is defined (Fig. 5.8).
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da = 1.5544u − 0.1787Rmax + 0.2053 ∣ Rmax = 4.991u + 0.0333 (5.3)

dA = 1.5544u − 0.1787Rmin + 0.2053 ∣ Rmin = 0 (5.4)

Figure 5.8: Anticipation distance window to obtain the path radius (input of the NN).

The anticipation window might contain several curves, but there is always one that is most

urgent to consider, depending on how far it is and how closed it is. This curve determines R

to be used as an input of the neural network. Curves are considered more urgent when their

radius is smaller and also when they are closer to the vehicle. To determine the most urgent

curve, it is necessary to consider both parameters (radius and distance). That is, if the optimal

anticipation distance (Eq. 5.2) computed for a given curve radius is shorter than the actual

distance to that curve, it means that this curve is not urgent, i.e. there is still time to tackle this

curve. However, if the optimal anticipation distance is larger or equal than the actual distance to

that curve, it means that it is necessary to immediately consider this curve. With this reasoning,

the radius of the most urgent curve is the minimum possible radius on the anticipation window

which satisfies that the optimal anticipation distance is greater or equal than the distance to the

curve. Therefore, the criterion employed to obtain the radius of the most urgent curve, Ru, is

stated as

Ru ∶= min
γ

(R(γ) ∣ da∗ ≥ dγ) (5.5)

where dγ is the distance along the path from point γdmin to the evaluated point γ inside the

anticipation window.

The process of searching for the most urgent radius on the anticipation distance window is

detailed in Algorithm 5. First, the distances of anticipation that define the window are calculated

(da and dA). Next, these distances along the path are converted to points on the path given by

the scalar parameter γ. These two points can be calculated knowing the point at a minimum

distance to the vehicle (γdmin), the shape of the path and da and dA. Then, the most urgent

radius, inside the window given by γa and γA, is searched by means of a loop. To this end, on

each ith step of the loop, the distance from γdmin to a given point on the path inside the window,

γi, is calculated. And so the optimal anticipation distance for the path radius (R(γi)) of the

same point is calculated. Then, if the anticipation distance, da
∗(γi), is larger than the distance

to the point, d(γi), it is stated that γi is a conflictive point. That is, a candidate to be the point

with the most urgent radius. Finally, an if condition is defined to find the most urgent radius

on the window, Ru, which corresponds to the smallest radius within the set of conflictive points.
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Algorithm 5 Most urgent radius on the anticipation distance window

Require: u, pd(γ) ∶= [xd(γ), yd(γ), zd(γ)]T , γdmin

Obtain the limits of the window
1: Rmax = 4.991u + 0.0333
2: da = 1.5544u − 0.1787Rmax + 0.2053
3: dA = 1.5544u − 0.1787(0) + 0.2053

Convert the limits to points on the path (γ)
4: γa ← f(pd, γdmin , da)
5: γA ← f(pd, γdmin , dA)

Search for the most urgent radius
6: Ru ∶= R(γa)← init. variable

7: for γi ∶= γa to γA do
Calculate the distance to γ

8: d(γi) = ∫
γi
γdmin

∥p′d(γ)∥dγ

Calculate the optimal anticipation distance for R(γi)
9: R(γi)← Eq. (5.1)

10: Rsat = min(R(γi),Rmax)
11: daopt(γi) = 1.5544u − 0.1787Rsat + 0.2053

Verify if it is a conflictive point
12: if da

∗(γi) ≥ d(γi) then
Check if it is the most urgent

13: if R(γi) < Ru then
14: Ru ∶= R(γi)

return Ru

Velocity reduction

To assure that the vehicle does not enter zone A of Fig. 5.2, in which it is not able to follow

the path, a maximum velocity reference has been defined, as shown in Eq. (5.6). This velocity

depends on the path radius, and it is computed from the edge function between the A and B

zones shown in Fig. 5.2, which can be approximated by an inverse tangential function. This

expression has been obtained by means of the MatLab curve fitting tool.

Vpathmax = 1.886 arctan(0.6197R − 1.037) + 1.783 (5.6)

5.1.3 Stability Analysis

This subsection gives conditions for the stability of the adaptive NLGL. In [70] the stability of

the NLGL algorithm, implemented on a UGV, is analysed and a stability condition for parameter

L is given.
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The UGV and the quadrotor present quite different dynamics. Nevertheless, NLGL is imple-

mented using a SGC structure (i.e. with an autopilot). As the autopilot is in charge of controlling

the inner dynamics of the vehicle, the NLGL algorithm only takes into account the kinematic

model of the vehicle. If it is imposed that the quadrotor can only be driven on the x-body

direction (no lateral movement), as it is already assured with the presented NLGL algorithm,

it results that the kinematic models of the UGV and the quadrotor are very similar. The most

relevant difference is that the UGV moves in the 2D space, while the quadrotor moves in 3D.

However, as discussed in Section 3.3 the autopilot controls the altitude, therefore NLGL is only

in charge of controlling the movement in the xy plane. In summary, both kinematic models

can be considered equivalent. Thus, the results from [70] are taken to prove the stability of the

proposed approach.

The stability condition derived in [70] is stated in Eq. (5.7), where u is the velocity of the vehicle

in the x body axis, τ is the time constant of the yaw angle dynamics and kpd
is the curvature

(Eq. 5.1) of a point on the path.

L > uτ
¿
ÁÁÀ 2

1 + k2pd

+ 2

k2pd
(1 + k2pd

)
+ 2

k2pd

√
1 + k2pd

(5.7)

Figure 5.9: Optimal L (blue), stability condition limit for L (purple) and stability limit in
simulation (red) in function of the path radius (u = 1m/s).

Fig. 5.9 shows the limit of the stability condition of Eq. (5.7) (in purple) and the limit of stability

presented in the simulation model (in red) in function of the radius for a vehicle’s speed of u =

1m/s. The stability limit of the simulation model is obtained empirically by gradually reducing

L until the response of the system becomes unstable. The last value that maintains the system

stable is considered the limit of stability. Furthermore, Fig. 5.9 also presents the optimal L value

fitted by the NN (blue color), which fulfills the stability condition. It is important to mention

that this plot only corresponds to a vehicle’s velocity of 1m/s, however, it has been also verified

that the NN output fulfills the stability condition for all its surface (velocity from 0.2m/s to 4m/s,
and radius from 0.5m to 20m).
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As seen in Fig. 5.9, both the theoretical condition and the empirical stability limits are similar,

specially for large radius, being the stability condition more restrictive. This is because the

estimation made to obtain the parameter τ , that determines the dynamics of the system, was

conservative. On the other hand, it can be observed that in the zone C of Fig. 5.2, where the

algorithms undertakes the path as if it was a straight line, the value of Lopt approximates to the

limit of stability condition, while in zone C the optimal value and the limit condition diverge as

the radius decreases.

5.1.4 Results

Simulation results compare the performance of the proposed Adaptive NLGL algorithm with the

regular NLGL. Two path references are analyzed: an lemniscate 2D path and a spiral 3D path.

Lemniscate path

The lemniscate path is defined by Eq. (5.8). The altitude is fixed at 3m. And the amplitude is

A = 2.5m.

pd(γ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2A cos(γ)

A sin(2γ)

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.8)

Fig. 5.10 shows the evolution on the xy plane of the UAV controlled by the Adaptive NLGL with

the velocity reduction term (red) and the original NLGL (blue). The velocity reference is 1m/s.
The vehicle starts at (x, y) = (5,0) in hover conditions. Parameter L of the original NLGL was

chosen minimizing path distance error for this particular path.

Figure 5.10: Trajectory on the xy plane of NLGL (blue) and Adaptive NLGL with velocity
reduction (red) (Lemniscate path, Vref = 1m/s).
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Table 5.1 shows MAE of the path distance, the total time and the average velocity obtained

by three variants of the NLGL algorithm performing one lap on the lemniscate path. These

variants are: the original NLGL, the proposed Adaptive NLGL and the Adaptive NLGL with the

velocity reduction term. As shown in the results, the Adaptive NLGL with the velocity reduction

is the one that presents the smallest distance error, but a slightly lower average velocity. It is

important to highlight that the Adaptive NLGL presents a better performance than the regular

NLGL. Furthermore, the Adaptive NLGL, as opposed to the standard NLGL, does not need any

tuning of its parameters when the reference path is changed, which becomes the main advantage

of this approach.

Table 5.1: Results for one lap of the lemniscate path (Vref = 1m/s).

d (m) time (s) ∥v∥ (m/s)

NLGL 0.1282 32.8375 0.9339

Adaptive NLGL 0.1054 32.9414 0.9338

Adaptive NLGL + Vel. red. 0.0947 33.4749 0.9146

Fig. 5.11 shows the evolution in time of parameter L computed by the Adaptive NLGL (green)

and Adaptive NLGL with velocity reduction (red) when performing a full lap of the reference

path. The velocity reduction term reduces the velocity in the curves which, at the same time,

makes the algorithm reduce parameter L.

Figure 5.11: Evolution of L with the Adaptive NLGL (green) and Adaptive NLGL with
velocity reduction (red) (Lemniscate path, Vref = 1m/s).

Spiral path

The spiral path is defined by Eq. (5.9).
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pd(γ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ/2 cos(γ)
γ/2 sin(γ)

γ + 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.9)

Fig. 5.12 shows the evolution in space of the regular NLGL (blue) and Adaptive NLGL with

velocity reduction (red) following the spiral path with a velocity reference of 2m/s. Again, the L

of the original NLGL was tunned to minimize path distance error for the given path and velocity.

Figure 5.12: Trajectory of NLGL (blue) and Adaptive NLGL with velocity reduction (red)
(Spiral path, Vref = 2m/s).

A comparison of the obtained results with the three variants of the NLGL algorithm when

following the spiral path is found in Table 5.2. This table shows the mean absolute error, the

total time and the average velocity exhibited by the three variants when traveling from 0 rad to

6π rad of the spiral path. Again, the proposed Adaptive NLGL with the velocity reduction term

provides the best performance and the simple Adaptive NLGL shows a better performance than

the NLGL.

Table 5.2: Results for one lap on the spiral path (Vref = 2m/s).

d (m) time (s) ∥v∥ (m/s)

NLGL 0.2205 53.2537 1.7899

Adaptive NLGL 0.1787 52.2592 1.7866

Adaptive NLGL + Vel. red. 0.0730 55.3999 1.6563
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The evolution of parameter L computed by the Adaptive NLGL (green) and by the Adaptive

NLGL with velocity reduction term (red) is shown in Fig. 5.13. The effect of the velocity

reduction is mainly observed in the first 10 seconds, when the path radius is smaller.
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Figure 5.13: Evolution of L with the Adaptive NLGL (green) and Adaptive NLGL with
velocity reduction (red) (Spiral path, Vref = 2m/s).

5.2 Adaptive Carrot-Chasing

This section presents an adaptive version of the Carrot-Chasing algorithm that follows the same

structure and methodology of the Adaptive NLGL approach introduced in the previous sec-

tion. This approach is based on the three-dimensional version of this algorithm developed in

Section 4.1.4. It is necessary to recall that this algorithm, just as the NLGL, only has one

parameter to tune, that is the δ distance.

5.2.1 Adaptive Parameter Selection

The process of obtaining the Adaptive CC approach is similar to the one described in Section 5.1.

First, the optimal parameter of the Carrot-Chasing algorithm, δopt, in function of the radius

of the path and the vehicle’s velocity is obtained by performing a set of simulations with a

circumference path. The value of δopt in function of Vref and R is presented in Fig. 5.14. This

set of points is divided in three zones as in Fig. 5.14. These correspond to the Zone A, where

the vehicle cannot follow the path correctly due to the kinematic constrains, the Zone B, where

parameter δ varies in function of the path radius, and the Zone C, where the path radius is

sufficiently large for a given high velocity so the algorithm behaves as if it were following a
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straight line path. Fig. 5.15 represents the average distance error obtained with the optimal

values of parameter δ.

A
B

C

Figure 5.14: δopt in function of the path radius and vehicle’s velocity.

Figure 5.15: MAE of d with δopt in function of the path radius and vehicle’s velocity.

The values of δopt are approximated by a neural network of 3 feed-forward hidden layers of 3, 7

and 3 neurons, respectively. The inputs of the net are the velocity of the vehicle and the path

radius. As the NN of the Adaptive NLGL approach, it uses a sigmoidal function as activation

function, and it is trained with the Levenberg-Marquardt method with a regularization term.
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Fig. 5.16 shows the output surface of the NN with the training points highlighted in red. These

points correspond to the points of zones B and C of Fig. 5.14.

Figure 5.16: Neural Network surface and its training points (Carrot-Chasing).

Once again, an anticipation distance is used to evaluate the radius that is fed to the neural

network. The optimal anticipation distance is obtained by performing several simulations with

the path of Fig. 5.5 as described in Section 5.1.2. This set of optimal anticipation distances is

approximated by a linear function of the path radius and the vehicle’s velocity (Eq. 5.10). This

formula is used to generate an anticipation distance window with the maximum and minimum

possible radius. The Algorithm 5 is used to obtain the most restrictive radius of the path inside

this anticipation distance window, which then is fed to the NN.

da
∗ = 1.8099u − 0.1535R + 0.2034 (5.10)

A velocity reduction term is included to avoid the algorithm to enter in the Zone A of Fig. 5.14.

Eq. (5.11) shows the maximum permitted velocity of the vehicle in function of the path radius.

This function was obtained with the MatLab curve fitting tool approximating the edge between

zones A and B of Fig. 5.14.

Vpathmax = 5.529 arctan(0.2779R − 0.4759) + 2.017 (5.11)
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5.2.2 Results

The results presented in this section compare the Adaptive CC algorithm with the Adaptive

NLGL approach in realistic flight conditions simulations. Noise on the measurements are in-

cluded. This noise is adjusted so that it emulates the observed in the real sensors. Furthermore,

a realistic wind profile is generated. Similarly to the wind profile of Fig. 4.12, the magnitude of

the wind disturbance is generated as a random walk of 10m/s in average and the direction is also

a random walk with an average of π/4 rad (i.e. +x,+y direction). Again, results are obtained with

the Path-Flyer benchmark. First, both adaptive approaches are tested with the lemniscate path

of Eq. (5.8) at a velocity of 1m/s. The trajectories obtained by the proposed adaptive approaches

following the stated path are shown in Fig. 5.17. Both approaches include the velocity reduction

term. The results of these simulations are summarized in Table 5.3, where the cross-track error,

the total time and the average velocity are evaluated. The two algorithms are able to follow the

path correctly, presenting a similar performance. Nevertheless, the Adaptive NLGL is capable

of achieving a slightly lower average distance error.

Figure 5.17: Trajectory on the xy plane of Adaptive NLGL (blue) and Adaptive CC (red) in
realistic flight conditions (Lemniscate path, Vref = 1m/s).

Table 5.3: Results for one lap on the lemniscate path in realistic flight conditions (Vref =
1m/s).

d (m) time (s) ∥v∥ (m/s)

Adaptive NLGL 0.1607 32.7287 0.9388

Adaptive CC 0.1738 31.3084 0.9557

Next, the adaptive algorithms are tested with a spiral path of constant height, Eq. (5.12), at a

velocity reference of 2m/s. The trajectory performed by the adaptive approaches while following

the spiral path is presented in Fig. 5.18. Table 5.4 compares the path distance error, the time to

travel the path and the average velocity of the vehicle of the two algorithms. Again, the Adaptive

NLGL approach achieves better performance than the Adaptive CC in terms of path following
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error. In this path, both algorithms present larger cross-track errors than in the lemniscate,

especially in the first part of the path that has a very sharp curve. Nevertheless, in this part of

the path both algorithms reduce their reference velocity to procure a better performance.

pd(γ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.25γ cos(γ)

1.25γ sin(γ)

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.12)

Figure 5.18: Trajectory on the xy plane of Adaptive NLGL (blue) and Adaptive CC (red) in
realistic flight conditions (Spiral path, Vref = 2m/s).

Table 5.4: Results for one lap on the spiral path in realistic flight conditions (Vref = 2m/s).

d (m) time (s) ∥v∥ (m/s)

Adaptive NLGL 0.3449 51.0562 1.8954

Adaptive CC 0.3753 51.1005 1.8946

More results comparing both algorithms and their standard versions can be straightforwardly

obtained with the freely available and open Path-Flyer platform [142].



Chapter 6

Path Following with Deep

Reinforcement Learning

An adaptive version of the NonLinear Guidance Law (NLGL) was developed in Chap. (5). In

that work neural networks were used to approximate the relation between the optimal control

parameters of NLGL, the vehicle’s velocity and the path’s shape. Results showed that it outper-

forms the standard NLGL in different experimental conditions without requiring any retuning

of its parameters. The main drawback of this approach is that it is an ad-hoc solution since it

relies on approximations made from the collected data of the mathematical model. Therefore,

if the vehicle’s model or the dynamics of the attitude controller change, it is necessary to carry

out again a large number of simulations, extract the information of interest and adjust the data,

which may become tedious.

The limitations on the adaptability of the approach to different experimental conditions as

well as the portability to different multirotor vehicles motivated the subsequent work. It was

important, nonetheless, to preserve the control structure and the advantages of the geometrical

algorithms. The emerging deep reinforcement learning theory appeared as a promising option to

accomplish those objectives. In recent years, a significant progress has been made in the fields

of reinforcement learning (RL) and deep learning. Thus, now RL is no longer constrained to

discrete and small environments. Deep Q-Network (DQN) [125] and Deep Deterministic Policy

Gradient (DDPG) [103] are two of the most popular deep RL algorithms. In DQN the inputs

of the agent are images, while DDPG is especially designed for continuous state-action spaces.

Both algorithms have been used to solve diverse computer science and engineering problems

[29][165][194][177][100]. DDPG has been also implemented on a quadrotor vehicle to solve the

landing problem [139] with successful results. Other quadrotor applications of deep reinforcement

learning can also be found in the literature [86][92][97][124][135].

In this chapter three different approaches implementing the DDPG algorithm to solve the path

following problem in a quadrotor are presented. The approaches implement the same structure

and concept of the geometrical algorithms. That is, they use a separated control and guid-

ance structure with an autopilot tracking the attitude and velocity commands. Each approach

103
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emerges as an improved version of the preceding one. The first approach uses only instantaneous

information of the path for solving the problem. The second approach includes a structure that

allows the agent to anticipate to the curves. The third agent is capable to compute the optimal

velocity according to the path’s shape. The agents are implemented in the tensorflow-python

framework an trained in Gazebo-ROS using the RotorS simulator, a realistic multirotor simula-

tor (Section 3.5). The agents are trained to deal with noisy sensor measurements and to perform

well when the vehicle is far from the reference path. The resulting agents are implemented and

validated in the Asctec Hummingbird experimental platform.

6.1 Problem Statement

The aim of this chapter is to develop a deep reinforcement learning agent capable of solving the

path following problem for a quadrotor vehicle. The agent must be capable of learning online from

real experimental tests and must simplify the training process of the work presented in Chap. (5).

This approach will follow the control structure of geometric algorithms, a Separated Guidance

and Control (SGC) structure (Fig. 3.7). The agent must be able to work with continuous

state-action spaces and also be portable to other multirotor vehicles. Moreover, this agent must

compute the proper velocity of the vehicle which, according to the defined reward, best adapts to

the shape of the given path. This agent will be implemented with the Deep Deterministic Policy

Gradient algorithm. It will be trained in a simulated environment and tested experimentally.

Fig. 6.1 shows the typical reinforcement learning structure adapted to the control structure of

the geometric algorithms. In this structure the agent is the path following algorithm and the

environment includes the autopilot controller, the path reference and the quadrotor’s environ-

ment. The reinforcement learning agent receives the current state and reward and computes the

action that is sent to the environment.

Path 

Following 

Algorithm

Quadrotor

Altitude 

&

Attitude

Controller
Velocity 

Controller

Autopilot

Environment

Agent

Action

State

Reward

Figure 6.1: Reinforcement learning structure adapted to the SGC structure.
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6.2 Deep Deterministic Policy Gradient

The deep reinforcement learning algorithm implemented in this work is the Deep Determinis-

tic Policy Gradient. This algorithm is an improvement of the standard Deterministic Policy

Gradient [164] algorithm including new concepts of deep learning theory. One of its major ad-

vantages is that it is able to provide good performance in large and continuous state-action space

environments, which motivated its selection.

Deep Deterministic Policy Gradient [103] is an actor-critic RL algorithm. It is off-policy since

the policy that is being improved is different from the policy that is used to generate the action to

compute the loss function. And it is model-free because it makes no effort to learn the dynamics

of the environment. Instead, it estimates directly the optimal policy and value function.

Fig. 6.2 shows a common structure of an actor-critic agent, where the policy (actor) is represented

independently from the value function (critic). According to the learned policy function (µ(s)),
the actor computes the optimal action depending on a state of the environment. The critic

estimates the value function (Q(s, a)) given the state and the action. The value function gives

us information of the expected cumulated future reward for this state-action pair. The critic is

also in charge of calculating the temporal-difference error (TD) (i.e. the loss function) that is

used on the learning process for both the critic and the actor. In deep reinforcement learning the

policy function and the value function, actor and critic, are approximated by neural networks.

Value 

Function

Policy

Environment

Critic

Actor

Action

State

Reward

TD

error

Figure 6.2: Actor-Critic agent structure.

DDPG uses two characteristic elements of Deep-Q-Network [125]; the replay buffer and the

target networks, which are used to stabilize the learning of the Q-function. A replay buffer is

a finite sized memory that stores the transition tuple at each step. Fig. 6.3 shows the main

elements of the transition tuple. This tuple is formed by the current state (si), the action (ai),

the obtained reward (ri), the next state (si+1) and a boolean variable that indicates if the next

state is terminal or not (ti). A terminal state is understood as a state where the experiment ends.

At each timestep the critic and the actor are trained from a minibatch obtained by sampling

random tuples of the replay buffer. This way of training reduces time correlation between

learning samples and facilitates convergence in the learning process.
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Figure 6.3: Elements of the transition tuple.

On the other hand, a target network is a network used during the training phase. This network is

equivalent to the original network being trained and it provides the target values used to compute

the loss function. Once the original network is trained with the set of tuples of the minibatch,

the trained network is copied to the target network. Nevertheless, in DDPG the target network

is modified using a soft update, rather than directly copying the network weights. This means

that the target weights are constrained to change slowly. The use of target networks with soft

update allows to give consistent targets during the temporal-difference backups and makes the

learning process remain stable. Note that DDPG requires four neural networks; the actor and

the critic and their respective target networks.

When the agent states or actions have different physical units it can be difficult for the neural

networks to learn properly and to generalize the solution of the problem. The batch normalization

technique [81] is included in the DDPG algorithm to avoid this issue. This technique is widely

used in deep learning and consists, essentially, on normalizing each dimension of the samples in

a minibatch to have zero mean and unit variance.

Eqs. (6.1 - 6.2) show the gradient functions used to update the weights of the critic and actor,

respectively. φ are the set of weights of the critic network and θ the weights of the actor, ηφ

and ηθ are the learning rates of the critic and actor, B represents the minibatch of transition

tuples and N its size. Target networks are represented with the prime symbol. yk (Eq. 6.3)

are the target Q-values (Not to be confused with target networks) and are used to compute the

loss function. The weights of the critic are updated to minimize this loss function. The discount

factor, a value between 0 and 1 that tunes the importance of future rewards to the current state,

is represented by γrl (it is usually represented by γ in the literature, however, in this thesis this

symbol is assigned to the virtual arc parameter of the PF problem -Definition 2.2.1-). Note

that the target Q-Values (Eq. 6.3) are obtained from the outputs of the actor and critic target

networks, following the target network concept.

∆φ = ηφ∇φ ( 1

N
∑
i∈B

(Q(si, ai ∣ φQ
′

) − yi)
2
) (6.1)

∆θ = ηθ∇θ (
1

N
∑
i∈B

Q(si, µ(si ∣ θµ) ∣ φQ)) (6.2)

yi = ri + γrlQ′(si+1, µ′(si+1 ∣ θµ
′

) ∣ φQ
′

) (6.3)

Eqs. (6.4 - 6.5) show the update of the weights of the target networks from the trained networks.

Parameter τ indicates how fast this update is carried on. This soft update is made each step
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after training the main networks.

φQ
′

← τφQ + (1 − τ)φQ
′

(6.4)

θµ
′

← τθµ + (1 − τ)θµ
′

(6.5)

6.3 Agent Environment

The environment of the agent includes the robot together with the robot’s environment [173]. In

this work the robot is the Asctec Hummingbird quadrotor vehicle (Fig. 3.1). Chap. (3) describes

the multirotor experimental platform and the mathematical model of this vehicle. This section

gives details of the simulation environment wherein the agent is trained.

6.3.1 Training Environment

First training steps of the agent are unpredictable and can become unsafe for the real platform.

That is why having a simulated environment is very important in order to maintain the in-

tegrity of the experimental platform. Training the agent in a realistic and complete simulated

environment will strengthen its effectiveness on real experiments.

In this work a simulation environment was built in the Gazebo-ROS (Robot Operating System)

platform, making use of the RotorS simulator [53]. RotorS, as explained in Section 3.5, is a

multirotor simulator integrated in Gazebo-ROS which, among the available multirotor models,

has a model of the Asctec Hummingbird quadrotor (Fig. 6.4), the vehicle studied in this work.

Since certain modifications were made in the real Hummingbird vehicle, some parameters of

the simulation model were updated too (some sensors, pc and other items where placed on the

vehicle in such a way that inertias and mass changed). Furthermore, a model of the sensors was

included and adjusted to resemble the sensors of the actual quadrotor platform. Nevertheless,

simulations assuming ground truth measurements (i.e. ideal sensors) can still be made.

Figure 6.4: GUI of RotorS simulator with Hummingbird model.
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ROSPython 3

DDPG Agent
rospy

library

Figure 6.5: Scheme of the training environment.

The autopilot of Section 3.3 was implemented as a package in ROS. This autopilot was already

tested in real experiments with success as shown in Section 3.4 and in [146], and it presents a

similar response on the RotorS simulated environment, thus proving the validity of the model.

However, it is important to mention that the mathematical model (and its parameters) of the

Asctec Hummingbird quadrotor of the RotorS platform is not exactly the same as the one

presented in Section 3.2. Thus, the behaviour of the vehicle in RotorS can be slightly different

than in the Path-Flyer benchmark, which presents a very accurate model with respect to the

real vehicle (see Section 3.4).

The DDPG agent was programmed in python 3.5, using the tensorflow and tflearn libraries to

generate and train the neural networks. These libraries permit to save (and restore) the trained

nets in order to perform tests or retrain them. Since ROS is only prepared for version 2 of

python, the agent was implemented as a regular python script and it communicates with ROS

(to subscribe and publish topics) by means of the rospy library.

A simplified scheme of the simulated environment is shown in Fig. 6.5. The complete scheme with

the set of nodes and topics programmed in the RotorS environement is shown in Fig. 3.16 (This

scheme also includes the obstacle avoidance node developed in Chap. 8). The main advantage of

building this environment in ROS is that, since the real platform also runs under ROS, the same

code of the autopilot and the DDPG agent can be transferred to the real quadrotor platform.

Thus, the real environment is equivalent to the one presented in Fig. 6.5, except that RotorS

simulator is substituted by the real vehicle and sensors.

6.4 DDPG for Path Following

This section presents the main characteristics of the DRL agents that are developed in this

chapter. That is, states, actions and rewards are defined. Other details regarding the structure

of the networks or the type of noise added to the actions are introduced as well. Three different

approaches, implemented using the Deep Deterministic Policy Gradient algorithm, are presented.

Each approach emerges as an improved version of the preceding one.
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6.4.1 First Approach: Two States

According to the structure of Fig. 3.7, the path following algorithm must compute four control

commands (zcmd, ψcmd, ucmd and vcmd). Nevertheless, in this first approach the deep rein-

forcement learning agent is only in charge of computing the reference of the yaw angle (ψcmd).

Actually, the action (a) produced by this agent is not directly the yaw command but a desired

correction (ψcorr,k given in rad/s) over the current yaw angle. Eq. (6.6) shows how the yaw ref-

erence at step k is produced, where ∆t is the time step. The reason to use the angle correction

and not the angle itself as the agent action is to avoid undesired fast angle changes. Moreover,

note that the correction is made over the current value of yaw and not over the last yaw refer-

ence, which would lead to an incremental control action. Having an incremental control action

is equivalent to adding a new integral to the plant, which in this case results in an unstable

behaviour. Hence, the selected action achieves a smooth movement while keeping the stability

of the system.

ψcmd,k = ak ∆t + ψk ∣ ak = ψcorr,k (6.6)

The other commands defined by the path following controller will depend on the path specifi-

cations; zcmd is given by the altitude of the path at the closest point to the vehicle (hereafter

named pct, for cross track error point) and ucmd is set to the desired path’s velocity. Velocity on

y axis (vcmd), as in most of the geometrical algorithms, is fixed to 0 m/s.

The basic structure of the DDPG algorithm determines that, given a state of the environment,

the agent will always choose the best action according to the learned policy. This may not lead

the a proper exploration of the action space while training the agent. To enhance the exploration

of the agent an Ornstein–Uhlenbeck noise (Eq. 6.7) is added to the action at training time. nk

is the value of the noise at the kth iteration, θn is a parameter that defines the speed rate of

mean reversion, µn is the drift term which affects the asymptotic mean, ∆t is the time of a step

and dWt is the standard Wiener process scaled by volatility σn.

Yaw command (ψcmd) including the noise signal is computed as shown in Eq. (6.8). The ex-

ploration rate decreases continuously with the number of training episodes (j) in such a way

that a smooth transition between exploration and exploitation is achieved while the agent keeps

learning. Parameter λ indicates the speed of this transition.

nk = nk−1 + θn (µn − nk−1)∆t + σndWt (6.7)

ψcmd,k = (ak +
nk

j/λ + 1
)∆t + ψk (6.8)

In this first approach, the state vector (s) is formed by two states (Eq. 6.9); the distance error

(ed) and the angle error (eψ), both with respect to pct (Fig. 6.6). Subscript T is referred to the
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Figure 6.6: States of the agent are with respect of the tangential frame {T}.

tangential frame of reference {T} that is placed on pct with x pointing to the path’s tangential

direction, z pointing up and y pointing to the resultant direction of x × z.

s = {ed, eψ} ∣ ed = yT , eψ = ψT (6.9)

The reward defined for this agent is shown in Eq. (6.10). This is the reward function that

achieves the best performance and fastest convergence among the numerous types of rewards

that were evaluated (i.e. continuous or discrete, penalizing bad behaviour or rewarding good

path following performance, and mixed strategies). The term −k1∣ed∣ penalizes the cross-track

error (ed). The term k2vT gives positive reward when the vehicle is moving forward on the path

and negative otherwise, where vT is the velocity of the vehicle projected in the x axis of the

tangential frame of reference. k1 and k2 are constants that define the importance of each of the

two terms. In this approach these constants take the values of 20 and 10, respectively. Being

those the best values amongst several that were evaluated.

r = −k1∣ed∣ + k2vT (6.10)

The structures of the actor (Fig. 6.7) and critic (Fig. 6.8) neural networks consist on four layered

feed forward networks with 400 neurons in the first hidden layer and 300 neurons in the second

one. However, while in the actor’s network both the state and the action vectors are connected

to the first hidden layer, in the critic networks the action vector is connected directly to the

second hidden layer, since skipping the first layer proved to be beneficial. The neurons of both

networks are rectified linear units (ReLU). Batch normalisation technique is used in the two

layers of the actor nets, while it is only used in the state input layer in the critic networks.

Table 6.1 presents the relevant parameters and their values of this first proposed DDPG agent.

The agent proposed in this subsection can solve the path following problem properly (see Sec-

tion 6.6). In fact, it is the best agent setup in terms of PF performance that was obtained among

numerous and diverse agent setups that were tested with only two states. However, notice that

these two states of the agent (Eq. 6.9) only provide instantaneous information about the path.

In other words, states are computed only from the point pct in the path and they provide no
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Figure 6.7: Actor NN structure: 2 feed-forward hidden layers.
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Figure 6.8: Critic NN structure: 2 feed-forward hidden layers.

Table 6.1: Parameters of the DDPG agent.

Symbol Description Value

ηθ Learning rate of actor network. 0.0001

ηφ Learning rate of critic network. 0.001

τ Soft target update parameter. 0.001

γrl Discount factor for critic updates. 0.99

- Replay buffer size. 1,000,000

N Minibatch size. 64

- Maximum steps of one episode. 300

∆t Agent time step. 0.1 s

θn Mean reversion rate of noise function. 0.0075

σn Volatility of noise function. 0.15

λ Ratio of exploration-exploitation transition. 200

information about the path shape to come. Therefore, it is not possible for the agent to antici-

pate the curves of the path. Next subsection presents an improvement over this approach that

handles this issue.

6.4.2 Second Approach: Anticipation State

To deal with the anticipation, the issue mentioned in the previous subsection, a new form of

the state vector is proposed. The rest of the parameters and structure of the agent of the first

approach are maintained. In addition to the two states defined in Eq. (6.9), another state is
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Figure 6.9: States of the second approach; angle error with respect forward tangential frame
{T2}.

included (ψT2). This state is an angle error between the vehicle’s yaw angle and the path’s

tangential angle. However, in this case the angle error is not computed from the point pct but in

a point that is forward on the path, as represented in Fig. 6.6. This new state gives information

about future orientation of the path with respect to the vehicle and makes it possible for the

agent to anticipate the curves to come, improving substantially its path following performance

(see Section 6.6). The state vector of this approach is presented in Eq. (6.11), where T2 subscript

indicates that the state is computed from the tangential frame on a point that is forward on the

path.

s = {yT , ψT , ψT2} (6.11)

The distance at which the second tangential frame, {T2}, is placed on the path is named an-

ticipation distance and it is represented by da. To obtain the best possible performance of the

agent, it is necessary to choose a proper anticipation distance. From different tests, it was proven

that da depends on the velocity of the vehicle on the path. That is, with higher velocities it is

necessary to have a larger anticipation distance. For instance, the optimal anticipation distance

(according to the obtained PF performance) at a velocity of 1 m/s is 0.6m.

6.4.3 Third Approach: Adaptive Velocity

The main drawback of the previous approaches is that, with the defined structure, the agent can

only learn to solve the problem at one specific velocity. That is, if during the training process

the velocity of the vehicle is changed every episode, convergence cannot be achieved. In other

words, the policy depends on the vehicle’s velocity. This subsection presents an improvement

that permits the agent to work at different velocities and also makes it capable of computing at

each step the velocity of the vehicle that best adapts to the shape of the path according to the

defined reward.
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In order to have an agent that is resilient to different velocities and path’s shapes, the first step is

to include the velocity of the vehicle (∥v∥) as a state of the agent. Nevertheless, this modification

is not sufficient to accomplish our goal. In DDPG it is necessary to define a state vector that

fulfils the deterministic property. This means that, knowing the current state vector and action,

the next state can be estimated. Therefore, since the velocity of the vehicle is an exogenous

variable of the system (defined by the user) it is not possible to predict its value, and thus, it is

not a deterministic state. To make it deterministic, the action vector must act on the velocity

state.

In this third approach, in addition to the yaw correction action defined in Eq. (6.6), a new

action that computes a velocity correction (ucorr,k) over the current velocity of the vehicle is

included. Eq. (6.12) shows how the velocity command on the x axis is produced from this action

(including exploration noise of Eq. 6.7, only used during the training phase). Again, with the

aim of avoiding fast changes on the velocity and to assure the stability of the system, a correction

action has been used rather than a velocity action or an incremental action of the command.

ucmd,k = (ucorr,k +
nk

j/λ + 1
)∆t + uk (6.12)

Introducing this new state (∥v∥) and new action (ucorr,k) to the agent may seem to be enough to

solve the problem. However, as mentioned in Section 6.4.2, notice that the path’s position where

the future angle error state (ψT2) is computed depends on the velocity of the vehicle. Therefore,

having only this state computed with a fixed anticipation distance (da) does not provide enough

information to solve the path following problem at different velocities. To deal with this problem,

two solutions were considered: Adding more future angle error states at different anticipation

distances or modifying at each step the anticipation distance at which the angle error is computed

in function of the vehicle’s velocity.

Including several future angle states at different distances resulted disadvantageous for two rea-

sons: first, having more states makes the training process much slower; second, since at a given

velocity only the information of 1 or 2 future angle states is exploited, the remaining states

become irrelevant. Having many states that do not provide significant information to solve the

problem leads the agent to lose effectiveness. For this reason, in this approach the mentioned is-

sue is solved by having only one future angle state (ψT2), which is computed with an anticipation

distance adapted according to the vehicle’s velocity.

Several tests at different velocities were performed in order to find the relation between the

velocity of the vehicle and the optimal anticipation distance (da,opt). Optimal in the sense of

being the distance that provides more information, and thus, results in a higher performance

of the agent. The results obtained from these tests were approximated by the linear piecewise

function shown in Eq. (6.13). This function computes the optimal anticipation distance as a

function of the current velocity of the vehicle.
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da,opt =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0.6∥v∥ + 0.1 if ∥v∥ < 1

∥v∥ − 0.3 else
(6.13)

Summarizing, in this approach the velocity of the vehicle is added as part of the state vector and

the future angle state is computed with an adaptive anticipation distance (da,opt). A velocity

correction is included in the action vector. Eqs. 6.14 and 6.15 present the state and action

vectors, respectively. The agent computes the velocity command on the x axis in such a way

that it adapts to the path’s shape. Velocity on the y axis is still fixed to 0. The reward function

of the first approach (Eq. 6.10) is also maintained. Weights of the reward (k1 and k2) acquire

a significant role in this approach, since they define the priority of the trade-off between having

small path distance error or travelling at high velocities. All parameters of Table 6.1 are preserved

except for the ratio of the exploration-exploitation transition (λ), which is set to 1000. This is

because the training process of this approach is slower.

s = {yT , ψT , ψT2(da,opt), ∥v∥} (6.14)

a = {ψcorr,k, ucorr,k} (6.15)

The ingredients that make the agent capable of following a trajectory in space with adaptive

velocity have been defined. Nevertheless, it is of utmost importance to design a rich training

environment that allows the agent to converge to an efficient and robust solution. Details of this

training process are given in Section 6.5.

6.5 Training Process

The training process of the agents has been performed in the training environment detailed in

Section 6.3.1. This training environment is integrated in a linux Xubuntu virtual machine with

a dedication of 8GB RAM and four 1.80GHz processors (i7-8550U CPU). The training process

is performed in real time.

6.5.1 Training of 1st and 2nd approaches

The first and second approaches followed the same structure in the training phase. That is, the

vehicle is required to follow a half lemniscate (8-shaped) path at a constant velocity of 1 m/s in

the x body axis (ucmd). This path is defined in Eq. (6.16), where A is the radius of one of the

circumferences of the path, fixed to 4m, and γ is the virtual arc, which ranges from 0 to 2π rad.

The path is discretized with a precision of 0.01m between each path point.
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xd (γ) = 2A cos (γ)
yd (γ) = A sin (2γ)

(6.16)

Both agents were trained following the specified path in ideal conditions, meaning that the system

uses ground truth measurements and the vehicle starts each episode at the initial position of

the path with the yaw angle oriented tangentially to it. As denoted in Table 6.1, each episode

has 300 steps of 0.1 seconds. The learning evolution of the first and the second approaches are

shown in Figs. 6.10 and 6.11, respectively. These figures show, for each episode, the average

path distance error (∣d∣) and the accumulated reward (∑ r) in all the steps of the episode. As

the agents keep training the average error decreases and the accumulated reward grows until

training converges.

It is important to mention that, as the training process is stochastic, even if the same parameters

and structure are maintained, the performance of the trained agents can vary. The agents

presented in this chapter are the ones that achieve the best performance, in terms of path distance

error, among a set of different trained agents that were obtained. In this particular case, the 1st

approach converged around the 120th episode while the 2nd approach did it approximately at

episode 90.

Figure 6.10: Average distance error and accumulated reward on each episode during training
phase of 1st approach agent (2 states).

The resulting agents were tested in the RotorS simulation platform (see Section 6.6.1). They

proved to perform well with ground truth measurements. However, if a model of the sensors is

added, the agents present some difficulties to follow the path properly. Particularly, when the

vehicle moves far from the path (due to drift or jumps on sensor measurements) and needs to

converge back, the vehicle can start loitering around the path without being able to converge to

it.
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Figure 6.11: Average distance error and accumulated reward on each episode during training
phase of 2nd approach agent (3 states).

The solution to the mentioned problem could be to train the agent with the model with sensors.

However, to capture the dynamics of the system with noisy measurements becomes challenging

for the agent and, sometimes, training does not converge in these conditions. Alternatively, this

issue is tackled by retraining the agents to learn the policy when the vehicle is far from the path.

To do so, the agents are first trained as explained before, and then, they are retrained following

the same path but starting at random positions and orientations different from the initial point

of the path. In this way, the agents learn how to behave out of the path. Thus, if the vehicle

occasionally moves out of the path because of the noisy sensor measurements, the agent will be

able to drive the vehicle back to the path.

Both agents (1st and 2nd approaches) were trained 100 more episodes following the specified

lemniscate path (Eq. 6.16) with random initial conditions. That is, in each episode of this

training phase the starting position of the vehicle is set at a distance of −2m to 2m from the

initial position of the path, and the initial orientation is incremented an angle between −π/2 to

π/2 radians from the initial path tangential angle. The initial position and angle are selected

randomly with a uniform probability distribution in the defined intervals.

Fig. 6.12 shows the learning evolution of the 2nd approach with the 100 new training episodes.

Since the initial position and orientation change randomly in each episode, the obtained average

distance error and accumulated reward also vary arbitrarily. For this reason, to show better the

progression of this learning phase, a 20-values moving average is presented in both plots. That

is, episode values are represented with gray dashed lines, while the moving average is represented

with solid black lines in Fig. 6.12. The learning results show how this training phase permits

the agent to learn to perform better in diverse initial conditions. This acquired knowledge will

notably improve the performance in real experiments, as revealed in Section 6.6.
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Figure 6.12: Average distance error and accumulated reward on each episode during training
phase with non-ideal initial conditions of 2nd approach agent; gray dashed lines are real values

and black lines are a 20-episodes moving average.

6.5.2 Training of 3rd approach

The 3rd DDPG approach developed in this work requires training in a richer environment than

the previous versions. That is because the agent needs to train with different curves in order to

learn the optimal vehicle’s velocity and the yaw angle’s policy according to the path radius.

In the training process of this agent the vehicle will be required to follow an asymmetrical half

lemniscate path. This is an 8-shaped path where each circle has a different radius. This path

is defined in Eq. (6.17), where A1 and A2 are the radius of each circumference of the path,

respectively. The value of this radius is changed every episode, taking a random value between

0.5m and 10m with a uniform probability distribution. Again, the virtual arc parameter (γ)

ranges from 0 to π/2 rads, and the path is discretized with a precision of 0.01m.

xd (γ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2A1 cos (γ) if 0 ≤ γ ≤ π/4

2A2 cos (γ) if π/4 < γ ≤ π/2

yd (γ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

A1 sin (2γ) if 0 ≤ γ ≤ π/4

A2 sin (2γ) if π/4 < γ ≤ π/2

(6.17)

The first training attempts of the agent with the stated environment resulted to be quite un-

fruitful. Concretely, after hundreds of episodes, the agent just learned that the best way of

maximizing the reward (reward function in Section 6.4) was to keep the vehicle static. The

reason for this strange behaviour can be explained as follows: since turning around arbitrarily

is not penalized when, due to the lack of exploration the policy is not defined yet, whenever

the agent starts moving the vehicle forward, as it is rotating, it ends up moving in the opposite
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direction of the path, receiving a penalty for that policy; therefore the best action is to keep

ucmd = 0.

A simple but effective solution for such issue is proposed in this work. It consists on forcing the

vehicle to move constantly by establishing a minimum velocity of 0.1 m/s. Even if this condition

initially produces negative rewards, it ends up promoting the agent to learn the policy of the

yaw action. At the same time, as soon as the velocity vector of the vehicle starts to be parallel

to the path, the agent can start learning that higher velocities lead to greater rewards. Hence,

a successful learning process is achieved.

The training results of this agent are shown in Fig. 6.13. This figure shows the average distance

error (∣d∣), the average velocity on the x axis (u) and the accumulated reward (∑ r) on each

episode. A 50-episodes moving average is applied to episode values to help the interpretation of

each of the three plots. Again, gray dashed lines represent episode values while black lines show

the moving average.

Figure 6.13: Average distance error, average velocity and accumulated reward on each
episode during training phase of 3rd approach agent; gray dashed lines are real values and

black lines are a 50-episodes moving average.

It may seem that training converged around episode 400. However, even the average error or

reward appear to be constant, evaluating the trained agents with simulation tests showed that

they kept learning and improving their performance until around episode 1000. The reason for

that is because training more episodes permits to learn the policy on unusual states.
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Such long and complex training process allows the agent to learn the policy out of the path.

Thus, unlike the 1st and 2nd approaches, this approach does not need any additional training

with diverse initial conditions to improve its performance on experimental results.

6.6 Results

This section presents the results obtained with the three trained agents while following a path

in different conditions. The agents were tested in simulation and experimentally with the Asctec

Hummingbird platform.

6.6.1 Simulation

The simulations presented in this section were performed in the same framework where the agents

were trained. That is, the RotorS simulator integrated in the ROS-Gazebo platform.

First, the three approaches were tested following a lemniscate path (Eq. 6.16), the same path

used in the training phase. Again, the radius of the path is A = 4m. However, this time the

vehicle was required to follow a full lemniscate, with the virtual arc parameter, γ, ranging from

0 to 4π rads. The vehicle started at the initial point on the path with the yaw angle oriented

tangentially to it.

Table 6.2 shows the results obtained while following this path with ground truth measurements.

That is, in the same conditions used for training. This table shows the average cross-track error

(d), the average velocity (∥v∥) and the total time taken to perform a full lap of the path by

each agent. Also, to evaluate the 3rd approach agent in the same conditions of the two other

agents, another simulation was made with this agent limiting its maximum velocity to 1 m/s.
Note that 1st approach is denoted as Agent 1 in the table, 2nd approach is Agent 2 and so on.

This nomenclature is maintained hereafter in this section.

Table 6.2: Results for one lap of the lemniscate path, simulations with ground truth mea-
surements.

d (m) time (s) ∥v∥ (m/s)

Agent 1 0.1041 67.10 0.8707

Agent 2 0.0398 54.79 0.8780

Agent 3 0.0671 39.81 1.2276

Agent 3 (vmax = 1) 0.0669 56.10 0.8696

The results performing a full lap of the lemniscate path while using the sensor measurements

instead of ground truth values, are shown in Table 6.3. Same parameters and agents of Table 6.2

are evaluated. The trajectory on the xy plane followed by these agents is shown in Fig. 6.14.
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Table 6.3: Results for one lap on the lemniscate path, simulations with sensor models.

d (m) time (s) ∥v∥ (m/s)

Agent 1 0.1123 54.79 0.9476

Agent 2 0.0895 51.70 0.9484

Agent 3 0.0968 40.00 1.2338

Agent 3 (vmax = 1) 0.0816 54.41 0.9111

Figure 6.14: Trajectories on xy of lemniscate path, simulation with sensor models: Agent 1
in green (dotted line), Agent 2 in blue (dash-dotted line) and Agent 3 (dashed line) in red.

Fig. 6.15 shows the references of yaw angle (ψcmd) and velocity in the x axis (ucmd) computed

by the Agent 3 and the values of the angle ψ and the velocity u in the same simulation.

As observed in the simulation results following the lemniscate path, the Agent 2 appears to be

the one that obtains the best results in terms of cross-track error. However, it is important to

recall that this agent was only trained to perform well at the particular velocity of 1 m/s. On

the other hand, Agent 3 achieved a similar performance while reducing considerably the time

taken to perform a full lap of the lemniscate. That is, this agent computes the optimal velocity

at each part of the path, which allows the vehicle to accelerate in the straight lines, arriving

at a maximum velocity of 1.82 m/s. Thus, it was able to increase the average velocity while

maintaining almost the same error.

To analyse the performance of the agents while following a different path from the one that was

used to train them, a new path was defined. This new path is a spiral, stated in Eq. (6.18). This

time, parameter A determined the rate at which the radius of the spiral grows and takes a value

of 1.25. The virtual arc (γ) ranges from 0 to 2π. Table 6.4 shows the simulation results obtained

while following the spiral path with ground truth measures, while Table 6.5 presents the results

of the agents following the same path with sensors measurements.
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Figure 6.15: Actions of Agent 3 following a lemniscate path, simulations with sensor models:
references computed by agent (angle and velocity) in red and real values in blue (dashed line).

xd = −Aγ cos (γ)
yd = Aγ sin (γ)

(6.18)

Table 6.4: Results for one lap of the spiral path, simulations with ground truth measurements.

d (m) time (s) ∥v∥ (m/s)

Agent 1 0.2907 34.30 0.8860

Agent 2 0.1840 32.43 0.8872

Agent 3 0.1418 23.52 1.2119

Agent 3 (vmax = 1) 0.0759 32.10 0.8530

Table 6.5: Results for one lap on the spiral path, simulations with sensor models.

d (m) time (s) ∥v∥ (m/s)

Agent 1 0.3035 32.86 0.9448

Agent 2 0.2540 31.18 0.9366

Agent 3 0.1677 22.62 1.2262

Agent 3 (vmax = 1) 0.0987 30.59 0.8830



122 CHAPTER 6. PATH FOLLOWING WITH DEEP REINFORCEMENT LEARNING

The trajectories in the xy plane of the three agents following the spiral path with sensor measures

are shown in Fig. 6.16. These results correspond to the simulations presented in Table 6.5.

Fig. 6.17 shows the angle and velocity references obtained by the Agent 3 and their respective

real values during that simulation. In that case the vehicle reached a maxim velocity of 1.71 m/s.

Figure 6.16: Trajectories on xy of spiral path, simulations with sensor models: Agent 1 in
green (dotted line), Agent 2 in blue (dash-dotted line) and Agent 3 (dashed line) in red.

Figure 6.17: Actions of Agent 3 following a spiral path, simulations with sensor models:
references computed by agent (angle and velocity) in red and real values in blue (dashed line).
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In the simulation results following the spiral path, the performance obtained by each agent varies

more than in the results following the lemniscate path. With these results it is clear that, at

least in simulation, the Agent 3 is able to outperform the other agents, reducing the average

cross-track error while travelling at higher velocities.

The simulations results show how the agents, even though having been trained with ground

truth measurements following a lemniscate path, can also solve the path following problem with

sensor measurements and follow other paths such as the stated spiral path. Next, the agents are

tested in the real experimental platform.

6.6.2 Experimental

The experimental platform is the one described in Section 3.1, formed by the Asctec Humming-

bird vehicle with a supplementary on-board PC (Odroid-XU4) with ROS platform installed. The

vehicle is equipped with an IMU sensor which, among other values, provides an estimation of

the orientation of the vehicle, with a pressure sensor that estimates the altitude and with a GPS

that provides the position and an estimation of the vehicle’s velocity on the xy plane. In this

work, the states are obtained directly from the measurements provided by the sensors, without

the use of any additional filter.

Since tensorflow library is required to operate at 64 bits and Odroid-XU4 works at 32 bits, the

DDPG python agent cannot run in this PC. Instead, this program is executed in the ground

station laptop that communicates through Wi-Fi with the ROS master in the on-board PC. The

laptop runs with linux Ubuntu with the i7-8550U intel processor and 16GB RAM. The DDPG

python3 program runs at 10Hz.

The three agents were tested with real experiments following the same paths as in Section 6.6.1.

However, although the three agents were able to solve the path following problem correctly, the

results were not as good as expected. That is, the trajectory of the vehicle was slightly oscillating

around the path. After various tests the authors concluded that this behaviour was due to a

slight discrepancy between the RotorS simulation model and the real dynamics of the vehicle.

Namely, the rotational dynamics around the z axis were a little slower in the real vehicle.

In order to improve the performance of the agents two solutions were considered: the first one

consists in training the agents in the experimental platform; the second one is to adjust the

parameters of the agents to modify their dynamics. Training the agents during real flights can

be harmful for the plant due to the unexpected behaviour of the vehicle. Furthermore, it has been

observed that training with noisy measurements reduces the learning effectiveness. On the other

hand, apparently, it does not exist any methodology for modifying the dynamics of the agents

by changing some of their parameters. Indeed, out of the set of design and training parameters,

involved only in the training phase, the DDPG algorithm does not have any other parameter to

tune. However, in this chapter we propose a form of modifying the control dynamics of the agent

by adding a new parameter that will scale the output of the agent. That is, since the outputs

of the agent are corrections (angle and velocity corrections), this parameter will regulate the
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speed at which the correction is made, and thus, it ends up regulating the dynamics of the angle

and/or velocity reference too.

Since the discrepancy between the two models affects in the yaw dynamics, only the angle

action was scaled with the mentioned parameter. This new parameter, known as the angle

correction constant (ka), is apparent in Eq. (6.19) and it is set experimentally, ka = 2; the value

that provided the best performance from the different values that were tested. This correction

constant was included in the three agents that were used to obtain all the experimental results

that are presented in this chapter. It is important to remember that this constant was just used

in the experimental phase to improve the performance of the agents.

ψcmd,k = kaak∆t + ψk (6.19)

Next, the agents were tested with the same lemniscate of Section 6.6.1 (Eq. 6.16) with A = 4

and γ ranging from 0 to 4π. The results of the three agents performing a full lap of this path

are shown in Table 6.6. The results of the Agent 3 with the maximum velocity limited to 1 m/s
are also included. Again, the table shows the average cross-track error (d), the total time and

the average velocity of the vehicle (∥v∥). Fig. 6.18 presents the trajectory on the xy plane of the

agents while following this path. Furthermore, Fig. 6.19 shows the angle and velocity references

computed by the Agent 3 while following this lemniscate path, where references are shown in

red and real values in blue dashed lines.

Table 6.6: Experimental results for one lap on the lemniscate path.

d (m) time (s) ∥v∥ (m/s)

Agent 1 0.1739 55.90 0.8859

Agent 2 0.1140 55.01 0.9141

Agent 3 0.1682 39.39 1.6311

Agent 3 (vmax = 1) 0.2275 59.50 0.8829

The experimental results following the lemniscate reveal a behaviour that is very similar to the

simulation results. The Agent 2 displays again the best performance in terms of cross-track

error, but the Agent 3 achieves a similar distance error while increasing the average velocity,

arriving at a maximum velocity of 2.49 m/s.

Another important remark from these experimental results is found in the last curve of the

trajectory performed by the Agent 3 (bottom-right curve in Fig. 6.18), a curve that the agent

should clearly undertake better. This behaviour in the fast counter-clockwise curves appeared in

all the experiments that we performed with this agent, and was even more evident in the counter-

clockwise spiral paths. The cause of that strange pattern was found in the designed training

framework. Although the agent was trained with asymmetrical lemniscates with diverse radius,

this training framework resulted to be incomplete. The reason is that the agent was trained with

a half lemniscate beginning with a counter-clockwise curve and ending in a clockwise curve. This
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Figure 6.18: Trajectories on xy of lemniscate path, experimental results: Agent 1 in green
(dotted line), Agent 2 in blue (dash-dotted line) and Agent 3 (dashed line) in red.

Figure 6.19: Actions of Agent 3 following a lemniscate path, experimental results: references
computed by agent (angle and velocity) in red and real values in blue (dashed line).

way, the first curve is always slower than the second one and the agent learned to perform fast

clockwise curves and slow counter-clockwise curves. Consequently, it resulted in a bad behaviour

while following counter-clockwise curves at high velocities. The solution to address this problem

consists in changing the training framework of this 3rd agent to have both types of curves at

slow and fast velocities. It could be done, for instance, with full asymmetrical lemniscates.
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Finally, the agents were tested with the spiral path defined in Eq. (6.18), with A = 2.5 and γ

ranging from 0 to 4π. Table 6.7 presents the results of the three agents plus the Agent 3 with

limited velocity, just as in Table 6.6. The trajectories of the agents following this spiral path

are shown in Fig. 6.20, and Fig. 6.21 shows the angle and velocity references computed from the

actions of the Agent 3.

Table 6.7: Experimental results for one lap on the spiral path.

d (m) time (s) ∥v∥ (m/s)

Agent 1 0.2848 28.81 1.0503

Agent 2 0.2503 27.79 1.0460

Agent 3 0.2257 18.59 1.5844

Agent 3 (vmax = 1) 0.2342 33.10 0.8826

Figure 6.20: Trajectories on xy of spiral path, experimental results: DDPG v1 in green
(dotted line), DDPG v2 in blue (dash-dotted line) and Agent 3 (dashed line) in red.

In the experimental results following the spiral path, the Agent 3 outperforms the other agents

by exhibiting a lower cross-track error with higher velocity. Specifically, this agent arrives at a

maximum velocity of 2.52 m/s.

The initial trajectory of the agents when following the spiral path (Fig. 6.20) evidences a dif-

ference of behaviour between each of the three approaches presented in this chapter. That is,

the Agent 1 is required to travel at a constant speed of 1 m/s and only has information of the

instantaneous distance and orientation error. Thus, due to the lack of anticipation, in the initial

part of the path it starts going forward, moving out of the path. The Agent 2 moves also at

a constant velocity. However, this agent has information about the upcoming orientation of

the path, which allows it to anticipate the curve. Hence, in the initial part of the path, this
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Figure 6.21: Actions of Agent 3 following a spiral path, experimental results: references
computed by agent (angle and velocity) in red and real values in blue (dashed line).

agent starts moving towards the curve. Finally, the Agent 3 knows the evolution of the path’s

curvature in advance and it is able to modify the longitudinal speed. That allows it to command

slower speeds at the beginning of the path and turn towards the curve to follow the path as

accurately as possible and then, when it is correctly oriented, start increasing the velocity.
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Chapter 7

Obstacle Detection

To perform fully autonomous flights in unknown or uncontrolled environments it is necessary to

develop an anti-collision system, specially in low-altitude, rapid manoeuvring or indoor flights.

A knowledge of the obstacles’ localization (relative or absolute) is required to carry out this

task. The obstacle avoidance algorithm developed in this thesis implements a reactive avoidance

approach. Hence, the obstacle detection system must detect obstacles in the environment in

real-time during the flight.

This chapter presents the solution adopted in this thesis to solve the obstacle detection problem.

The selection of the perception sensor is discussed. The main characteristics of this sensor are

introduced. The sensor is modelled in the RotorS/ROS framework. Finally, an approach to treat

the sensor measures to eliminate ground detections is developed.

It is important to recall that the objective of this chapter is not to develop an obstacle detection

algorithm itself, but to provide a simple and efficient solution to supply the obstacle’s information

to the obstacle avoidance algorithm. The obstacle avoidance problem is solved by implementing

a deep reinforcement learning approach (Chap. 8). Therefore, the treatment of the sensor

measurements to localize the obstacle is mainly conducted by the DRL algorithm.

7.1 Selection of the Sensor

The obstacle avoidance system relies on the on-board sensors to perceive the environment. Thus,

it is important to select the proper sensor (or set of sensors) according to the problem require-

ments. First, it is necessary to define if the information of the environment must be relative or

absolute. Relative information means that the localization of the obstacle is made relative to

the UAV (i.e. distance from the vehicle to the obstacle). In the global or absolute localization

approaches, the position of obstacles is given with respect to the world frame. These approaches

are mainly used in SLAM solutions, where the obstacle avoidance task is made by mapping the

environment, such as with an occupancy grid map. In this work, the objective of the obstacle
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avoidance task is to perform a fast reactive manoeuvre to avoid the obstacles. Thus, it is neces-

sary to find an obstacle detection solution that provides relative information of the environment

at fast rates.

The obstacle avoidance sensor selection must consider several important aspects, such as the

real-time measurement capability, the operational environment and the payload constraints [96].

The operation environment includes the scan capabilities, the field-of-view (FOV) and the range

of the sensor. The payload constrains for small UAV are the weight, volume and power of the

sensor.

In Section 2.3.2, a review of UAV perception focused on the obstacle detection problem is pre-

sented. From that literature review it is possible to observe that cameras and LIDARs are the

most common sensors for the obstacle detection, since they achieve best results. Even so, there

are other approaches using different sensors such as RADARs or acoustic sensors. However,

RADAR-based solutions are not feasible for the Asctec Hummingbird platform due to their

heavy weight. On the other hand, acoustic sensors are constrained to low distances and slow

velocities, thus, they do not accomplish the requirements.

Different obstacle detection solutions based on the use of cameras (i.e. monocular vision, stereo

vision, optical flow) and LIDARs (i.e. 3D, 2D, frontal) are explored in Section 2.3.2. Although

images contain rich information about the environment, they suffer from many issues related to

high computational requirements and high sensitivity to the environment, such as light and tex-

tures [88]. On the other hand, LIDARs can provide accurate information about the environment

with lower computational requirements. However, its weight and power consumption can limit

their use to small UAVs.

Presumably, the on-board PC of our experimental platform (Section 3.1) does not have enough

capacity to deal with the high computational requirements of vision-based systems, especially,

taking into account the requirement of providing information at fast rates to the reactive avoid-

ance algorithm. Thus, it would be necessary to incorporate a new on-board PC to the system,

which would increase the total weight of the UAV. Therefore, the advantage of low-weight that

cameras present, wouldn’t be an important factor in this case. Furthermore, considering that

the objective of this chapter is to provide a simple and efficient solution, vision-based algorithms

are not particularly simple. For these reasons, the LIDAR sensors were considered to be the

best option for the specific problem presented here. That is, LIDAR-based obstacle detection

approaches provide simple solutions with good results.

There exist diverse types of LIDAR sensors in the marked. Among them, the 3D LIDARs stand

out for their capacity of providing a detailed information of the environment, which can facilitate

the task of obstacle avoidance. Also, they are commonly used for mapping. Due to the large

field-of-view, these sensors are able to generate a point cloud map of the environment in the three-

dimensional space. A well-known example of this type of sensor is the Velodyne Puck VLP-16

(Fig. 7.1a). The main problem of these sensors are their weight and their power consumption,

which make it impossible to include them in our experimental platform. Specifically, Velodyne

VLP-16 weights 830g, which is more than the total weight of our Hummingbird platform.
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(a) Velodyne Puck VLP-16 (b) RPLIDAR A3. (c) Scanse Sweep LIDAR.

(d) LIDAR-Lite V3. (e) LeddarOne. (f) Leddar M16.

Figure 7.1: Examples of LIDAR sensors for UAVs (images obtained from the company’s
website of each sensor).

Other LIDAR solutions are the 2D sensors, which are commonly used in unmanned ground

vehicles. These sensors usually provide a 360○ of vision in a 2D plane. This field-of-view

is ideal for the UGV. However, it can be incomplete for UAV, since the FOV relies on the

orientation of the vehicle (pitch and roll angles), which is affected by its velocity. Thus, if the

sensor is placed horizontally on the vehicle, its capability to detect obstacles would decrease

at high velocities. Moreover, these type of sensors usually have a rotational mechanism that

can create disturbances to the sensor measurements (e.g. the accelerometers and gyroscopes)

due to the generated vibrations. What is more, the vibrations generated by the UAV can also

affect the rotational mechanism of the LIDAR, and thus, it may compromise the quality their

measurements. Examples of this sensors are the RPLIDAR A3 (Fig. 7.1b) or the Scanse Sweep

(Fig. 7.1c).

Frontal LIDARs are much lighter than 3D models and do not suffer from the vibration problems

of the 2D ones because they do not have rotational components. For this reason, this type of

LIDARs become a great solution for our problem. In the market there exist several and diverse

frontal LIDARs, such as the LIDAR-Lite v3 (Fig. 7.1d), the LeddarOne (Fig. 7.1e), the Leddar

VU8 or the Leddar M16 (Fig. 7.1f). Among these sensors, the Leddar VU8 was selected to be

implemented as the obstacle detection sensor. This is mainly because it accomplishes the weight,

dimensions and power supply requirements, and because it has an appropriate field-of-view (48○)

and range (85m). Moreover, one of its main advantages is that it can be easily integrated in

ROS with the package provided by the manufacturer.

Table 7.1 summarizes the characteristics, according to the manufacturers, of the most common

LIDAR sensors for UAVs in the market.
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Table 7.1: Comparison of the most common LIDAR sensors for UAVs.

Range Horitzontal FOV Vertical FOV Weight

3D LIDARs

Velodyne VLP-16 100 m 360○ 30○ 830 g

Velodyne HDL-32E 100 m 360○ 40○ 1.4 kg

Ouster OS1-32 120 m 360○ 45○ 455 g

2D LIDARs

RPLIDAR A3 25 m 360○ - 190 g

Scanse Sweep 40 m 360○ - 120 g

Hokuyo UST-20LX 20 m 270○ - 130 g

Frontal LIDARs

LeddarOne 40 m 3○ 3○ 14 g

Leddar VU8 85 m 48○ 3○ 107 g

Leddar M16R-75J0011 91 m 48○ 5.5○ 162 g

Leddar M16D-75B0005 55 m 48○ 6○ 175 g

It is important to mention that sensors with larger field-of-view than the Leddar VU8 would

facilitate the task of the reactive avoidance DRL agent. That is because, with the Leddar VU8,

when the UAV sees an obstacle and it starts avoiding it, at some point it will lose the obstacle

from its field-of-view. This may lead the agent to assume, mistakenly, that the UAV has already

avoided the obstacle and drive it back to the path provoking a collision. This problem is discussed

in Chap. (8) and a solution is proposed. Nonetheless, it was impossible to find a LIDAR with

larger field-of-view that accomplished the weight, dimensions, power supply, range and precision

requirements (Leddar VU8 has a version with 99○ of FOV, but only procures a range of 6m with

grey targets).

7.2 Leddar VU8 LIDAR

The sensor used to perform the obstacle detection task is the Leddar VU8 LIDAR (Fig. 7.2).

There exist several models of this sensor with various field-of-view configurations that provide

different range capabilities. The model selected for our approach is the configuration that pro-

vides medium FOV with a medium/high detection range. The characteristics of this sensor are

detailed in Table 7.2. It needs a power supply of 12V, which corresponds to the voltage of

the batteries used on-board the vehicle. As can be observed, the detection range of the sensor

depends on the type of obstacle that it is detecting.

The Leddar VU8 divides its field-of-view in 8 horizontal segments, as it is shown in Fig. 7.3. That

is, this sensor provides a vector of 8 values representing the minimum distance to an obstacle in

that segment. Each segment has a FOV of 6○x3○. Distances are given with a precision of 1cm.
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Figure 7.2: Leddar VU8 (original image from leddartech.com).

Table 7.2: Characteristics of the Leddar VU8 Medium FOV.

Description Value

Weight. 107.6 g

Dimensions. 70.0 x 35.9 x 49.6 mm

Power supply. 12 V

Horizontal FOV. 48○

Vertical FOV. 3○

Range (Retro-reflector). 85 m

Range (white target). 19 m

Range (grey target). 13 m

Accuracy. 5 cm

Distance precision. 1 cm

Refresh rate. 100 Hz

It may seem that 3○ is a poor horizontal FOV, being similar to the scan capability of a 2D

LIDAR. However, note that 3○ means that, at a distance of 10m, it covers an arc of 52cm on

the horizontal axis.

This sensor can be straightforwardly installed and includes a graphic interface that helps to

configure the sensor and communication parameters as well as the visualization of the LIDAR

data. This interface is shown in Fig. 7.4. Furthermore, the manufacturer provides a ROS

package that transforms the data received by the serial port to a ROS topic. Fig. 7.5 shows

the data generated by this ROS topic represented in RVIZ, a 3D visualization tool of the ROS

framework. This figure shows the points detected by each of the beams of the sensor while

detecting a cylindrical obstacle. The obstacle and the quadrotor vehicle were added to the figure

to help its interpretation.
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Figure 7.3: Leddar VU8 detects obstacles in 8 segments (original image from leddartech.com).

Figure 7.4: Leddar VU8 data represented in RVIZ.
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Figure 7.5: Leddar VU8 data represented in RVIZ.

7.3 Modelling the Sensor in Gazebo/ROS

In order to obtain a robust obstacle avoidance approach with a good experimental performance,

it is necessary to train the deep reinforcement learning agent in a realistic and complete model

of the environment. This includes modelling the vehicle and its sensors. To this end, the Leddar

VU8 sensor was modelled in the RotorS platform (Section 3.5), the realistic UAV simulation

platform where the DRL agents are trained.

The process of modelling a sensor in RotorS/Gazebo is divided in two parts; an URDF model

that creates the visual part and mechanical constants of the sensor (i.e. masses, dimensions,

inertias) and a ROS plugin that generates the ROS topic of the sensor.

URDF (Unified Robot Description Format) is a standardized format for representing a robot

model. These models are defined in XML scripts. Since the visual part does not play a key

role in the functionality of the sensor, the LeddarVU8 was modelled as an object of simple

two-cylinder shape, similarly to a 3D LIDAR sensor. The sensor is attached to the top of the

vehicle, centred, and aligned with the x axis of the body frame. The real mass of the sensor and

an estimation of its inertia on each axis were introduced to the model. Then, the eight beams

of the sensor, corresponding to each of the LIDAR’s segments, were included into the model.

Each beam points to the center of the respective segment. These beams are used to calculate the

distance from the sensor to an obstacle in each segment direction. These distances are given with

a precision of 1cm and are limited to a range of 13m, corresponding to the maximum distance

range with grey targets (Table 7.2). A gaussian noise with a standard deviation of 0.01 was

included in each of the obtained distances to resemble the values provided by the real sensor.
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Figure 7.6: Capture of Gazebo including the Hummingbird quadrotor with the LIDAR sensor
and an obstacle.

Fig. 7.6 shows a capture of the Gazebo framework including the Asctec Hummingbird vehicle

with a cylindrical obstacle. The simulated Leddar VU8 sensor estimates the distance of the

obstacle in each of the 8 beams directions. These beams are presented in blue. The red line of

Fig. 7.6 represents the x world axis.

The ROS plugin extracts from the Gazebo framework the set of distances computed by the

modelled sensor. With these distances it generates a ROS topic with the same structure and

type of message of the real Leddar VU8 sensor. This includes a time stamp, the vector with

the eight distances, and other information such as the maximum range or the minimum and

maximum scan angles.

7.4 Eliminating Ground Detections

The LIDAR sensor is used to detect obstacles, but it can also detect the ground. Eliminat-

ing ground detections from the measured distances is very helpful for the Obstacle Avoidance

algorithm in order to interpret the data in a correct way.

To eliminate ground detections, first it is necessary to estimate the theoretical distance from the

LIDAR to the ground in each beam direction. Then, the estimated ground distances are used

to define a threshold for each beam. Finally, any distance provided by the sensor being larger

than the calculated threshold is eliminated.

Two approaches to eliminate ground detections are provided in this section. First, an approach

that only considers the ground detections caused by the pitch angle. Second, an approach that

considers both the pitch and roll angles to estimate the ground detections on each LIDAR beam.
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Figure 7.7: Distance from LIDAR to ground depending on pitch angle.

Figure 7.8: LIDAR ground detections generated by pitch angle: xy-body plane.

Detections Caused by Pitch Angle

This approach considers that the roll angle is around zero and pitch angle is positive. Fig. 7.7

shows how the pitch angle (θ) can cause the ground detections, where dG,θ is the distance from

the LIDAR to the ground in the x-body axis. This distance is calculated in Eq. (7.1). Since our

sensor is a frontal LIDAR, the ground detections are only possible with positive values of θ.

dG,θ =
Wz

sin (θ) (7.1)

Fig. 7.8 shows the xy-body plane of the scenario presented in Fig. 7.7, where ψL,i is the angle of

the i-th beam of the LIDAR with respect to the x-body axis. Leddar VU8 beams are represented

in dark red and the detected ground with a grey line. The estimated ground distance measured

by the i-th beam by only considering the pitch angle (dG,θ,i) is calculated in Eq. (7.2).

dG,θ,i = dG,θ
1

cos (ψL,i)
=

Wz

sin (θ)
1

cos (ψL,i)
(7.2)
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Figure 7.9: Distance from LIDAR to ground depending on roll angle.

The condition used to eliminate the ground detections from the data measurements is shown in

Eq. (7.3). That is, if the measured distance of the LIDAR beam (dL,i) is equal or larger than

the estimated distance to the ground, the measure is set to infinity (i.e. no obstacle detected).

Due to noise or inaccuracies of the sensor, the measured distance to the ground can be slightly

different to the estimated one. For this reason, a margin m, set to 0.2, is applied to the estimated

ground distances.

if dL,i ≥ dG,θ,i(1 −m) then dL,i =∞ (7.3)

Detections Caused by the Combination of Pitch and Roll Angles

This approach considers both pitch and roll angles to estimate the distance to the ground mea-

sured by each LIDAR beam. First, let us calculate the distance to the ground in the y-body

axis, dG,φ, when roll is different to zero (Fig. 7.9), which can be computed with Eq. (7.4). With

this distance and the distance to the ground on the x-body axis when pitch is positive (dG,θ) it

is possible to define the ground line detected by the LIDAR. This line is represented in grey in

Fig. 7.11, which shows the xy-body plane of the vehicle when pitch and roll angles are different

from zero. Again, LIDAR beams are represented in dark red.

dG,φ =
Wz

sin (φ) (7.4)

The problem of obtaining the distance from the LIDAR to the ground measured by each beam

can be addressed as a trigonometrical problem, as it is represented in Fig. 7.11, which is a

simplification of Fig. 7.10 with only one beam. α angle can be calculated by Eq. (7.5), β angle

is obtained by Eq. (7.6) and the height of the triangle h is computed by Eq. (7.7). The LIDAR-

ground distance of the i-th beam (dG,i), obtained by trigonometrical relations, is calculated with

Eq. (7.8). This equation is only valid if ∣β ∣ < π/2, since otherwise it means that the beam does

not detect the ground.

α = arctan(dG,φ
dG,θ

) = arctan( sin(θ)
sin(φ)) (7.5)
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Figure 7.10: LIDAR ground detections generated by pitch and roll angles: xy-body plane.

Figure 7.11: Trigonometrical problem to obtain ground detections (dG,i).
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β = π/2 − α − ψL,i (7.6)

h = dG,θ sin (α) (7.7)

dG,i =
h

cos (β) =
Wz sin (arctan ( sin(θ)

sin(φ)
))

cos(θ) cos (π/2 − arctan ( sin(θ)
sin(φ)

) − ψL,i)
(7.8)

Once obtained the estimated distance to the ground, the condition to eliminate ground detections

when pitch is positive and roll is different to zero is represented in Eq. (7.9). Once again, due

to sensor noise and inaccuracies, a margin m is used and set to 0.2.

if dL,i ≥ dG,i(1 −m) then dL,i =∞ (7.9)

Depending on the values of pitch and roll angles, the elimination of ground detections is made

by using condition Eq. (7.3) (when θ > 0 and φ ≃ 0) or by condition Eq. (7.9) (when θ > 0 and

φ ≠ 0). If pitch is not positive, ground detection algorithm is not applied.



Chapter 8

Reactive Obstacle Avoidance with

Deep Reinforcement Learning

Recent years are revealing an exponential growth on the research and applications on the deep

reinforcement learning field. DRL has been applied to a large number of different computer

science, engineering and control problems with outstanding results. In Chap. (6) a DRL algo-

rithm was implemented to solve the path following problem with an adaptive velocity selection

approach obtaining successful experimental results. In this chapter, the capabilities of this re-

search field are exploited by implementing a deep reinforcement learning approach for solving

the reactive obstacle avoidance problem.

Most of the UAV applications used to solve the obstacle avoidance (OA) problem by means of

machine learning theory are based on the use of Convolutional Neural Networks (CNN). That

is, a type of deep neural network where the inputs may be images. In [109] CNN s are used to

extract the information of an obstacle from the images of a monocular vision system. Then,

this information is used as the state input of an actor-critic RL algorithm that designs the

trajectory to avoid the obstacle. In other cases, the obstacle avoidance algorithms based on

DRL implement the Deep Q-Network (DQN) algorithm [50][192] or the Double DQN algorithm

[186][191][64]. These algorithms are variants of Q-Learning that use CNN s. They receive raw

images of a camera (or cameras) as the reinforcement learning state. Applications of the DQN

algorithm for the OA problem are also found in other systems such as marine vessels [36] and

mobile robots [106].

Other UAV approaches implementing the Deep Deterministic Policy Gradient (DDPG) algo-

rithm are also found in the literature. In [99] a DDPG-based approach for a fixed-wing UAV

that performs ground target tracking while avoiding obstacles is presented. This approach uses

Long Short-Term Memory (LSTM) neural networks to approximate the state of the environment

from the obstacle detection distance measures. The LSTM networks are a type of recurrent neu-

ral networks (RNN) that use a sequence as a data input. That is, the training results at each

step are determined by both the current training data and the historical training data. The

obstacle detection sensor used in this paper has a field-of-view of 180○. The proposed approach

143
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is trained and validated in a simulated environment. In [181] a modification of the Recurrent

Deterministic Policy Gradient (RDPG) algorithm, a DDPG-like algorithm specially designed

for partially observable Markov decision processes, is used to solve the UAV obstacle avoidance

problem. The DDPG algorithm updates the weights of the networks step-by-step making use of

the newest experience. Rather than that, the RDPG only updates the weights when an episode

ends, using the entire episode experience. Thus, unlike DDPG algorithm, RDPG is not sample-

efficient. In thas paper a Fast-RDPG algorithm is designed in such a way that it permits learning

online by updating its weights in terms of history trajectories instead of the entire episode. The

proposed algorithm uses the distance measures of a range sensor with a 180○ of field-of-view.

The proposed framework is validated through simulation results. A LIDAR-based approach for

multirotor navigation based on the DDPG algorithm is presented in [153]. The objective of this

work is to develop an agent capable of driving the vehicle to a goal position avoiding obstacles in

the vehicle’s route. The proposed approach uses the measures of a LIDAR with a FOV of 270○

as part of the environment state. The reward is designed using an Artificial Potential Field. The

agent is trained in RotorS and is validated with real experimental results.

In this chapter the DDPG algorithm is implemented to solve the reactive obstacle avoidance

problem by using the LIDAR measures as states of the agent (Section 7.2). Since the obstacle

detection sensor has a narrow field-of-view, an approach for providing the agent a certain memory

of the previously seen obstacles is developed. An OA training environment is developed in the

RotorS/Gazebo framework (Section 7.3). The resulting agents are trained and tested in the

RotorS simulated environment following a path while dealing with static obstacles.

8.1 Problem Statement

The aim of this chapter is to develop a reactive obstacle avoidance approach by means of deep

reinforcement learning theory. The resultant system must be able to follow a predefined generic

path with an adaptive velocity selection approach. That is, maintaining the same functionality

of the DRL path following agent (Agent 3 ) presented in Chap. (6). Furthermore, the system

must be able to avoid static obstacles that may appear in the vehicle’s route. To do so, the

agent must use only the local information of the environment provided by the obstacle detection

sensor. The obstacle detection sensor is the frontal LIDAR described in detail in Chap. (7). The

measures of the LIDAR are treated to eliminate ground detections, as explained in Section 7.4.

Reactive obstacle avoidance is understood as a path planning algorithm that only considers local

information of the vehicle’s environment to design a reactive trajectory to avoid obstacles in the

vehicle’s route. That is, it plans online a trajectory that prevents collisions in the last minute.

The selected algorithm to solve the reactive OA problem is the Deep Deterministic Policy Gradi-

ent, the same algorithm that was implemented in Chap. (6) to solve the path following problem.

Details of this deep reinforcement learning algorithm are given in Section 6.2.

The proposed structure to solve the described problem relies on maintaining the PF agent devel-

oped in Chap. (6) and create a new agent that is in charge of providing the reference path to the
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PF controller in such a way that the main functionalities of the PF agent are maintained while

being able to avoid static obstacles. The path following and obstacle avoidance problem could

be also solved by a unique agent. However, considering the amount of training episodes needed

to learn to follow a path selecting the optimal vehicle’s velocity depending on the path radius,

and considering the difficulty of the reactive obstacle avoidance problem itself, the number of

training episodes and the size of the network structures could increase exponentially. This is the

main reason to divide the solution into two agents in this work.

Path 
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Figure 8.1: Reinforcement learning structure employed in this work.

The main elements of the reinforcement learning structure employed in this work are shown in

Fig. 8.1. In this case, the agent is the OA algorithm, and the environment includes the rest

of elements that interact with the agent. That is, the path following agent, the autopilot, the

quadrotor, the reference path and the quadrotor’s environment. Note that the OA agent receives

the original reference path and is in charge of computing the reference path that is commanded

to the path following agent, pd2(γ). This path contains the needed trajectories to avoid any

obstacle on the vehicle’s route, and must be equal to the original reference path when there are

no obstacles.

8.2 Agent Environment

The quadrotor of the agent’s environment is the Asctec Hummingbird (see Chap. (3)). How-

ever, just as in Chap. (6), the agent is trained in a simulated environment with the purpose of

maintaining the integrity of the experimental platform. Details of the training environment of

the reactive obstacle avoidance agent are given next.

8.2.1 Training Environment

RotorS simulator is used again as the training environment for the agent. However, to perform

obstacle avoidance experiments it is necessary to include new elements in this simulator. The

LIDAR sensor of the real platform, the Leddar VU8 (Section 7.2), was modelled in the RotorS
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simulation environment. This model includes the visual part, the dynamics part and the gener-

ated ROS topic. Gaussian noise on the LIDAR measures was included. The modelling process

of this sensor is described in Section 7.3.

To perform OA experiments, a key element is necessary; the obstacle/s. In this work, obstacles

are modelled as cylindrical objects. Just as the LIDAR sensor, modelling the obstacle involves

the generation of an URDF model that defines the visual part and the dynamics of the object.

The generated obstacle has a radius of 1m and an altitude of 2m. Fig. 7.6 shows a screen capture

of the gazebo framework with the generated obstacle and the modelled LIDAR sensor.

The reactive obstacle avoidance agent was programmed in Python 3.5, and it communicates

with the ROS framework by means of the rospy library. Tensorflow and tflearn libraries were

used to generate the neural networks and to train them. Obstacles can be spawned and deleted

using the spawn sdf model and delete model gazebo services. These services permit to define the

initial position of the obstacle and permit to create multiple instances of the same object. In

the defined training framework, obstacles are generated by calling those services in the Python

script that implements the OA agent.

A scheme with all the elements programmed in ROS to create the training environment of the

reactive obstacle avoidance agent is shown in Fig. 3.16. It includes the RotorS framework, the

nodes used to simulate the RC transmitter and the topics of the real platrofm, the nodes of the

autopilot, the path following agent and the reactive avoidance agent. This scheme is explained

in detail in Section 3.5.

8.3 DDPG for Reactive Obstacle Avoidance

This section gives details of each of the elements that form the DDPG approach to solve the

reactive obstacle avoidance problem that was developed in this work. That includes the employed

control structure, the action, state and reward of the agent, the structures of the neural networks

and other parameters related to the DDPG algorithm.

8.3.1 Action

Fig. 8.1 shows the reinforcement learning structure. In this structure, the obstacle avoidance

agent receives the reference path (pd(γ)) and sends it, possibly modified (pd2(γ)), to the path

following agent. Just as in Chap. (6), the reference path is given by two vectors, one for each

component (xd and yd), discretized by parameter γ with a precision of 0.01. There are different

ways of sending the modified path to the PF agent. For instance, the full path could be sent at

each step, however, this would be computationally expensive and inefficient. Otherwise, a small

section of the path, corresponding to the part that is being currently followed, could be sent, but

it could still become too demanding for the communication channel. Furthermore, making the

agent to compute the full sequence of path points would become a challenging problem. Instead,

in this work a simple and efficient way of sending the path to the PF agent was considered;
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sending only the RL state vector of the path following agent. That is, the real environment’s

state vector of the PF agent is calculated in the obstacle avoidance script, and the OA agent

computes certain variations or increments over this state. In this way, the PF agent is blind

about the reference path and only receives the modified RL state vector, and the OA agent

can generate the state increments to modify the state/path in such a way that any obstacle is

avoided.

At this point, it is important to recall that the state vector of the PF agent is formed by four

elements (see Section 6.4.3); the cross-track error, the angle error, the angle error in a point

forward on the path and the velocity of the vehicle. The vehicle’s velocity is an intrinsic state

of the vehicle, but the rest of the states depend on the path that is being followed. Thus,

modifying these states is equivalent to changing the reference path. In the present work, only

the cross-track error state will be modified, leaving the other three states unchanged.

The defined action of the OA agent will act only in the cross-track error state, that computes

the distance from the path to the vehicle. This action is equivalent to having an offset to the

reference path, as it is represented in Fig. 8.2. That is, this action can be interpreted as the

original path displaced in the y axis of the path tangential frame, {T}. Controlling the offset to

the path, the agent will generate the corresponding trajectories to avoid the appearing obstacles.

It is important to mention that, as the angle error state is computed as the angle between two

vectors (x-body axis and x-tangential axis), it remains constant even if the path is translated.

Figure 8.2: Action of the agent modifies the path offseet doff .

The distance offset to the path is named doff . To maintain a smooth profile of this path offset,

the action of the OA agent is set to be an increment over it. That is, the action is set to be the

derivative of the path offset. This is represented in Eq. (8.1). This equation shows, at time step

k, how the modified cross-track error state (ed2,k) is computed from the distance offset (doff,k),

and how the distance offset is obtained from the action (ak) of the OA agent, where ∆t is the
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time step of the agent. The derivative of the path offset is limited to 3m/s, which was considered

to be a sufficiently high speed to execute a reactive manoeuvre.

ed2,k = ed,k + doff,k ∣ doff,k = doff,k−1 + ak ∆t (8.1)

During the training process, an Ornstein–Uhlenbeck noise function (Eq. 6.7) is added to the

action of the agent for exploration purposes. The modified PF state including this noise function

is computed in Eq. (8.2). The influence of this noise function is decreased continuously with

the number of training episodes (j) in such a way that a transition between exploration and

exploitation of the policy is achieved during the learning process. Parameter λ regulates the

velocity of this transition.

ed2,k = ed,k + doff,k−1 + (ak +
nk

j/λ + 1
) ∆t (8.2)

8.3.2 State

Regarding the state vector of this agent, the first state that must be included is the path offset,

doff . The action computed by the agent is the derivative of this parameter, thus, if the agent

does not know the real value of the path offset, it will become impossible for it to perform the

correct variations over doff to avoid obstacles.

Next, LIDAR measures are included in the state vector to provide the agent information about

the environment and possible obstacles. The LIDAR measurements consist on 8 range distances

measured by eight beams distributed in a horizontal field-of-vision of 48○(more information about

the LIDAR sensor in Section 7.2). These distance measurements are treated to eliminate ground

detections (Section 7.4). Eliminating ground detections permitted a much faster convergence of

the trained agents. Actually, in most of the cases the agents were not able to converge without

this treatment.

The cross-track error (i.e. the first state of the PF agent, ed) is also included in the state vector.

That is, knowing the distance from the vehicle to the original reference path permits the agent

to localize the vehicle in space, which helps the interpretation of the LIDAR data.

With the introduced set of states, the system is capable of following the path in a correct way

and, when the LIDAR detects an obstacle in the vehicle’s route, it is able to perform a reactive

action to start avoiding it. However, since the LIDAR has a FOV of 48○, as soon as the vehicle

starts evading the obstacle, it disappears from the LIDAR’s field-of-view. When this happens,

the agent considers that the vehicle has already avoided the obstacle and moves back to the

path provoking a collision. This situation is represented in Fig. 8.3, where the trajectory of the

vehicle is represented with a grey line and the collision instant is marked with a red star. That

behaviour occurs because, in the DDPG algorithm, the action computed according to the agent’s

policy only considers the current information provided by the state vector, without taking into
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account the historical data. Therefore, if the agent notices that the vehicle is out of the path

and no obstacles are detected, it will always try to converge back to the reference path.

Figure 8.3: Vehicle crashes if only instantaneous information of LIDAR is used.

To deal with that, it is necessary to supply historical information of the obstacles to the agent.

Other works provide the historical information by using recurrent neural networks, such as [99]

where LSTM s networks are integrated in the DDPG algorithm. The issue of RNNs is that

convergence is not always achieved and the training process becomes slower. In this work a

simpler and functional solution has been chosen. The proposed approach consists in defining

a state that increases when the LIDAR is detecting an obstacle and decreases otherwise. To

compute this state, if an obstacle is detected, the inverse of the distance measured by each

LIDAR beam is integrated. And when there are no near obstacles in the LIDAR’s field-of-view,

the state is decreased with a predefined rate. That is, this state is equivalent to an integral of

the LIDAR detections. The agent can learn that positive values of this state mean that some

obstacle has been recently detected. Thus, the vehicle will not move back to the path until this

state reaches low values.

The formal definition of the LIDAR integral state, nL, is shown in Eq. (8.3), where dL,i is the

distance detected by the ith beam of the LIDAR. To determine whether a detection is occurring

or not, a distance threshold, dT , is used. The values of kc and kd constants (charging and

discharging rates of the state, respectively) determine the dynamics of this integral state. Note
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that nL is constrained to avoid negative values and to have a maximum value of nL,max. The

maximum value, nL,max, permits to regulate the time that the vehicle must converge back to

the path after the avoiding manoeuvre has started.

if ∀i ∈ [1,2⋯8] ∃! dL,i < dT then nL = max (0, nL − kd)

otherwise nL = min(nL,max , nL +
8

∑
i=1

kc
dL,i

)
(8.3)

Fig. 8.4 shows the evolution of the LIDAR integral state, nL, while performing an avoidance

manoeuvre on a straight line path. nL is shown in the bottom graph and the avoidance ma-

noeuvre, represented by the path distance error, dmin, is shown in the top graph. This graphs

are obtained with a simulation in the RotorS environment with the trained OA agent. In this

simulation, nL is obtained with charging and discharging constants of kc = 1 and kd = 0.1, re-

spectively. The maximum value of the state, nL,max, is set to 6. The values of these parameters

are kept constant in the rest of the chapter.

Figure 8.4: Integral LIDAR state, nL, while performing an avoidance manoeuvre (kc = 1,
kd = 0.1 and nL,max = 6.

Including nL in the state vector allows the agent to know when it is performing an avoidance

manoeuvre even if the obstacle is not in the LIDAR’s field-of-view. The agents trained with this

state vector set-up are capable of avoiding obstacles centred on a straight line path. However,

some tests still resulted in a collision. The cause of that problem is that the velocity of the vehi-

cle was not considered when performing the avoidance manoeuvre (vehicle’s velocity continues

increasing until the cruise velocity is reached). That is, the evasion trajectory not only depends

on the vehicle and obstacle’s position, but also on the vehicle’s velocity. Once the velocity of

the vehicle in the x-body axis was included into the state vector, the agent could learn evasion

trajectories at different velocities.
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The set of states introduced before contain enough information to build a reactive obstacle

avoidance approach for a straight line path. However, when translated to a different path with

curves, such as a Lemniscate path, it becomes very difficult for the trained agents to avoid

obstacles while following a curve. That is because the optimal avoiding trajectory depends on

the shape of the path. To deal with this issue, the curvature of the path is set as a new parameter

of the state vector. Specifically, this state is computed as the average of the path’s curvature in

a section of 5 meters around γmin (path closest point to the vehicle given by γ). This new state,

k(γ), is computed in Eq. (8.4), where γmin,i and γmin,f are the initial and final points of the

average window, and n is the number of points used to calculate the average.

k(γmin) =
⎛
⎜⎜
⎝

γmin,f

∑
γ=γmin,i

∥dpd(γ)
dγ

× d2pd(γ)
dγ

∥

∥dpd(γ)
dγ

∥
3

⎞
⎟⎟
⎠
/n (8.4)

Adding the path curvature to the set of states results in a much better performance, avoiding

most of the obstacles with different path shapes. Every agent trained with this state vector

always converges to a solution in which it constantly performs the avoidance manoeuvre by the

same side of the obstacle (either left or right). Nevertheless, depending on the vehicle’s position,

the path’s shape and the obstacle’s position, there is always a side of the obstacle that is more

convenient to go to. Thus, this behaviour is harmful both for the path following performance

and the obstacle avoidance capabilities.

To provide the agent with the ability of avoiding obstacles by both sides, richer information of

the environment must be included in the state vector. In this work, the LIDAR integral state,

nL, has been split into two states: one state for the detections of the left-side beams of the

LIDAR (nL,l) and another state for the detections on the right-side beams (nL,r). In this way,

the agent not only knows that an obstacle has been recently detected even if it is not in the

LIDAR’s field-of-view, but it also can determine whether it was detected on the left or on the

right side of the vehicle. With this approach, the trained agents acquired the ability of deciding

when to avoid the obstacles by the left-side and when by the right-side, depending on the vehicle,

path and obstacle’s situation.

The formal definition of nL,l and nL,r states is shown in Eq. (8.5) and Eq. (8.6), respectively.

Note that, since nL state is split into two states, the charging and discharging constants are also

divided by 2.

if ∀i ∈ [1,2⋯4] ∃! dL,i < dT then nL,l = max (0, nL,l − kd/2)

otherwise nL,l = min(nL,max , nL,l +
4

∑
i=1

kc/2
dL,i

)
(8.5)

if ∀i ∈ [5,6⋯8] ∃! dL,i < dT then nL,r = max (0, nL,r − kd/2)

otherwise nL,r = min(nL,max , nL,l +
8

∑
i=5

kc/2
dL,i

)
(8.6)
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Summarizing, the state vector defined in this work includes the path distance offset (doff ), the

LIDAR measurements treated to eliminate ground detections (Li), the cross-track error (ed),

the vehicle’s velocity on the x-body axis (u), the average path curvature around the closest path

point to the vehicle (k(γmin)) and the integral (with saturation) of the LIDAR detections of

the left beams (nL,l) and of the right beams (nL,r). This vector, with a total of 14 states, is

represented in Eq. (8.7).

s = {doff , L1⋯L8, ed, u, k(γmin), nL,l, nL,r} (8.7)

8.3.3 Reward

To define the reward function, two virtual zones around the obstacle were created: the banned

zone and the safety zone. These zones are represented in Fig. 8.5, which shows the obstacle in

blue surrounded by two circles that represent the two zones. The banned zone is created with a

circumference around the obstacle at a distance of 0.5m from it. The safety zone is created with

a circumference at a distance of 0.25m of the banned zone edge. That is, at a distance of 0.75m

to the obstacle. In this figure the vehicle is represented proportionally to the obstacle and to the

defined zones.

2m 0.5m 0.25m

Obstacle

Banned Zone

Safety Zone

Figure 8.5: Obstacle surrounded by the prohibited zone and the safety zone.

If the vehicle enters the banned zone, it is considered that a collision has occurred, and the

simulation is stopped. Thus, the vehicle is not allowed to enter this zone. If the vehicle enters

the safety zone while training, the agent will receive a negative reward, but the training episode

will continue. Therefore, the trained agent will learn to avoid entering this zone to maximise
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the received reward. The safety zone is only present while training, so, if the vehicle enters the

safety zone while performing a test, nothing will happen.

Defining a banned zone is always necessary to keep a proper distance to the obstacle when

avoiding it. However, when only the banned zone is defined, the trained agents will always learn

to avoid the obstacle travelling around the edge of the banned zone. Therefore, it will become

very easy that, due to sensor noise or external disturbances, the vehicle enters the banned zone

and the experiment is stopped. To avoid this issue, the mentioned safety zone is defined.

The first reward function defined in this work is shown in Eq. (8.8). This function has three

terms. The first term, −10∣doff ∣, penalizes the path offset distance. That is, the agent will try

to send the real cross-track error state (with no path offset) to the PF agent if no obstacles are

present. The second term, −50SZ, penalizes the vehicle when it enters the safety zone, where

SZ is a boolean parameter that is 1 when the vehicle is in the safety zone and 0 otherwise.

And the third term, −2000BZ, penalizes the vehicle when it enters into the banned zone, where

BZ is another boolean parameter that is 1 when the vehicle enters the banned zone and 0

otherwise. Note that this third term can only be activated once in an episode, since when the

vehicle enters the banned zone it is considered that a collision has occurred and the episode is

terminated. The reward function also includes a positive reward of 10 units given at each step.

This positive reward is used only for helping the interpretation of the training data, since with

it the accumulated episode reward converges to a positive value during the training process of

the agent.

r = −10∣doff ∣ − 50SZ − 2000BZ + 10 (8.8)

It is important to mention that this is the reward that provided the best results in terms path

following error and obstacle avoidance capability. Several other reward functions were also tested

with poorer results. For instance, instead of the defined constant penalty when entering the

safety zone (−50SZ), a penalty proportional to the inverse of the obstacle’s distance (similar to

an artificial potential field) was tested. However, even having a proportional reward instead of a

constant one may intuitively seem a better option, the agents trained with this reward presented

problems to converge to a stable solution.

Since the reward function of Eq. (8.8) is simple and does not include any immediate reward,

the training process requires more time to converge. Having no immediate rewards means that

only when the vehicle enters the vicinity of the obstacle (Fig. 8.5) the reward changes, but it

remains unaltered when the vehicle is moving towards the obstacle. On the other hand, this

simple reward function allows the agent to freely search for the best policy to avoid the obstacles

without any additional constraints.

Other reward functions that include immediate terms were also tested. With these reward

functions, the trained agents may not present an optimal policy, but the immediate terms help

to achieve a faster convergence reducing its training time. Among the explored rewards including

the mentioned immediate terms, there is one that showed considerably good results with short

training time.
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This reward function contains the same terms as the ones stated in Eq. (8.8) incorporating a

LIDAR-based reward term. Basically, this new term gives a penalty when the LIDAR sensor

is detecting an obstacle, taking into account the distance at which the obstacle is detected,

provided by each LIDAR beam. Including this term, the reward progressively becomes more

negative when the vehicle is moving towards an obstacle and the LIDAR is detecting it. Thus,

the agent can easily learn that detecting an obstacle near to the vehicle is hazardous and that

an avoidance manoeuvre must be carried out.

A straightforward manner of generating this new term would be to sum the inverse of the

distances measured by each LIDAR beam, similarly on how the integral state (nL) is updated

when the LIDAR is detecting an obstacle. This form of calculating the LIDAR-based reward

term, rim, is shown in Eq. (8.9). However, note that this term would still compute negative

rewards even at long distances to the obstacle, which is not convenient. Furthermore, the

rewards generated, for instance, at 1m and 0.75m to the obstacle, would be notably different,

when actually there is difference. That is, an obstacle is equally urgent to consider if it is at 1m

or if it is at 0.75m to the vehicle.

rim = −
8

∑
i=1

1

dL,i
(8.9)

In this work a sigmoidal function is used for representing how urgent is to avoid an obstacle

depending on its distance to the vehicle. The LIDAR-based reward term is computed with a

sigmoidal function, as shown in Eq. (8.10), where dT,r is the distance threshold of the sigmoidal

reward function (i.e. the distance at which the reward starts to decrease).

rim = −
8

∑
i=1

1

1 + exp (2(dL,i − dT,r))
(8.10)

Fig. 8.6 compares the two ways of calculating the LIDAR-based reward term: with an inverse

function of the distance and with a sigmoidal function. The graphs are computed in function of

the distance measured by a LIDAR beam (dL). The distance threshold of the sigmoidal reward

function, dT,r, is fixed to 4, which means that the reward function is activated around 4m to the

obstacle.

With the defined sigmoidal function, the agent will start receiving a penalty when the LIDAR

beams detect an obstacle at a distance of dL ⪅ dT,r + 2. And so, the agent will try to avoid that

penalty by moving the vehicle to another direction. Therefore, dT,r will determine the distance

at which the avoidance manoeuvre is started. Note that defining this distance threshold to a

fixed value for all the LIDAR beams, let’s say 4 meters, is equivalent to considering equally

hazardous an obstacle at a given distance in front or to the left of the vehicle. With a constant

threshold, the hazardous zone is defined as a circumference around the vehicle. Since the vehicle

is constrained to move only on the x-body axis, defining a circular hazardous zone would be

inappropriate. Instead, in this work the distance dT,r is defined as a function of the LIDAR

beam angle to create an elliptical hazardous zone around the vehicle. The comparison between

having a circular or elliptical distance threshold is represented in Fig. 8.7, where the circular
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Figure 8.6: Comparing two forms of calculating the LIDAR-based reward term: inverse
function and sigmoidal function.

distance threshold is set to 4m and the main axes of the ellipse are 4m and 1m. Note that with

the elliptical distance threshold, when an obstacle appears in front of the vehicle, the penalty

starts decreasing as soon as the vehicle starts turning.

Figure 8.7: Circular distance threshold or elliptical threshold (dT,r).

Eq. (8.11) shows how the elliptical distance threshold is computed in function of the angle of each

LIDAR beam (ψL,i), where ra and rb are the long and the short axes of the ellipse, respectively.

These axes will define the shape of the hazardous zone, and thus, they will constrain how the

avoidance manoeuvre is accomplished.

dT,r(ψL,i) = rarb

¿
ÁÁÁÀ 1 − (cos(∣ψL,i∣)/sin(∣ψL,i∣))2

r2b − r2a (cos(∣ψL,i∣)/sin(∣ψL,i∣))2
(8.11)

Finally, the reward function which includes the LIDAR-based term, is shown in Eq. (8.12), where

dT,r(ψL,i) is computed as in Eq. (8.11). The LIDAR-based reward term is scaled by 10 units.
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r = −10∣doff ∣ − 10
8

∑
i=1

1

1 + exp (2(dL,i − dT,r(ψL, i)))
− 50SZ − 2000BZ + 10 (8.12)

8.3.4 Structure of the DDPG agent

The structures of the Neural Networks of the actor and critic are the same as the ones employed

in the path following agent developed in Chap. (6). They are shown in Fig. 6.7 and Fig. 6.8,

respectively. Moreover, most of the parameters of the PF agent, defined in Table 6.1, are

also maintained in the agent presented in this chapter. Thus, it is shown that, once obtained

an appropriate and functional structure and set of parameters of a DDPG agent, the agent

can be straightforwardly translated to solve other similar problems or problems with similar

environments.

The parameters that are modified in the reactive obstacle avoidance agent are the ones related to

the noise exploration function and the maximum steps of one training episode. The values of the

modified parameters are presented in Table 8.1. These parameters denote that the exploration

ratio is much larger in the obstacle avoidance agent than in the path following agent. Having a

large exploration ratio permits the OA agent to learn the best form of avoiding each obstacle.

For instance, it helps to determine whether it is better to avoid an obstacle by the left side or

by the right side. Furthermore, the maximum number of steps of one episode is considerably

increased. The reason for this is explained in Section 8.5.

Table 8.1: Modified noise parameters of the OA agent.

Symbol Description Value

θn Mean reversion rate of noise function. 0.15

σn Volatility of noise function. 3

λ Ratio of exploration-exploitation transition. 500

- Maximum steps of one episode. 3000

8.4 Implementation of the PF and Reactive OA Approach

Two python 3.5 scripts are programmed to implement the path following and reactive obstacle

avoidance approach. In Fig. 8.8 the flowchart of these two scripts is presented, where commu-

nication elements are represented in grey color. It can be observed that the PF script includes

two control modes: the path following mode and the hover mode. In the path following mode,

the DDPG PF agent is in charge of following the reference path that is received from the OA

script in the form of subsequent PF state vectors. In the hover mode a PID controller is used to

hover the vehicle around a reference point in space. In both control modes, the path following

commands (ψcmd, zcmd, ucmd and vcmd) are sent to the autopilot controller. The PF script starts

at hover mode and waits for the OA script to proceed with the path following task.
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The path to be followed and the transition between the two control modes is supervised by the

OA script. In the OA script, first, the definition of the reference path is made, and then, the

DDPG OA agent is launched. The DDPG OA agent computes the path offset action, which

is used to obtain the PF state that is sent to the PF script. Once the path following task is

finished, the OA script sends the PF script back to hover mode. There are two ways of finishing

the PF task: by reaching the end of the path or when a collision is produced. In the simulated

framework, it is considered that a collision is produced when the vehicle enters the banned zone

(Fig. 8.5). When this happens, the obstacle is deleted from the gazebo framework and the hover

mode is activated. In the simulated framework the OA script is also in charge of generating

obstacles and place them randomly along the path and around it. This procedure is made after

the reference path is defined.

PF Script OA Script

Start Start

Hover Mode Define Path

Send Mode PFReceive Mode

Mode?

PF

Hover

Compute Agent Action (      )

Calculate PF State

Send PF StateWait Receive PF State

Collision?
Compute Agent Actions (                )

Calculate PF Commands

Delete Obstacle End Path?

Send Mode Hover

Yes

No

Yes

No

End

Send PF Commands

Figure 8.8: Flowchart of the two scripts that implement the PF and Reactive OA approach.
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8.5 Training Process

The training process of the agents was made in the environment detailed in Section 8.2.1. Just as

in Chap. (6), the training environment is integrated in a linux Xubuntu virtual machine with a

dedication of 8GB RAM and four 1.80GHz processors (i7-8550U CPU), and the training process

is performed in real time.

The path following and obstacle avoidance problem can become very complex because many

different situations can occur. That is, obstacles can appear at different locations while following

diverse path shapes. To obtain a complete and functional agent to deal with the stated problem,

a very rich training framework must be generated.

The generated training framework consists on making the vehicle follow a straight line of 10m

followed by a half asymmetrical lemniscate path, defined in Eq. (6.17), where the value of its

two radius change every episode, taking a random value between 3m and 10m with a uniform

probability distribution. That is, a straight line path plus the same path that was used to train

the PF agent developed in Chap. (6). Following paths with different curves and with straight

lines will permit the agent to learn the avoiding manoeuvres at different situations.

The straight line at the beginning of the path is used to prevent from having an obstacle just in

front of the vehicle when starting an episode. Therefore, no obstacles are placed in this line. This

is coherent with real experiments, since the human supervisor would not launch the vehicle with

an obstacle very close to it. Furthermore, this starting line on the path permits to place obstacles

in any point along the Lemniscate path, which allows the agent to learn avoiding manoeuvres

with different path’s shapes. Also, the straight line path permits to reach the cruise velocity

before starting the lemniscate path, preventing the avoidance manoeuvres at the transient phase.

Obstacles are generated in each episode with a probability of 75%. That is, in average, 1 out of

4 episodes will be performed without any obstacle. That permits the agent to learn the policy

when no obstacles are present. The obstacles are placed at random locations along the lemniscate

path, with a uniform probability distribution, in a range of ±2m of distance to the path. That

allows the agent to learn to avoid obstacles that are centred on the path as well as obstacles

that are close to it, deciding which side is better to avoid them, depending on the location of the

obstacle, the vehicle and the path shape. Furthermore, it is trained with obstacles that are out

of the vehicle’s route in such a way that the LIDAR detects them but no avoidance manoeuvre

is needed.

The agents are trained in ideal conditions. That is, the system uses ground truth measurements

and the vehicle starts each episode at the initial position of the path with the yaw angle oriented

tangentially to it. It is important to recall that the orientation and velocity of the vehicle are

controlled by the autopilot and that the path following problem is solved by the path following

agent (Agent 3 ) developed in Chap. (6). Therefore, these two control blocks are also included

while training the obstacle avoidance agent.
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It is interesting to mention that, without the treatment of LIDAR measurements to eliminate

ground detections, most of the trained agents had problems to interpret the distance measure-

ments provided by this sensor. The agents trained in these conditions converged to a solution

where the vehicle always follows the path a certain distance to it. That is, the vehicle remains

at a large enough distance to the path to elude all the obstacles that may appear. That is

because obstacles are generated only in a range of ±2m of distance to the path. Farther than

this distance, there are no obstacles. When the LIDAR measurements are treated, this peculiar

behaviour is solved.

Another particular issue is that, if the length of an episode is set to 300 steps (30 seconds), just

as the training episodes of the PF agent of Chap. (6), the agents converge to a wrong but tricky

policy. That is, the resulting policy makes constant and abrupt changes of its action (which

affects doff ) in such a way that the velocity of the vehicle is severely reduced due to the constant

changes on the reference path. Since the vehicle moves very slowly, most of the episodes end

before the obstacle has appeared in the vehicle’s route, thus, avoiding the collision. This issue is

solved by extending the length of the episodes. In this work, the number of steps is set to 3000

(300 seconds). However, even the number of episodes must be considerably extended to solve

this problem, after the first training episodes, the agent can improve its policy, and the rest of

episodes end in around 30-50 seconds (the average time needed to perform a lap on the path at

the optimal velocity while avoiding the obstacle).

The results of the training process of the agent with the state defined in Eq. (8.7) and the reward

function stated in Eq. (8.8) are shown in Fig. 8.9. This figure shows the average path distance

error, the average velocity, a boolean parameter that indicates if a collision occurred or not (1-

collision, 0-no collision) and the accumulated reward on each episode during the training process

of the agent. The real data is shown with gray dashed lines and black lines represent a 1000-

episode moving average. This agent was trained during 10500 episodes. As can be observed, the

average path distance and velocity increase over the episodes, reaching a stable value of around

0.31m and 1.24m/s, respectively. The accumulated reward stabilizes around 2053. The moving

average of the boolean parameter that represents whether a collision in the episode occurred or

not, stabilizes to a value of 0.048. This value can be considered an indicator of the probability of

having a collision. This indicator remains close to 0 at the first episodes, since the agent can not

properly follow the path yet, and starts increasing when the agent improves the path following

performance because obstacles are placed near to the path. It arrives to a maximum value of

around 0.25, meaning that 1 out of 4 episodes end in a collision. However, the stabilized value

of 0.048 can be considered of having a collision every 20 episodes. It is important to mention

that the noise function can increase the probability of having a collision.

The training process of the agent that includes the LIDAR-based reward term (Eq. 8.12) is

shown in Fig. 8.10. This figure evaluates the same parameters of Fig. 8.9. Again the real

values are represented with grey dashed lines and the black solid lines represent a 1000-episode

moving average. It can be observed that the agent including the LIDAR-based reward term

converges a little faster that the previous one. The training process of this agent was stopped

at episode 8900. Training more than this resulted in a worse performance. The evolution of

the parameters evaluated in Fig. 8.10 is similar to the one shown before (Fig. 8.9). The average
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Figure 8.9: Average distance error, average velocity, probability of collision and accumulated
reward on each episode during training phase of the OA agent with the standard reward; gray

dashed lines are real values and black lines are a 100-episodes moving average.

distance error converges around 0.37m, the velocity at 1.25m/s and the accumulated reward

stabilized about 1879. Regarding the average collision, it converges around 0.098. That means

that the probability of having a collision with this agent is around the double of the one obtained

with the other agent. Therefore, even this agent is able to converge in a slightly shorter number

of episodes, the final performance is decreased as well.

8.6 Results

This section presents the results obtained with the agent that achieved the best performance

in terms of path following error and obstacle avoidance capabilities among the different agents

that were trained. This agent was trained with the reward function defined in Eq. (8.8) and

its training process is presented in Fig. 8.9. The Agent 3 developed in Chap. (6) is used as the

path following algorithm. The results are obtained with the RotorS simulation platform, the
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Figure 8.10: Average distance error, average velocity, probability of collision and accumulated
reward on each episode during training phase of the OA agent with the LIDAR-based reward;

gray dashed lines are real values and black lines are a 100-episodes moving average.

simulation framework where both the PF agent and the OA agent were trained. Two paths are

used to test the approach; a lemniscate path and a spiral path. These simulation results are

shown in next subsections.

In addition to the agent tested in this section, several obstacle avoidance agents with different

states, reward functions and RL parameters were trained and tested during the process of ob-

taining the final approach presented in this chapter. Table 8.2 introduces a summary of the main

characteristics of some of these agents and a description of their performance handicaps.

Fig. 8.11 shows a comparison of the trajectory obtained with the agent of the standard reward

function, represented with a red dashed line, and the agent that includes the LIDAR-based

reward, represented with a dash-dotted green line, while following a lemniscate path with a

cylindrical obstacle, represented in blue. The starting point of the vehicle is shown with a red

arrow pointing to the initial x-body orientation of the vehicle. In most of the tested experiments,

these two agents exhibited very similar trajectories to avoid the obstacle, having a nearly identical

path following performance. However, due to the constraints that introduces the LIDAR-based
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Table 8.2: Behaviour of some of the trained and tested agents.

Agent Conditions Behaviour Description

1
s = {doff , L1⋯L8, ed, u}

Reward: Eq. (8.8)

The agent has not enough information of the
obstacle. As soon as the obstacle disap-
pears from the LIDAR field-of-view, the agent
moves the vehicle back to the path provoking
a collision.

2
s = {doff , L1⋯L8, ed, u, nL}

Reward: Eq. (8.8)

The agent knows if an obstacle has been re-
cently seen. However, it does not have enough
information of the path. The agent can-
not learn the manoeuvres for different path’s
shape. The vehicle often collides.

3
s = {doff , L1⋯L8, ed, u, nL, k(γmin)}

Reward: Eq. (8.8)

The agent has information of the path’s shape
and can learn different avoidance manoeuvres.
From state nL, the agent only knows if an
obstacle has been recently seen, but ignores
whether it is at the right or at the left of the
vehicle. The agent always learns to avoid by
the same side of the obstacle.

4

State: Eq. (8.7)

nL,l and nL,r without saturation

Reward: Eq. (8.8)

If nL is split in two states, the agent has
enough information to learn to choose from
which side is better to avoid an obstacle. How-
ever, if no saturation is used to these states,
the vehicle can take a lot of time to converge
back to the path when avoiding an obstacle
(integral states affect directly the convergence
time).

5

State: Eq. (8.7)

Reward: Eq. (8.8)

Noise: θn = 0.0075, σn = 0.15 and λ = 200

If the same noise power of PF agent is used,
the OA agent does not achieve a proper ex-
ploration during training phase. The lack of
exploration affects the avoidance capabilities,
resulting in more collisions and worse avoiding
manoeuvres in terms of PF error.

6
State: Eq. (8.7)

Reward: Eq. (8.12)

The agent with the LIDAR-based term in the
reward function converges faster. Neverthe-
less, due to the introduced constraints, the
agent can present difficulties to avoid some ob-
stacles. Thus, more collisions occur.

reward term, in some cases, the agent trained with this reward can execute unusual trajectories

to satisfy the defined reward function. This is the case of the example shown in Fig. 8.11, where

this agent (dash-dotted green line) performs a very aggressive manoeuvre to avoid the obstacle

and, then, it takes more time to converge back to the path. Moreover, some of these aggressive

manoeuvres performed by the agent with the LIDAR-based reward end in a collision. Therefore,

though the LIDAR-based reward provides more information to the agent, leading to a slightly

faster convergence, it derives in a worse avoidance capability.
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Figure 8.11: Trajectory on the xy plane of the agent with the standard reward (red dashed
line) and the agent including the LIDAR-based reward (dash-dotted green line) while following

a lemniscate path with an obstacle (blue circular object).

8.6.1 Lemniscate Path

This section evaluates with a lemniscate path the agent that is proposed in this work as a solution

to the obstacle avoidance problem. The agent corresponds to the one trained with the reward

function with no LIDAR-based term. The lemniscate path is defined in Eq. (6.16), where the

amplitude, A, is set to 5m, and γ ranges from 0 to 2π, corresponding to a full lap on the path.

On each of the presented tests, the vehicle starts in hover conditions at the initial point of the

path with the yaw oriented tangentially to the path.

Table 8.3 compares the results obtained by the PF agent developed in Chap. (6) with the ones

obtained by the PF+OA approach presented in this chapter. That is, the approach that combines

the two DRL agents to solve the path following and obstacle avoidance problem. This results

evaluate the performance of both approaches performing one lap of the lemniscate path without

any obstacle. The table shows the average cross-track error, the total time to perform the lap

on the path and the average velocity of the vehicle. The PF agent achieves a slightly better

performance in terms of path distance error. Therefore, it is shown that having the OA agent

can affect the PF performance somehow.

Table 8.3: Simulation results for one lap on the lemniscate path with no obstacles.

d (m) time (s) ∥v∥ (m/s)

PF Agent 0.0765 44.6 1.3798

OA Agent + PF agent 0.1191 46.2 1.3223

Next, the proposed approach is tested performing a full lap of the stated lemniscate path with an

obstacle at different positions centred on the path. The results of these simulations are presented

in Table 8.4. This table shows the path position of the obstacle, given by γobs, and the distance

from the center of the obstacle to the path, dobs. It is important to recall that, as mentioned in

Section 8.2.1, the obstacle is a cylindrical object with a radius of 1m. Note that obstacles are
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located at γobs ≥ 1.2. That is because the OA agent was not trained to avoid obstacles in the

transient phase. Furthermore, this table presents the same parameters evaluated in Table 8.3,

that is, the average cross-track error, the total time and the average velocity. In all the cases

presented in the table, the vehicle is able to properly avoid the obstacle, having an average

distance error of about 0.3-0.4m in most of the simulations. Other simulations present more

error because the obstacle was placed near the center of the lemniscate so the vehicle needs to

avoid it two times when performing a full lap.

Table 8.4: Simulation results for one lap on the lemniscate path with obstacle centred on the
path.

γobs dobs d (m) time (s) ∥v∥ (m/s)
1.2 0 0.3839 55.4 1.1265

1.4 0 0.3904 54.6 1.1292

1.6 0 0.7718 59.2 1.0767

1.8 0 0.3027 50.6 1.2046

2 0 0.3587 50.3 1.2040

2.2 0 0.3113 50.6 1.1824

2.4 0 0.3846 54.5 1.1913

2.6 0 0.3319 52 1.2326

2.8 0 0.2902 50.6 1.2514

3 0 0.3309 55.3 1.1550

3.2 0 0.3714 55.4 1.1429

3.4 0 0.3233 51 1.1780

3.6 0 0.2993 50.9 1.1821

3.8 0 0.3347 54.7 1.1760

4 0 0.3190 57.3 1.1193

4.2 0 0.3070 52.7 1.1940

4.4 0 0.3036 53.2 1.1778

4.6 0 0.6016 54.4 1.1511

4.8 0 0.4739 51.4 1.2318

5 0 0.4249 48.7 1.3078

5.2 0 0.3679 50.6 1.2585

5.4 0 0.3389 55.2 1.1631

5.6 0 0.3631 52.9 1.2257

5.8 0 0.4198 51.5 1.2473

Fig. 8.12 shows the trajectory in the xy plane performed by the proposed approach in some of

the simulations of Table 8.4. In this figure and the rest of the figures of this chapter, the initial

position of the vehicle is marked with a red arrow pointing to the initial x-body orientation. From

left to right and top to bottom, these figures correspond to the simulations with the obstacle

placed at γobs = 1.2, γobs = 1.6, γobs = 1.8, γobs = 2.6, γobs = 3.2, γobs = 3.4, γobs = 3.8 and

γobs = 5.4, respectively. These results show diverse examples of obstacle avoidance manoeuvres;

at the long straight line, at the short straight line, at left-sided curves and at right-sided curves.
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Figure 8.12: Simulation results following the lemniscate path with obstacles centred on the
path.
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Table 8.5 presents the results obtained while following the lemniscate path with obstacles that

are not centred on the path. This means, there is a preferred side to avoid these obstacles and

sometimes, if the obstacle is too far from the path, no avoidance manoeuvring is needed. This

table shows the same parameters of Table 8.4. The average path distance error is lower than the

simulations of Table 8.4 since the avoidance manoeuvres are less demanding.

Table 8.5: Simulation results for one lap on the lemniscate path with obstacles not centred
on the path.

γobs dobs d (m) time (s) ∥v∥ (m/s)
1.2 2 0.1905 48.8 1.2511

1.4 1.5 0.2216 53.2 1.1528

1.6 1 0.3969 56.5 1.0923

1.8 0.5 0.3106 57 1.0769

2 -0.5 0.2834 58 1.0976

2.2 -1 0.1968 46.9 1.3265

2.4 -1.5 0.1936 48.2 1.2884

2.6 -2 0.1999 50.4 1.2290

2.8 -1.5 0.1929 52.7 1.1871

3 -1 0.1815 51.2 1.2135

3.2 -0.5 0.3120 55.4 1.1410

3.4 0.5 0.3126 50.2 1.2032

3.6 1 0.2720 53 1.1431

3.8 1.5 0.2014 56.1 1.1087

4 2 0.1699 52 1.1908

4.2 1.5 0.5201 54 1.1981

4.4 1 0.2124 55.3 1.1235

4.6 0.5 0.5707 57.5 1.0987

4.8 -0.5 0.3685 57.6 1.0758

5 -1 0.3215 56.3 1.0930

5.2 -1.5 0.2253 53.9 1.1476

5.4 -2 0.1513 49.7 1.2247

5.6 -1.5 0.2128 51.5 1.1769

5.8 -1 0.2836 50.6 1.2094

The trajectory followed by the vehicle in some of the simulations of Table 8.5 is shown in

Fig. 8.13. These simulations correspond to the ones with the obstacle placed at γobs = 1.4,

γobs = 1.6, γobs = 1.8, γobs = 2.2, γobs = 2.6, γobs = 3.8, γobs = 4.4 and γobs = 5.6, respectively. In

all these simulations the agent chooses the correct side of the obstacle to perform the avoidance

manoeuvre. Moreover, if the obstacle is out of the vehicle’s route, as is the case in the simulation

with γobs = 2.6 (third-left in Fig. 8.13), the vehicle remains in the path. It is important to remind

that, due to the zones defined in Fig. 8.5, ideally, the vehicle is required to remain at least at

1.75m away from the center of the obstacle, and less than 1.5m is considered a collision. Thus,

even with the obstacles placed at 1.5m of the path, as it is the case of the simulations with

γobs = 1.4 (first-left), γobs = 3.8 (third-right) and γobs = 5.6 (fourth-right), the agent needs to

perform an avoiding manoeuvre to prevent the collision.



8.6. RESULTS 167

Figure 8.13: Simulation results following the lemniscate path with obstacles not centred on
the path.
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In the simulation results presented in Figs. 8.12 and 8.13, the agent always choose the most

convenient side of the obstacle to avoid it. Nevertheless, occasionally, the agent may also choose

the wrong side of the obstacle, as it is evident in the simulation of Fig. 8.14. In this simulation,

the obstacle (center) is located on the left of the path at 1.5m, however, the agent unnecessarily

avoids it taking the longest route. This behaviour may be caused by the fact that when the vehicle

sees the obstacle for the first time, it is at its right. Therefore, as the agent cannot predict the

upcoming curve, it starts the avoidance manoeuvre by the left side of it. Nevertheless, even in

the scenario of Fig. 8.14, this behaviour only happens in very few occasions. On the other hand,

the agent can also drive the vehicle to a collision, as shown in Fig. 8.15. Colliding is really a very

rare event and, it is more likely to happen on the starting part of the path where the vehicle is

still accelerating.

Figure 8.14: Trajectory on the xy plane
of a simulation where the agent avoids the

obstacle by the wrong side.

Figure 8.15: Trajectory on the xy plane
of a simulation that ended in a collision.

8.6.2 Spiral Path

In this section the PF+OA approach is tested with a spiral path, a different path from the used

to train both the PF agent and the agent developed in this chapter. The spiral path is defined

in Eq. (6.18), where A is set to 1.25 and γ ranges from 0 to 3π. Again, the vehicle starts at the

initial point on the path, oriented tangentially to it.

Table 8.6 compares the path following performance of the PF agent with the performance of the

PF+OA approach following the spiral path with no obstacles. Just as the results of the lemniscate

path, the PF agent achieves slightly better results. Nevertheless, the PF+OA approach still

achieves remarkable results.

Table 8.6: Simulation results for one lap on the spiral path with no obstacles.

d (m) time (s) ∥v∥ (m/s)

PF Agent 0.1149 47.4 1.2457

OA Agent + PF agent 0.1304 46 1.2444
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The results obtained with the proposed approach when following the stated spiral path with

different obstacle positions is shown in Table 8.7. The first 7 simulations correspond to simula-

tions with obstacles centred on the path. In these simulations the approach achieves an average

cross-track error of around 0.3-0.4m, very similar to the results obtained with the lemniscate

path.

Table 8.7: Simulation results for one lap on the spiral path with different obstacle positions.

γobs dobs d (m) time (s) ∥v∥ (m/s)
4 0 0.3699 52.4 1.1412

4.8 0 0.3901 51.2 1.1575

5.6 0 0.3768 49.3 1.1954

6.4 0 0.3741 51.2 1.1521

7.2 0 0.4036 51 1.1585

8 0 0.3216 52.1 1.1347

8.8 0 0.3606 50.2 1.1632

4 2 0.1835 48.8 1.1696

4.8 1.5 0.2348 46 1.2293

5.6 1 0.3529 43.6 1.2823

6.4 0.5 0.3860 44.4 1.2560

7.2 -0.5 0.3578 48.7 1.2037

8 -1 0.2496 49.2 1.1803

8.8 -1.5 0.1779 48.8 1.1951

Some of the trajectories in the xy plane of the simulations presented in Table 8.7 are shown in

Fig. 8.16. From left to right and top to bottom, these simulations correspond to γobs = 4, dobs = 0;

γobs = 5.6, dobs = 0; γobs = 8, dobs = 0; γobs = 4, dobs = 2; γobs = 6.44, dobs = 0.5 and γobs = 8.8, dobs =
−1.5, respectively. Note that in a spiral path the preferred side to avoid the obstacle is the

outside of the curve. However, if the obstacle is placed shifted to the left of the path from the

vehicle’s point of view, the agent will avoid the obstacle from the inside of the curve, as is the

case of the simulation with γobs = 6.44 − dobs = 0.5 (third-left in Fig. 8.16).

With the presented results it is shown how the proposed approach for path following and obstacle

avoidance is able to follow a path different from the trained one while being able to avoid obstacles

at different positions of the path. Thus, it is shown how a generalized solution of the problem

for different path shapes is achieved.
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Figure 8.16: Simulation results following the spiral path with different obstacle positions.
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Concluding Remaks
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Chapter 9

Conclusions

In this PhD thesis a Guidance, Navigation and Control system for a quadrotor vehicle was

implemented. This dissertation has proposed contributions to different problems that appear

when implementing a GNC system, studying and developing different approaches combining

both control theory and machine learning theory.

A path following and obstacle avoidance approach based on two deep reinforcement learning

agents was proposed as a solution to the main objective addressed in the thesis. The resulting

approach is capable of accurately following a predefined path by adapting the velocity of the

vehicle to the shape of the path. Furthermore, it is capable of avoiding obstacles that may appear

in the vehicle’s route, by replanning the route online. The proposed approach is adaptable

to different paths and conditions without requiring any additional tuning of its parameters.

The proposed path following approach was implemented in the real experimental platform with

successful results.

To fulfil the main objective, several tasks were accomplished, including the literature review, the

development of a realistic simulation benchmark, the setup of the experimental platform, the

implementation of an obstacle detection system and the study, implementation and improve-

ment of state-of-the-art path following algorithms, among others. Next sections summarize the

work and contributions produced in this dissertation, as well as the future research lines and

perspectives.

9.1 Summary and Contributions

Chapter 2:

This chapter proposes the structure of the Guidance, Navigation and Control system that

is implemented in this thesis. The elements of this structure and their communication flow

are described in detail. Next, a comprehensive literature review on the Control, Navigation

and Guidance fields focused on multirotor vehicles is carried on.

173
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The concept of path following is defined, which according to the reviewed bibliography,

results in a smoother convergence to the path, less demand of control effort, a stronger

robustness and other advantages over traditional trajectory tracking. Several control-

oriented, geometrical and learning-based techniques and approaches for solving the path

following problem are reviewed. A qualitative comparison is given. The state estimation

problem is described and the most common solutions for this type of UAV are referred. The

main perception problems for multirotor vehicles are reviewed with special emphasis to the

obstacle detection problem. To end up, the most common and proficient path planning

techniques are described and several state-of-the-art approaches are detailed, focussing on

the reactive path planning methods for UAVs.

Related publications:

Part of this chapter was published in the following journal paper [144]:

Rub́ı, B., Pérez, R. & Morcego, B. A Survey of Path Following Control Strategies for UAVs

Focused on Quadrotors. Journal of Intelligent & Robotic Systems 98, 241–265 (2019).

Chapter 3:

This chapter is focused on the multirotor platform employed in this thesis. The actual

experimental platform, including the Asctec Humming vehicle, the on-board PCs and the

ground station, is described in detail. A complete mathematical model of the multirotor is

derived. This model includes the body dynamics of the vehicle, the dynamics of the rotors

and the motors, the control mixing block and other effects such as gyroscopic effects, drag

forces and forces generated by wind disturbances. Moreover, a parameter identification

with the real vehicle is carried on. A PID-based autopilot controller is designed, tuned

and implemented in the actual platform to control the inner dynamics of the vehicle. The

RotorS platform, a multirotor simulation environment build in Gazebo/ROS, is modified

to add to the Asctec Hummingbird vehicle a model of the sensors that are present in the

actual platform as well as an emulator of the R/C transmitter of the ground station.

Path-Flyer, a freely available and open benchmark for the simulation and comparison of

path following algorithms on a quadrotor environment is developed in this thesis. It has a

complete and validated model of the Asctec Hummingbird Quadrotor. Wind disturbance

and noise on the measured states are modelled and can be customized. Two path following

algorithms, Non-linear Guidance Law and Carrot-Chasing, and their adaptive versions are

implemented. Path following algorithms can be tested in diverse simulation scenarios. A

user interface helps the user to modify test conditions and to explore simulation results. It is

modular and programmable, meaning that new path following algorithms and/or reference

paths can be incorporated with ease. Also, a comparison of the Path-Flyer results with

real experimental results is provided to prove the validity of the benchmark.

Related publications:

Part of this chapter was published in the following conference paper [146]:

Rub́ı, B., Ruiz, A., Pérez, R. & Morcego, B. Path-Flyer: A Benchmark of Quadrotor

Path Following Algorithms, in 2019 15th IEEE International Conference on Control and

Automation (ICCA) (2019).
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Chapter 4:

Two control-oriented algorithms (Backstepping and Feedback Linearisation) and two ge-

ometric algorithms (Nonlinear Guidance Law and Carrot-Chasing) are implemented in

this chapter to solve the path following problem on a quadrotor vehicle. Additionally, the

geometric algorithms are adapted to cope with three-dimensional paths. A detailed de-

scription of the derivation of the algorithms, their control structure and their algorithmic

implementation is given. Finally, a thorough comparison of these four path following algo-

rithms is carried out. These algorithms are evaluated in simulation in different conditions

such as in steady state regime, in transient regime with different initial conditions, with

wind disturbances and in realistic conditions with sensor noise and a realistic wind profile.

From these simulation results, different parameters and indicators are obtained.

Simulation results reveal that the Backstepping algorithm achieves the best performance

in terms of path distance and yaw error as well as the best behaviour out of the path and

at high velocities. However, it results in a very high computational effort and a significant

control effort. Meanwhile, the 3D Carrot-Chasing algorithm, in spite of its worse path

distance performance, turns out to be easier to implement on any type of path, requires less

state information and it results in a lower computational and control effort. Therefore, the

author considers that, among the state-of-the-art algorithms implemented in this chapter,

these two are the best to solve the PF problem. The choice between them would depend

on the problem requirements.

Related publications:

Part of this chapter was published in the following journal paper [144]:

Rub́ı, B., Pérez, R. & Morcego, B. A Survey of Path Following Control Strategies for UAVs

Focused on Quadrotors. Journal of Intelligent & Robotic Systems 98, 241–265 (2019).

Chapter 5:

Geometrical algorithms provide a considerably good path following performance with low

computational effort and they are easy to implement. NLGL and Carrot-Chasing algo-

rithms only have one parameter to tune. However, their control parameter depend on

external parameters such as the velocity of the vehicle or the path’s shape.

In this chapter, the effect of the scalar parameter L on the performance of the NLGL

algorithm when it is applied to a quadrotor vehicle is analysed. The mean absolute path

distance error is used as a performance indicator. The optimal value of L is analysed

and it is shown to change depending on the vehicle’s velocity and the path radius. From

these analysis, an adaptive law by means of a neural network is developed. This NN

computes the optimal value of L from the vehicle’s velocity and the value of the path

radius. An algorithm is developed to find the most restrictive radius on the path on a

defined anticipation distance window. The anticipation distance window depends on the

vehicle’s velocity. Then, a velocity reduction term is added to the Adaptive NLGL to

decrease the speed when the radius of a curve is too small to be followed by the vehicle at

the current velocity. An stability analysis of the proposed approach is given.

Simulation results compare the performance of the regular NLGL, the proposed Adaptive

NLGL and the Adaptive NLGL with the velocity reduction term with two different reference
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paths: a lemniscate path and a spiral 3D path. The results show that the Adaptive NLGL

achieves better performance than the NLGL. Also, adding the velocity reduction term,

makes the vehicle follow with higher accuracy the smaller radius curves.

Next, the same process is followed to develop an Adaptive Carrot-Chasing approach with

the use of a NN. This NN computes the optimal value of δ from the vehicle’s velocity and

the value of the path radius. The algorithm to find the most restrictive radius on the path

on the defined anticipation window is used, and a velocity reduction term is added in the

Adaptive Carrot-Chasing approach.

To end up, simulation results compare the performance of the Adaptive NLGL and the

Adaptive Carrot-Chasing in realistic conditions (including sensor noise and a realistic wind

disturbance) while following a lemniscate path and a spiral 3D path. Both approaches

presented similar performance, improving the performance of their standard versions. Fur-

thermore, it is important to mention that the main advantage of the presented approaches

is that, as opposed to their standard versions, it is not necessary to tune their parameters

when the reference path or the cruise velocity is changed.

Related publications:

Part of this chapter was published in the following conference paper [143]:

Rub́ı, B., Morcego, B & Pérez, R. Adaptive Nonlinear Guidance Law Using Neural Net-

works Applied to a Quadrotor, in 2019 15th IEEE International Conference on Control

and Automation (ICCA) (2019).

Chapter 6:

In this chapter, a deep reinforcement learning algorithm, the Deep Deterministic Policy

Gradient, is proposed to solve the path following problem in a quadrotor vehicle. The path

following control computes the references for the velocity, the altitude and the angle in the

z axis that are then tracked by the autopilot controller. Three different DDPG approaches

with different behaviours are presented. The first approach solves the PF problem only

with information about the instantaneous position and angle errors. The second approach

adds information about the upcoming path. Both approaches work at constant velocity.

The third approach permits the agent to compute the optimal vehicle’s velocity that adapts

better to the shape of the path, according to the defined agent reward.

Each of the proposed agents arises as an improved version of the previous one, that is one

of the main strengths of the methodology used in this work. The main structure, common

in the three approaches, permits the incorporation of new functionalities (such as having

anticipation to curves or adapting the vehicle’s velocity) without changing the core of the

agent. This is very promising since it means that new functionalities (e.g. wind disturbance

rejection) could be straightforwardly integrated to the agent without altering the rest of

the functionalities.

The agents were programmed in python using the tensorflow library. The designed training

framework integrates the python script with Gazebo-ROS and uses RotorS, a the realistic

multirotor simulator. This simulator includes a model of the Asctec Hummingbird, the

quadrotor used in the experimental platform. Models of the real sensors of our platform

were included in the simulator. The first and second agents were trained with lemniscate
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paths of fixed radius. They were also trained with different initial conditions to improve

their performance in the experimental results. In order to learn the policy of the velocity

action with different path’s radius, the third agent was trained with asymmetrical lemnis-

cates and changing the radius on each episode. The three agents were trained assuming

ground truth measurements. The main advantage of training the agents in ROS is that it

facilitates the transition from the simulator to the real plant. Furthermore, since ROS is a

standard platform in the robotics field, it is supported by a large community, which can be

very useful. The only concern to consider when training in ROS is that, since simulations

are made real-time, it may become a time-consuming process.

The three agents were tested in simulations in the RotorS environment with realistic models

of the sensors. They were evaluated with a lemniscate path and with a spiral path. Then,

the agents were also tested in real experiments with the Asctec Hummingbird quadrotor

following the same paths as in simulation. Even thought the agents were able to follow

the pre-established paths correctly in the first experiments that were carried out, they

performed worse than expected. The authors concluded that this behaviour was due to

the small errors of the simulated model, which affected mainly to the yaw dynamics. To

improve the performance of the agents a new parameter (angle correction constant, ka)

was included. This parameter scales the yaw action of the agent. And permits to modify

the dynamics of the agent to cope with the model’s discrepancy. Training the agents

experimentally was dismissed since it can be harmful for the plant due to the unexpected

behaviour of the vehicle. Furthermore, it was observed that training with noisy signals was

unfruitful.

The agents were tested experimentally including the angle correction constant, which im-

proved significantly their performance. In the lemniscate path, the Agent 2 achieved the

best performance in terms of average cross-track error (0.114m), but the Agent 3 exhib-

ited a similar distance error (0.168m) while being able to significantly increase the vehicle’s

velocity. In the spiral path, the Agent 3 stands out over the other approaches by achiev-

ing the lowest average cross-track error (0.223m) while travelling at higher velocities. In

conclusion, the experimental results show that the agents are able to successfully follow

the spiral path, a different path from the one that they were trained with. And thus, it

is proved that the proposed approach is able to find a generalized solution for the path

following problem with adaptive velocity.

Related publications:

Part of this chapter was published in the following conference paper [147]:

Rub́ı, B., Morcego, B & Pérez, R. A Deep Reinforcement Learning Approach for Path

Following on a Quadrotor, in 2020 European Control Conference (ECC) (2020).

Part of this chapter was published in the following journal paper [145]:

Rub́ı, B., Morcego, B. & Pérez, R. Deep Reinforcement Learning for Quadrotor Path

Following with Adaptive Velocity. Autonomous Robots, doi: 10.1007/s10514-020-09951-8,

(2020)

Part of this chapter was sent for being published as part of a chapter of the Deep Rein-

forcement for Autonomous Systems Springer book:
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Rub́ı, B., Morcego, B. & Pérez, R. Deep Reinforcement Learning for Quadrotor Path

Following and Obstacle Avoidance.

Chapter 7:

This chapter proposes a solution for the obstacle detection problem. The best sensor

system to detect obstacles is studied for the particular addressed in this thesis. The selected

obstacle detection and localization system consists on a frontal LIDAR sensor. Details of

the Leddar VU8 LIDAR sensor are given. The sensor is installed in the real platform. A

realistic model is programmed in the RotorS/Gazebo environment. This model includes a

graphical part and a mechanical part of the LIDAR as well as a script that generates the

measurements of the sensor including noise. To end up, an algorithm for eliminating the

possible ground detections is developed. The algorithm takes into account the orientation

and altitude of the vehicle and the orientation of each LIDAR beam to estimate the distance

to the ground.

Chapter 8:

The aim of this chapter is to develop a deep reinforcement learning solution for the path

following and obstacle avoidance problem. To this end, a reactive obstacle avoidance

approach based on the application of the Deep Deterministic Policy Gradient algorithm

is proposed. This approach communicates with the PF agent developed in Chap. (6).

It receives the data of the obstacle detection system, which consists on a LIDAR sensor

treated to eliminate ground detections. If an obstacle on the vehicle’s route is detected the

OA agent generates a modification over the reference path to avoid a possible collision. The

modification of the path is made in the form of a distance offset of the original reference

path. Specifically, the OA agent modifies path distance error state of the PF agent. The

information of the modified reference path is transmitted to the path following agent, whose

mission is to follow this new path.

This chapter explores different solutions to solve the problem and a detailed explanation

is given on how the action, the state vector and reward functions are obtained. The main

issue addressed in this work is caused by the fact that the LIDAR sensor has a limited

field-of-view of 48○ which compromises the detection of an obstacle. That is, as soon as the

vehicle starts avoiding an obstacle it will disappear from the LIDAR’s field-of-view. Since

the agent only uses the current state to compute the action, when this happens, the agent

considers that it has already avoided the obstacle and moves the vehicle back to the path

provoking a collision. This chapter proposes a solution to this problem that consists on

including information of the historical data of the LIDAR sensor in the state vector. This

historical information is generated by integrating the inverse of the range data provided by

each LIDAR beam. If no obstacles are near, this state is progressively decreased until it

reaches zero. In this way, if the integral LIDAR state is positive, it means than an obstacle

has been recently seen. The closer the obstacle is to the vehicle, the larger this state will

be. In the proposed final approach, this state is divided in two; one for each side of the

LIDAR sensor, providing more information to the agent to know in what side of the vehicle

the obstacle is.
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The OA agent is trained in the RotorS/Gazebo environment with the model of the Asctec

Hummingbird vehicle. The agent is programmed in pyhton by using the tensorflow library

to generate and train the neural networks. A cylindrical obstacle of 1m radius is used in

both the training phase and the tests. The agent is trained by following a half asymmetrical

lemniscate path with random radius and with obstacles placed randomly on the path in a

range of ±2m of distance to the path.

The path following and obstacle avoidance approach is tested in the RotorS environment

by following a lemniscate path and a spiral path with obstacles at different positions. The

simulations results show how it successfully avoids obstacles while following a path. The

OA agent is able to choose the side to better perform the avoidance manoeuvre depending

on the obstacle and vehicle positions and the path’s shape. The agent takes into account

the vehicle’s velocity and the path’s shape to generate this manoeuvre. The path following

performance without obstacles is very similar to the one obtained by the PF agent. In

conclusion, a generalized solution for the path following and obstacle avoidance problem

for different path’s shapes and obstacle positions is achieved.

Related publications:

Part of this chapter was submitted to the Journal of Intelligent & Robotics Systems:

Rub́ı, B., Morcego, B. & Pérez, R. Quadrotor Path Following and Reactive Obstacle Avoid-

ance with Deep Reinforcement Learning. Journal of Intelligent & Robotic Systems.

Part of this chapter was sent for being published as part of a chapter of the Deep Re-

inforcement for Autonomous Systems (Studies in Computational Intelligence series) 2021

Springer book:

Rub́ı, B., Morcego, B. & Pérez, R. Deep Reinforcement Learning for Quadrotor Path

Following and Obstacle Avoidance.

9.2 Perspectives and Future Work

Path Following with Deep Reinforcement Learning:

In Chap. (6) a deep reinforcement learning approach to solve the path following problem for

a quadrotor vehicle is proposed. This approach is validated experimentally with successful

results. The DRL agent is able to accurately follow the reference path by adapting the vehi-

cle’s velocity. Nevertheless, a strange pattern was observed in the Agent 3 while performing

counter-clockwise curves at high velocities (Fig. 6.18). This behaviour was attributed to

the design of the training environment. That is, since the agent was trained with half

asymmetrical lemniscates, the first curve of the path (counter-clockwise) is followed in the

transient part of the experiment (velocity is still increasing). Therefore, the agent ended

up training the clockwise curves at faster velocities than the counter-clockwise ones. This

fact highlights the importance of having not only a proper structure and parametrization

of the agent, but also a rich, complete and adequate training framework. The solution

to this issue would be to train with a different path that permits the agent to learn both

curves at different velocities. Future work is to study the effect of the trained path in the
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performance of the agent and to find the best training environment to exploit the benefits

of the agent.

The proposed approach is designed to solve the path following problem with adaptive

velocity. However, due to the nature of the deep reinforcement learning applications, this

approach presents an initial framework that can be upgraded to solve more challenging

problems such as wind disturbance rejection, adaptability to different models, resilient

control, etc. For instance, an estimation of the wind disturbance forces could be introduced

as new states of the model. Considering the importance of the disturbance generated by the

wind in outdoors environments, this could substantially improve the performance of the

approach. Another common issue when flying in experimental environments are caused

by the disruptions of the magnetic field measured by the magnetometer sensor, which

are generated by nearby ferric objects. These disruptions degrade the estimation of the

yaw angle. A deep learning approach could be used to detect possible disruptions on

the magnetic field, and this information could be sent to the PF agent to enhance the

performance. Therefore, future work is to improve the presented agent to make it capable

of solving other challenging problems enhancing the resilience of the approach.

Obstacle Avoidance with Deep Reinforcement Learning:

The obstacle avoidance approach developed in Chap. (8) was trained and tested in Ro-

torS/Gazebo, a realistic multirotor simulation environment with a model of the Asctec

Hummingbird vehicle. Future work is to implement the resulting approach in the real

experimental platform. Both the PF and OA agents were already integrated in ROS and

the LIDAR system was already installed in the real platform. Therefore, next step would

be to build a safe experimental framework containing obstacles, as well as creating a safety

protocol to avoid possible collisions.

The path following and obstacle avoidance approach proposed in this thesis is based on the

combination of the path following agent developed in Chap. (6) and the reactive obstacle

avoidance agent developed in Chap. (8). The main advantage of dividing the problem in

two deep reinforcement learning agents is that it permits to reduce the complexity of the

problem and, therefore, the total time needed to train the DRL system is reduced as well.

Nevertheless, reducing the complexity of the problem may result in a degradation of the

performance and potential of the approach. Future work would be to explore a solution

for the path following and obstacle avoidance problem based on one unique DRL agent.

To this end, the state information and reward functions of both the developed PF and OA

agents could be combined to generate the new PF and OA agent. This approach should be

compared with the 2-agents approach presented in this thesis, evaluating the advantages

and disadvantages of each one.

The main issue addressed in the process of developing the OA agent (Chap. (8)) was

derived for both the narrow field-of-view of the employed obstacle detection sensor and

the inability of the DDPG algorithm of using historical state information. This issue

was solved by introducing two states that integrate the inverse of the LIDAR detections

providing some kind of historical information of the LIDAR data. Future work could be

to explore other solutions to provide the agent with information of the obstacle. This
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solutions may include estimating the position of the obstacle, generating occupancy grid

maps or defining other states that supply detailed obstacle’s information to the agent.

Another solution that could be explored consists on modifying the structure of the DDPG

algorithm to give the algorithm the ability of using historical data. This can be done by

using recurrent neural networks, for instance LSTM networks, which use a sequence as a

data input.

The proposed obstacle avoidance approach was trained and tested with a predefined type of

obstacles. That is, cylindrical objects with a fixed size and shape. Future work would be to

obtain an approach that achieves a generalized solution for different obstacle shapes. That

may include providing more information of the obstacle shape to the agent as well as train-

ing it with different types of obstacles. Moreover, three-dimensional avoiding manoeuvres

could be explored too.

Improving the Deep Deterministic Policy Gradient Algorithm:

In this thesis the Deep Deterministic Policy Gradient was implemented for solving both

the path following problem and the obstacle avoidance problem. Future work is to propose

modifications to this deep reinforcement learning algorithm to improve its performance and

functionality for the particular problems addressed here. This improvements may include

implementing an approach for a wise selection of the experience replay that is used for

training. That is, DDPG is trained with random samples of transitions that are saved

in an experience replay buffer. Instead of that, the training transitions could be selected

according to some criteria, exploiting the ones that provide more information. Another

improvement that may be explored, consists on training an agent with different vehicles

flying at the same time, allowing for a faster training convergence. That is, the transition

tuples of each flying vehicle could be saved in the experience replay buffer, and then,

the agent would be trained from this set of transitions. Moreover, another example of a

potential improvement to be studied is the incorporation of LSTM neural networks to the

algorithm, allowing for interpretation of sequential data.

Path-Flyer Benchmark:

Path-Flyer (Section 3.4), an open-source simulation tool of quadrotor path following algo-

rithms was developed in this thesis. This benchmark permits the incorporation of new path

following algorithms with ease. Nevertheless, these algorithms must follow a Separated,

Guidance and Control (SGC) structure. That is, algorithms that require an autopilot to

control the inner dynamics, as it is the case of the geometrical PF algorithms that are

already implemented in this platform. Future work is to modify the benchmark to facil-

itate the possibility to incorporate path following algorithms that present an Integrated

Guidance and Control (IGC) structure. In other words, PF algorithms that are also in

charge of controlling the inner dynamics of the vehicle, such as the Backstepping and Feed-

back Linearisation approaches studied in Chap. (4). In this way, the benchmark would be

prepared to include any type of path following algorithm, improving the robustness and

utility of the tool. Furthermore, since the last version of MatLab already allows for the

implementation of deep reinforcement learning agents, other future work is to include the

DRL path following approach developed in this thesis in the Path-Flyer benchmark.
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