248 research outputs found

    Sensorless Control of Switched-Flux Permanent Magnet Machines

    Get PDF
    This thesis investigates the sensorless control strategies of permanent magnet synchronous machines (PMSMs), with particular reference to switched-flux permanent magnet (SFPM) machines, based on high-frequency signal injection methods for low speed and standstill and the back-EMF based methods for medium and high speeds

    EFFICIENCY AND RELIABILITY ENHANCEMENT OF MULTIPHASE SYNCHRONOUS MOTOR DRIVES

    Get PDF
    Multiphase electric machines are attractive in comparison with three-phase ones due to advantages such as fault-tolerant nature, smaller rating per phase and lower torque ripple. More specifically, the machines with multiple three-phase windings are particularly convenient, because they are suitable for standard off-the-shelf three-phase dc/ac converter modules. For instance, they are becoming a serious option for applications such as electric vehicles and wind turbines. On the other hand, in these applications, operation at low power is often required for long time intervals; hence, improving the efficiency under such conditions is highly desired and could save a significant amount of energy in the long term. This dissertation proposes a method to enhance the efficiency of electric drives based on multiple three-phase windings at light load. The number of active legs is selected depending on the required torque at each instant. To ensure that the overall efficiency is effectively optimized, not only the converter losses, but also the stator copper losses, are taken into account. Experimental results verify the theoretical outcomes. Surface-mounted permanent-magnet synchronous motors (SPMSMs) require a position measurement to ensure a high-performance control. To avoid the cost and maintenance associated to position sensors, sensorless methods are often preferred. The approaches based on high-frequency signal injection are currently a well-established solution to obtain an accurate position estimation in SPMSMs. These techniques can be roughly divided into two groups: those based on sinusoidal or on square-wave high-frequency signals. The main drawback of the former is the limitation on the response speed, due to the presence of several low-pass filters (LPFs). On the other hand, the latter methods are sensitive to deadtime effects, and high-frequency closed-loop current control is required to overcome it. This dissertation proposes to improve the sensorless strategies based on sinusoidal high-frequency injection by simplifying the scheme employed to extract the information about the position error. Namely, two LPFs and several multiplications are removed. Such simplification does not only reduce the computational complexity, but also permits to obtain a faster response to the changes in the angle/speed, and hence, a faster closed-loop control. Experimental results based on a SPMSM prove the enhanced functionality of the proposed method with respect to the previous ones based on high-frequency sinusoidal signal injection

    Design and Dynamic Control of Heteropolar Inductor Machines

    Get PDF

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Sensorless Passive Control Algorithms for Medium to High Power Synchronous Motor Drives

    Get PDF
    This study is focused on the definition of sensorless algorithms for Surface-Mounted Permanent Magnet Synchronous Motors (SM-PMSM) and Electrically Excited Synchronous Motors (EESM). Even if these types of motors are rather different from a constructive point of view, they have some common issues regarding sensorless drives. Indeed, SM-PMSMs, which are usually used for low-medium power applications, have a low rotor anisotropy, therefore it is complicated to use sensorless active methods (which are based on high-frequency voltage injection), due to the low signal to noise ratio. On the other hand, active methods on high-power EESM have the drawback of high torque ripple. For these reasons, both for SM-PMSM and EESM, it is interesting to define and use sensorless passive algorithms (i.e., based on observers and estimators). The drawback of such algorithms is that their performance deteriorates significantly in the low-speed region. The aim of this thesis is to define a robust sensorless passive algorithm that could work in a wide speed region and that could start the motor from standstill even with a high load torque. The initial objective of the work is to find, among the various algorithms proposed in the technical literature, the most promising one. For this purpose, four different algorithms are selected. They are chosen considering the most recent articles presented in the technical literature on high reputable journals. Since many improvements are proposed in the literature for the different algorithms, the most recent ones are candidates for being the ones with higher performance. Even if the experimental tests of the four different algorithms are shown in the literature, it is difficult to evaluate a priori which offers the best performance. As a matter of facts, for each algorithm different tests are carried out (e.g., different speed and torque profiles). In addition to that, motor sizing and features are different. Moreover, the test bench characteristics can significantly affect sensorless performance. As an example, inverter features and non-linearities (e.g., switching frequency, dead times, parasitic capacitance) and current measures (e.g., noise, linearity, bias) play a key role in the estimation of rotor position. The added value of this thesis is to perform a fair comparison of the four algorithms, performing the same tests with the same test bench. Additional tests are performed on the most performing algorithm. Even if this sensorless technique is already proposed in the technical literature, a methodology for observer gain tuning is not shown, which is proposed, instead, in this thesis. Moreover, the algorithm is enhanced by adding a novel management of direct axis current, which ensures the stability during fast transient from medium-high speed to low speed. The algorithm is tested with different test benches in order to verify the control effectiveness in various operating conditions. As a matter of facts, it is tested at first in the University of Genoa PETRA Lab on two different test benches. The first test bench is composed of two coupled motors, in which the braking motor could realize different torque profiles (linear torque, quadratic torque and constant torque), whereas in the second test bench the motor is coupled with an air compressor, which is a demanding load since high and irregular torque is applied at standstill. After the test at the University of Genoa, the algorithm is implemented in Phase Motion Control and Physis drive and tested on a six-meter diameter fan. Regarding the EESMs, for these type of motor is necessary to estimate the stator flux amplitude and angle. Indeed, the stator angle is usually used to perform the Park transformations in the FOC scheme and the stator flux amplitude is used to control the excitation current. In this study, the RFO is adapted for estimating the stator flux of an EESM. Regarding the control for EESM, it is tested on a simulative model for high-power motors provided by NIDEC ASI and tested on a small-scale test bench at the University of Genoa

    EFFICIENCY AND RELIABILITY ENHANCEMENT OF MULTIPHASE SYNCHRONOUS MOTOR DRIVES

    Get PDF
    Multiphase electric machines are attractive in comparison with three-phase ones due to advantages such as fault-tolerant nature, smaller rating per phase and lower torque ripple. More specifically, the machines with multiple three-phase windings are particularly convenient, because they are suitable for standard off-the-shelf three-phase dc/ac converter modules. For instance, they are becoming a serious option for applications such as electric vehicles and wind turbines. On the other hand, in these applications, operation at low power is often required for long time intervals; hence, improving the efficiency under such conditions is highly desired and could save a significant amount of energy in the long term. This dissertation proposes a method to enhance the efficiency of electric drives based on multiple three-phase windings at light load. The number of active legs is selected depending on the required torque at each instant. To ensure that the overall efficiency is effectively optimized, not only the converter losses, but also the stator copper losses, are taken into account. Experimental results verify the theoretical outcomes. Surface-mounted permanent-magnet synchronous motors (SPMSMs) require a position measurement to ensure a high-performance control. To avoid the cost and maintenance associated to position sensors, sensorless methods are often preferred. The approaches based on high-frequency signal injection are currently a well-established solution to obtain an accurate position estimation in SPMSMs. These techniques can be roughly divided into two groups: those based on sinusoidal or on square-wave high-frequency signals. The main drawback of the former is the limitation on the response speed, due to the presence of several low-pass filters (LPFs). On the other hand, the latter methods are sensitive to deadtime effects, and high-frequency closed-loop current control is required to overcome it. This dissertation proposes to improve the sensorless strategies based on sinusoidal high-frequency injection by simplifying the scheme employed to extract the information about the position error. Namely, two LPFs and several multiplications are removed. Such simplification does not only reduce the computational complexity, but also permits to obtain a faster response to the changes in the angle/speed, and hence, a faster closed-loop control. Experimental results based on a SPMSM prove the enhanced functionality of the proposed method with respect to the previous ones based on high-frequency sinusoidal signal injection

    Direct torque control for dual three-phase induction motor drives

    Get PDF
    A direct torque control (DTC) strategy for dual three-phase induction motor drives is discussed in this paper. The induction machine has two sets of stator three-phase windings spatially shifted by 30 electrical degrees. The DTC strategy is based on a predictive algorithm and is implemented in a synchronous reference frame aligned with the machine stator flux vector. The advantages of the discussed control strategy are constant inverter switching frequency, good transient and steady-state performance, and low distortion of machine currents with respect to direct self-control (DSC) and other DTC schemes with variable switching frequency. Experimental results are presented for a 10-kW DTC dual three-phase induction motor drive prototype

    Dual-Gap Dual-Pole Composite Machine for Mechanical Rotor Position Estimation

    Get PDF

    Sensorless Commissioning and Control of High Anisotropy Synchronous Motor Drives

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Design and Control of Electrical Motor Drives

    Get PDF
    Dear Colleagues, I am very happy to have this Special Issue of the journal Energies on the topic of Design and Control of Electrical Motor Drives published. Electrical motor drives are widely used in the industry, automation, transportation, and home appliances. Indeed, rolling mills, machine tools, high-speed trains, subway systems, elevators, electric vehicles, air conditioners, all depend on electrical motor drives.However, the production of effective and practical motors and drives requires flexibility in the regulation of current, torque, flux, acceleration, position, and speed. Without proper modeling, drive, and control, these motor drive systems cannot function effectively.To address these issues, we need to focus on the design, modeling, drive, and control of different types of motors, such as induction motors, permanent magnet synchronous motors, brushless DC motors, DC motors, synchronous reluctance motors, switched reluctance motors, flux-switching motors, linear motors, and step motors.Therefore, relevant research topics in this field of study include modeling electrical motor drives, both in transient and in steady-state, and designing control methods based on novel control strategies (e.g., PI controllers, fuzzy logic controllers, neural network controllers, predictive controllers, adaptive controllers, nonlinear controllers, etc.), with particular attention to transient responses, load disturbances, fault tolerance, and multi-motor drive techniques. This Special Issue include original contributions regarding recent developments and ideas in motor design, motor drive, and motor control. The topics include motor design, field-oriented control, torque control, reliability improvement, advanced controllers for motor drive systems, DSP-based sensorless motor drive systems, high-performance motor drive systems, high-efficiency motor drive systems, and practical applications of motor drive systems. I want to sincerely thank authors, reviewers, and staff members for their time and efforts. Prof. Dr. Tian-Hua Liu Guest Edito
    corecore