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ABSTRACT 

Multiphase electric machines are attractive in comparison with three-phase ones 

due to advantages such as fault-tolerant nature, smaller rating per phase and lower torque 

ripple. More specifically, the machines with multiple three-phase windings are 

particularly convenient, because they are suitable for standard off-the-shelf three-phase 

dc/ac converter modules. For instance, they are becoming a serious option for 

applications such as electric vehicles and wind turbines. On the other hand, in these 

applications, operation at low power is often required for long time intervals; hence, 

improving the efficiency under such conditions is highly desired and could save a 

significant amount of energy in the long term. This dissertation proposes a method to 

enhance the efficiency of electric drives based on multiple three-phase windings at light 

load. The number of active legs is selected depending on the required torque at each 

instant. To ensure that the overall efficiency is effectively optimized, not only the 

converter losses, but also the stator copper losses, are taken into account. Experimental 

results verify the theoretical outcomes. 

Surface-mounted permanent-magnet synchronous motors (SPMSMs) require a 

position measurement to ensure a high-performance control. To avoid the cost and 

maintenance associated to position sensors, sensorless methods are often preferred. The 

approaches based on high-frequency signal injection are currently a well-established 

solution to obtain an accurate position estimation in SPMSMs. These techniques can be 

roughly divided into two groups: those based on sinusoidal or on square-wave high-
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frequency signals. The main drawback of the former is the limitation on the response 

speed, due to the presence of several low-pass filters (LPFs). On the other hand, the 

latter methods are sensitive to deadtime effects, and high-frequency closed-loop current 

control is required to overcome it. This dissertation proposes to improve the sensorless 

strategies based on sinusoidal high-frequency injection by simplifying the scheme 

employed to extract the information about the position error. Namely, two LPFs and 

several multiplications are removed. Such simplification does not only reduce the 

computational complexity, but also permits to obtain a faster response to the changes in 

the angle/speed, and hence, a faster closed-loop control. Experimental results based on a 

SPMSM prove the enhanced functionality of the proposed method with respect to the 

previous ones based on high-frequency sinusoidal signal injection. 
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NOMENCLATURE 

Pcond Conduction loss 

tr Transistor 

d Diode 

Vce0 Switch collector emitter voltage 

Vd0 Diode forward voltage drop 

rce Collector emitter on state resistance 

rd Diode on state resistance 

m  Modulation index 

cosϕ      Power factor 

I     rms phase current 

Psw  Switching loss 

fsw Switching frequency 

Eon Switch turn on loss 

Eoff      Switch turn off loss 

Err          Diode reverse recovery loss 

Tj Junction temperature 

Tref   Reference temperature 

Tc         Temperature coefficient 

ki  Current ratio order 

kv Voltage ratio order 
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Iin   Device input current 

Iref Device reference current 

Vout Device voltage 

Vref  Device reference voltage 

rs  Stator winding series resistance 

vdh d-axis high frequency voltage

vqh q-axis high frequency voltage

rdh d-axis high frequency resistance

rqh q-axis high frequency resistance

Ldh d-axis high frequency inductance

Lqh q-axis high frequency inductance

idh d-axis high frequency current

iqh q-axis high frequency current

𝛳̃ Rotor angle estimation error 

𝛳𝑟 Actual rotor angle 

𝛳̂𝑟 Estimated rotor angle 

Zdh d-axis high frequency impedance

Zqh q-axis high frequency impedance

Zavg d- and q-axis high-frequency impedance average

Zdiff d- and q-axis high-frequency impedance difference

Vinj Amplitude of the high-frequency injected voltage 

𝑣𝑑ℎ Injected high-frequency voltage in the estimated d axis 
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𝑣𝑞ℎ Injected high-frequency voltage in the estimated q axis 

rdiff Differences between the d- and q-axis components of the high-  

                                        frequency resistance 

Ldiff Differences between the d- and q-axis components of the high-  

                                        frequency inductance 

LPF Low pass filter 

BPF     Band pass filter 

𝑖𝛳̃𝑟
Input to the rotor position estimator 
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1. INTRODUCTION

1.1.     Multiphase vs three-phase machines 

Multiphase electric machines have gained considerable attention recently 

because of: 

1- Fault tolerant capability:

This is especially important in safety critical applications such as general 

aerospace or military naval applications, more electric aircraft actuators, linear 

permanent magnet machines for oil pumping applications and permanent magnet 

traction motor used in ultrahigh-speed elevators [1, 2].  

2- Less torque ripple:

Multiphase motors are usually less susceptible to time harmonics therefore 

producing less pulsating torques both at low and high frequencies [3]. 

3- Power and current splitting among higher number of phases:

This feature allows to derive higher currents and power compared to the 

conventional three phase motors making it suitable for higher power applications. 

4- Increasing the average torque by harmonic injection:

Extra harmonic currents can be injected in the secondary planes to help 

increasing the torque. 

5- Use of additional degrees of freedom for parameter identification:

      Depending on the number of phases, several sub planes might exist in the control 

frame of the machine which can be used for identification purposes. 



2 

6- Multimotor multiphase variable speed drives with single inverter supply:

      There are many applications in which several motors are required to be driven     

simultaneously. A single multiphase inverter suffices to run the entire system with only  

one control scheme. 

7. Use of additional degrees of freedom for sensorless drives:

        Higher number of phases leads to more flexibility in implementing various 

control schemes as combination of several subspaces can be employed. 

1.2.     Multiphase Machines Applications     

Multiphase machines are being increasingly used in different applications in 

which the above mentioned advantages of machines can be employed to better serve the 

application specific requirements. 

1.2.1.     Electric Vehicles and Railway Traction 

    Several papers [4 - 11], emphasize the incorporation of multiphase electric 

motors in electric and hybrid electric vehicles, Fig. 1.1. Also, some industrial products 

have been released based on multiphase machines. As stated in [12], PML has built its 

electric vehicle based on a 24 phase, 1800 rpm, high efficiency brushless permanent 

magnet motor. 

Fig. 1.1: Multiphase machine application in electric vehicles, reprinted from [74]. 
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1.2.2.     Wind Power Generation Systems 

References [13 - 19] mention 6-, 9-, 12- and 18-phase motors specifically used in 

wind turbine generators. Higher number of phases can be specially helpful in wind 

turbines as they are able to handle higher powers, Fig. 1.2. 

Fig. 1.2: Multiphase machine application in wind farms, reprinted from [75]. 

1.2.3.     All Electric Ships 

Multiphase motors can be used in electric ship propulsion systems as part of the 

electric drive system [20], Fig. 1.3. 

Fig. 1.3: Multiphase machine application in all electric ships, reprinted from [76]. 
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1.2.4.     More Electric Aircraft 

Higher torque density characteristics of the multiphase motors makes them good 

candidates for more electric aircraft application in which lightness and compactness is of 

high importance [21], Fig. 1.4. 

Fig. 1.4: Multiphase machine application in more electric aircrafts, reprinted from [77]. 

1.3.     Multiphase Machines Based on Multiple Three-phase Winding Sets 

Multiphase machines based on multiple three-phase windings with isolated 

neutrals are specially of interest due to their suitability for available standard off-the-

shelf three-phase dc/ac converters in the market [22, 23]. Furthermore, the isolation of 

the neutral points restricts circulating currents that would otherwise increase the losses 

[24]. For those multiple three-phase systems with non-isolated neutrals, the neutral 

points of three-phase sets can be connected to the midpoint of the dc link which also 

reduces the circulating current. 

The generalized schematic for a multiphase drive based on multiple three-phase 

stator windings with isolated neutrals is shown in Fig. 1.5, where γ equals 2 or 1 for 
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symmetrical or asymmetrical winding arrangements, respectively [25], and n stands for 

the total number of phases. 

Fig. 1.5: Generalized schematic of an electric drive based on multiple three phase windings with isolated 

neutrals. 

         The converter consists of n/3 three-phase modules connected to a single dc bus. 

Each of these modules supplies a three-phase winding set of the machine. The dc source 

shown in Fig. 1.5 may represent in a simplified manner, e.g., the batteries in an electric 

vehicle or the dc side of a three-phase grid-connected converter in a wind turbine 

system. 

1.4.     Loss Components in Multiphase Systems 

1.4.1.     Converter Losses 

Converter losses are part of the major loss components associated with electric 

drives [26 - 28]. Efficiency of converters, even though already relatively high, has been 

always a challenge to be improved further by establishing various approaches. 



6 

1.4.1.1.     Modular Multilevel Converters 

Modular multilevel converters can be adopted as shown in Fig. 1.6 [27] instead 

of conventional two-level ones, at the expense of a more complicated control (for 

adequate balancing) [26]. They possess cascaded submodules with bidirectional H-

bridge converters. The battery cells will be of lower voltage and therefore low voltage 

MOSFETS can reduce the switching and conduction losses. 

Fig. 1.6: Modular multilevel converters used for converter loss reduction, reprinted from [27]. 

1.4.1.2.     Discontinuous Pulse Width Modulation 

Another alternative to improve the converter losses would be discontinuous pulse 

width modulation in which the lesser losses are seen compared to the space vector and 

sinusoidal pulse width modulation as shown in Fig. 1.7, [26]. 
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(a) 

(b) 

Fig. 1.7: Efficiency comparison of SPWM, SVPWM and DPWM vs a) modulation index, b) switching 

frequency, and c) gate resistance, reprinted from [24]. 
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(c) 

Fig. 1.7: Continued. 

1.4.1.3.    Hybrid Switch based Soft Switching Inverter 

The current is shared among the IGBT and MOSFET, as shown in Fig. 1.8, at 

light load in this topology therefore reducing the losses. Moreover, intentional delays are 

used to avoid overcurrents on the MOSFET [29]. 

Fig. 1.8: Hybrid switch based soft switching inverter, reprinted from [29]. 
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1.4.1.4.     Direct Self Control (DSC) With Minimum Switching Operations Instead 

of Field Oriented Control (FOC) 

By default, FOC is used in most of the motor drive systems. DSC as an 

intelligent alternative can reduce losses. It includes flux and torque regulators with 

hysteresis controllers. It performs the main commutation every π/3 radians and the 

secondary commutation like a simple PWM as shown in Fig. 1.9, [28]. 

Fig. 1.9: DSC schematic, reprinted from [28]. 

1.4.1.5.     Wide Band Gap Power Devices 

Wide band gap power devices have recently gained a lot of attention due to their higher 

efficiency, higher achievable switching frequency, maximum permissible junction 

temperature and power density as shown in Fig. 1.10, [30]. 
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Fig. 1.10: Efficiency comparison of different semiconductor switches, reprinted from [30]. 

The losses in ac/dc converters are divided into the following two major parts [31 - 33]. 

1) Conduction Losses:

The on-state resistances of semiconductor switches and of anti-parallel diodes

cause ohmic losses while they conduct. These losses are given by the following

equations [32 - 33]:
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where Pcond, tr, d, Vce0, Vd0, rce, rd, m, cosϕ and I denote conduction losses, transistor, 

diode, switch collector-emitter voltage, diode forward voltage drop, collector-emitter on-
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state resistance, diode on-state resistance, modulation index, power factor and rms phase 

current, respectively. 

2) Switching Losses:

The losses associated with non-ideal switching exist on both the diodes and the

switches, and they are given by [32 - 33]:
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where Psw, fsw, Eon, Eoff, Err, Tj, Tref, Tc, ki, kv, Iin, Iref, Vout and Vref represent switching 

losses, switching frequency, switch turn-on losses, switch turn-off losses, diode reverse-

recovery losses, junction temperature, reference temperature, temperature coefficient, 

current ratio order, voltage ratio order, device input current, device reference current, 

device voltage and device reference voltage, respectively. 

1.4.2.     Copper Losses 

Copper losses are another dominant losses in motor drive systems. The stator 

winding series resistances even though small can create ohmic losses due to the high 

currents flowing through the windings. In multiphase systems, the copper losses are 

generally greater than three-phase systems. The copper loss is described by (5): 

2

, InrP scopperL 
                                                     (5) 

where PL, copper, n, rs and I stand for stator copper losses, number of stator phases, stator 

winding series resistance and phase currents, respectively. 
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1.4.3.     Miscellaneous Losses 

There always exist some other losses especially on the electric machine side 

which are quiet smaller than the copper and converter losses but still might be 

considered for better accuracy. These losses are often hard to measure in experiments 

but can be estimated by some proposed methods. Core, stray and windage losses can be 

mentioned as instances of these losses. They often do not change substantially when 

changing the number of stator phases as long as the torque and speed of the motor is 

fixed which means constant flux distribution in the air gap is maintained. 

1.5.     Position Sensorless Drive Schemes for Multiphase Machines 

Permanent-magnet synchronous motors are currently used as a major component 

of electric machine industry due to their higher efficiency, lower size and higher torque 

density [34 - 35]. Closed-loop control is crucially required in driving permanent-magnet 

motors, as otherwise they cannot be operated at the desired conditions [36 - 37]. 

Multiple data have to be provided in any closed-loop motor drive system as feedbacks so 

that proper control is implemented. 

Position information is one of these required data, which is usually generated by 

encoders as position sensors. Encoders are relatively costly devices that require 

maintenance, therefore reducing the reliability of the overall drive [38]. Consequently, 

significant research has been performed to extract instead the rotor angle information 

from signatures such as modulating signals and stator currents [39 - 54]. 

The position sensorless schemes can be generally divided into the flowing 

categories: 
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1.5.1.     Back Electromotive Force (back-EMF) Estimation 

Different types of position sensorless schemes were proposed for three-phase 

synchronous motor drives. Some methods are based on back-electromotive force (EMF) 

estimation [39 - 43], which suffer inaccuracy at low speeds due to low back-EMF 

magnitude. 

As a literature work, [39] proposes a position sensorless method for high speed 

permanent magnet machines. The motor’s equations are modelled in discrete time to 

estimate the back-EMF. An observer based back-EMF estimation at high speed based on 

digital implementation of the motor model was established. Voltage delays due to cross 

coupling effects is compensated and the sensorless performance was verified in an 8 pole 

surface mount permanent magnet synchronous motor. 

A position sensorless method based on the sliding mode observer is proposed in 

[40]. Phase locked loop (PLL) and synchronous frequency filters are used to remove the 

harmonic contents of the back-EMF. The proposed method is tested in the drive of an 

interior permanent magnet synchronous motor to verify the functionality of the scheme 

and is also compared to not using the sensorless in terms of loading condition and 

efficiency. 

An sliding mode observer with a quadrature phase locked loop is proposed in 

[41] to perform a sensorless drive on an interior permanent magnet synchronous motor.

Position estimation errors due to inverter non-linearities and flux spatial harmonics are 

analyzed and schemes based on adaptive compensation are proposed to reduce the 

errors. An experimental prototype was built to implement the sensorless algorithm. 
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A sensorless drive of a brushless direct current motor (BLDC) based on the 

virtual third harmonic phase back-EMF to improve the performance is proposed in [42]. 

The commutation error is analyzed and a sensorless method based on high precision 

commutation detection is proposed. The method incorporates both phase locked loop 

and synchronous frequency filters. The performance of the sensorless method was 

verified both under load and no load conditions.  

A sensorless method for open winding permanent magnet synchronous machine 

with circulating current suppression is proposed in [43]. The common dc bus and phase 

shift based zero sequence steerable space vector pulse width modulation model of the 

machine is developed. The sensorless method based on equivalent zero sequence circuit 

model and circulating current suppression is proposed. The proposed scheme was 

verified on an outer rotor PMSM to verify the functionality. 

1.5.2.     Rotor Saliency  

          Another approach relies on the fact that the salient geometry of the rotor causes 

the d and q axes inductances of the machine in rotating reference frame to carry 

information of the rotor angle [44 - 49]; however, this method is only applicable to the 

motors with salient rotor structure. 

As a literature work, [45] proposes a saliency based sensorless control for interior 

permanent magnet motors for electric vehicle applications. First, a design approach with 

sensorless purposes is described. Design parameters and restrictions are defined to 

satisfy the maximum torque and efficiency conditions. The sensorless control was 
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implemented on an actual prototype and the above defined parameters were measured to 

ensure the applicability of the proposed scheme.  

An improved saliency-based position sensorless drive of an interior permanent 

magnet synchronous machine with a single dc-link current sensor is proposed in [46]. 

The conventional current reconstruction error was analyzed and a new method is 

proposed to minimize it.  

A sensorless salient pole brushless direct current motor direct torque control 

drive system is proposed in [47]. A rotor position estimator with back-EMF self 

adaptation was developed to measure the stator phase currents and rotor position. 

Simulations and experiments are performed to verify the functionality of the rotor 

position estimator at steady state and dynamics conditions. 

Reference [48] proposes a novel secondary saliency tracking algorithm to 

implement the sensorless control for machines such as concentrated winding surface 

mount permanent magnet synchronous motor. The secondary saliency tracking method 

with band pass filter design and initial position estimation is explained. An experimental 

setup is used to verify the functionality of the proposed scheme.  

Reference [49] analyzes the effects of the geometry design parameters of an 

interior permanent magnet synchronous motor with concentrated winding on the 

saliency-based sensorless drive. Two schemes based on the contour of inductance and 

the inductance harmonics are proposed. Design models based on the chamfer, closed slot 

and the notch is then developed. The final achieved model is tested on an experimental 

setup.   
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1.5.3.     High-Frequency Injection 

The schemes based on high-frequency injection estimate the position by using 

the difference in high-frequency impedance between the d and q axes [50 - 54]. 

A novel high frequency signal injection method of sensorless drive for doubly 

fed induction machines is proposed in [50]. Rotor position is extracted from the high 

frequency currents injected through the rotor winding considering the high frequency 

disturbance from the stator side and using a phase locked loop. Steady state, transient 

and tracking responses are captured in an experimental prototype. 

An asymmetric space vector modulation scheme for sensorless drive application 

of a permanent magnet synchronous motor based on high frequency square wave 

injection in low switching frequency applications is proposed in [51]. Errors caused by 

low switching frequency harmonics and inverter deadtime effects are analyzed. The 

currents and position estimation performance is verified in an interior permanent magnet 

synchronous motor. 

A position estimation method based on derivative calculations of current and 

zero voltage vector injection is proposed in [52] to improve the acoustic noise and torque 

ripples caused by the high frequency square wave voltage injection. The applicability of 

the proposed scheme has been tested in an interior permanent  

A low-frequency pulse voltage injection scheme is proposed in [53] to remove 

the audible noise pollution. An enhanced vector tracking observer for rotor position 

estimation is developed and its stability was analyzed. An interior permanent magnet 

synchronous motor was used to implemented the proposed scheme. 



17 

Reference [54] evaluates the square-wave injection voltage at different 

frequencies for the design of an interior permanent-magnet machine sensorless drive. 

Reduced flux density, increased d-axis flux saturation and secondary saliency harmonics 

at high frequency are also considered. Different inductances, saliency current signal and 

saliency secondary harmonics are measured against the injected frequency in an interior 

permanent magnet synchronous motor.  

1.5.4.     Combinational Schemes 

Some methods also combine the aforementioned strategies to bring together the 

advantages of each. For example, a common option is to alternatively employ back-EMF 

estimation at high speeds and high-frequency signal injection at low speeds [55 - 56]. 

A sensorless control scheme for synchronous reluctance motor drives based on 

the direct-flux vector control method is proposed in [55]. A sensorless active flux 

observer based on the high frequency signal injection and demodulation, absence of 

cross saturation error, effect of high frequency injection on the observed flux, tuning of 

the tracking loop and criteria for minimum excitation limit selection is also proposed. 

The responses of the speed closed loop control, transition between the two sensorless 

models, flux weakening and cross saturation error are measured in an experimental 

setup. 

A full speed sensorless drive for permanent magnet synchronous motors is 

proposed in [56]. The drive uses high frequency square wave voltage injection for zero 

and low speeds and back-EMF estimation for medium speeds. The magnet polarity is 
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used to detect the rotor position at standstill. A transition algorithm is designed to switch 

between the saliency based and back-EMF based approaches.  

   Among the methods using high frequency signal injection to create magnetic 

saliency, sinusoidal [57] and square-wave voltages [58 - 59] have been injected. 

A sensorless scheme for surface mount permanent magnet synchronous motors is 

proposed in [57]. It creates a high frequency magnetic saliency by injecting high 

frequency voltages and measuring the high frequency currents. The scheme works best if 

the difference of the high frequency impedances along the d and q axes are significant.   

The adverse effects of the inverter nonlinearities on the injected high frequency 

square voltage is analyzed in [58]. The deadtime and current ripple distortion effects on 

the high frequency induced currents is investigated in detail to propose a method for 

removing these effects. The proposed method is implemented in an interior permanent 

magnet motor to verify the applicability of the sensorless scheme. 

A position sensorless scheme based on high frequency square wave voltage 

injection to remove extra low pass filters used in sinusoidal voltage injection based 

schemes is proposed in [59]. The bandwidth of both current and speed loop is increased 

with the proposed scheme to enhance the dynamics of the system. With the injected 

frequency closer to the switching frequency, the fundamental frequency is well separated 

of the injected frequency. Therefore, low pass filters are not required to extract the 

fundamental component of the current. 
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1.6.     Research Objectives 

The objective of this research has been the efficiency and reliability enhancement 

of six phase synchronous motors. A real time phase swapping scheme is proposed to 

adaptively update the number of the active inverter legs depending on the demanded 

electric load to maximize the efficiency of the drive system by both considering stator 

copper and converter losses simultaneously. This scheme is mainly proposed for motors 

based on multiple three phase winding sets and the three phase inverter modules 

associated with each set are turned on/off. To enhance the reliability, a position 

sensorless scheme with simplified rotor position estimation error based on high 

frequency sinusoidal voltage injection is proposed. The proposed scheme reduces the 

number of low pass filters in [57] used in the algorithm to enhance the dynamics of the 

system. Both of the above mentioned schemes were implemented on experimental setups 

to verify their functionalities.   

1.7.     Thesis Outline 

This dissertation is organized as follows: 

Chapter one reviews the literature works performed in the similar areas. It starts 

with efficiency enhancement schemes considering only converter losses. Afterwards, 

several sensorless schemes are reviewed and their advantages and disadvantages are 

compared to each other. At the end of this chapter, the main reasons and objectives of 

this research is covered. 

       Chapter two analyzes different types of losses in a multiphase system. It is 

continued with simulating efficiencies of different multiphase cases considering only 
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converter losses, only stator copper losses and both of them. A new scheme is proposed 

to optimize the efficiency of the multiphase drive systems during the low load condition. 

Several drive techniques used in implementation of the proposed scheme are described 

later. Finally, the experimental setup used to verify the functionality of the proposed 

scheme is explained and the efficiency curves verify the functionality of the proposed 

scheme. 

Chapter three starts with review of main sensorless schemes that have been 

proposed so far. They are compared in terms of dynamics, speed range coverage and 

torque ripple. The synchronous motor model at high frequency reference frame is 

considered and high frequency sinusoidal voltages are injected. The high frequency 

induced currents are derived. A rotor position estimator is developed to extract the rotor 

angle information based on the measured high frequency currents. An experimental 

setup is developed to implement the sensorless scheme. Finally, experimental results 

verify the accuracy of the rotor position estimation. Furthermore, the input to the rotor 

position estimator and the estimated angle of the proposed scheme is compared to that of 

the conventional scheme. 



2. EFFICIENCY ENHANCEMENT OF MULTIPHASE ELECTRIC DRIVES

AT LIGHT-LOAD OPERATION CONSIDERING BOTH CONVERTER AND 

STATOR COPPER LOSSES 

In electric vehicles for urban use, the drives work on a very variable regime and 

often operate for long periods of time with light load [27]. Similarly, in wind generation 

farms, the generators frequently function at low capacity depending on the wind speed; 

hence, the efficiency of wind turbines at light load is also considered important [25], [60 

– 61]. In general, when the working regime is far from nominal, the machine-side

converter efficiency is usually comparatively low [27]. Therefore, developing new 

methods for further efficiency enhancement of ac/dc converters, with special focus on 

light loads, is of paramount importance. Furthermore, such additional amelioration could 

be combined with previous approaches to yield an even better total efficiency.     

In [13] and [62], a converter structure based on several three-phase back-to-back 

converters is considered for a wind turbine, with the grid-side inverters being in parallel. 

It is proposed to adaptively enable or disable the entire back-to-back converter modules. 

In this manner, advantage is taken of the fact that the losses of semiconductor devices, 

with respect to the output power, drop when they operate close to their rated condition 

[5], [13], [25], [63]. However, such structure is relatively bulky and expensive [64];  

note that it has several three-phase grid-side inverters with individual dc links, additional  

∗ Reprinted with permission from “Efficiency Enhancement of Multiphase Electric Drives at Light-Load 
Operation Considering Both Converter and Stator Copper Losses” by A. Negahdari, A.G. Yepes, J. 

D. Gandoy and H. A. Toliyat, 2018. IEEE Transactions on Power Electronics, Copyright [2018] by IEEE.  
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switches (to effectively interrupt the current through the converters) on both the machine 

and grid sides, and interfacing inductors in the grid side. The improvement in efficiency 

was estimated when these multiple grid-side converters are also enabled/disabled 

adaptively; but it is unclear if, in absence of grid-side inverters or with a single three-

phase grid-side inverter, the enabling/disabling approach is still convenient when only 

applied to the machine-side converter. In addition, the stator copper losses of the 

machine were not taken into account, in spite of the fact that they are expected to 

increase with the phase current [65]. Moreover, the improvement in efficiency was only 

estimated, not experimentally measured.  

This dissertation proposes a method to improve the efficiency of multiphase 

electric drives for machines with multiple three-phase windings. The proposed technique 

is based on modifying the number of active legs during the machine operation depending 

on the reference torque, while ensuring that the demanded power is always provided. 

Consequently, the efficiency is enhanced mainly at light load. Besides the converter 

losses, the effect of the stator copper losses on the overall efficiency is also studied and 

taken into account in the strategy. Experimental results are provided to verify the 

conclusions of the theoretical study. 

The rest of this chapter is organized as follows. Section 2.1 describes the general 

structure of the analyzed system and reviews the main losses in ac/dc converters. Section 

2.2 analyzes the condition in which only the converter losses are considered for 

improving the efficiency. Section 2.3 describes the proposed method to enhance the 

overall system efficiency. Section 2.4 presents the experimental results. 
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2.1.     Background 

A. Multiphase drives based on multiple three-phase windings:

The generalized schematic for a multiphase drive based on multiple three-phase 

stator windings with isolated neutrals is shown in Fig. 2.1, where γ equals 2 or 1 for 

symmetrical or asymmetrical winding arrangements, respectively [25], and n stands for 

the total number of phases. 
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Fig. 2.1: Generalized schematic of an electric drive based on multiple three-phase windings with isolated 

neutrals. 

The converter consists of n/3 three-phase modules connected to a single dc bus. 

Each of these modules supplies a three-phase winding set of the machine. The dc source 

shown in Fig. 2.1 may represent in a simplified manner, e.g., the batteries in an electric 
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vehicle or the dc side of a three-phase grid-connected converter in a wind turbine 

system.   

B. Major converter loss components

The losses in ac/dc converters are divided into the following two parts.

1) Conduction losses: The on-state resistances of semiconductor switches and of

anti-parallel diodes cause ohmic losses while they conduct. These losses are

given by the following equations:
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where Pcond, tr, d, Vce0, Vd0, rce, rd, m, cosϕ and I denote conduction losses, transistor, 

diode, switch collector-emitter voltage, diode forward voltage drop, collector-emitter on-

state resistance, diode on-state resistance, modulation index, power factor and rms phase 

current, respectively. 

2) Switching losses: The losses associated with non-ideal switching exist on both

the diodes and the switches, and they are given by














































 refjtrc

trv

ref

out

tri

ref

in
offonswtrsw TTT

k

V

V
k

I

I
EEfP (1)( ,

,,

,
(2.3) 














































 refjdc

dv

ref

out

di

ref

in
rrswdsw TTT

k

V

V
k

I

I
EfP (1)( ,

,,

,
(2.4) 

where Psw, fsw, Eon, Eoff, Err, Tj, Tref, Tc, ki, kv, Iin, Iref, Vout and Vref represent switching 

losses, switching frequency, switch turn-on losses, switch turn-off losses, diode reverse-
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recovery losses, junction temperature, reference temperature, temperature coefficient, 

current ratio order, voltage ratio order, device input current, device reference current, 

device voltage and device reference voltage, respectively.  

2.2.     Converter Efficiency Enhancement 

In the following, the multiphase ac/dc converter efficiency is analyzed when one 

or more of the multiple three-phase winding sets are deactivated (by turning off the 

corresponding converter switches) as the load decreases, so that the current per phase is 

maximized (for such load) but the switch current rating is not surpassed. Henceforth, this 

approach is called strategy for enhancement of the converter efficiency (SECE). 

Table 2.1 

Characteristics of the 24-Phase PMSM 

Parameter Value 

Rated Power 20 kW 

Rated Speed 1800 rpm 

Rated Torque 106.1 Nm 

Number of Poles 4 

Rated Voltage 120 V (rms) 

Rated Current 12 A 

Stator  Resistance 0.2 Ω 

Stator self-inductance 800 µH 

  Without loss of generality, a practical case is chosen for the study, for the sake of 

convenience and illustration. A 24-phase (eight three-phase winding sets) surface-
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mounted permanent-magnet synchronous machine (PMSM), with the characteristics 

shown in Table 2.1, is adopted. By choosing a 24-phase machine, the resulting plots will 

also allow to analyze later the cases of machines with lower phase numbers, such as six. 

The PMSM is assumed to operate at rated speed. The main parameters of the converter 

diodes and switches [insulated gate bipolar transistors (IGBTs)] are given in Table 2.2. 

The Semikron SKM50GB half-bridge modules with SEMIx302GB12E4s IGBT switches 

are used. The switching frequency is initially set to 5 kHz. The impact of other 

parameter choices is discussed later on. 

Table 2.2 

Characteristics of the Semiconductor Devices 

Variable Value 

Vce0 0.9 V 

Vd0 1.1 V 

rce 0.044 Ω 

rd 0.018 Ω 

Tref 25 0C 

Ki,tr 1 

Kv,tr 1.35 

Ki,d 0.6 

Kv,d 0.6 

Tc,d 0.003 1/K 

The efficiency of the 24-phase converter supplying the stator terminals is evaluated at 

different operation modes in Fig. 2.2, for various load (torque is normalized with respect 
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to the rated torque) conditions. Such modes result from enabling or disabling three-phase 

winding sets. There are eight modes; namely, with one, two, three, and up to eight 

simultaneously active three-phase winding sets. For simplicity, just six of these modes 

are depicted in Fig. 2.2; the 15-phase and 21-phase curves would be placed in between. 

It should also be mentioned that for Fig. 2.2 the efficiency is calculated from the dc bus 

to the stator input power, so that only the effect of the converter losses is reflected. 

As shown in Fig. 2.2, at light load condition the three-phase configuration yields 

the highest efficiency, and as the load increases, the 6-, 9-, 12-, 18- and 24-phase mode 

is successively the best candidate for improving the converter efficiency. The trajectory 

shown in dashed magenta corresponds to the SECE. As the torque increases, three-phase 

winding sets are consecutively activated in the SECE. It can be seen that the SECE 

tracks in this manner the highest converter efficiency available at each time (torque). 

Fig. 2.2 also shows that the SECE enhances the converter efficiency for 

machines of phase numbers lower than 24, as well. For this reason, the choice of 24 

phases for the example proves to be particularly convenient. As aforementioned, 

although the simulations are initially presented as performed for a 24-phase machine 

with rated power P=20 kW, in reality the resulting plots illustrate the efficiency results 

also for n-phase machines with rated power Pn/24, where n can be 6, 9, 12 and 18. For 

instance, it is inferred from Fig. 2.2 that for a 6-phase machine (with rated power and 

torque of 5 kW and 26.5 Nm, respectively, in this example), efficiency can be improved 

for light load (below 0.65 p.u.) by selecting between 3 or 6 active phases (two operation 

modes). 
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2.3.     Proposed Strategy for Enhancement of Overall Efficiency 

In the previous section, it was shown that the SECE permits to increase the 

converter efficiency. However, the stator copper losses were ignored (as in, e.g., [13], 

[63]), in spite of the fact that they are another major loss component in electric drives, 

and they vary with the number of active legs and the phase current rms [7]: 

2InRP scL  (2.5) 

where PcL, n and Rs stand for stator copper losses, number of active converter legs and 

stator resistance, respectively. In this section, the effect of the stator copper losses on the 

overall efficiency is studied when applying the SECE, and a strategy for enhancement of 

the overall efficiency (SEOE) is proposed. Such SEOE optimizes the overall efficiency, 

by also taking into account the stator copper losses. The effect of the different operation 

modes of the SECE on the stator copper losses is evaluated in Fig. 2.3. Only the copper 

losses are taken into account for the efficiency computation in this figure. The machine 

and converter under study are the same as in Section 2.2. From Fig. 2.3, it can be seen 

that reducing the number of active converter legs results in lower efficiency in terms of 

copper losses, for all load values. Nevertheless, although the copper losses are increased 

if the number of active legs is reduced, the overall efficiency (see Fig. 2.4) is still 

improved when decreasing the phase number. The reason is that the converter loss 

reduction dominates over the increase in the copper losses. By taking into account both 

converter and copper losses, the SEOE is proposed in here. As also depicted in Fig. 2.4, 

the SEOE selects the number of active phases such that the overall system efficiency is 

optimized for each load. 
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By comparing Figs. 2.2 and 2.4, it can be observed that the load torque at 

which the phase numbers are changed is different for SECE and SEOE. For example, 

when only converter losses are considered (Fig. 2.2), the three- and six-phase modes 

should be swapped for a normalized torque of 0.64 p.u., whereas in the case of total 

efficiency  (Fig. 2.3), this occurs at 0.22 p.u. Similarly, the torque values for the 

commutation between other modes also differ between the SECE and SEOE. This fact 

can be noted more clearly in Fig. 2.5, which compares in the same figure the 

efficiency-versus-torque curves corresponding to the SECE and SEOE. Again, in Fig. 

2.5 the transitions involving the modes of 15 and 21 phases are omitted for clarity and 

simplicity. From Fig. 2.5, if the SECE is implemented instead of the SEOE, the overall 

efficiency is not optimized and drops significantly as the load rises. For example, it is 

shown that the maximum difference in overall efficiency between SECE and SEOE 

occurs at 0.063 p.u. output torque and is almost 1%. By performing SEOE (shown in 

blue), the overall efficiency is maintained at about 95.5% whereas if SECE is 

implemented, the overall efficiency drops to roughly 94.5%. Thus, the SEOE is clearly 

preferable over the SECE. 

The torque (current) values that are used as threshold for the SECE or SEOE 

should be obtained off-line for a given machine and converter, so that the real-time 

control can swap on-line between modes at the correct condition. Such threshold values 

can be measured or simply computed by equating the overall efficiencies for each pair of 

consecutive operation modes, using (2.1)-(2.5).   
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Amounts of efficiency improvement similar to the ones attained here are often 

considered to be substantial [27], [30], [66]. Furthermore, even if the efficiency 

difference may seem relatively small in terms of power, it can result in a significant 

amount of energy when integrated through a long period of time. 

Other existing losses such as those due to other converters, iron core, windage, 

friction, etc. are not expected to vary substantially for a given torque and speed when the 

number of active legs is altered. In addition, the choice of symmetrical or asymmetrical 

winding arrangement for the stator does not affect the efficiency analysis. 

Finally, the influence of some parameter variations on the SEOE performance is 

addressed in the following.  

Fig. 2.6 shows the overall efficiency for the same PMSM with three different 

stator resistances. When the stator resistance increases (Rs=2 Ω), the overall efficiency 

drops accordingly and the SEOE mode swapping happens at lighter loads. On the other 

hand,  when the stator resistance decreases (Rs=0.02 Ω), the overall efficiency increases 

and the SEOE mode commutation has to be applied at higher loads, which potentially 

permits to save more energy. In conclusion, the SEOE offers greater loss reduction for 

machines with lower stator resistance. This occurs because for smaller Rs the converter 

efficiency has comparatively (with respect to the copper losses) more weight on the 

overall efficiency. As shown in Fig. 2.7, the efficiency diminishes over the whole range 

with the rise in  switching frequency, since the switching losses of the converter grow 

accordingly [(2.3) and (2.4)]. On the other hand, the threshold load values become 

higher, because of the increased relevance of the switching losses in the overall 
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efficiency. This fact implies a larger potential saving of energy by using the SEOE with 

respect to the usual approach of maintaining the phase number. As a consequence, when 

the switching frequency is chosen for a drive implementing the SEOE, a trade-off should 

be met, depending on the application, regarding the general decrease in efficiency and 

the improvement in the SEOE saving that occur when fsw grows. 

Concerning the magnitude of the back electromotive force (back-EMF) and the 

speed, they are not expected to have a noticeable impact on the preceding curves of 

efficiency, mainly due to the torque normalization. Nonetheless, it should be noted that 

even with identical efficiency, the power quantities are more important when the speed 

or BEMF are close to the rated one. 
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2.4.     Experimental Setup    

An experimental prototype (see Fig. 2.8) is built to verify the theoretical 

outcomes and functionality of the proposed SEOE. A 6-phase wound-field synchronous 

motor with small saliency and symmetrical winding arrangement is driven by field-

oriented control using two three-phase inverter modules. Disregarding saliency, the 

characteristics of the machine coincide with those in Table 2.1, by simply multiplying by 

a factor of 0.225 the values of rated power and torque shown in the Table 2.1. A Texas 

Instruments Delfino TMS320F28377 digital signal processor (DSP) is used for the 

control implementation. The two dimensional finite element analysis model of the 

synchronous motor is shown in Fig. 2.9. Some of the parameters of the motor is also 

described in Table 2.3. 

Fig. 2.8. Experimental setup. 

Electric Load

DSP

Interface 

board

6-phase

inverter

Synchronous 

motor
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Fig 2.9: FEA model of the synchronous motor stator and rotor showing double layer short pitched 

windings, adapted. 

Table 2.3: Synchronous motor parameters. 

Rated power 5 kVA 

Number of Poles 4 

Rated voltage 240 V 

Rated current 12 A 

Power factor 0.8 

Number of winding layers per stator slot 2 

Number of turns per coil 6 

Number of coils per phase 4 

Number of stator slots 48 

Air gap length 0.5 mm 

Rotor outer radius 87 mm 

Rotor inner radius 23.75 mm 

Stator outer radius 133 mm 
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The original synchronous motor shown above was wound as a three-phase motor 

with external taps on the stator windings as shown in Fig. 2.10 which enables the 

configurability of the stator windings.  

(a) 

(b) 

(c) 

Fig. 2.10: Original motor winding configuration, a) actual external taps, b) schematic of the taps along the 

winding, and c) coils end connection.  
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The connections were updated as shown in Fig. 2.11 to form a symmetrical six-phase 

synchronous motor.  

(a) 

(b) 

Fig. 2.11: Three to six-phase reconfiguration. a) distributed layout (green arrows refer to old connections 

and red arrows refer to new connections.) and b) Spatial representation of the phase vectors. 

A (a1)

B (b1) C (c1)

D (c2)E (a2)

F (b2)
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The new six-phase system acts like two sets of three-phase systems which are 

shifted for 60 degrees with respect to each other. The phase back-EMFs for all six 

phases of the new machine are shown below to verify the correct phase shifts: 

(a) 

(b) 

Fig. 2.12: Phase back EMFs for a) 1st three-phase and b) 2nd three-phase set. 
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2.5.      Drive Schemes 

       As part of the experimental setup, a digital control platform is provided to 

implement the required motor drive strategies. This platform consists of the 

microcontroller, the three phase full bridge inverter sets and the control software. The 

Texas Instrument Delfino TMS28F379D series of the C2000 families is used for 

processing. A comprehensive code was also written in code composer studio (CCS). 

Semikron three phase inverter sets are used as well. 

The main drive scheme is equal in both chapters one and two. Two IGBT based 

voltage source inverters used to drive both wound field synchronous motor and the 

surface mount permanent magnet synchronous motor. The DSP commands the inverter 

switches with the generated PWM signals as the output of the control schemes. An 

interface board is responsible to isolate and amplify the transferred signals between the 

DSP and the inverter. The main control loop of this system consists of the inner current 

loop and the outer speed loop.  

In order to control the machine in the rotating reference frame, the motor needs 

to be modelled in the dq synchronous reference frame. Equation (2.6) and (2.7) describes 

the voltage equation in the d and q axes. 

𝑣𝑑 = (𝑅𝑠 + 𝑗𝜔𝑒𝐿𝑑)𝑖𝑑 − 𝜔𝑒𝐿𝑞𝑖𝑞 + 𝜔𝑒𝜆𝑟         (2.6) 

𝑣𝑞 = 𝜔𝑒𝐿𝑑𝑖𝑑 + (𝑅𝑠 + 𝑗𝜔𝑒𝐿𝑞)𝑖𝑞 (2.7) 

where vd, vq, id, iq, Ld, Lq, Rs, ωe and λr stand for d axis voltage, q axis voltage, d axis 

current, q axis current, d axis inductance, q axis inductance, stator series resistance, rotor 

angular speed and back-EMF. In the case of the surface mount permanent magnet 
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synchronous motor, there is no excitation on the rotor so the back-EMF term in (2.6) will 

be zero. Also, in the case of the wound field synchronous motor, the rotor field winding 

is not excited and hence the back-EMF term does not exist. 

Assuming the back-EMF is zero, the flux linkages along the d and q axes are defined by 

(2.8) and (2.9): 

𝜆𝑑 = 𝐿𝑑𝐼𝑑 (2.8) 

𝜆𝑞 = 𝐿𝑞𝐼𝑞 (2.9) 

Consequently, the dq axis equivalent circuit of the synchronous motors can be 

represented by: 

vd

Rs

ωeλq 

id
Ld

(a) 

vq

Rs

ωeλd 

iq
Lq

(b) 

Fig. 2.13: Equivalent circuit of the synchronous motors in d and q axes. 

          When implementing the field oriented control (FOC) for the motor, several 

techniques are incorporated to improve the operation of the motor. 
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Fig. 2.14: Overall FOC block diagram of the system. 

  Fig. 2.14 depicts the overall block diagram of the control scheme which tracks 

the fundamental component of the commanded current reference.  

The six phase currents are converted to αβxy parameters using the following 

Clarke transformation for the asymmetrical six phase synchronous machine.  
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(2.10) 

For the case of the symmetrical six phase synchronous motor, the Clarke transformation 

is represented by: 
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       (2.11) 

The first three terms in each row of the above matrixes relate to the first three phase 

winding set and the second three terms correspond to the parameters of the second three 

phase winding set.  

The six phase time varying currents are decoupled into four currents in two 

isolated planes. The first plane in which the fundamental torque component is developed 

is called the α𝛽 plane. The flux interaction between the stator and the rotor is mainly 

done in this plane. The intermediate planes which only one of them exists in the case of 

six phase motor do not contribute to fundamental torque production and only create 

losses. The last plane represented by the last two rows in the Clark transformation matrix 

corresponds to zero sequence currents flowing between the neutrals.  
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     Park transformation is used to alter these four parameters to the rotating components 

with the rotor so they do not change as the rotor spins. The Park transformation matrix is 

represented by: 

[
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

]                                                  (2.12) 

where θ is the rotor instantaneous angle. This transformation converts the two phase α𝛽 

components in the stationary reference frame into two phase dq components in the 

rotating reference frame as explained in (2.13) and (2.14). 

𝐼𝑑 = 𝐼𝛼𝑐𝑜𝑠𝛳 + 𝐼𝛽𝑠𝑖𝑛𝛳    (2.13) 

𝐼𝑞 = −𝐼𝛼𝑠𝑖𝑛𝛳 + 𝐼𝛽𝑐𝑜𝑠𝛳 (2.14) 

In the main control block diagram shown in Fig. 2.14, the current references are 

generated in the dq reference frame. The d axis current reference is always set to zero 

whereas the q axis current reference demonstrates the torque producing component of 

the current and is the output of the speed control loop. 

The actual currents measured by the sensors are converted into α𝛽xy subspaces 

and compared to the reference currents in the α𝛽xy plane acquired by inverse Park 

transformation. In order to better regulate the six phase currents, the stationary reference 

frame currents are divided into clockwise rotating and counterclockwise rotating 

elements and separate proportional-integral (PI) controllers are augmented to adjust each 

of the errors. The outputs of the controllers are converted back into the actual abcdef 

frame as commands for the inverter switches in modulator forms. A sinusoidal PWM 

method is utilized in this work. It has to be mentioned that the rotor angle is provided by 

the encoder mounted on the shaft of the motor wherever required. 
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In addition to the inner current control loop, an outer speed control loop with 

much less band width and time constant is implemented to achieve the speed 

controllability, Fig. 2.15. A reference speed is commanded by the software and this loop 

tracks the reference by adaptively providing the proper current command in the q axis 

which will produce the required torque to increase or decrease the speed.  

The anti-windup loop shown in red prevents the speed to rise tremendously [71]. 

The established q axis current reference is passed into a limiter. The upper and lower 

limits are selected such that the achieved speed with the maximum applied torque is 

within the acceptable range. The actual q axis current reference is compared to the 

output of the limiter and the generated error is added back to the actual speed error. 

Therefore, it is assured in this way that the current command is not increased suddenly 

by the loop.    

       The feed forward branch in conjunction with the anti-windup loop provides two 

degrees of freedom in adjusting the speed control loop. While the main loop tracks the 

fundamental component of torque and speed, the feedforward branch creates a secondary 

loop which removes one pole of the overall transfer function and hence reducing the 

speed overshoot during the transient as stated in [71]. 

Harmonic contents always exist in the system due to non-idealities which needs 

to be removed so that the output currents are of a low distortion. One method of 

diminishing harmonics is through harmonic component rejection scheme which is added 

to the main FOC as shown in Fig. 2.16. 
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Fig. 2.15: Speed control loop of the FOC. 

Harmonics of orders -5, +7, -11, +13 and etc are of the highest magnitude in a 

symmetrical six-phase system. Therefore, harmonics -5 and +7 is rejected in this system. 

In the block diagram below, ω, h, Ѳr and T refer to the fundamental frequency, harmonic 

order, instantaneous rotor angle and sampling period, respectively. The harmonic 

rejection loop exactly acts like the fundamental current control loop except for the 

rotating reference frames which are set at the desired harmonic speed and PI controllers 

tune the dc parameters. Afterwards, the cancelling component of the currents generated 

by the controller is injected by the inverters. The 2hωT term added to the angle in the 

inverse Park transformation takes into account one sampling period for computation 

time, half a sampling period for modulation delay and another half sampling period for 

current averaging. This helps the used angle in the transformation being closer to the 

actual angle. 
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Fig. 2.16: Harmonic rejection scheme block diagram. 

Another method of diminishing the harmonic contents is to virtually add an 

active resistance to change the poles and zeros associated with the aimed harmonics. It is 

proved in [72] that the active resistance in the first plane is directly proportional to the 

magnetizing inductance and the active resistance in the second plane is directly 

proportional to the leakage inductance of the stator windings. 

In order to maximize the dc bus utilization, [73] proposes a method to optimally 

enhance the dc bus usage such that higher output voltages are achieved by the same dc 

bus level. It removes the zero sequence components as it will not flow in a system with 

isolated neutrals. Equations (2.15) and (2.16) represent the two key equations for zero 

sequence injection. 

𝑍𝑒𝑟𝑜𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛
= −

𝑚𝑚𝑎𝑥+𝑚𝑚𝑖𝑛

2
(2.15) 

𝑚𝑛𝑒𝑤 = 𝑚𝑜𝑙𝑑 + 𝑍𝑒𝑟𝑜𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛
(2.16) 
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By removing the zero sequence injection parameter of the modulators at each sampling 

instance, it is guaranteed that the dc bus is not allocated to zero sequence injection. 

       The deadtimes in the inverters can potentially introduce harmonic voltages in the 

order of switching frequency in the system. Therefore, a compensating signal is added to 

the PWM modulators to offset the deadtime effects. The following equation describes 

the required signal to be added: 

𝑀∗
𝑠 = 𝑀̂𝑠 + 𝑠𝑖𝑔𝑛(𝑖𝑠). 𝑡𝑑 . 𝑓𝑠𝑤 . 𝑣𝑑𝑐                                     (2.17)

Where 𝑀∗
𝑠, 𝑀̂𝑠, 𝑖𝑠, 𝑡𝑑, 𝑓𝑠𝑤 and 𝑣𝑑𝑐 are the adjusted modulator signal, the reference

modulator, the phase current, deadtime, switching frequency and the dc bus voltage. 

Depending on whether the current is flowing to the inverter or back to the dc bus, the 

corrective signals are added or subtracted from the modulators. 

       After implementing the above mentioned schemes in the drive, the general 

performance of the drive system was examined by tracking key parameters.  

       The inner control loop has to acceptably operate fast. A current command is 

asserted and the actual current response is captured. A settling time of 2 ms is recorded 

for the current control loop. The bandwidth of the current loop is set at 300 Hz. 

The outer loop which operates relatively slower than the inner current loop is 

also evaluated. Speed step response is shown in Fig. 2.19 along with the three phase 

currents. 10% speed overshoot and 4s settling are believed to be acceptable. The 

bandwidth of the speed loop is set at 50 Hz. 
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(a) 

(b) 

Fig. 2.18: Current step response, a) broad range and b) zoomed version. 
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       As depicted in Fig. 2.20, operating with three active legs instead of six at light 

load enhances the converter and the overall efficiency, in spite of being less convenient 

in terms of copper losses. Namely in Fig. 2.20(c), the efficiency is increased up to 2.6%, 

which occurs at 0.145 p.u. output torque. The normalized torque values at which the 

number of active phases should be swapped is shifted to 0.188 p.u. in the SEOE [Fig. 

2.20(c)] with respect to the SECE, in which it occurs at 0.33 p.u. [Fig. 2.20(a)]. For 

example, at 0.24 p.u. output torque, the SEOE offers an overall efficiency of 97.8% [Fig. 

2.20(c)], whereas in the case of the SECE, which at 0.24 p.u. still tracks the blue curve 

(3 phases), the efficiency is 90%.  

       This shows at least 7.8% improvement in efficiency when comparing SECE and 

SEOE on the experimental prototype. 

       Next, an increase in the stator resistance is emulated by adding 0.3 Ω to each 

phase. Fig. 2.21(a) shows that, with the greater resistance, both the efficiency curve as a 

whole and the threshold torque value are reduced. Moreover, Fig. 2.21(b) demonstrates 

that the threshold torque and the efficiency in general become larger and lower, 

respectively, at higher switching frequencies. 

Even though the numerical quantities are not exactly the same in the simulations 

(Section 2.2 and 2.3) and experiments (presumably due to parameter deviations from 

their ideal values), it can be seen that the general conclusions (concerning the fact that 

SEOE improves the efficiency with respect to SECE and to using all phases, and also the 

type of variation with Rs and f) match between both types of results. 
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Fig. 2.19: Speed step response (shown in yellow). 

(a) 

Fig. 2.20. Efficiency measurement of the actual prototype considering (a) only converter losses, (b) only 

copper losses, and (c) overall losses. 
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(b) 

(c) 

Fig. 2.20. Continued. 
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(a) 

(b) 

Fig. 2.21. Experimental comparison of the overall efficiency with the SEOE at (a) different stator 

resistances, and (b) different switching frequencies. 

Lastly, Fig. 2.22 represents the transient behavior during the mode swapping. 

One phase current of each three-phase winding set (phases a1 and a2, in accordance with 

Fig. 2.1) is shown, along with the torque and speed waveforms. The magnitude of the 
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current references is automatically doubled in the DSP when the phase number is halved 

(Fig. 2.22 (a)), and vice versa (Fig. 2.22 (b)). There is a brief change in the torque when 

the mode commutation happens, presumably due to nonlinearities and to the differences 

in the converter and copper losses between modes. In any case, the control rapidly 

compensates this disturbance, and the speed is kept unaltered. If this short torque 

variation  were inconvenient for a certain sensitive application, it could be reduced by 

taking into account those effects when recalculating the current references. 

(a) 

Fig. 2.22. Phase currents, speed and torque waveforms during the mode transition from (a) 6 to 3 phases, 

and from (b) 3 to 6 phases. The scale of the speed and torque is 400 rpm/div and 2 Nm/div, respectively. 
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(b) 

Fig. 2.22. Continued. 
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3. IMPROVED SENSORLESS DRIVE FOR SYNCHRONOUS MOTORS

BASED ON HIGH-FREQUENCY SINUSOIDAL SIGNAL INJECTION WITH 

SIMPLIFIED EXTRACTION OF POSITION-ERROR INFORMATION  

3.1.     High-frequency Impedance Characteristic of the Surface-Mount Permanent  

        Magnet Synchronous Motor (SPMSM) 

Generally, a synchronous motor is modelled in the rotating reference frame by: 

𝑣𝑑 = 𝑟𝑠𝑖𝑑 + 𝐿𝑠
𝑑

𝑑𝑡
𝑖𝑑 + 𝜔𝑟(𝐿𝑠𝑖𝑞 + 𝐾𝑒)                                    (3.1)

𝑣𝑞 = 𝑟𝑠𝑖𝑞 + 𝐿𝑠
𝑑

𝑑𝑡
𝑖𝑞 − 𝜔𝑟𝐿𝑠𝑖𝑑                                          (3.2)

where vd, vq, id, iq, rs, Ls, ωr and Ke represent d-axis rotor voltage, q-axis rotor voltage, d-

axis rotor current, q-axis rotor current, stator winding resistance, stator winding 

magnetizing inductance, rotor angular velocity and back-EMF constant, respectively. 

Given a dq synchronous reference frame rotating so that d is aligned with the 

rotor flux, the high-frequency equivalent circuit of the SPMSM can be expressed as 

𝑣𝑑ℎ = 𝑟𝑑ℎ𝑖𝑑ℎ + 𝐿𝑑ℎ
𝑑

𝑑𝑡
𝑖𝑑ℎ                                       (3.3)

𝑣𝑞ℎ = 𝑟𝑞ℎ𝑖𝑞ℎ + 𝐿𝑞ℎ
𝑑

𝑑𝑡
𝑖𝑞ℎ                                       (3.4)

where vdh, vqh, rdh, rqh, Ldh, Lqh, idh and iqh are the d-axis high frequency voltage, q-axis 

high frequency voltage, d-axis high frequency resistance, q-axis high frequency 

resistance, d-axis high frequency inductance, q-axis high frequency inductance, d-axis 

high frequency current and q-axis high frequency current, respectively. The above 

equations represent the motor considering only the high frequency injected signals. 
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Now, we assume the steady state condition to further simplify (3.3) and (3.4): 

𝑣𝑑ℎ = (𝑟𝑑ℎ + 𝑗𝜔ℎ𝐿𝑑ℎ)𝑖𝑑ℎ (3.5) 

𝑣𝑑ℎ = (𝑟𝑑ℎ + 𝑗𝜔ℎ𝐿𝑑ℎ)𝑖𝑑ℎ (3.6) 

The equation (3.5) and (3.6) can be further simplified into: 

𝑣𝑑ℎ = 𝑍𝑑ℎ𝑖𝑑ℎ (3.7) 

𝑣𝑞ℎ = 𝑍𝑞ℎ𝑖𝑞ℎ (3.8) 

where Zdh and Zqh are d-axis high frequency impedance and q-axis high frequency 

impedance. 

Let us define the rotor angle estimation error by 

𝛳̃𝑟 = 𝛳𝑟 − 𝛳̂𝑟                                               (3.9) 

with 𝛳̃𝑟 being the rotor angle estimation error, 𝛳𝑟 the actual rotor angle and 𝛳̂𝑟 the 

estimated rotor angle.  

A matrix representation is used to express (3.7) and (3.8): 

[
𝑣𝑑ℎ

𝑣𝑞ℎ
] = [

𝑍𝑑ℎ 0
0 𝑍𝑞ℎ

] [
𝑖𝑑ℎ

𝑖𝑞ℎ
] (3.10) 

By multiplying both sides of (3.10) by the inverse high frequency impedance matrix, 

(3.11) is obtained: 

[
𝑖𝑑ℎ

𝑖𝑞ℎ
] = [

𝑍𝑑ℎ 0
0 𝑍𝑞ℎ

]
−1

[
𝑣𝑑ℎ

𝑣𝑞ℎ
] = [

1

𝑍𝑑ℎ
0

0
1

𝑍𝑞ℎ

] [
𝑣𝑑ℎ

𝑣𝑞ℎ
] (3.11) 

On the other hand, it is shown below that the variables in the actual synchronous 

reference frame and the estimated synchronous frame are related to each other by: 
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[
𝑋𝑑

𝑋𝑞
] = [

𝑐𝑜𝑠𝛳̃𝑟 𝑠𝑖𝑛𝛳̃𝑟

−𝑠𝑖𝑛𝛳̃𝑟 𝑐𝑜𝑠𝛳̃𝑟

] [
𝑋̂𝑑

𝑋̂𝑞
] (3.12) 

[
𝑋̂𝑑

𝑋̂𝑞
] = [

𝑐𝑜𝑠𝛳̃𝑟 −𝑠𝑖𝑛𝛳̃𝑟

𝑠𝑖𝑛𝛳̃𝑟 𝑐𝑜𝑠𝛳̃𝑟

] [
𝑋𝑑

𝑋𝑞
] (3.13) 

If the high frequency voltages are injected through the estimated reference frames, based 

on (3.12) and (3.13), induced high frequency currents along the estimated reference 

frames are calculated by: 

[
𝑖̂𝑑ℎ

𝑖̂𝑞ℎ
] = [

𝑐𝑜𝑠𝛳̃𝑟 −𝑠𝑖𝑛𝛳̃𝑟

𝑠𝑖𝑛𝛳̃𝑟 𝑐𝑜𝑠𝛳̃𝑟

] [
𝑖𝑑ℎ

𝑖𝑞ℎ
]

= [
𝑐𝑜𝑠𝛳̃𝑟 −𝑠𝑖𝑛𝛳̃𝑟

𝑠𝑖𝑛𝛳̃𝑟 𝑐𝑜𝑠𝛳̃𝑟

] [

1

𝑍𝑑ℎ
0

0
1

𝑍𝑞ℎ

] [
𝑣𝑑ℎ

𝑣𝑞ℎ
]

         = [
𝑐𝑜𝑠𝛳̃𝑟 −𝑠𝑖𝑛𝛳̃𝑟

𝑠𝑖𝑛𝛳̃𝑟 𝑐𝑜𝑠𝛳̃𝑟

] [

1

𝑍𝑑ℎ
0

0
1

𝑍𝑞ℎ

] [
𝑐𝑜𝑠𝛳̃𝑟 𝑠𝑖𝑛𝛳̃𝑟

−𝑠𝑖𝑛𝛳̃𝑟 𝑐𝑜𝑠𝛳̃𝑟

] [
𝑣𝑑ℎ

𝑣𝑞ℎ
]       (3.14) 

where 𝑣𝑑ℎ, 𝑣𝑞ℎ, 𝑖̂𝑑ℎ, 𝑖̂𝑞ℎ are the high frequency voltage along the estimated d-axis, high 

frequency voltage along the estimated q-axis, high frequency current along the estimated 

d-axis and the high frequency current along the estimated q-axis, respectively.

The induced high frequency currents along the d and q-axis can be rewritten as: 

𝑖̂𝑑ℎ =
1

𝑍𝑑ℎ𝑍𝑞ℎ
[(𝑍𝑎𝑣𝑔 −

1

2
𝑍𝑑𝑖𝑓𝑓𝑐𝑜𝑠2𝛳̃𝑟) 𝑣𝑑ℎ − (

1

2
𝑍𝑑𝑖𝑓𝑓𝑠𝑖𝑛2𝛳̃𝑟)𝑣̂𝑞ℎ]   (3.15) 

𝑖̂𝑞ℎ =
1

𝑍𝑑ℎ𝑍𝑞ℎ
[(−

1

2
𝑍𝑑𝑖𝑓𝑓𝑠𝑖𝑛2𝛳̃𝑟) 𝑣𝑑ℎ + (𝑍𝑎𝑣𝑔 +

1

2
𝑍𝑑𝑖𝑓𝑓𝑠𝑖𝑛2𝛳̃𝑟)𝑣̂𝑞ℎ]  (3.16)

where 

𝑍𝑎𝑣𝑔 =
𝑍𝑑ℎ+𝑍𝑞ℎ

2
(3.17) 
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𝑍𝑑𝑖𝑓𝑓 = 𝑍𝑑ℎ − 𝑍𝑞ℎ                                                 (3.18) 

Zavg and Zdiff are the average of d and q-axis high frequency impedance and difference of 

d and q-axis high frequency impedance, respectively. 

Based on (3.15) and (3.16), it is decided to which axis of the estimated reference frame 

the high frequency signal should be injected. In this case, the fluctuating voltage can be 

injected both in the d and q axis of the estimated reference frame. For example, if the 

high frequency voltage is injected along the d-axis:  

𝑣𝑑ℎ = 𝑉𝑖𝑛𝑗𝑐𝑜𝑠𝜔ℎ𝑡 (3.19) 

𝑣𝑞ℎ = 0 (3.20) 

where Vinj and ωh are the magnitude of the injected voltage and the angular speed of the 

high frequency voltage. 

Equations (3.15) and (3.16) can be rewritten by plugging (3.19) and (3.20) in them: 

𝑖̂𝑑ℎ =
𝑉𝑖𝑛𝑗𝑐𝑜𝑠𝜔ℎ𝑡

𝑍𝑑ℎ𝑍𝑞ℎ
(𝑍𝑎𝑣𝑔 −

1

2
𝑍𝑑𝑖𝑓𝑓𝑐𝑜𝑠2𝛳̃𝑟)          (3.21) 

𝑖̂𝑞ℎ =
𝑉𝑖𝑛𝑗𝑐𝑜𝑠𝜔ℎ𝑡

𝑍𝑑ℎ𝑍𝑞ℎ
(−

1

2
𝑍𝑑𝑖𝑓𝑓𝑠𝑖𝑛2𝛳̃𝑟) (3.22) 

It is inferred that the high frequency current induced along the d-axis of the estimated 

reference frame is proportional to a dc value added to the cosine of the rotor angle 

estimation error whereas the high frequency current induced along the q-axis of the 

estimated reference frame is proportional to the sine of the rotor angle estimation error. 

Therefore, it is more proper to measure the high frequency current induced along the q-

axis of the estimated reference frame as it is directly proportional to the rotor angle 

estimation error. It also has to be mentioned that this current includes the rotor angle 
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information provided that the difference in the high frequency impedance of the d and q 

axes are fairly large. 

         In order to evaluate the high frequency impedance characteristics of the studied 

machine, a measurement reference frame is attached to the rotor so as it rotates, various 

rotor positions are covered as shown in Fig. 3.1. dmeas, qmeas, d, q and α are the d-axis of 

the measurement reference frame, q-axis of the measurement reference frame, actual d-

axis, actual q-axis and the relative angle between the actual and measurement axes. 

d

q

dmeasqmeas

α

Fig. 3.1: Measurement and the actual reference frame for high frequency impedance measurement. 

The following plots demonstrate the high-frequency impedance characteristic of 

the studied SPMSM at different voltages and frequencies. The relative position of the 

actual rotor reference frame with respect to the measurement reference frame is swept in 

steps of 30 degrees and the associated high-frequency impedance is experimentally 

calculated by 3.23.  
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𝑍𝑑 =
𝑉𝑑,𝑚𝑒𝑎𝑠

𝐼𝑑,𝑚𝑒𝑎𝑠
(3.23) 

where Zd represents the impedance along the d-axis of the measurement reference frame. 

Now as the measurement frame rotates, Zd plots a sinusoidal curve. The minimum points 

of Zd correspond to d-axis high frequency impedance since the injected currents along 

with the permanent magnet fluxes will saturate the iron along this path. In contrast, the 

peak points of this curve correspond to q-axis impedance. Since the tests have been 

implemented in discrete angles, the ideal sinusoidal profile of the high frequency 

impedance cannot be seen.  

The lowest impedance corresponds to the actual d axis, which is aligned with the 

magnets. On the other hand, the impedance increases as the frequency is higher. At a 

certain frequency, the q axis high frequency impedance is decreased as the magnitude of 

the injected voltage is increased but the d axis high frequency impedance is not varied. 

This is due to d axis already being saturated and possessing the least impedance. Based 

on Fig. 3.2(a) and 3.2(b) the 40 V, 500 Hz high-frequency voltage is chosen as the most 

suitable injected voltage, which results in 5.9 Ω of high-frequency impedance difference 

along the d and q axes. This difference makes it possible to obtain information about the 

rotor position angle through (3.22). The injected frequencies of around ten times of the 

fundamental frequency is found to be proper. It should be mentioned that the high 

frequency voltage is injected in the αβ plane.  
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(a) 

(b) 

Fig. 3.2: High-frequency impedance characteristic of the SPMSM versus mechanical rotor angle at a) 

different magnitude of the injected voltages of 500 Hz frequency, b) different frequency of the injected 

voltages of 40 V magnitude. 

The asymmetrical six phase motor possesses two other control planes which can be used 

for injection. The zero sequence plane does not carry any current since the neutrals of 
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the two three phase winding sets are not connected to each other. However, the xy plane 

can be utilized for high frequency voltage injection. The high frequency impedances in 

the xy plane was also measured to investigate the possibility of injecting through this 

plane. Since the second plane has less impedance compared to the fundamental plane, 

less voltage is required to build up the required current. In this sense, a 20 V, 500 Hz 

voltage is injected along the x axis of the second plane and the high frequency 

impedance is measured as depicted in Fig. 3.3. The high frequency impedance difference 

along the x and y axis in the second plane is approximated to be 0.25 Ω which is very 

smaller than the first plane. Therefore, high frequency injection in the xy planes for rotor 

position estimation does not yield acceptable performance.  

Fig. 3.3: High-frequency impedance characteristic of the SPMSM versus mechanical rotor angle at 20 V, 

500 Hz high frequency sinusoidal voltage injection in the x axis.  
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At the ranges of the high frequencies injected, the high frequency impedances are mostly 

composed of inductive terms rather than resistive. As a result, the following deduction is 

valid: 

𝑍𝑑ℎ = 𝑟𝑑ℎ + j𝜔ℎ𝐿𝑑ℎ~j𝜔ℎ𝐿𝑑ℎ       (3.24) 

𝑍𝑞ℎ = 𝑟𝑞ℎ + j𝜔ℎ𝐿𝑞ℎ~j𝜔ℎ𝐿𝑞ℎ (3.25) 

With the above assumptions, (3.22) can be further simplified into: 

𝑖̂𝑞ℎ =
𝑉𝑖𝑛𝑗𝑠𝑖𝑛2𝛳̃𝑟

2𝜔ℎ
2𝐿𝑑ℎ𝐿𝑞ℎ

(𝑟𝑑𝑖𝑓𝑓𝑐𝑜𝑠𝜔ℎ𝑡 − 𝜔ℎ𝐿𝑑𝑖𝑓𝑓𝑠𝑖𝑛𝜔ℎ𝑡)       (3.26) 

where rdiff and Ldiff are the resistance difference between the high frequency d and q axis 

and inductance difference between the high frequency d and q axis, respectively. 

In order to extract from (3.26) information about the rotor position error, the following  

operation is performed: 

𝑖𝛳̃𝑟
= LPF(𝑖𝑞̂ℎ𝑠𝑖𝑛𝜔ℎ𝑡) = −

𝑉𝑖𝑛𝑗𝐿𝑑𝑖𝑓𝑓

4𝜔ℎ𝐿𝑑ℎ𝐿𝑞ℎ
⁡sin2𝛳̃𝑟                         (3.27)

where LPF stands for low pass filter. If the rotor position estimation error is small 

enough, (3.27) can be further simplified by 

𝑖𝛳̃𝑟
= −

𝑉𝑖𝑛𝑗𝐿𝑑𝑖𝑓𝑓

2𝜔ℎ𝐿𝑑ℎ𝐿𝑞ℎ
𝛳̃𝑟 (3.28) 

which explicitly illustrates the relation between this variable and the rotor position 

estimation error. Given such relation, this signal is adopted as the input to the rotor 

position estimator. 
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3.2.     Proposed Improved Sensorless Scheme 

Fig. 3.4 depicts the block-diagram representation of the 𝑖𝛳̃𝑟
extraction proposed as

also expressed in the previously derived equations. The transformation of the measured 

stator currents to the rotating reference frame is performed by using the estimated rotor 

position angle. Afterwards, 𝑖̂𝑞ℎis extracted by applying a band-pass filter (BPF) to the 

overall q-axis current. Finally, in accordance with (3.27), the error signal 𝑖𝛳̃𝑟
 is

calculated by multiplying 𝑖̂𝑞ℎby a 𝑠𝑖𝑛𝜔ℎ𝑡 term and passing it through an LPF. 

abcdef

dq

ia
ib
ic

id

iq
BPF

iq h

sinωht

LPF

𝛳̃𝑟

𝑖𝛳̃𝑟

id

ie
if

Fig. 3.4: Calculation of the error signal. 

The BPF in Fig 3.4 can be digitally implemented as indicated by the red dashed square 

in Fig. 3.5 [68]. 

LPF

LPF

sinωht sinωht 

cosωht cosωht iq
iqh

sinωht 

LPF

X

Y + 𝑖𝛳̃𝑟

Fig. 3.5: Digital implementation of the BPF (shown in the red box) in conjunction with the error signal 

calculation. 



73 

The intermediate signals X and Y defined in Fig. 3.5 are obtained by 

𝑋 = LPF(𝑖𝑞sin𝜔ℎ𝑡)           (3.29) 

𝑌 = LPF(𝑖𝑞cos𝜔ℎ𝑡)                   (3.30) 

And hence, 

𝑖̂𝑞ℎ = 𝑋sin𝜔ℎ𝑡 + 𝑌cos𝜔ℎ𝑡                                 (3.31) 

𝑖𝛳̃𝑟
= LPF((𝑋sin𝜔ℎ𝑡 + 𝑌cos𝜔ℎ𝑡) ∗ sin𝜔ℎ𝑡) ⁡= LPF(𝑋sin2𝜔ℎ𝑡 + 𝑌sin𝜔ℎ𝑡cos𝜔ℎ𝑡) =

LPF(
1

2
𝑋)                                                    (3.32)

Therefore, the scheme of Fig. 3.4 can be simplified as shown in Fig. 3.6. 

sinωht 

iq LPF 0.5 𝑖𝛳̃𝑟

Fig. 3.6: Simplified method of 𝑖𝛳̃𝑟
calculation.

Consequently, the new approach of 𝑖𝛳̃𝑟
calculation removes two LPFs of the

previous approach (Fig. 3.5), which in practice allows a faster response of the sensorless 

scheme. Moreover, three multiplications, the calculation of a cosine function, and one 

addition, are also saved. This further simplifies the implementation and provides extra 

execution time that the digital signal processor (DSP) can employ for other purposes. 

The calculated 𝑖𝛳̃𝑟
has to be controlled to mitigate the errors in the rotor position

estimation. A bang-bang controller is utilized, as shown in Fig. 3.7, to adjust in closed-

loop the estimated rotor angle such that the error is minimized [57]. 
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Kb

-Kb

1/s

LPF ωr

𝑖𝛳̃𝑟 𝛳̃𝑟

𝑑𝛳̃𝑟

𝑑𝑡

Fig. 3.7: Block diagram for estimating the rotor angle and the speed. 

The controller generates the time derivative of the estimated rotor angle. An LPF 

is used to filter the noise and provide the estimated rotor speed. The bang-bang 

controller gain and the LPFs bandwidth are selected such that the overall estimation 

speed is compatible. For instance, if the controller gain is set very high such that the 

LPFs cannot keep up with the speed corrections of the sensorless algorithm, the 

estimation will diverge from the actual value. Moreover, if the bandwidth of the LPFs 

are set very narrow, the estimation scheme’s dynamics will be too slow to update the 

current position of the rotor. 

3.3.     Experimental Results 

The proposed sensorless scheme was tested in the experimental setup shown in 

Fig. 3.8. An originally 24 phase synchronous motor with external access to coil 

terminals as shown in Fig. 3.9 was rewound to obtain an asymmetrical six-phase 

synchronous motor. The back-EMF waveform of the 24 phase motor was used to 

determine the proper configuration to yield the asymmetrical six-phase winding as 

depicted in Fig. 3.10. The six-phase SPMSM is driven by field-oriented control using 

Semikron inverters.  Note that, since only the flux/torque producing plane [69] is 
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employed in the tests, no substantial differences could be expected for other phase 

numbers. A Texas Instruments Delfino TMS320F28379 DSP is used for the control 

implementation. Table 3.1 illustrates some parameters of the setup. The bandwidth of the 

speed LPF has to be relatively low to achieve an accurate speed estimation. A bandwidth 

of 2 rad/s was chosen in this work. For the rightmost LPF in Fig. 3.4, a bandwidth of 200 

rad/s was found to be convenient, and for those contained in the BPF in Fig. 3.4, a 

bandwidth of 2000 rad/s was set.  

Interface 
board

DSP

Inverter
SPMSM

Fig. 3.8: Experimental prototype. 
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Fig. 3.9: Winding connections of the original 24-phase SPMSM. 



77 

Fig. 3.10: Six-phase back-EMF waveforms of the motor shown in one full period. 

Table 3.1 

Experimental Setup Characteristics 

Parameter Value 

Rated power 60 kW 

Rated speed 1800 rpm 

Number of poles 4 

Stator winding  

resistance 

0.47 Ω 

Stator self-inductance 3 mH 

Switching frequency 5 kHz 

Sampling frequency 200 kHz 
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      The motor is driven at 75 and 100 rpm by the proposed improved scheme and the 

estimated rotor electrical angle is compared in Fig. 3.11 (a) and (b) to the actual angle 

captured by an Allen Bradley encoder mounted on the shaft. Both angles match each 

other, which emphasizes the accuracy of the proposed scheme. An error of 0.9 % was 

detected in rotor angle estimation.    

      In the following, the transient behavior of the improved sensorless scheme is 

shown in Fig. 3.12 when altering the speed from 75 to 0 rpm. To study the effect on the 

current closed-loop without other uncertainties, the drive is set in torque (current) control 

mode and the speed changes are caused by step torque commands. To facilitate the 

inspection of the speed settling time, a virtual step speed command is shown in the 

captures along with the actual speed. Such signal rises at the instant when the torque 

command is applied, and its value matches the steady-state speed.  

The input error signal 𝑖𝛳̃𝑟
 gets affected in steady state by the scheme as well. For

instance, the smaller amount of operations in the proposed scheme leads to a less 

oscillatory error signal as shown in Fig. 3.13. More stable input to the rotor angle 

estimator itself results in faster dynamic response. 
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Actual angle

Estimated angle

(a) 

Actual angle

Estimated angle

(b) 

Fig. 3.11: Estimated and measured electrical rotor angle versus time at a) 75 rpm, and b) 100 rpm. The 

scale is 4.2 rad/div. 
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Estimated speed

Steady State Speed

Fig. 3.12: Speed transient behavior when dropping the speed from 75 to 0 rpm. 

Proposed scheme

Conventional scheme

Fig. 3.13: 𝑖𝛳̃𝑟
in steady-state for conventional and proposed scheme. The scale is 0.25 A/div.

      The angle estimated by the sensorless scheme is provided to the closed-loop 

control as the transformation angle. Therefore, any ripple in the angle estimation can give 
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rise to ripple in the current or speed.  The harmonic spectrum of the sine of the estimated 

angle, which is used in the stationary-to-synchronous transformation matrix, is plotted 

and compared for both schemes in Fig. 3.14. The conventional scheme produces higher 

harmonic content, which means more oscillation in the rotor angle estimation, whereas 

the proposed scheme contains less distortion. The total harmonic distortion is 11.2% in 

Fig. 3.14(a) and 4.8% in Fig. 3.14(b). Odd harmonic orders up to 11 are dominant in the 

analysis. 

(a) 

Fig. 3.14: Harmonic spectrum of sin𝛳̃𝑟, normalized with respect to the fundamental, for a) conventional

scheme and b) proposed scheme. 
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(b) 

Fig. 3.14: Continued. 
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4. SUMMARY AND FUTURE WORK

In the first part of this dissertation, a method, called SEOE, has been proposed 

for enhancement of the efficiency in multiphase electric drives by taking into account 

both the converter and stator copper losses. It improves the efficiency at light load 

operation of the machine (either motor or generator) by adequately selecting the number 

of active converter legs as a function of the current magnitude. Given that the efficiency 

enhancement mainly occurs at light load, the proposal is especially suitable for 

applications in which this type of operation is frequent, such as electric vehicles and 

wind turbines. It is shown that the loss reduction is also significant in comparison with 

the approach, called SECE, in which only the converter losses are considered. The 

amount of  energy saved by the SEOE, with respect to the conventional use of all phases, 

becomes more significant as the machine possesses a lower stator winding resistance and 

as the switching frequency increases. A 6-phase experimental prototype was built and 

the functionality of the proposed SEOE was verified, as well as the outcomes of the 

theoretical study. The maximum increase in efficiency by using the SEOE, compared to 

using all phases, is about 2.6%, which can result in a substantial energy saving in the 

long term. Nearly seamless transitions are ensured when swapping the number of phases 

in real time, by automatically adjusting the current references.  

In the second part, an improved position sensorless scheme based on high-

frequency sinusoidal voltage injection was proposed in this dissertation. The proposed 

scheme offers better performance characteristics compared to the existing conventional 
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scheme. This is mainly achieved by removing some of the LPFs of the latter, which are 

proved to be unnecessary. Both methods were implemented on an experimental setup 

with an SPMSM. It was concluded that the improved technique provides faster speed 

transient response compared to the conventional one, for identical parameters. The rotor 

angle estimation was also observed to be smoother in the proposed improved scheme, 

which can further enhance the closed-loop control of the SPMSM. 

Generally, the position sensorless schemes based on high frequency injections 

cause extra torque ripple in the system due to the induced high frequency currents. Since 

the high frequency voltages are injected in the fundamental plane of the surface mount 

permanent magnet synchronous motors, it adds up to the torque ripples created by the 

major harmonics which are present in the system. On the other hand, multiphase motor 

drives and specifically six phase in this case provides other control planes (xy planes). 

Injection of extra high frequency currents through the secondary plane such that it 

cancels out the torque ripple created by the high frequency current injected for position 

estimation can be investigated to remove the additional torque ripples in the system. 

       The back-EMF and current vectors in the first and second planes of the sample 

SPMSM is shown in Fig. 4.1 (a) and (b). A parametrized analysis of the developed 

torque in both planes is performed below with the parameters defined in (4.1)-(4.5). It is 

assumed that the main high frequency current for position sensorless estimation is 

injected in the first plane. Therefore, two type of torque will be developed in the first 

plane. The first type is the fundamental torque which is desired and is the result of the 

interaction of fundamental current and back-EMF, (4.6). 
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Fig. 4.1: Back-EMF and current vectors in first and second planes of the six phase SMPMSM. 
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𝑒1 = 𝐸1cos⁡(𝜔1𝑡 − 𝜑𝑒1) (4.1) 

𝑖ℎ = 𝐼ℎcos⁡(𝜔ℎ𝑡 + 𝜑𝑖ℎ)      (4.2) 

𝑒5 = 𝐸5cos⁡(𝜔5𝑡 − 𝜑𝑒5) (4.3) 

𝑒−7 = 𝐸−7cos⁡(𝜔−7𝑡 + 𝜑𝑒−7) (4.4) 

𝑖ℎ′ = 𝐼ℎ′cos⁡(𝜔ℎ′𝑡 + 𝜑𝑖ℎ′) (4.5) 

where e1, ih, e5, e-7, ih
’, E1, Ih, E5, E-7, Ih

’, ω1, ωh, ω5, ω-7, ωh
’, t, φe1, φih, φe5, φe-7, φih

’ 

stand for fundamental frequency back-EMF, injected high frequency current in the first 

plane, forward fifth harmonic back-EMF, backward seventh harmonic back-EMF, 

injected high frequency current in the second plane, magnitude of the fundamental back-

EMF, magnitude of the injected high frequency current in the first plane, magnitude of 

the forward fifth harmonic back-EMF, magnitude of the backward seventh harmonic 

back-EMF, magnitude of the injected high frequency current in the second plane, 

fundamental rotational speed, rotational speed of the injected high frequency current in 

the first plane, forward fifth harmonic rotational speed, backward seventh harmonic 

rotational speed, rotational speed of the injected high frequency current in the second 

plane, time, phase angle of the fundamental back-EMF, phase angle of the injected high 

frequency current in the first plane, phase angle of the forward fifth harmonic back-

EMF, phase angle of the backward seventh harmonic back-EMF and the phase angle of 

the injected high frequency current in the second plane, respectively. 

𝑇1 = 𝑒1𝑖1 = 𝐸1𝐼1cos⁡(𝜑𝑒1 − 𝜑𝑖1)                                 (4.6) 
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where T1, i1, I1, φi1 stand for fundamental torque, fundamental current in the first plane, 

magnitude of the fundamental current and the phase angle of the fundamental current, 

respectively.  

The fundamental back-EMF is assumed as the reference for angle measurement 

and fundamental current being in phase with it for simplification. A high frequency 

torque is also developed in the first plane due to the interaction of the fundamental and 

high frequency components as described by (4.7). 

𝑇ℎ1 = 𝑒1𝑖ℎ = 𝐸1𝐼ℎcos⁡((𝜔1 − 𝜔ℎ)𝑡 + 𝜑𝑒1 − 𝜑𝑖ℎ)                      (4.7)

where Th1 stands for the high frequency torque in the first plane. 

On the other hand, the injected high frequency current in the second plane also interacts 

with the +5th and -7th harmonics as the dominant harmonics in this system which creates 

another high frequency component of the torque in the second plane: 

𝑇ℎ2 = 𝑒5𝑖ℎ′ + 𝑒7𝑖ℎ′ = 𝐸5𝐼ℎ′ cos((𝜔5 − 𝜔ℎ′)𝑡 + 𝜑𝑒5 − 𝜑𝑖ℎ′) + 𝐸7𝐼ℎ′ cos((𝜔−7 −

𝜔ℎ′)𝑡 + 𝜑𝑒−7 − 𝜑𝑖ℎ′)                                             (4.8)

Now, ih
’ as a degree of freedom should be injected such that extra torque ripples cancel 

each other. For example, if: 

−7𝜔1 − 𝜔ℎ′ = 𝜔1 − 𝜔ℎ => 𝜔ℎ′ = −8𝜔1 + 𝜔ℎ                     (4.9)

the required frequency of the injected signal in the second plane is obtained by (4.9). 

However, the first torque ripple term in (4.8) will create a new ripple as described below: 

5𝜔1 − 𝜔ℎ′ = 13𝜔1 − 𝜔ℎ                                       (4.10)

So another high frequency component should be injected to remove the created ripple in 

the second plane by (4.10). 
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The amplitude and phase angle values of the injected high frequency signals are also 

calculated accordingly as: 

𝐸1𝐼ℎ = 𝐸7𝐼ℎ′ => 𝐼ℎ′ =
𝐸1𝐼ℎ

𝐸7
(4.11) 

𝜑𝑒1 − 𝜑𝑖ℎ = 𝜑𝑒−7 − 𝜑𝑖ℎ′ + 𝜋 => 𝜑𝑖ℎ′ = 𝜑𝑒−7 − 𝜑𝑒1 + 𝜑𝑖ℎ + 𝜋          (4.12) 

Obviously, accurate control schemes for the injected high frequency signals are required 

to properly adjust their amplitude and phase angles at the desired values. 
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