682 research outputs found

    Start-up vibration analysis for novelty detection on industrial gas turbines

    Get PDF
    This paper focuses on industrial application of start-up vibration signature analysis for novelty detection with experimental trials on industrial gas turbines (IGTs). Firstly, a representative vibration signature is extracted from healthy start-up vibration measurements through the use of an adaptive neuro-fuzzy inference system (ANFIS). Then, the first critical speed and the vibration level at the critical speed are located from the signature. Finally, two (s- and v-) health indices are introduced to detect and identify different novel/fault conditions from the IGT start-ups, in addition to traditional similarity measures, such as Euclidean distance and cross-correlation measures. Through a case study on IGTs, it is shown that the presented approach provides a convenient and efficient tool for IGT condition monitoring using start-up field data

    Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review

    Get PDF
    Condition monitoring and early fault diagnosis for wind turbines have become essential industry practice as they help improve wind farm reliability, overall performance and productivity. If not detected and rectified at early stages, some faults can be catastrophic with significant loss or revenue along with interruption to the business relying mainly on wind energy. The failure of Wind turbine results in system downtime and repairing or replacement expenses that significantly reduce the annual income. Such failures call for more systematized operation and maintenance schemes to ensure the reliability of wind energy conversion systems. Condition monitoring and fault diagnosis systems of wind turbine play an important role in reducing maintenance and operational costs and increase system reliability. This paper is aimed at providing the reader with the overall feature for wind turbine condition monitoring and fault diagnosis which includes various potential fault types and locations along with the signals to be analyzed with different signal processing methods

    An SVM-based solution for fault detection in wind turbines

    Get PDF
    Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets.Projects, CENIT-2008-1028, TIN2011-24046, IPT-2011-1265-020000 and DPI2009-06124-E/DPI of the Spanish Ministry of Economy and Competitivenes

    Frequency regulation in wind integrated power system

    Full text link
    This Thesis has broader implications in terms of improvement in wind generation modeling which is a current requirement for prospective operational planning tools for future grid. This thesis mainly deals with various modelling issues encountered in wind integrated power system for frequency regulation. Thesis provides development of grid code compatible, frequency responsive type 4 wind turbine generator system and analysis of the wind energy systems frequency regulation capability and their integration impact on interconnected power system.<br /

    Acoustic emission monitoring of propulsion systems : a laboratory study on a small gas turbine

    Get PDF
    The motivation of the work is to investigate a new, non-intrusive condition monitoring system for gas turbines with capabilities for earlier identification of any changes and the possibility of locating the source of the faults. This thesis documents experimental research conducted on a laboratory-scale gas turbine to assess the monitoring capabilities of Acoustic Emission (AE). In particular it focuses on understanding the AE behaviour of gas turbines under various normal and faulty running conditions. A series of tests was performed with the turbine running normally, either idling or with load. Two abnormal running configurations were also instrumented in which the impeller was either prevented from rotation or removed entirely. With the help of demodulated resonance analysis and an ANN it was possible to identify two types of AE; a background broadband source which is associated with gas flow and flow resistance, and a set of spectral frequency peaks which are associated with reverberation in the exhaust and coupling between the alternator and the turbine. A second series of experiments was carried out with an impeller which had been damaged by removal of the tips of some of the blades (two damaged blades and four damaged blades). The results show the potential capability of AE to identify gas turbine blade faults. The AE records showed two obvious indicators of blade faults, the first being that the energy in the AE signals becomes much higher and is distinctly periodic at higher speeds, and the second being the appearance of particular pulse patterns which can be characterized in the demodulated frequency domain

    Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review

    Get PDF
    With the privatization and intense competition that characterize the volatile energy sector, the gas turbine industry currently faces new challenges of increasing operational flexibility, reducing operating costs, improving reliability and availability while mitigating the environmental impact. In this complex, changing sector, the gas turbine community could address a set of these challenges by further development of high fidelity, more accurate and computationally efficient engine health assessment, diagnostic and prognostic systems. Recent studies have shown that engine gas-path performance monitoring still remains the cornerstone for making informed decisions in operation and maintenance of gas turbines. This paper offers a systematic review of recently developed engine performance monitoring, diagnostic and prognostic techniques. The inception of performance monitoring and its evolution over time, techniques used to establish a high-quality dataset using engine model performance adaptation, and effects of computationally intelligent techniques on promoting the implementation of engine fault diagnosis are reviewed. Moreover, recent developments in prognostics techniques designed to enhance the maintenance decision-making scheme and main causes of gas turbine performance deterioration are discussed to facilitate the fault identification module. The article aims to organize, evaluate and identify patterns and trends in the literature as well as recognize research gaps and recommend new research areas in the field of gas turbine performance-based monitoring. The presented insightful concepts provide experts, students or novice researchers and decision-makers working in the area of gas turbine engines with the state of the art for performance-based condition monitoring

    Development of Diagnostic Program for Gas Compressor using Knowledge Based Management Concept

    Get PDF
    Compressor maintenance is vital in oil and gas industry because it is an important equipment that runs continuously. Among all of the deterioration mechanisms, fouling is found to be the most common in oil and gas industry and it is relatively easier to be analyzed. Currently, plant engineers face difficulties in predicting the appropriate time for maintenance and usually they will follow the original equipment manufacturer (OEM) recommendations. Most plant engineers do not have a predictive tool to advise them on compressor maintenance and the necessary steps to be taken. Usually, the engineers will only attend to the equipment when problems or abnormalities arise from it, apart from the planned maintenance. Late decision made on compressor maintenance will sometimes cause problems to operation either due to late arrival of spare parts or staff availability. The objective of this project is to develop a software that will be able to assist engineers in determining the performance deterioration of gas compressor and deciding the optimum time to do maintenance. The maintenance history data is collected and analysed by the software regularly. The correlations between isentropic efficiency, isentropic head, and gas power and the compressor deterioration are studied based on two centrifugal gas compressors from January 2009 to December 2010. Later, a software that is able to produce maintenance advice based on the input parameters given by the user is created. The software is developed using Microsoft Excel 2010 and Microsoft Visual Basic. From the analysis conducted, it is found that due to fouling, isentropic efficiency and isentropic head decrease with time for low pressure compressors. In contrast, the gas power increases with time. Based on these findings, Performance Indicators Monitoring Program (PIMP) is developed

    Advances in Modelling and Control of Wind and Hydrogenerators

    Get PDF
    Rapid deployment of wind and solar energy generation is going to result in a series of new problems with regards to the reliability of our electrical grid in terms of outages, cost, and life-time, forcing us to promptly deal with the challenging restructuring of our energy systems. Increased penetration of fluctuating renewable energy resources is a challenge for the electrical grid. Proposing solutions to deal with this problem also impacts the functionality of large generators. The power electronic generator interactions, multi-domain modelling, and reliable monitoring systems are examples of new challenges in this field. This book presents some new modelling methods and technologies for renewable energy generators including wind, ocean, and hydropower systems

    Advances in Modelling and Control of Wind and Hydrogenerators

    Get PDF
    Rapid deployment of wind and solar energy generation is going to result in a series of new problems with regards to the reliability of our electrical grid in terms of outages, cost, and life-time, forcing us to promptly deal with the challenging restructuring of our energy systems. Increased penetration of fluctuating renewable energy resources is a challenge for the electrical grid. Proposing solutions to deal with this problem also impacts the functionality of large generators. The power electronic generator interactions, multi-domain modelling, and reliable monitoring systems are examples of new challenges in this field. This book presents some new modelling methods and technologies for renewable energy generators including wind, ocean, and hydropower systems
    • …
    corecore