2,353 research outputs found

    A Multiresolution Census Algorithm for Calculating Vortex Statistics in Turbulent Flows

    Full text link
    The fundamental equations that model turbulent flow do not provide much insight into the size and shape of observed turbulent structures. We investigate the efficient and accurate representation of structures in two-dimensional turbulence by applying statistical models directly to the simulated vorticity field. Rather than extract the coherent portion of the image from the background variation, as in the classical signal-plus-noise model, we present a model for individual vortices using the non-decimated discrete wavelet transform. A template image, supplied by the user, provides the features to be extracted from the vorticity field. By transforming the vortex template into the wavelet domain, specific characteristics present in the template, such as size and symmetry, are broken down into components associated with spatial frequencies. Multivariate multiple linear regression is used to fit the vortex template to the vorticity field in the wavelet domain. Since all levels of the template decomposition may be used to model each level in the field decomposition, the resulting model need not be identical to the template. Application to a vortex census algorithm that records quantities of interest (such as size, peak amplitude, circulation, etc.) as the vorticity field evolves is given. The multiresolution census algorithm extracts coherent structures of all shapes and sizes in simulated vorticity fields and is able to reproduce known physical scaling laws when processing a set of voriticity fields that evolve over time

    Fast rotation center identification methods for video sequences

    Get PDF
    Rotational motion can often be seen in video. However, comparatively little research has been done to investigate rotational motions in video, whose analysis could be useful. For example, if we can efficiently identify the rotation center of a spinning object, extraction and tracking of it can be made easier by grouping points moving at the same radial speed. It could also improve compression by synthesizing analyzed spin transitions, and help tracking of rotating objects. In this paper, we introduce a set of rotation center location methods using only the motion field constructed during video encoding, along with a few methods for improving their performances. These methods can be implemented using integer operations only. They are up to 1.81 times faster than the traditional circulation analysis method with little sacrifice in accuracy, and are not affected by asymmetric fields caused by translational motions. © 2005 IEEE.published_or_final_versio

    Electronic Image Stabilization for Mobile Robotic Vision Systems

    Get PDF
    When a camera is affixed on a dynamic mobile robot, image stabilization is the first step towards more complex analysis on the video feed. This thesis presents a novel electronic image stabilization (EIS) algorithm for small inexpensive highly dynamic mobile robotic platforms with onboard camera systems. The algorithm combines optical flow motion parameter estimation with angular rate data provided by a strapdown inertial measurement unit (IMU). A discrete Kalman filter in feedforward configuration is used for optimal fusion of the two data sources. Performance evaluations are conducted by a simulated video truth model (capturing the effects of image translation, rotation, blurring, and moving objects), and live test data. Live data was collected from a camera and IMU affixed to the DAGSI Whegsâ„¢ mobile robotic platform as it navigated through a hallway. Template matching, feature detection, optical flow, and inertial measurement techniques are compared and analyzed to determine the most suitable algorithm for this specific type of image stabilization. Pyramidal Lucas-Kanade optical flow using Shi-Tomasi good features in combination with inertial measurement is the EIS algorithm found to be superior. In the presence of moving objects, fusion of inertial measurement reduces optical flow root-mean-squared (RMS) error in motion parameter estimates by 40%. No previous image stabilization algorithm to date directly fuses optical flow estimation with inertial measurement by way of Kalman filtering

    Contribution to the study of the dynamic behavior of planetary gears in nonstationary regimes in presence of defects

    Get PDF
    ABSTRACT: The present PhD study is focused on analyzing the dynamic behavior of planetary gear transmissions in non-stationary conditions in presence of defects. The strategy of this thesis is based on building a numerical model which is referred to a test bench composed of a test planetary gear set mounted back to back with reaction gear set which allow the power recirculation. First of all, modal analysis techniques were studied to characterize the dynamic behavior of the system. a comparative study between three modal analysis techniques was carried out in order to determine the modal properties in different running condition. Stabilization diagram and Modal assurance criterion were used to estimate the obtained modes. Experimental and numerical modes of each technique were compared and discussed. In addition, the effect of load and meshing stiffness variation on the modal parameters were highlighted. The study of the dynamic behavior of the model corresponding to the test bench was performed initially in stationary conditions where the speed and the torque are constant. Modulation sidebands are highlighted through numerical simulations issued from a three-dimensional model and experimental measurements. Influence of the gravity of carrier on the dynamic response were also investigated taking into account the interaction between meshing gears, the weight of the planet carrier systems. Then, the dynamic behavior under non-stationary excitations such as the variable load, variable speed and run up regimes was investigated. Time frequency analysis was developed to characterize frequency of vibration signals issued from non-stationary operating conditions. Numerical results obtained by the Short Time Fourier Transform are validated through vibration measurements on test bench during operation under these conditions. However, a non linear model of the model taking into account the Hertzian stiffness was developed and studied in non stationary regime presented by the variable load and run up regime. Finally, the dynamic response of the system in presence of two kinds of defect was analyzed and discussed in stationary and non stationary regimes. Order tracking method was used to identify the defects in run up and variable loading condition for the simulated and experimental determined signals

    Dragline gear monitoring under fluctuating conditions

    Get PDF
    The aim of this study is to apply computed order tracking with subsequent rotation domain averaging and statistical analysis to typical mining environments. Computed order tracking is a fault detection method that is unaffected by varying speed conditions often found in industry and has been proven effective in laboratory conditions. However in the controlled environment of a laboratory it is difficult to test the robustness of the order-tracking procedure. The need thus exists to adjust the order tracking procedure so that it will be effective in the mining environment. The procedure needs to be adjusted to function with a two pulse per revolution speed input. The drag gear aboard a dragline rotates in two directions. This gives the unique opportunity to observe the performance of the order tracking method in a bi-directional rotating environment allowing relationships between the results of each operating direction to be investigated. A monitoring station was set up aboard a dragline and data was captured twice daily for a period spanning one year. The data captured consisted of accelerometer and proximity sensor data. The key on the shaft triggers the proximity sensors allowing speed and direction to be measured. The rudimentary measured speed is interpolated using various documented speed interpolation techniques and by a newly developed speed interpolation technique. The interpolated speed is then used to complete the order tracking procedure that re-samples the vibration data with reference to the speed. The results indicate that computed order tracking can be successfully implemented in typical mining environments. Furthermore there is a distinct relationship between vibration data taken in both rotational directions: one direction provides a better indication of incipient failure. It is thus important not to choose a direction randomly when monitoring rotating machinery of this kind.Dissertation (MEng)--University of Pretoria, 2008.Mechanical and Aeronautical Engineeringunrestricte
    • …
    corecore