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Abstract

The present PhD study is focused on analyzing the dynamic behavior of planetary gear
transmissions in non-stationary conditions in presence of defects. The strategy of this thesis is
based on building a numerical model which is referred to a test bench composed of a test
planetary gear set mounted back to back with reaction gear set which allow the power
recirculation.

First of all, modal analysis techniques were studied to characterize the dynamic behavior of
the system. a comparative study between three modal analysis techniques was carried out in
order to determine the modal properties in different running condition. Stabilization diagram
and Modal assurance criterion were used to estimate the obtained modes. Experimental and
numerical modes of each technique were compared and discussed. In addition, the effect of
load and meshing stiffness variation on the modal parameters were highlighted.

The study of the dynamic behavior of the model corresponding to the test bench was
performed initially in stationary conditions where the speed and the torque are constant.
Modulation sidebands are highlighted through numerical simulations issued from a three-
dimensional model and experimental measurements. Influence of the gravity of carrier on the
dynamic response were also investigated taking into account the interaction between meshing
gears, the weight of the planet carrier systems. Then, the dynamic behavior under non-
stationary excitations such as the variable load, variable speed and run up regimes was
investigated. Time frequency analysis was developed to characterize frequency of vibration
signals issued from non-stationary operating conditions. Numerical results obtained by the
Short Time Fourier Transform are validated through vibration measurements on test bench
during operation under these conditions. However, a non linear model of the model taking
into account the Hertzian stiffness was developed and studied in non stationary regime
presented by the variable load and run up regime.

Finally, the dynamic response of the system in presence of two kinds of defect was analyzed
and discussed in stationary and non stationary regimes. Order tracking method was used to
identify the defects in run up and variable loading condition for the simulated and

experimental determined signals.

Abstract i






Contribution to the study of the dynamic behaviour of planetary gears in non-stationary regimes in presence of defects Ayoub MBAREK

RESUMEN

La presente tesis aborda el analisis del comportamiento dindmico de transmisiones planetarias
en condiciones no estacionarias considerando la presencia de defectos. La estrategia adoptada
se basa en un doble planteamiento que combina un modelo numérico y su contraste
experimental. En relacion con el enfoque numérico, se ha desarrollado un modelo de un banco
de ensayos de transmisiones planetarias dispuesto en una configuracién de recirculacion de
potencia mecanica. Este mismo banco se ha utilizado para llevar a cabo la campafia
experimental.

En una primera fase, se han estudiado diversas técnicas de analisis modal experimental con el
fin de caracterizar el comportamiento dindmico del sistema. Se realiz6 un estudio comparativo
entre tres técnicas de andlisis modal experimental con el proposito de establecer los
parametros modales del banco de ensayos en distintas condiciones de funcionamiento. Se
utilizaron los diagramas de estabilizacion y el criterio de aseguramiento modal para la
estimacion de los modos y frecuencia de vibracion. Los modos experimentales y numéricos
obtenidos empleando cada una de las técnicas han sido evaluados de forma comparativa.
Ademas, se ha resaltado el impacto que tiene la magnitud de la carga a transmitir y sus
consecuencias en la rigidez de engrane sobre los parametros modales.

El estudio del comportamiento dinamico del modelo correspondiente al banco de ensayos se
realizo inicialmente en condiciones estacionarias donde la velocidad y el par son constantes.
Se han destacado las bandas laterales de modulacion mediante simulaciones numéricas
obtenidas a partir de un modelo tridimensional y su contraste con los registros experimentales.
La influencia de la gravedad del porta-satélites en la respuesta dindmica también se ha
investigado teniendo en cuenta la interaccion entre la rigidez de engrane y el peso del porta-
satélites. Posteriormente, se analizd el comportamiento dinamico bajo excitaciones no
estacionarias como carga variable, velocidad variable y maniobras de arranque y parada. El
andlisis tiempo-frecuencia ha sido utilizado para caracterizar el contenido de frecuencia de las
sefiales de vibracion emitidas desde condiciones de operacion no estacionarias. Los resultados
numéricos obtenidos por la Transformada de Fourier de corto plazo (STFT) se validan

mediante mediciones de vibracién en el banco de ensayos operando en estas condiciones.

Resumen iii
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Ademas, se desarrollo y estudio un modelo no lineal de la transmision planetaria que tiene en
cuenta la rigidez hertziana en regimenes no estacionarios.

Finalmente, la respuesta dindmica del sistema en presencia de dos tipos de defectos fue
analizada tanto en régimen estacionario como no estacionario. Para ello, se han utilizado
técnicas de seguimiento de drdenes con el fin de identificar la presencia de defectos en
maniobras de arranque / parada y con condiciones de carga variables tanto sobre las sefiales
experimentales como simuladas.

Resumen iv
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General introduction

Gear reducers are powerful tools for power transmission in various mechanisms including
rotating components. Planetary gears, one of the most common types of gearboxes, have the
particular feature of transmitting high torque with reduced bulk, lower bearing loads and a
relatively low level of vibration and noise. They are used in several fields such as in cars gear
transmissions, aircraft engines and wind turbines.

Planetary gears are subjected to various excitations producing vibrations and noise. These
excitations can be internal, specific to the actual running of the system, or external, associated
with fluctuations in engine torque, load torque and in speed.

Most studies of the dynamic behaviour of planetary gears consider the stationary regime
where external forces and velocity are constant over time. In the presence of failures, the
vibration diagnosis and related techniques should help to identify the presence of these defects

and should not be sensitive to other sources of vibration.
Research objectives

The main objective of this thesis is the study of the dynamic behaviour of planetary gears in
the non-stationary regime in the presence of defects. This study will provide a better
understanding of their dynamics, especially for vibration analysis during conditional
maintenance operations of machines operating in non-stationary regimes.

A model based approach combined with experimental investigation will be adopted to reach
this objective. Modal characterization of the transmission will be first achieved. Then, the
influence of internal and external excitations on the vibration response of the system will be
done. In addition, the behaviour in presence of both non stationary conditions and combined
defects will be investigated using advanced signal processing techniques. Correlations
between numerical results issued from the developed model and the experimental results will

be done for all the developments in this thesis.
Outline of the thesis

The outline of the chapters is given below:
The first chapter in this work is dedicated on a deep bibliographic study on the dynamic

behaviour of planetary gear transmissions including the description of the technological
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function and the modelling methods. The different techniques to characterize the non
stationary conditions and the most frequent defect diagnostics methods are enumerated.
Finally, the tools used to detect defects under non stationary regimes are cited.

In the second chapter, the back to back planetary gear test bench and all the equipment used
for the measurement and data acquisition of vibration signals such as software and hardware
are presented. Also, a numerical model referred to this bench is developed and the equations
of motion are derived.

To understand and characterize the dynamic behaviour of the planetary gears, we focus in the
third chapter on modal analysis. Three modal analysis techniques which are the experimental
modal analysis (EMA), the operational modal analysis (OMA) and the order based modal
analysis (OBMA) are presented in order to identify modal parameters such as natural
frequencies and damping ratios. These parameters are identified experimentally and compared
to others obtained numerically. In addition, the impact of load on modal parameters is
investigated using OBMA.

In chapter 4, the dynamic behaviour of the two stages planetary gear system is studied in
stationary and non stationary conditions. A three-dimensional model was used to simulate the
dynamic behaviour which is compared to that issued from the bench. Frequency
characterization of the planetary gear and effect of loading variation on frequency content are
studied. In addition, the dynamic behaviour of back-to-back planetary gear is studied in the
cases of variable speed, run up and run down regimes.

A theoretical study of the influence of non-linear Hertzian stiffness on the dynamic behaviour
of the planetary gear system is investigated in the chapter 5. A general formulation for
computing the gear meshing stiffness functions taking into account the Hertzian contact is
developed. Also, a torsional lumped parameters model referred to the real system is
established. The dynamic response of the system is studied in the cases of run up and variable
loading conditions.

In the last chapter, the dynamic behaviour of planetary gearbox system in presence of defects
is highlighted. Two kinds of defects which are spalling and crack defects are studied
numerically and experimentally in stationary and non stationary conditions. The influence of

defects on the vibration response of the system is detailed.

Introduction 2
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1 Introduction

Nowadays, gear transmissions are upon the most popular power transmission systems due to their
ability to transmit torque and speed, their compactness and their reliability.

A planetary gear (PG) system is like the arrangement of the planets in a solar system. A sun-gear
located at the center of the mechanism, is in mesh with several planets orbit around it. The planets
are mounted on a carrier which can either be fixed or rotating.

The PG systems allow the transmission of high torque and be used in different speed
configurations. It consists of four types of moving components:

- The sun (S): it is an external gear used usually as an input component of the gear train and drives
the planets.

- Planets (P): their number varies from 3 to 6. They rotate around their axes and around the sun.

- The carrier (C): includes the axes on which are mounted the planets, it is often the output
component of the planetary gear transmission.

- The ring (R): It is an internal gear. It can also be the housing of the whole transmission (fixed
ring).

In this chapter, a literature review on the dynamic characterization of PG is presented. The different
developed models and the most influencing parameters such as mesh stiffness, mesh damping and
modal parameters are detailed. In a second section, the non-stationary conditions in which the PG
are widely operating like the variable speed, variable load, run up and run-down regimes are
discussed. Different damage cases and defects that can affect these systems are presented and the
main techniques for detection and characterization, of non stationary excitations are detailed. In the
last section, the powerful techniques and methods for defects detection in non stationary conditions

are listed.

2 Models of PG in literature:

To study PG dynamic behaviour, several models has been developed in literature.

The main methodologies used to model gear mechanisms are the lumped parameter models (LPM),
the finite elements models (FEM) and the hybrid models which combine the two latter models.
Several PG dynamics models were proposed over the last 30 years. Most of them were LPM
dedicated to the prediction of vibration characteristics of PG sets. A great majority of them are
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either purely torsional or two-dimensional ones. In a review from 1988, (Ozguven and Houser,
1988) studied mathematical models used in gear dynamics. (August and Kasuba, 1986)
developed a torsional model of a planetary gear set. The obtained results indicate that floated
suns have a limited interest for high-speed cases. In the work of (Parker and Lin, 2004), a good
selection of phase shift between planets has shown to reduce the vibration of the planetary gear.
(Kahraman, 2001) developed different torsional models of gear sets and studied the free vibrations
proprieties under different kinematic configurations resulting in different speed ratios. (Lin and
Parker, 1999) reported a bi-dimensional LPM of PG with equally spaced planets to study its
modal proprieties.

Moreover, in the case of helical gears, few studies were devoted to their dynamic behaviour
modelling and simulation. Usually three-dimensional LPM are used. We can find the model
developed by (Eritenel and Parker, 2009) which is dedicated to the study of modal proprieties.
Furthermore, other models consider nonlinearities such as the one presented by (Ambarisha and
Parker, 2007). They studied the impact of different parameters like the nonlinear jumps and
chaotic motions on dynamic behavior. The obtained results were compared with those obtained
from FEM. Most of the cited models were developed and simulated under stationary operations,
while other works considered the non-stationary conditions (Hammami et al., 2015; Bartelmus,
2010, Chaari et al., 2013).The gyroscopic effect was considered in modelling (Cooley et al. 2012,
Meirovitch, 1974) as well as the carrier gravity. Many works have been established to study the
effect of gravity of carrier, (Hammami et al, 2015); (Guo et al., 2012). (Guo and Parker, 2010)
showed that gravity will disorder the planets symmetry and can cause tooth wedging under
certain conditions. (Qiu and Chu, 2015) developed a lumped parameter model of the spur
planetary gear that correlates the effect of gravity; tooth separation, backside contact and bedplate
tilt.

2.1 Lumped-parameters models (LPM):

The lumped parameter models are very efficient to describe and characterize the dynamic behavior
of the components and systems under certain assumptions. In the case of planetary gear system, the
gear components are modeled with mass and inertia whereas the contacts between these
components are modeled by rigid spring with high stiffness and damping values. Dynamic
modeling of the PG was initiated by (Cunliffe, 1974) who used LPM that allowed studying the
vibration response for a PG with fixed carrier.
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Figure 1.1 shows a LPM of a PG set (Liang et al. 2015). Each element is considered as rigid body
having three degrees of freedom: one rotation and two translations. The meshing stiffness function

and the bearing were modeled using spring-damper system, respectively.

Y
|
Krx
(® ; m
Planet gear | Cm

== Crpl‘rl

Figure 1. 1. Dynamics modeling of a planetary gear set (X. Liang et al 2015)

2.2  Finite elements models:

The FEM were basically built to overcome lack of accuracy in LPM.

Several parameters like gear tooth deflections, mesh stiffness and stresses were considered so that
the complex shape of PG dynamics is better described.

(Guo and Parker, 2012) used FEM of rolling element bearings in order to study the contact
behavior between the race and rolling elements. They compared the obtained results to others
obtained experimentally (Royston and Basdogan 1998).

(Lin et al., 2016) proposed the FEM to deal with dynamic contact and impact problems of gears.
This method is efficient in computation for gear drives in the small contact region involved in teeth

meshing.
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Figure 1. 2. Model of the helical gear : (a) Solid model and (b) finite element mesh (Lin et al.,
2016).

2.3 Hybrid models:

A hybrid model is a combination of the two previous models, the contact between teeth is modeled
by FEM and the rest of gear body is modeled using LPM. This model shows efficiency when
studying planetary and epicyclic trains (Abousleiman and Velex, 2006). Authors claim that
ring-gear flexibility modifies static load distributions and critical tooth speeds on internal meshes.
The main advantages of these models is their closeness to real object systems, however they need
high CPU time.

The presented models are charcterized by several influencing function. Mesh stiffness and
damping are examples of those functions that will be detailled in the next sections.

3 Mesh stiffness:

Mesh stiffness is one of the main source of excitation in gear systems, this excitation is always
present even when the gears are perfectly manufactured and mounted. It depends on many
parameters such as the number of teeth in contact, gear face width, the contact ratio, profile
modifications, and applied torque.

Computation of stiffness is based generally on the calculation of the tooth deflection as
mentioned by (Timoshenko and Baud 1924) and Weber (Weber, 1949). For a given loading
position, the equivalent stiffness Ky, is the sum of the flexural-shear stiffness K¢ and the body of
the gear K,.
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1 1
In the case of a pinion (1) and a wheel (2) in mesh, the equivalent meshing stiffness Kj; is
obtained by summing the stiffness K; of the pinion, the stiffness of the wheel K, and the contact

stiffness (Ky) as  following :

Ky, =1/[i+i+ij (1.2)

K, K, K
The mesh stiffness calculation depend; of t2he to:)th engagement. Velex (Velex, 1988) has shown
that it is possible to represent the meshing stiffness as a slot function for the spur gears, the
maximum value is observed when two pairs of teeth are engaged (maximum contact length) , the
minimum value is for a single pair of teeth in contact (minimum contact length). (Lin and Parker,
2002), (Lin and Parker, 2000a), (Maatar, 1995) approximated this variation using a square wave
function (Figure 1.3).

kn(‘:‘ 'y

ECJz'llTu- T CiaTr

Figure 1. 3. Evolution of the mesh stiffness k()

C12 IS the contact ratio of the transmission. T, is the meshing period. Kmaxi2, Kminiz and ki
represent respectively the values of the maximum, the minimum and the average values of the
mesh stiffness.

The Fourier series expansion of K, (t) yields to:

Ak~ 1], 2imt ,
ki,(t) = ki, + ?Z n [sm ((217T(C12 - 1))cos (T—) + (1 — cos((2int(c;,
i=1 m

~1)sin (0] )

Where :

ki, =k (€c12-1) + (2 — c12)km;
12 max12\*~12-1 ( 12) minl2 (14)
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Ak = kmax12 — Kmin12 (1.5)
The mesh stiffness function is a time varying function, it depend on the number of tooth in contact.
The contact periodically changes from one to two.

In Henriot (Henriot, 1985) works, a formula for ki, in case of spur teeth is presented. It is

expressed in N / um / m where:

ki =b/(Ay + Az/Zy + A3/ Z) (1.6)
With A; = 0.04723, A, = 0.15551, A; = 0.25791 and b is the width of tooth.
(Chaari et al., 2009) developed an analytical approach (eq 1.7) to model the meshing functions; the
obtained results were compared to those obtained by FEM.

K, =1/ L, 1 (1.7)
Kbl Kfl Kb2 Kf2 Kh
Kb1,Kpz2,Ks1 and Ky, denotes respectively the bending stiffness and the fillet-foundation stiffness of

pinion and wheel teeth. Kj, is the stiffness of Hertzian contact.

Figure 1.5 displays the gear mesh stiffness computed analytically. During (c-1) Te, the gear mesh
stiffness reaches a maximum value but it's minimal during (2-c) Te. “c” and “Te” are respectively

the contact ratio and the period of gear meshing.

Gearmesh stiffness (fim)

25

'
20 0.5 1

1.5
Time (s) -3

Figure 1. 4. Gear mesh stiffness for the healthy case (Chaari et al,. 2009)

(Fernandez et al., 2013) used an analytical approach considering the tooth deflection, bending
defection and the Hertzian stiffness which is decomposed into local non linear deflection and
global linear deflection.

Chapter 1: Literature review 10



Contribution to the study of the dynamic behaviour of planetary gears in non-stationary regimes in presence of defects Ayoub MBAREK

4 Mesh Damping:

For a gear set in a complex mechanical system, the sources of energy dissipation are various. As
example, we can cite the mesh damping which has an important effect for resonance vibration.
Since the contact between teeth is lubricated, damping is considered viscous. (Li and Kahraman,
2011) showed that the damping is not constant for certain operating conditions and can be
considered as a periodic function varying in time with a fundamental frequency equal to the
frequency of gear meshing. Also, the damping average increase with the increased torque while it
decreases to increasing of the rotation speed and lubricant temperature. In author’s analysis of the
gear dynamic models; they noticed that the damping value reduces with the increasing of speed,
due to the increased film thicknesses. The evolution of damping ratio along the line of action

under the same contact conditions are given in Figure 1.6.

107"

=+= 500 rpm
] i) === 1000 rpm

-
o
]

107

Mesh Cycle

Figure 1. 5. Variation of the viscous damping ratio  as a function of mesh position (Li and
Kahraman, 2011)

Most other authors introduce an equivalent viscous modal damping, (Al-shyyab and Kahraman,
2007), (Viadero et al., 2014). For models with one or more degrees of freedom, the modal damping
coefficient can be written by:

c;i = 2mw;{; (1.8)
Another approach was developed by Rayleigh (1877) in which damping is proportional to both

mass and stiffness matrices:
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C=aM + pK (1.9)
Where o and B are two constants (Dhatt and Touzot, 1981).

5 Modal parameters:

Planetary gears have distinct vibration mode structure because of their cyclic symmetry.
Typically, modal parameters are the natural frequencies, the modal damping and the mode
shapes. These parameters were first computed for LPM.(Li and Parker, 1999a; Cunliffe et al.,
1974; Botman, 1976), and later validated with FEM (Ambarisha and Parker, 2007) and
experiments (Ericson and Parker, 2013). (Cunliffe et al., 1974) determined the vibration modes of
a 13 DOF planetary gear model. They grouped modes into low frequency “bearing modes” and
high frequency “tooth modes,” but did not identify the vibration structure. (Botman, 1976)
determined the vibration of a 3N+9 DOF planetary gear model (N is; the number of planets).
When analyzing a gear system with three-planets, he classified the vibration modes and grouped
them into two classes named “axisymmetric” and “non axisymmetric” according to the planets’
motion. (Kahraman 1994) found a third mode type when analyzing a planetary gear system with
four-planets that wasn’t observed by (Botman, 1976). It was called a “counter-phased mode”.
Furthermore, (Wu and Parker, 2010) investigated the modal proprieties of PG with equal planet
spacing taking into account the elastic deformation of the ring as well the influence of the
unequal planet spacing. (Eritenel and Parker, 2009) investigated the modal properties of
three-dimensional helical PG model and they studied also the influence of torque on modal
parameter. The obtained results were correlated with others obtained by experiments and FEM.
(Bu and Wu, 2012) developed a generalized dynamic model for herringbone PG train in order to
investigate its modal properties. Vibration modes of compound PG were studied by (Kiracofe and
Parker, 2007) and (Guo and Parker, 2010). (Cooley and Parker, 2012) studied the vibration
properties of high-speed planetary gears and they took into account the gyroscopic effects.

What stand out in those worksis that the identification of modal parameters vary from one system
to another depending on the number degree of freedom. Modal parameters are very important
to comprehend and characterize the system. However, gear system are widely operating in
non-stationary conditions, so that the identification of modal parameters under these regime could
be an interesting research area. Aalso, the influence of these regime on parameter is worth to be
investigated.
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As mentioned in the previous section, modal parameters are very important in order to define and
figure out the complex system.

The most recent trend is achieve modal identifications using the responses of structures in normal
operation, when these are excited by unmeasured broadband distributed forces (turbulence,
traffic, ...),. Such an approach is particularly useful when dealing with large structures, especially
in civil engineering (bridges, buildings), where the excitation is diffucult. In this regard, recent
works by Gentile & Saisi (2007), Zhang et al (2010) and Magalhdes et al (2011) can be
consulted.

However, for small or medium sized structures, such as those of interest in this report, it is
relatively easy to produce measured broadband excitations (most often by impact using an
instrumented hammer). It is then possible to directly measure vibratory responses normalized to
excitation, in the time domain, in the form of impulse responses, h;;(t) = h(r;, 7, t)or in the
frequency domain in the form of transfer functions H;;(w) = H(r;,7;,t), where r;and 7; are
the coordinates of the points excitation and response, respectively.

The gear are widely exploited in different running conditions. For further insight in the dynamic

behavior of PG, several non-stationary conditions were treated in literature.

6 Non-stationary operating conditions:

Most of rotating machinery are operating under time varying speed/loading conditions. These non
stationary regimes are widely observed in wind turbines, mining machinery, automotive cars and
helicopter transmissions. As examples of the non-stationary condition, we can cite the run up and
the run down,. repetitive run up and run down regimes during operations could be very critical
especially when the system is overloaded. Variable speed and the variable loading conditions
during steady state regime is considered also as a non-stationary giving rise to amplitude and

frequency modulations

6.1 The runup:

The motor torque must always exceed the resistant torque during run-up regime. In case of PG
models, this regime affects the mesh stiffness function. (Hammami et al., 2015) and (Khabou et al.,
2011 ) studied the evolution of mesh stiffness during run-up regime, they noticed that the vibration

increase when the speed and the accelerating torque increase.
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Figure 1.7 illustrates the evolution of meshing stiffness during run up regime.
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Figure 1. 6. Evolution of mesh stiffness sun-planets during run up (Hammami et al, 2015)

The mesh stiffness evolution was studied also by (Viadero et al.

, 2014); they modelled the

meshing stiffness during run-up considering mesh function shapes as a sinusoidal function,

(Figure.1.8).
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Figure 1. 7. Meshing stiffness during the run-up (Viadero et al., 2014)

Furthermore, in the run-up and by using the time-frequency analysis, (Villa et al.,

6.5

2012)

identified the gear mesh frequency and the characteristic natural frequencies of the gear system.

The vibration is increasing in time due to the increasing of speed, (figure 1. 9).
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Figure 1. 8. Time—frequency analysis during the run-up regime. (Villa et al., 2012)
6.2 Run-down:
During the run down regime, the period of meshing increases as the speed decrease. The vibration
reaches a maximum value and it is over closely to zero. This regime was studied by many authors,
such as (Hammami et al., 2015) by investigating the behavior of back to back PG. The obtained

exprimental results were correlated to others obtained numerically. Figure 1.10 displays the
evolution of the acceleration during the run-down regime.

-]
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Figure 1. 9. Acceleration measured during run down (Hammami et al., 2015)

6.3 Variable loading regime:

Many researchers have noticed that several machines incorporating PG transmissions like mining
machines and wind turbines are subjected to variable loading conditions. The load influences on
the mesh stiffness function. When the load increases the contact between teeth increase so the
mean mesh stiffness increase(Fernandez et al .2013).

(Chaari et al., 2013) developed a single stage planetary gear model under variable loading

conditions applied on carrier giving rise to variability in speed and mesh stiffness function
(Figure 1.11).
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Figure 1. 10. Load applied to the carrier (Chaari et al, 2013)
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The recorded time response signal confirmed the presence of amplitude and frequency modulation
as mentioned in Bartelmus works (Bartelmus 2001; Bartelmus 1992). Figure 1. 11 shows the
acceleration simulated on the sun gear.

3

-

Acceleration/{m-s )

Figure 1. 12. Time response of acceleration in case of variable loading condition (Chaari et al.,
2012)

Different load shapes were studied in literature such as cyclic load (Bartelmus et al, 2010),

harmonic load (Chaari et al., 2012), and also some special load shapes (Hammami et al., 2016).

6.4 Variable speed:
Gear systems are widely subjected to speed fluctuation. . In the case of a wind turbine for

example, the speed is changing very quickly so that the generated power will fluctuate in

consequence, therefore, (Zimroz et al, 2011) investigated its influence on the diagnosis feature.
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Figure 1. 13. Conditions of the wind turbine (Zimroz et al, 2011)
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The non stationary regimes are the main external source of excitation that could be a major

source of development of defect. Gear defects will be treated in the next section.

7 Gear defects:

PG are widely used in various power transmission applications because of their characteristics
like high load capacity, but they can be affected by several defects reducing their performance and
giving rise to undesirable noise and vibration.

Different types of defect like mounting defects, manufacturing defects can appear in these systems.
(Chaari etal., 2011) classified gear defects (Figure 1.14) into geometrical defects and tooth defects.

Gear defects

Geometrical
defects:: G

- Teeth errors

localized
defetcs

" Distributed
: - ~defects

misalignment,
center.
distance, ...

Assembiiﬁy
defects

manufacturing
defects

run out, profile
errors, ...

.(iracks, spaiiirjg

Wéfar, pittings,
i chipping ... AL

" r

Figure 1. 14. Gear defects classification (Chaari et al, 2011)

7.1 Geometrical defects :

7.1.1  Planet position errors :

In PG systems, planet position error is defined as an error in the location of the planet centers.
The error can be decomposed into radial error and tangential position error. The radial error can
slightly modify distances between centers, pressure angles whereas the tangential errors strongly
modify planet load sharing. In the work of (GU and Velex, 2012), the influence of position error
was introduced in mesh stiffness of helical PG as perturbation by adding a radial and tangential
position error on the coordinates of the planets components. Figure 1.15 shows the influence of
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planet position errors on sun-planet mesh function. it is noticeable that the planet position errors
causes an amplification on the tooth load which affect the dynamic behavior.
» 108
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Figure 1. 15. Meshing stiffness evolution in presence tangential position error sp-0 sun/planets
without errors: sp1,2,3,4 with error (GU and Velex, 2012),

7.1.2  Misalignment errors:

For single pinion-gear pair, misalignments are three-dimensional error distributions that can be
separated into deviation and inclination.

(Shuting Li, 2015) studied the misalignments error in pinion-wheel gear system. .

The misalignment error of the gear shafts can be expressed by an inclination angle of the contact

teeth on the plane of action as shown in Figurel.16.
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Figure 1. 16. Contact teeth with misalignment error on the plane of action(Shuting Li, 2015)
7.1.3  Eccentricity:
The eccentricity error expresses the difference between the theoretical and the real rotational axis

(Figure 1.17). The modelling of this defect was done by adding a transmission error modelled as

displacement on the line of action as studied by (Gu and Velex 2013).
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Figure 1. 17. Schematic presentation of the eccentricity on a PG system

This displacement can be introduced in the equation of motion as an exciting force F(t), which

represents an amplitude modulation of the gear mesh stiffness by the eccentricity error.

Rotational Center

Theorctical
geometrical
center

I
Figure 1. 18. Schematic presentation of the eccentricity on the sun gear (Chaari et al., 2005)

It is expressed as follows (Chaari et al., 2005):
F(t) = esn(t)K (1) (1.10)

e () = &,sin (zzf °tt e, ) (1.12)

N

where Kg(t) is the time varying mesh stiffness function, e; denotes the eccentricity modulus, Zs
is the tooth number of the sun, and &, is the mesh phasing difference between the sun and planets.

This fault usually found in sun or planets. (GU and Velex, 2013) investigated eccentricity errors
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modeled in a LPM of a PG in which deflections, errors and gear geometry are detailed and
summarized in a differential set of equation. In the presence of errors, rigid-body positions and
motions were perturbed giving rise to initial separations between tooth flanks and inertial
excitations.

7.2 Teetherrors:
7.2.1  Tooth profile errors:

Tooth profile error is the summation of the deviations measured perpendicular to the actual
profile between the actual tooth profile and the correct involutes curve which passes through the
pitch point.

These types of defects can be modelled with an exciting force F(t) that represents an amplitude
modulation of the gear mesh stiffness signal by the profile error signal E,(t) (Chaari et al., 2005).

F(t) = Eqn(H)K.(t) (1.12)
esn(t) = Egnsinufomt + &5, ) (1.13)

Frofhile error

'l

-

L |

"_""‘--. Theoretical
= tooth

profile

Feal tooth
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Figure 1. 19. Schematic diagram of a profile error (Chaari et al., 2005)
Figure 1.20 shows the influence of profile errors on the carrier bearing. With the increasing of
profile error,the amplitude of mesh fregency (f¢) increase due to the modulation effect issued
from profile error .

Chapter 1: Literature review 21



Contribution to the study of the dynamic behaviour of planetary gears in non-stationary regimes in presence of defects Ayoub MBAREK

5 x10
12210 I fe
fe
1 1r
¥ b
0.8
;‘éu.a E
Los B 0.6/
2 =
g =
£0.4 E 045
< 2fe <
0.2 0.2 2fe 3fe
3fe 4fe l ]
0 : ) S W 0 ’
0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 1000 2000 3000 4000
(a) frequency ( Hz ) (b) frequency (Hz )
x10"
fe
8
o)
£6
o
o
24
k-
£
<5l
2e 3fe
0 A A
1000 2000 3000 4000 5000
(c) Frequency ( Hz)

Figure 1. 19. Influence of a profile error on the dynamic component of the carrier (a) Healthy case.
(b) 20 um of error . (c) 200 um of error, (Chaari et al., 2005)

7.2.2  Pittings:

Pittings are deep holes, which affect all the teeth, particularly in the area of the pitch circle. This
damage mostly occurs on relatively hard structural steel gears, and therefore more fragile,
sensitive to the cumulative effects of overstressing.

(Liang et al, 2016) proposed an analytical method to compute the gear mesh stiffness in presence
of pitting defect considering the severity of pitting (figure 1.20). The pitting are considered in

circular shape.

Slight pitting Moderate pitting Severe pitting
Figure 1. 20. Photo of pitting (Liang et al, 2016)
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723 Crack:

The crack defect is a consequence of stress at the tooth foot that exceeds the fatigue limit of the
material and it is generally located on the flank of the tooth stressed in tension. In modeling,
cracks affects mainly the mesh stiffness function. (Chaari et al., 2009) used an analytical different
method to model mesh stiffness in presence of crack affecting teeth. As shown in Figure.1.22, the
effect of crack on mesh stiffness appears through the reduction of mesh stiffness. The mesh

stiffness decreases when the length of tooth cracks increase.
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Figure 1. 21. Evolution of mesh stiffness in presence of a crack analytical vs. FE(Chaari et al.,
2009)

7.2.4  Tooth breakage:

Tooth breakage faults in gear transmissions can be modeled by a stiffness reduction.

When the breakage size increased, a variation on the dynamic response appears.

(Chaari et al. 2009) reported the influence of tooth breakage on gear mesh stiffness; The effect of
breakage defects on mesh stiffness and dynamic response of a one stage gear system was

highlighted. Figure 1. 1 shows the evolution of gear mesh stiffness in presence of different size of
teeth breakage.
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Figure 1. 22. Gear mesh stiffness evolution with different breakage width. (Chaari et al. 2009)

Detection of defects in stationary and non-stationary regimes requires usually special tools.
Vibration analysis and signal processing is mainly used to analyze the dynamic behavior of gear
transmissions, wether in healthy or damaged cases. The most important signal processing

techniques will be enumerated in the next section.

8 vibration signals processing:

Vibration signals can be classified based on their statistical properties. (Randall, 2011) reported
that signals can be divided into “stationary signal” characterized by their invariant statistical
properties and “non-stationary signal’” characterized by their variant statistical properties that vary

in time. Figure 1.24 shows this classification.

e ——
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Figure 1. 23. Classification of signals (Randall, 2011)

8.1 Statical analysis of the signals:

The statistical analysis uses the first statistical moments of the probability density of the vibration
signal. The signal amplitude distribution can be expressed as a probability density function.
Computing the first-moment statistics probability density function of signal amplitudes allows
characterizing the overall shape of a signal without a trace. it defines the average value‘s’ , it is
expressed by:

o0

m; =§= fs.p(s)ds (1.14)

Moment of order 2, which corresponds to the variance, identifies the dispersion of random

variables around the mean value and is expressed by:

m, =o0? = f(s — 5)%p(s)ds (1.15)

Moment of order 3represents the distribution amplitude of the signal with respect to a maximum.

The measure of this dissymmetry is given by:

1 o0
ms=—3= f(s —5)3p(s)ds (1.16)

Moment of order 4, called also kurtosis represents the flattening rates distribution; it gives an

assessment about the peak of curve summit importance.
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my = % = f(s —*p(s)ds (1.17)

8.2 Time domain descriptions:
8.2.1  The root mean square:

The Root Mean Square (RMS) of a time signal is an important features since it is directly related
to its energy. The RMS measure the power content of the vibration signature, Bigret et al, 1995.).

It can be expressed as follow:

RMS = /HS 2(t) ot (1.18)

S (t) is a time signal observed over period T:

8.2.2  The crest factor:
It is a derivative indicator of the effective value, generally used for detection of specific pulse or
shock present in the vibration signal and it is defined by:
= Ac
Acx (1.19)

With: Ac maximum value of the signal and Ae :RMS signal.

8.2.3  Kurtosis:

The Kurtosis represents the flattening rates of the distribution of a signal; it gives an evaluation of
the importance of the peak of the curve.

Kurtosis is a measure of peaks, and it is a good indicator of signal impulsiveness in the context of
fault detection for rotating components, it is expressed as:

1 e 0]
kurtosis (s) = pri f(S — 8)*p(s)ds (1.20)

Kurtosis(x) =M—3 (1.21)
(o

Where p and o denotes the mean and standard deviation of a time series x and E is the expectation
operation.

The*minus3”at the end of this formula is to make the kurtosis of the normal distribution equal to
zero. The Spectral kurtosis (SK) is a tool able to detect non-Gaussian components in a signal and it
can determine the frequency of the excited component, Dwyer, R. (1983).
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This is a quantity without dimension, it is often compared to the value of the kurtosis of a Gaussian
signal which is 3 in theory. This parameter allows detection of pulses or shocks in the vibration
signal.

8.3 Time Synchronous Averaging (TSA):

The (TSA) is an efficient tool for detection of gear defects. It is based on collecting a vibration
time signal of the considered gear and then averaging the signal over a number of revolutions.
The resulting signal represents the meshing of teeth over one cycle in which the faulty tooth can
be identified. TSA can be expressed as (Miller, 1999):

N-1
Y o=y 2 V(LT (1.22)
i=0

where:

y (t): is the measured and resampled time signal,
N: is the number of gear revolutions in the signal,
L: is number of samples in one revolution

Ts: is the resambled period.

8.4 Frequency domain descriptors:
Spectral analysis is an efficient tool for the treatment of mechanical vibration signals.. The
spectral analysis is characterized by its ability to dissociate and identify vibration sources as a

function of the kinematic characteristics of the various components and their speed of rotation.

8.4.1  Fourier transforms:
The Fourier transform allows the decomposition of a time signal into its component frequencies.

The Fourier transform of a time signal x (t) is given by:

0

f _ —27ziftd
X (f) Lx(t)e t 129)

If this signal has a finite energy, its discrete Fourier transform can be defined by:

0

X f _ k —2 rkf
() k:z_wx( e (1.24)

The Fourier transform represents a basic tool for spectral analysis. It is applied in case of the
continuous deterministic time signals. Then, the theory was extended to random processes

sampled stationary. Finally, fast algorithms calculating the Fourier transform were developed
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making it an interesting method used in several applications.
8.4.2  Capon Method:

The Capon method is developed to estimate the power spectral density of a signal for each
frequency. To apply this method, x (n) a signal is filtered to obtain a signal y (n):

y(n) = —Zp: a, . x(n—k) (1.25)

The ax coefficients must satisfy the following restriction:

P .
Ya e =1 (1.26)
k=0

This method of spectral estimation approximates the spectral density at a defined frequency by
the power output of a filter which contains its contribution to this frequency. However, this
output also contains a residual error due to the contribution of other frequencies. This error is

lower when the filter order is high.

8.5 Cepstrum analysis:
The cepstrum is a non-linear operator analyzing vibration signals. It is used in the detection of
noise as well as in monitoring vibration of rotating machines. The mathematical definition of the

Cepstral analysis is (Randall, 2013):

s=TF "[tn[s)]

Where S is the signal's Fourier transform.

(1.27)

Figure.1.25 shows the passage from spectrum to cepstrum.

e ——
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Figure 1. 24. Spectrum and cepstrum (Randall, 1977)

8.6 Joint Time-frequency representations: Wigner-Ville transform

Time-frequency analysis includes techniques that investigate signals in both time and frequency
domains using different time-frequency representations.

This technique allows 2D analysis of a signal through one of a plurality now transformations such
as the Wigner-Ville transform (TWV).

The (WVT) is a non-linear transformation that combines 1D-2D data with a dimension for
frequencies and a second dimension for the time. This method provides time-frequency
decomposition with no restrictions on the time and frequency resolutions. It is suitable for the
analysis of non- stationary signals since it does not require assumptions about the original signal.
Given a function f (u), the Wigner-Ville transform is defined by:

W (t, W) =% T?(t—%jf(u%jeiwudu (1.28)

00

This transformation can be interpreted as the power spectral density of the instantaneous signal.
Figure 1.26 shows the transformed Wigner Ville smoothed signal vibration recorded on more
than 3 revolutions of the gearbox pinion. The impacts of defects are clearly identifiable. The

presence of energy outside the meshing fundamental frequency shows the existence of a defect
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(around 1350 Hz here).

Frequency [kHz)

5 10 15 20 n
Time [ms]

Figure 1. 25. Wigner Ville transforms (Elbadaoui 1999)

The above presented techniques are limited to stationary regimes cases. They are not able to track
eventual change of frequency content of signals. For this reason, faults detection techniques in non

stationary regimes are required.

9 Gears fault detection techniques in non-stationary operation:

9.1 Short-Time Fourier Transform (STFT):

The Short Time Fourier Transform (STFT) is applied to windows Short data represented in the
time domain, (Shin et al. 1993). It is a development that extends the standard Fourier transform
technique to manage non-stationary data. The Short-Time Fourier Transform (STFT) of a

function f (u) is given by:
Fw,t)= [gu-t)f(u)e ™ du (1.29)

With g is the complex conjugate of the function g (u) and t is the time parameter.

9.2 Wavelet decomposition:

A vibration signal has usually a broad spectrum.

The wavelet analysis decomposes a signal into smooth oscillating functions called wavelets. It
offer a good localization in both time and frequency domain. Typically, the wavelet transform is

based on a family of wavelets created by dilatation s and translation u of a mother wavelet vy (t).
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The wavelet transform is used to divide a time function in wavelets. There are two types of
wavelet transforms continuous (CWT) and discrete (DWT). The continuous wavelet transforms
(CWT) considers factors dilation and translation and is given by equation (1.30). Unlike Fourier
transform, continuous wavelet transform could construct a time-frequency representation of a
signal by providing the easy location in time and frequency, (Flandrin, 1993).

CWT (a,b) :ﬁ J 10w (D (130

—00

Where a stands for the expansion factor or the index of scale and b is the data translation factor.
Y (t) denotes a continuous function of time and frequency and y*(t) denotes the conjugate
complex y (t). The CWT coefficients of complex type are defined with a module and a phase.

In the case of a discrete set of wavelets (DWT), the signal can be divided into two frequency
bands. The low frequency band is known as the level Approximate (A) and the high frequency
band is known as the Detail (D), (Saxena et al., 2005). Figure 1.26 shows the Morlet wavelets in

both the time and frequency domains.
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Figure 1. 26. Complex Morlet wavelet with different bandwidth parameters (Saxena et al.,2005).
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9.3 Empirical mode decomposition (EMD)
EMD consists in decomposing a signal into some intrinsic mode functions IMFs and one residue
(Huang et al., 1998). It is a self-adaptive signal processing method that can be applied to

non-linear and non-stationary process perfectly. This technique is very efficient to diagnose gear

Chapter 1: Literature review 31



Contribution to the study of the dynamic behaviour of planetary gears in non-stationary regimes in presence of defects Ayoub MBAREK

defects.
After an iterative computation of an original signals x(t), the original signals are decomposed as
follows:

X(t) =) G(t)+1,(t) (1.31)
i=1

Where c¢4(t), co(t), ..., cn(t) are the 1-nth IMFs and rq(t) is the residue.

The differences among the original vibration signals in various gear running conditions may be
subtle. Moreover, EMD analysis can be used to extract the features which can reflect the
differences of several running conditions. The main purpose of using EMD for signal

decomposition is to find the most exact information about the fault.
9.4 Hilbert transforms:

Hilbert transform is a time-domain convolution that outline one real time-history into another
(Wu et al.2012). It is expressed by:

H[x()] = j itidr (1.32)

Where t is time, x (t) is a time domain S|gnal, and H[x (t)] is the Hilbert transform of x (t). The
non-stationary characteristics of the modulating signal are not affected by this method because
Hilbert transform is a frequency-independent 90° phase shifter. Hilbert transform allow the
extraction of the Amplitude and phase modulation functions, an(t) and by (t), respectively. The
demodulation is concluded by building a complex-valued time-domain signal, A[x (t)], which can

be expressed as below:
A[x(®)]=x(@) +i*H [x(t)] = a(t)e'® (1.33)

The resulting complex time-domain signal can be converted from the real/imaginary format to the
magnitude/phase format given below:

a(t) = /x2 () + H2[x(1)] (1.34)
o(t) = arctan H >[<Z(t()t)] (1.35)

The Hilbert transform produces a complex time series. The envelope is the magnitude of this

complex time series and represents an estimate of the modulation present in the signal because of

Chapter 1: Literature review 32



Contribution to the study of the dynamic behaviour of planetary gears in non-stationary regimes in presence of defects Ayoub MBAREK

sidebands. It allows modulation in signals caused by a faulty gear. In addition, it removes carrier
signals and this will decrease the influence of irrelevant information for the purpose of gearbox
fault detection and be helpful for identification of the fault in the time—frequency plot via visual

inspection.

10 Experimental test benches

To confirm the developed models and the different influencing function in gear systems, several
planetary gearbox test bench were built. Experimental validation should provide this field of
knowledge with valuable and reproducible data about the dynamic behavior of the transmissions.
The data acquisition systems are also very important.

(Boguski 2010) used a PG test machine in order to study its dynamic effects under quasi-static
conditions (Figure 1.27). In this test bench, the motor is connected to a torque meter. A torque
sensor is connected to the sun gear. Two optical encoders are used to control the speed of the sun

and the carrier.

Ball
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Figure 1. 27. Schematic view (a) real view (b) of the PG test rig (Boguski 2010)

Immonen (Immonen et al., 2012) performed a series of experience on the gearbox of a water
turbine composed of two stages of PG trains to detect defects in both stages.

Ligata (Ligata., 2007) studied the load distribution in a epicyclic gear with helical teeth. The
purpose of his work was the determination of charge transmitted by each planet by varying the
number of planets, the transmitted torque and the position defect value at the first satellite. By
using the same bench test (Figure 1.11), Inalpolat (Inalpolat, 2009) presented a theoretical and
experimental investigations on modulating sidebands observed in spectra of acquired vibration

signals.
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Figure 1. 28. View of the "back to back" train test bench (Ligata., 2007)

Practically, the vibrations generated epicyclic gear train are measured by a sensor mounted on the
outer part of the fixed ring. With the rotation of the planet carrier, a periodic variation of the

amplitudes of vibration is observed when the satellites pass close to the location of the fixed sensor.

11 Summary of literature review:

The fundamental purpose of the research in this area found in literature is to study and to
characterize the dynamic behavior of PG systems under different running conditions using such
model and techniques. Three main models were proposed. Models should take into account the
influence of the internal and external excitations on the dynamic behavior of PG system as well as
the impact of any kind of defect on the vibration response and the identification of modal
properties.

Given the fairly limited literature, it can be concluded that there is need to develop more lumped
parameter models, allowing the extraction of modal parameters in different working conditions and
be able to study the effects of internal and the external excitations on the vibration response. The
models can also expands to several signal processing tools used generally to the identification of
defects in any working condition case.

A complete model should be able to incorporate all the cited parameters and functions poviding
further insight to the dynamic behavior of the PG systemes.

Table 1.1 show the contribution of this thesis compared to the existing literature.

-]
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Table 1. 1. The limits of the existing works.

Discussion of existing literature

Proposed Approaches in this thesis

Few works dedicated to the analysis of

dynamic behavior for complex

configurations of PG.

A back to back configuration of planetary gear set

will be investigated,

A torsional lumped parameter or a plane
model PG are widely used which are for

limited use in different studied cases.

A three-dimensional lumped parameter model
referred to a complex configurations of PG will be

developed.

The modal parameters are widely extracted

when the system is in a static state

Identification and extraction of modal properties
when the system is running under non stationary

regimes.

The impact of the non-linear Hertzian
contact on the dynamic response in non
stationary conditions is not treated. Gear
mesh stiffness functions are widely
computed as a square function which is not

really the case.

An analytical approach taking into account the
impact of non-linear Hertzian stiffness on the
dynamic behavior of PG system in non-stationary

condition will be studied.

No rigorous numerical vs. experimental
analysis for the dynamics of complex PGs in
stationary and non stationary operations in
presence of defects,

Extensive investigation of the PG set with several
case studies including defects in stationary and
non-stationary regimes through model based and
experimental approaches

Conclusion

In this chapter, a deep review on planetary gear system is presented. The different model existing in

literature and their dynamic characterization were describedhighlighting the main important

parameter related to those systems such as the meshing stiffness function and damping. Since most

of PG systems are operating in non stationary regime, a focus on these conditions was done. Run

up, variable load, run down and variable speed conditions were highlighted as well as the

techniques which used to describe them. Moreover, a review on the most influencing gear defects

was presented. Techniques allowing the identification of defects in non-stationary operation are

also detailed.
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The principal remarks issued from this review can be summarized as following:

- The modeling of the dynamic behavior of PG system is based on LPM or FEM or hybrid model.
- The periodic variation of the mesh stiffness is the main internal source of excitation.

- The non stationary conditions are the main sources of external excitation, they modify and change
the dynamic behaviour of the PG system.

- The modal parameters and the techniques used to identify them are important to understand the
dynamic behavior of the gear system.

- The defect can be classified into geometrical and tooth defect, their presence has an impact on the
dynamic response.

Based on this literature review, we are focused on the investigation of the dynamic behavior of PG
system in healthy and damage cases.In the next chapter, the used test bench for experimental

studies is described and its corresponding dynamic model is proposed.
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Chapter 2: Description of the test bench and the

numerical model
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Chapter 2: Description of the test bench and the numerical model
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1 Introduction

Planetary gear transmissions are characterized by their high efficiency and their ability to transmit
high loads for different speed conditions. Different investigations were carried out in order to study
the behaviour and the characterization of these systems which are practically implemented in
several industrial cases. A test bench may be used to study such systems.

In this chapter, a two stage PG with power recirculation and its instrumentation is described. In
addition, the used signal processing software and its characteristics are detailed. Then, a numerical

model which is referred to this test bench is developed.

2 Test bench description:

Experimental setups are carried out on a test bench developed at the University of Cantabria Spain
(figure 2.1). The bench consists of two identical planetary gears connected by two rigid shafts,
supported by a rigid housing and driven by an electrical motor which is connected through an
elastic coupling. Its speed is controlled by a frequency converter which allows the running of the
system under stationary or non-stationary operations. The two-planetary gears are mounted in back
to back configuration in order to allow the circulation of power. This architecture is selected to
minimize the costs and improve the energy efficiency. A ring, a carrier, a sun and three identical
planets are the principal components of each planetary gear set. The first PG is called reaction set
characterized by a fixed ring and the second one is called test gear characterized by a free ring.
The connection between the two gear sets is through two rigid shafts: the inner shaft connect on the
two suns and the hollow shaft links the carriers.

The external load is obtained by adding masses on a rigid radial arm connected to the reaction ring
or by using a jack.

Figure 2.2 and table 2.1displays the layout of the test bench and the used instruments.

e ——
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© © (d)
Figure 2. 1. Experimental test bench: (a) General view (b) Applied external load with masses (c)
Planetary gear (d) Applied external load with jack
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Figure 2. 2. Layout of the test bench and the used instruments
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Table 2. 1. Planetary gear basic dimensions

Sun Planet (3)  Ring Carrier
Number of teeth 16 24 65 -
Module (m) 0.00423 0.00423 0.00423 -
Base diameters (m) 0.0614 0.0921 0.2494 0.1728
Tip diameters (m)  0.0699 0.1006 0.2579 0.1813
Pressure angle 0.4621 0.4621 -

(rad)

3 External load:

The external torque can be obtained by adding mass or by using a jack. 4000 N.m is the maximum
load that can be applied by jack while the load with adding mass can reach 900 N.m.

Based on calculation of load capacity of spur and helical gears” (ISO 6336, 2006), the tangential
torque applied on the reaction ring can produce tooth bending and tooth pitting in the sun planet
and ring component.

Table 2.2 illustrates the External torque required in order to achieve the failure.

Table 2. 2. External torque required in order to achieve the failure

Contact Component TGending (umy - | piting ()
Sun 2644 1100
sun-Flanet Planet 3630 1100
Planet 2411 1650
Ring- Planet Ring 17Eg S8

Since external torque applied by mass is more accurate than the torque obtained by jack and in
order to avoid tooth failure, we will load the transmission by adding mass during the

experiments.1100 N-m is chosen as the maximum load applied on the system.

3.1 Driving system:

An asynchronous electric motor is connected to the sun's shaft to drive planetary sets. Its

characteristics are given in table 2.3. It is controlled by a frequency inverter “MICROMASTER

440" with characteristics given in table 2.4 and mounted in the electric cabinet, (figure 2.3).
Table 2. 3. Motor characteristics
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Motor type ABB-MT 90L

Output power (kW) 1.5

Full load speed (rpm) 3000

Full load torque T¢(N m) 1100

Torque starting T¢/T; 2.7

Ratio breakdown T,/T; 5

Slip sy 0.8

Motor constant a 50

Motor constant b 3

Table 2. 4.Caracteristcs of the frequency inverter
Voltage (V) Current intensity (A) Frequency (Hz)
Input 380-480 37 47-63

Output 0-Input 32 0-650
Motor 15 kw

Figure 2. 3. Electric cabinet

This inverter can be configured with the software “STARTER”. This software, developed by

“SIEMENS” can be started directly through the frequency converter integrated into PCS 7. With

this software, we can control the speed under the stationary condition and command the run up and

the run down regimes of the motor.
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Figure 2. 4. Window of ramp function generator function of “STARTER” software

3.2 Vibration response measurements and signal processing:

To collect the instantaneous accelerations in the inner and the outer components, four tri-axial
accelerometers are used,(figure 2.5). Depending on the nature of measurement, those
accelerometers are mounted on the tangential direction of the component using a wax.

The sensors are calibrated by using a “Briel & Kjer” calibration exciter in all used directions
(figure 2.6). The calibration frequency is 159.2Hz for ®=1000 rad/s and the level of acceleration is
3.16 m/s2. The following table displays the accelerometers characterization.

Table 2. 5. Accelerometers characterization

1 2 3 4
Serial number 10020 10021 10022 10023
X-Sensitivity (mV/g) 102.6 103.5 101.6 101.6
Y-Sensitivity (mV/g) 101.3 98.68 99.67 103.0
Z-Sensitivity (mV/g) 101.1 104.3 102.6 101.9

Accelerometer signals were recorded using a sampling frequency of 1000 Hz. At this frequency
band the acceleration signal are a good option. They provide a clean spectrum that can be integral

to a velocity or a displacement spectrum,( Kahraman and Blankenship;1997).
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Figure 2. 5. Accelerometer location

Figure 2. 6. Calibration of Acelerometers

3.3 Strain gauge:

In order to estimate the input torque and to identify some vibration modes, a strain gauge is
mounted on the sun’s shaft using a quarter bridge. Its resistance is 120 Q and its gage factor is 2.7.
Figure 2.7 displays the strain gauge location and figure 2.8 shows the schematic diagram of the
quarter bridge model.
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Figure 2. 7. Strain gauge location
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Figure 2. 8. Quarter bridge mode of the strain gauge (LMS SCADAS, 2009)
3.4 Tachometer and strip band:

Figure 2.9 shows the overall speed measurement instrument, it is composed of a tachometer

(Compact VLS7) and a zebra stripes encoder with 130 black bands glued and fixed on the hollow
shaft in order to measure its instantaneous angular velocity.

Tachometer

Encoder
zebra

Figure 2. 9. Encoder zebra and tachometer
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3.5 Slipring:

In order to collect the signal issued from the strain gauge, a slip ring was mounted in the extremity
of the sun shaft. It allows the connection to the input module of the data acquisition system
(Figure.2.10) by 6 pole LEMO connector.

Figure 2. 10. Slip ring mounted on the shaft of suns

3.6  Acquisition system:

Different software are used during the experimental test.

LMS test Lab A15 is used in the different experimental setups such as modal analysis and dynamic
test. Also, Starter software is used to drive the electrical motor through the introduction of the
different operating conditions.

The recorded signals are recorded and processed an LMS SCADAS 316 system; it includes
different modal analysis techniques with different options like the stabilization diagram, the
PolyMAX estimation method and the transfer path analysis. It allows also the introduction of the
geometry of the structure in the software.

The "LMS SCADAS 316” is a high-performance data acquisition system. It is connected to the
computer through 1Gbit Ethernet host interface. This acquisition system is integrated with “LMS
Test.Lab”, “LMS Test. Xpress” and “LMS CADA-X" software.

“LMS SCADAS 316” includes five different modules: four input modules and one output module.
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4 Analytical lumped-parameter model (LPM)

4.1 Description of the model

An analytical model based on the real test rig is developed (figure 2.13). It is a three-dimensional
LPM of the studied two PG sets which are reaction PG (r) and test PG (t). A ring (r), a carrier (), a
sun (s) and three planets (p1, p2, p3) are the principal elements of each gear set. Three translation
Uij, Vij, Wij and three rotations ¢ij,'V;,05j (i=c, r, s, p1, p2, p3; j=r,t) are the degree of freedom of each
component.

The rotations ¢;j,'¥;; and 6j; are replaced by their gear mesh displacements following the procedure
given by Karray et al.(2016):

pijx =RDij.bj pijy=Rbij. ¥ pij=Rbij.0j (i=c, 1, s, p1, p2, p3; j=r, 1). (2.1)
Where: Rb;; presents the base circle radius of the sun, the ring, the planet, and the radius of the
circle passing through the planet centres for the carrier.

These elements are modelled as rigid bodies with masses m;; and inertias I;; and supported by a
bearing with a stiffness ki where i=c, r, s, p1, p2, p3; j=r,t in direction k=u,v,w,},¥,0. The planets
components were modelled as identical and equally spaced

The connections between these components are defined by the gear mesh stiffness functions
modelled as linear spring with stiffness Kypr1, Krpr2, Krprs and Kspr1, Ksprz, Ksprs for the reaction gear
set and by the stiffness Kipi, Kipz, Krptz and Keprr, Kspro, Kspis for the test gear set. The shafts
connecting the two gear set are modelled by an axial stiffness ksa, kca; flexural stiffness ksf, kcf
and torsional stiffness kst, kct, respectively.
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iue2. 11. PG numerical model
The system’s equation of motion is obtained by the procedure given by (Karray et al., 2016). It can
be expressed as:

Mg +Cq+ (K, + K, (t))g = F(t) (2.2)

q is the degree of freedom vector defined as:

_Ja,
. .

gr and g; are the reaction and test gear degree of freedom.

ql' = {UCI' ’Vcr'Wcr7pcxr7pcyr’pczr7urr ’Vrr'Wrr7prxr’pryr'przr’usr 7VSI' 7Wsr'psxr’psyr7pszr’
Ulr’Vlr’erlplxr1p1yr!plzr’U2r1V2r’W2r'p2xr1p2yr’pZZr'U3r’V3r7W3r1p3xrip3yr7p3zr } (2.4)

qt = {UcUVct'Wct’pcxt’pcyt’pczt7urtlvrt’Wrtlprxt’pryvprzt’ust’vst’Wst'psxtvpsytvpszt’
Uy Vi W O Pyt Paz o Vot Wors Poes Payts Pyt U, Vo Wy, 03 Paytr Pax }
M denotes the mass matrix, K is the bearing and shaft stiffness matrix, Ke(t) is the time varying

(2.5)

stiffness matrix and F(t) stand for the external force vector applied to the system.
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IilololoiLi Y_Stioiolo

rcr rrr r-SI’ rCt rrt rSt

F(t){h,h T 0,0,0%,Tn T }

(2.6)

Tern Trry Tery Tet, Trt, Tt are the external torque applied respectively in the reaction carrier, the

reaction ring, the reaction sun, the test carrier, the test ring and the test sun.

The damping matrix C is given by:
C=aM + K
Where a and 3 are two constants (Dhatt and Touzot, 1981).

All matrices are presented in what follows:

M—Mt 0
10 Mm,
M, 0 0 0 0 0]
0O M 0 0 0 ©
0 0 M, 0 0 0|
M, = i=tr
0o 0 0 M, 0 ©
0 0 0 0 M, O
|0 0 0 0 0 M,
([m; o o © 0 0 ]
0O mj 0 0 O 0
0O 0 m 0 O 0
l.
o o o - o o |,
Mj; = re; j=c, 151,23
o o 0 o© IT’ 0
rj
2*1;
0o o o o0 o
L i

The bearing stiffness matrix Ky

Kp=diag(Ker, Krr, Ksr,Kir,Kor, Kar, Ket, Krt, Kst, Kat, Kot, Ksr)
Kij=diag(Kijx, Kijy, KijzKijs, Kije, Kij) 1=C,1,S,
Kijb=diag (Kb, Kkjo ,Kijp,Kis, Kijer 0) k=1,2,3 j=r,
v,=a +a,

V=0 —

The stiffness matrix Kp:
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_Z Kcnl 0 0 ng K(:22 ng ]
1 2 2
0 Z Kpl 0 Ktz Kf Kf
1 2 3
K. = 0 Y Z Ksnl Ksz KSZ Ksz (2 17)
m .
1 1 1 1
Kc2 Kr2 Ksz KPP 0 0
2 2 2 2
Kc2 Kr2 Ksz 0 KPP 0
3 3 3 3
L Kc2 Kr2 Ksz 0 0 KPP
n _n n 3
Ko = Kz + K3 +KG (2.18)
cos *(a; ) Ky, +5in (e, K, cos (e, )sin (@) K,y -sin (@) cos (,)K,, 0 0 0 -sin(a,) K,, |
cos (a,)sin (a;) K,y -sin () cos (&) K,, sin ¥(a, )K,, +c0s %(a,) K., 0 0 cos (o, )K,,
. 0 0 K, sin (o) K, -cos (a,) K, 0
Ka= 0 0 sin (¢, )K,, sin “(a,) K, -sin (a,) cos (¢;) K, 0 (2 . 19)
0 -cos(a, ) K, -sin (a)cos(e,) K, cos ¥(a, ) K, 0
-sin (o) K,, cos (o) K, 0 0 0 K,
sin®(y,) —esin(y,)cos(y,) 0 ‘Z sin(y,) cos(y,) - t sin®(y,) —esin(y,)
r ‘2 T
—&sin(y, ) cos(y,) cos? () B () Rlb sinp,)cos(y,) &% cos(y,)
0 0 0 0 "o 0
6= Kl sintycosty,) o eos ) oSl sinty)eosty) o -costy) (2.20)
B 1 ., & . &€ . . & .
b, sin®(y,) Rb, sin(y,)cos(y,) 0 (Rb)? sin(y, ) cos(y, ) (Rb.)? sin®(y,) Rb, sin(y, )
2
i 2 _ & o 2
] esin(y,) e cos(y,) 0 Rb, cos(y, ) Rb, sin(y,) & |
[ L, . e 1 ., . 1
sin? (y's) esinys)cosys) 0 —pp=sin(ys) cos(y,) R, S W) £sin(y,)
2
&sin(y ) cos(y,) &% cos? () 00t () ao SN costyy) e cos(ys)
0 . 0 0 ) 0 ) 0 ) 0
Ki=Kgp|__2 g ~ £ cos? —& cos? —f i _£ 2.21
1 P Rb. sin(ys) cos(ys) Rb, cos“(ys) O (Rb,)? cos” (ws) (Rb,)? sin(ys) cos(y) Rb, cos(y's) ( )
1 sin2 Z 4 ——f i 1 sin? Z g
b, sin®(ys) Rb, sin(ys) cos(ys) O (Rbs)z sin(ys) cos(y ) 5)2 sin“(ys) Rb, sin(y)
. 2 _ &2 £
| esin(y) &° cos(ys) 0 Rb, cos(ys) Rb, sin(ys) 1 |
[-cos (a;)K x sin (a;)K 0 0 0 0]
-sin (a)K xx -cos (a)K v 0 0 0 O
KD - 0 0 -K 5 0 0 O
2 0 0 -sin (@)K, 0 0 0 (2.22)
0 0 cos (a;)K 0 0 O
L 0 - Ky 0 0 0 0]
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—sin(y,)sin(@,)  esin(y)cos(@) 0 —S—sin(y,)cos(a,) L Ginw)sine,)  esin(w,)
Rb, Rb,
2
gcos(y, )sin(e,) —g?cos(y,)cos(er,) O - Ijb cos(y, ) cos(a, ) Rchos(y/,)sin(ac) —&%cos(y,)
0 , 0 0 ’ 0 ' 0 , 0
K=K, __¢ ; & i
2 P b, cos(y, )sin(e,) r cos(y,)cos(er,) O R, Rb )cos(a,) Rb Rb cos(y,)sin(e,) b, cos(y,) (2_23)
1 . . & . 1 g .
b, sin(y,)sin(e,) - Rb, sin(y,)cos(er,) 0 Rb Rb )cos(er,) ﬁﬁsm(w,)sm(a ) b, sin(y,)
2
H _ g2 _° ¢ qi _ 2
_ esin(a,) g°cos(a,) 0 Rb, cos(er,) Rbp sin(a,) £ |
—sin(y,)sin(a,) —egsin(y,)cos(e,) O %cos(as)sin(ws) ) esin(y,)
P
2
—gcos(y,)sin(e)  —&’cos(y,)cos(e,) O Rgb cos(a, ) cos(y, ) ) g% cos(y,)
0 , 0 0 ’ 0 0 , 0
KL —K.| & _ ¢ 1 4 2.24
2 P Rb. cos(y,)sin(a,) Rb, cos(y,)cosa,) O Rb, Rb ) Rb Rb ) RD, cos(y,) ( )
1 . . £ . 1 . . & .
- bs SIn(Ws)sm(as) - Rbs Sm(l//s)cos(as) 0 - Rbs R . COS(QS)Sln(l//s) Ribs Rbp (as)SIn(Ws) - bs Sm(y/s)
—gsi _g? i . :
] esin(a,) &° cos(ay) 0 Rb, cos(a,) Rb, sin(a,) £ |
[Kyx O O 0 0 O]
0 Kyy 0 0O 0O O
0 0 K 0O 0 O
n_K zz
S ) 0 0O 00O (2.25)
0 0 0 0O 0 O
| O 0 0 0O 0 O]
sin“(a,) esin(a,)cos(e,) 0 Rb, cos(a,)sin(a,) RD, sin(e,)sin(e,) esin(a,)
2
—ecos(a,)sin(e,) £’ cos?(a,) 0 Esm(a ycos(a,) —ﬁsm(a ycos(a,) g% cos(er,)
0 , 0 0 , 0 0 , 0
Krs=Kp|_ € i Ea & 2 __f Ea 2.26
R3 P RD, cos(e,)sin(e,) Rb, cos(a,)cos(er,) O (Rb % cos”(a,) (Rb,)? sin(e,)cos(e, ) RD, cos(a,) ( )
1 . . & . 1 .
R—bpsm(ac)sm(ac) —R—bpsm(ac)cos(ac) 0 - (Rb B sin(e, ) cos(«, ) (Rb, ) ———sin’(a,) - Rb, sin(a,)
2
—£gj 2 c __& 2
] esin(a,) &°cos(a,) 0 Rb, cos(a,) Rb, sm(ac) & |
sin’(at,) esin(er)cos(e,) 0 —%cos(as)sin(as) -sin(a,) —¢sin(ey)
P
2
esin(e, ) cos(a,) g2 cos?(a,) 0 —g—cos(as)cos(as) —isin(as)cos(as) - &% cos(a)
Rb, Rb,
0 , 0 0 , 0 0 , 0
K=Ky —R—;cos(as)sin(as) —;—bpcos(as)cos(as) 0 (RZTCOSZ(&S) —ﬁﬁsm( ,)c0s(a,) I;prcos(%) (2-27)
—sin(a,) —R%Psin(as)cos(as) 0 -(Rbiy sin(a, ) cos(cr,) R bl,,)z sin®(a) —Ristin(as)
2
_ - ¢sin(a,) - &% cos(a,) 0 F':Tcos( a,) —Ribpsin(as) & |
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Table 2.6 shows the values of the different parameters used in the model which are used in
Hammami work,( Hammami 2015).The meshing stiffness are determined by using FEM
developed by (Fernandez et al 2013).

Table 2. 6. PG and shafts parameters.

Reaction gear set

Component Sun Planet (3) Ring Carrier
Mass [kg] 0.485 1.225 28.1 3.643

Moment of inertia [kgm?] 35610 2045 -10°° 697767 - 10°° 21502 -10°°
Bearing stiffness [N/mi] Kex=Ks,=1.5.10° Kon=Kpy=1.1.10° Krx=Kry=8.10° Ken=Ke=1.10°

Kg,=3.10° Kp=3.10° K.,=10.10° Ker,=5.10°
Torsional stiffness [Nm/rd] Krg=Kers=6.10° Kprp=Kpre=6.10° Kirp=Krre=1.5.10° Kerg=Kere=610°

Meshstiffness[N/m] 35.10° 45.108
Test gear set
Component Sun Planet (3) Ring Carrier
Mass [kg] 0.485 1.225 28.1 3.643
Moment of inertia [kgm?] 356-10° 2045 -10° 697767 - 10°° 21502 - 107°
Ksx=Ksz=1.5.10° Kpo=Kpry=1.1.10° K=K, =8.10° Ken=Ke=1.10°
Bearing stiffness [N/m]

Ks,=3.10° Kp=3.10° K,=10.10 K, =5.10°

Torsional stiffness [Nm/rd] Kstp=Ksts=5.10° Kptg=Kpte=610° i"q’jk;“é:_sigs Ketp=Ketx=510°
=7
Mesh stiffness[N/m] 35.10° | 45.10° |
Shaft stiffness
Flexural[N/m] | Torsional [Nm/rd] | Tractional[N/m]
Sun 49-10° 3.73-10* 4.8510°
Carrier 1.1.10 8.38 - 10° 1.2510°

4.2 Modal analysis

In order to determine the natural frequencies and the vibration modes of the system, the time
varying mesh stiffness between all the components in each gear will be considered by its mean
value. The gyroscopic effect was neglected since the system is running under low speed. In this

case, the undamped free equation of motion will be:

Mg+ (K, +K,,)g=0 (2.28)
The Eigen value problem can be expressed as:
(—wiM + Ky)p; =0 (2.29)

Where w; is the natural frequencies, ¢; are the vibration modes, M and K, denotes respectively

the mass and the stiffness matrices.
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4.3 Classification of modes:

The natural frequencies, its multiplicity and the nature of modes are displayed in table 2.7.

Lin and Parker (1999) classified the vibration modes into three types of modes:

- The rotational (R) and translational (T) vibration modes characterized by their natural frequencies
and their multiplicity m ( m=1 for rotational modes and m=2 for translational modes). The
rotational modes have a rotational motion of-ring, carrier and sun components and in-phase motion
of planets. The translational modes have a translational motion of the sun, carrier and ring.

- The planet modes (P) which depend to the number of planet in the PG set, this kind of modes
appears only when the number of planets N>3, its multiplicity is m=N-1. For the studied case, In
the studied PG, the number of planets is three and only rotational and translational modes were
observed.

Table 2. 7. Natural frequencies and Vibration modes.

Mode Multiplicity Type Natural frequencies
1 1 R 77
2 1 R 154
3 1 R 172
4 1 R 197
5 1 R 241
6 2 T 291
7 2 T 320
8 1 R 342
9 1 R 384
10 1 R 413
11 1 R 436
12 1 R -
13 2 T 531
14 1 R 552
15 1 R 592
16 1 R 618
17 2 T 697
18 1 R 720
19 1 R -
20 1 R 815
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4.4 Modal analysis taking into account the gyroscopic effect

Because of the mounting of the planets on a rotating carrier, the centrifugal accelerations and
Coriolis effect induced by the rotation of the planet carrier introduce gyroscopic terms in the
system modelling. For applications at high speeds, such as the case of aircraft engines (6000 rpm),
the gyroscopic effect can alter the stability and dynamic behavior of the system and cannot be
ignored.

We recall that the system motion equation including the gyroscopic matrix is written by:

Mg +Q.Gq + (K, + K, (t)-Q2K,)q = F(t) (2.30)
The eigenvalue problem of the corresponding undamped free system is given by:
{~o'M +jQ.G.0 +K} g =0 (2.31)
with K the matrix mean stiffness of the system written as:
K=K, +K,—Q°K, (2.32)
G and K are respectively the gyroscopic matrix and the Centripetal matrix
G =Diag ( Gy, G)). (2.32)
Gi = Dlag ( Gc, Gr, Gs, G]_, ....,Gn);izt,r. (2.33)
[0 2m; 0 0 O 0]
2m; 0 0000
Gj = 0 0 0000 j=c,r,s1,..,n 2.34
J - 0 O O O 0 0 ] J = LU by 9Lyl ( . )
0 0 00O00O0
. 0 0 00 0 0
Kq = Diag (Kat, Kar). (2.35)
Ko =diag(Kye, Kor Kosr Kogren Koy )i ISt (2.36)
with : K, =diag(m;,m;,0,0,0,0); j=c,r,s,1,..n, (2.37)

According to literature (....) Gyroscopic effect will be responsible of the separation of double
translational modes into distinct ones as the speed increases. Figure 2.12 shows the change in the
value of the 7" and 8" natural frequencies according to the speed of rotation of the planet carrier
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Figure 2. 12. Variation of natural frequencies with rotational speed

It is clearly seen the separation of the translation al mode 7 as € increase. However rotational
mode 8 remain unchanged.
Seen that the studied system will run under low rotational speed, the gyroscopic effect will be

neglected.

5 Resolution method:

To solve the equations of motion, step by step integration methods are usually used. These methods
proved to be well adapted to linear equations with periodic coefficients. The most commonly used
time method is the implicit method of Newmark due to its numerical stability and interesting
computation time ratio-precision for industrial applications (Dhatt, 1984). However, it requires a
judicious choice of integration parameters and initial conditions. The solution is given in the time
domain; the transition to the frequency domain is performed by a Fourier transform of the reply.
The concept of this method is to solve at each time step the time discredited equation of motion
given by
MG+Cq+K(t)g=F(t) (2.38)
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The state of the system at a time t,+;=t,+A¢ is calculated according to the known state at time t,
with At considered the time step. This scheme considers two independent parameters “a” and “b”
to write the Taylor series developments of displacement and velocity (Yannick, 2004):

Uniq =Gy + AtL-b)G, + Atbd, 4 (2.39)
. 1 . "
qn+l = qn + Ath + Atz (E - a)qn + Atac|n+1 (240)

Substituting the two equations (2.39) and (2.40) in the equilibrium equation (2.2) written in time
domain, we obtain the following equation:

(M +bAtC +aAt?K)g, ,; = f,,, —C(q, + 1—b)Atd,) — K(q, + Atd, +At2(§—a)qn) (2.41)

The resolution with a Newmark scheme is achieved by a predictor-corrector approach.
Equation (2.38) becomes in the following simplified form:

qul = fn+1 -C pqn+1 -K pqn+l (242)
Where:
M = M +bAtC +aAt?K (2.43)
Qr?Jrl =G, + (1-b)Atg (244)
1 = G + Aty + - )AL, (2.45)

gk, .and gk, . are the predictions of speed and displacement and corresponds to the beginning of
the Taylor's development.
Equation (2.33) calculates the acceleration and then corrects the speed and displacement through
the following relationships:

Gpag = Gy + Aty (2.46)

Ong = iy + A0l g (2.47)

Figure 2.13 shows the algorithm of Newmark method.
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Figure 2. 13. Newmark algorithm

6 Modal parameter estimation:

Different modal parameters estimations can be done using LMS test Lab 15 A acquisition system.
In this version, the PolyMAX Modal parameter estimation is implemented. It is a further evolution
and a poly-reference version of the (LSCF) estimation method.

This method is characterized by the fact that the singular value decomposition SVD step to
decompose the residues can be avoided and that closely spaced poles can be separated.

The PolyMAX method needs Frequency Response Function (FRFs) or Cross Correlation Function
(CCF) or Order Function (OF) as primary data and after that identifies a right matrix-fraction

model.
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[H(w)]=[B(®)][A®)]” (2.48)

[H (a))] is the FRF matrix containing the FRFs between all m inputs and all | outputs.
The numerator and the denominator polynomial matrix are defined as:

(Bo (@)= Zp:Qr (@)(B,) (2.49)
(M) = iQr(w)<a,> (2.50)

Where Q,(®) are the polynomial basis functions and p is the polynomial order. Bor and o, are two
polynomial coefficients.

In this approach, the participation factors are available when constructing the stabilization diagram
(Eq 2.40). Based on the right matrix-fraction model and after reducing the normal equations, the
poles and modal participation factors are identified as the eigenvalue and eigenvectors of their

matrix.

[H(w)]:i{Ui}<liT>+{U‘*}<IiH>—B+UR (2.51)

o Jo—14 jw—ﬂﬁ* w

where n is the number of modes; **is the complex conjugate of a matrix; {ui} are the mode

shapes; IiT are the modal participation factors and A are the poles, which occur in

complex-conjugated pairs and are related to the eigen frequencies ®; and damping ratios &; as
follows:

A =& * 1= (2.52)
LR, UR denotes the lower and upper residuals due to the influence of the out-of-band modes in the
considered frequency band.
This procedure allows constructing a stabilization diagram for increasing the model orders and

using stability criteria for natural frequencies, damping ratios and mode shapes.

7 Stabilization diagram:

The stabilization diagram is an efficient tool to extract modal parameters. The diagram uses an
Frequency Response Function (FRF) or Order Function (OF) or Cross Power Spectral Density
(CPSD) as input data. Another function called mode indicator function (MIF) (green) can be added
to help identifying resonances.
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In Figure 2.14, an example of stabilization diagram using the FRF is displayed. Different indicators
appear on the diagram: v is vector and s stands for stable pole.

The procedure for selecting stable pole is as bellow:

The model size must be increased until the poles stabilize. Then, the 2" or 3™ "s" can be selected
after the stabilization of the pole. The maximum possible of stable pole must be selected. This

procedure is iterative until obtaining the real mode.

e ——
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Figure 2. 14. Stabilization diagram

8 Conclusion

In this chapter, a PG test bench with power mechanical recirculation is presented; this special

configuration can run under stationary and non stationary conditions.
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For the collection of measurement, accelerometers and strain gauge are used to record the signals in
the different components. Moreover, LMS Test.Lab software is used to visualize and to precede the
signal in the different experiments.

Based on this test bench, a linear three-dimensional LPM of PG is developed. The natural
frequencies and the vibration modes are detailed.

Using the test bench and the developed three-dimensional model, a comparison between modal
analysis techniques will be highlighted in the next chapter.
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1 Introduction:

Modal analysis techniques are used to identify the critical frequencies and corresponding
vibration modes of a structure. Three modal analysis techniques which are the experimental
modal analysis (EMA), the operational modal analysis (OMA) and the order based modal
analysis (OBMA\) are presented. All these techniques are applied to the studied complex PG
system test bench. The modal parameters are identified using each technique experimentally and
compared to others obtained numerically. In addition, the influence of load on modal parameters
is investigated using EMA and OBMA.

2 Experimental modal analysis
2.1 Impact hammer excitation:

Typically, experimental modal analyses are carried out by the help of the hammer or shaker
excitations. In the studied cases, the EMA is performed using an impact hammer excitation with
sensitivity 1 mV/N. The impact tests were performed on the arm of the test of PG in order to excite
the rotational mode and on planets and sun of the test gear in order to excite the translational mode,
(Figure 3.1). Ten impacts were performed during each test and then averaged using modal testing

tools.

Figure 3. 1. Impact hammer location

The sampling frequency was selected as 1000 Hz.

The coherence function was used as a data quality assessment tool which identifies how much of
the output signal is related to the measured input signal.

When the coherence is close to 1, the measurements can be considered as repeatable; otherwise,

they aren’t. In the studied case, the coherence is close to 1 along the frequency bandwidth but it can
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go below 0.5-0.6 in particular zones. In this case, the presence of natural frequencies cannot be
confirmed. Nevertheless, the reduction of coherence can be explained as well by the complex path
between the measurement point and the impact point.

A force window was applied to the signal immediately after the impulse; Figure 3.2 shows the
coherence function and the input random force.

Lo T m 2.2e-3
Ll | [ — ~
j{ J | | ; s
/ ] 2
’ ; 3
I3 | ] E
E ; - g
a | J IS
£ | N <
< | b 0.3e-3
] 18
= QO
- | [
— =
B o
L \ L L L L | - (t 1
\ [ R B B \ 1000 18 ~
Frequency (Hz) 0 Frequency (Hz) 1100
(@) (b)

Figure 3. 2. (a) Coherence function (b) force window of the hammer

2.2 Vibration measurement:
During measurement, triaxial accelerometers are used to record the vibration signals (figure 3.3).

(b)
Figure 3. 3. Accelerometers mounted (a) on the ring gear (b) on the sun and planets of the test ring

In EMA tests, the angular accelerations of the different components are measured; sensors are
mounted following a kinematic orientation as shown in Figure 3.4. In addition, only the tangential
components of the acceleration are considered because the radial components cancel each other
(Corey,1962),(Kahraman and Blankenship,1997).

For the ring, four transducers are fixed equally spaced to measure the acceleration of the fixed ring.
The tangential recorded accelerations of all sensors are a,,ap r,acrand ag .
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The ratio of the sum of the four averaged recorded signals over the mounting ring's radius

T, Yields the angular acceleration of the ringé,.:
(3.1)

rm, r

For the other components, two sensors are fixed equally spaced on the tangential direction to
measure the angular acceleration of the carrier, sun and the three planets. The tangential recorded
accelerations of all accelerometers are denoted by a,, a5 respectively.

The ratio of the sum of the two averaged recorded signals over the mounting radius of component i

(i=carrier, sun and planets) r,,, ; yields the angular acceleration of the ring;:

. A, +ay, 3.2)

(b)

Figure 3. 4. Layout of the instruments (a) on the ring (b) on the sun

2.3 Frequency response function (FRF):
The FRF quality and impact location are very important in the case of modal testing.

Six FRF responses are selected to identify the modal parameters. Figure 3.5 displays the FRF
measured on the ring, the sun, the carrier and the planetl of the test PG for an impact done on the
arm.

The obtained experimental results are compared to those issued from the LPM.

e ——
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Figure 3. 5. FRF measured on the: (a) Carrier (b) Planet 1(c) Ring (d) Sun

As a preliminary result, it can be noticed that the dynamic response in various degrees of freedom
is qualitatively and quantitatively different.
The FRF on test ring which is the fixed component reveals the majority of natural frequencies.

2.4 Natural frequencies damping and modes:
From the preceding investigation, 20 modes are identified: 16 rotational and 4 translational, the

nature of these modes are identified using Eigen value problem. For each mode, the modal
damping and the natural frequency were identified.

The obtained modes were estimated by using the stabilization diagram as well as the damping and
natural frequencies.

The comparison between the natural frequencies determined from the experimental impact tests
and the numerical model, the multiplicity of each mode and the damping ratio are displayed in table
3.1.
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Table 3. 1. Modal properties obtained for the static testing.

Mode Multiplicity Type Experimental Numerical E(E/':;r Damrzi(yr:g ratio
1 1 R 76 77 1,30 0.77
2 R 136 154 11,69 1.36
3 1 R 169 172 1,74 1.61
4 1 R 195 197 1,02 1.49
5 1 R 251 241 -4,15 1.06
6 2 T 301 291 -3,44 1.57
7 2 T 325 320 -1,56 141
8 1 R 352 342 -2,92 0.38
9 1 R 378 384 1,56 2.00
10 1 R 406 413 1,69 2.04
11 1 R 436 436 0,00 2.09
12 1 R 466 - - 2.06
13 2 T 526 531 0,94 2.16
14 1 R 558 552 -1,09 0.08
15 1 R 578 592 2,36 0.65
16 1 R 604 618 2,27 2.19
17 2 T 687 697 1,43 0,96
18 1 R 755 720 -4,86 1.28
19 1 R 783 - - 1.65
20 1 R 803 815 1,47 1.57

2.5 Modal assurance criterion:
To estimate the quality of the obtained mode shapes, the Modal Assurance Criterion (MAC) is

used. First, the auto MAC is computed separately from the numerical and experimental mode shape
to investigate the validity of the estimated modes. Then, the MAC between both experimental and
numerical is determined to compare two mode shapes obtained from two different modal
parameter estimation processes (numerical modal analysis and experimental modal analysis). The

MAC between two mode shape vectors can be expressed as follows (Pastor et al.,2012):

MAC = MAC({D!} ,{D})=—="— - (3.3)
0O~ T et
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Where:

{5} and {D} are respectively the numerical and experimental mode shapes.

Figure 3.6 shows the results for different mode sets combinations. The MAC values of 1 mean that
the two modes are correlated; whereas a MAC value of 0 means the two vectors are orthogonal.
The determination of the angular acceleration using equations (3.1) and (3.2) for each component
and the use of the torsional LPM allow the building of the mode shapes for all the modes.

Only the correlated modes are selected, the orthogonal ones are neglected.

From 20 modes, only five modes are identified as consequence their mode shapes are plotted .

413
Exprimental modes (Hz) 324 s

320
Numerical modes (Hz)

154

Figure 3. 6. MAC matrices from the mode shapes of the experimental and numerical modes

2.6 Mode shapes:

Table 3.2 shows the first five modes validated by the MAC: Four rotational modes (154 Hz, 172
Hz, 384 Hz, and 406 Hz) and one translational mode (320 Hz). It highlights also the difference
between the exprimental and numerical modes.

The experimental mode shapes are plotted according to each degree of freedom magnitude and
phase in the impacts tests, while the numerical mode shapes provided the mode shapes directly
from the eigenvalue problem.
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Table 3. 2. Comparison between numerical and experimental mode shapes.

Mode (Hz) Experimental Numerical Interpretation
Planets move in
154 (R)
phase
Planets move in
172 (R)
phase
Carriers have pure
320 (T) _
translation
Planets move in
384(R)
phase
Planets move in
406(R)
phase
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What stands out in the previous table is that experimental and numerical mode shapes plotted are
close to each other. In addition, the planets set have the same modal deflection and move in phase
for the rotational modes. While, the carriers have a pure translation in the translational mode.

3 Influence of meshing stiffness variation on modal parameters:

Mesh stiffness function is the most important function is gear transmission. It is classified as the
principal source of vibration. Several developments have been done in literature in order to model
it. In this context, (Fernandez et al., 2013) used finite elements modelling and Hertzian contact
theory to model mesh functions. Authors start by defining the tooth geometry using the parameters
of gear transmission and then compute the gear contact point by considering the analytic
formulation of the involute-involute contact. Then, two phenomena were considered: the first one
is the nonlinear local deformations near the contact area where an analytical non-linear Hertzian
formulation for local deflections is used. The second is the tooth body deflections.
Two-dimensional finite elements model of teeth in contact is carried out in order to validate this
methodology. The proposed procedure was adopted to model the mesh function.

The main purpose of this part is to study the impact of mesh stiffness variation during one meshing
period on the modal parameter. The spaces between planets were considered with regular interval
and the contact sun-planets and ring planets were sequentially phased.

Figure 3.7 displays the mesh stiffness functions.

8
K10 x10
7

~ — Sun-planet 1
— Sun-planet 2
Sun-planet 3

— Ring-planet 1
65} — Ring-planet 2 H
Ring-planet 3 45F

=

55[

Mesh stiffness(N/m)
Mesh stiffness(N/m)
~

o

45F b
I | L
Meshing period Meshing period
(a) (b)
Figure 3. 7. Mesh stiffness function (a) Sun-planet (b) Ring-planet

The meshing period was subdivided into equidistant point. For each point FRF were determined
experimentally and numerically. The evolution of the FRF respecting the mesh stiffness values in

one meshing period are displayed in Figures 3.8a and 3.8b. For both numerical and experimental

Chapter 3: Modal analysis techniques 71



Contribution to the study of the dynamic behaviour of planetary gears in non-stationary regimes in presence of defects Ayoub MBAREK

results, the variation of mesh stiffness introduced a slight deviation on FRF amplitude presented by
a deviation of natural frequencies. Moreover, this deviation is repeated three times in one meshing
period. This behaviour is explained by the fact that the contact sun-planets and ring planets are
sequentially phased and the number of planets is three. What stands out in Figures 3.8.aand 3.8.b is
the variation of  natural frequencies, a variation by 2% in the numerical results and by 3% in the
experimental results is observed.

Furthermore, the variation of FRF amplitude during the meshing period which is caused by the
variation of contact points location between mating teeth and the variation of meshing stiffness

values.

e ——
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Figure 3. 8. Waterfall plot of FRF on the test ring (a) Numerical (b) Experimental

4 Operational modal analysis:

4.1 Experimental setup:
Experimental measurements were carried out when the system is running in stationary conditions

(the input load and input speed are fixed). The accelerations were measured on the test ring.

Chapter 3: Modal analysis techniques 74



Contribution to the study of the dynamic behaviour of planetary gears in non-stationary regimes in presence of defects Ayoub MBAREK

4.2  Power spectral density function:
Experimentally, LMS test lab requires Power Spectral Density (PSD) function as input data,

whereas, analytically, OMA is applied after computing the PSD function. First of all, the Welch's
method can be applied by computing the Discrete Fourier Transforms DFT of the time response
signal (G. Arfken 1985):
N-1

Y (w) = kZ(;Wk Y, exp(— jwkAt) (3.4)
where N is the length of yk. yx and Y(w) are respectively the input signal and output signal
respectively, wy: denotes the time window and At is the time increment.
After determining the DFT, Cross Correlation Function (CCF) is obtained using the following
equation (E. Orlowitz, A. Brandt 2013):

£ (M) = Y, (W)Y, (W)

> o

Y1(w) is the conjugate DFT of yi, which is the reference, and Y;,(w) is the DFT of y, in the
frequency domain. Moreover, the inverse of this product produces a biased correlation function.
The Cross Power Spectral Density (CPSD) functions are identified experimentally and numerically
and the different modal parameters are extracted using the stabilization diagram.

Now, after getting the experimental and the numerical CPSD, the stabilization diagram is used to
estimate the experimental modal proprieties whereas the numerical modal proprieties are identified
directly by solving the eigenvalue problem.

Figures 3.9.a and 3.9.b show respectively the CPSD on the fixed ring obtained by the experimental
test and the numerical model.

Chapter 3: Modal analysis techniques 75



Contribution to the study of the dynamic behaviour of planetary gears in non-stationary regimes in presence of defects Ayoub MBAREK
15 T
. fig
5
N 10l f 13 fs _
I 2
% fzo 3.fm
R
= 5
= f _
o 1
g |l
o
[92]
3
3 or a
5 l l l l l l l l l
0 100 200 300 400 500 600 700 800 900 1000
Frequency(Hz)
(a)
5 ] T
5 f fa0
4+ f 17 _
f 11
~ 1 3.fm
I
S 3k -
N f
@ 15
£
o f =2f )
6=2-
2 | ‘ f6 o ; m f18
g iy 2 13 i
O
O —
1 | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000
Frequency(Hz)
(b)

Figure 3. 9. Cross power function determined on the fixed ring (a) Experimental (b) Numerical

It can be also observed through figure 3.9 that the gear mesh frequency and harmonics appear on

the CPSD function. A distinction on amplitude and a frequency is observable both on experimental

and numerical cases.

The amount of difference on amplitude is explained by the fact that several parameters like the

housing, the elastic coupling and the effect of friction are not considered in the model. Concerning

the difference in frequency, the experimental CPSD contains more natural frequencies than the

numerical CPSD. This distinction is explained by several phenomena and parameters such as the

white noise, the effect of temperature as well as the elastic coupling connecting the motor shaft to

the gear shaft. Other modes related to structure are not considered in the numerical model for

example the arm, the motor and the housing.

4.3 Natural frequencies and damping identification:
In order to identify modal parameters, we follow the same procedure adopted in EMA.
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The identified modes are listed in table 3.3 associated with their multiplicity, damping and natural
frequencies.

Table 3. 3. Modal parameters estimated during OMA.

Mode Multiplicity Experimental Analytical Error (%) Damping (%)
1 1 74 75 -1,35 3,34
2 1 129 132 -2,33 3
3 1 248 260 -4,84 3,11
4 2 298 300 -0,67 3,42
5 2 322 323 -0,31 3,01
6 1 394 391 0,76 3,27
7 1 432 436 -0,93 3,51
8 2 540 521 3,52 2,29
9 1 570 592 -3,86 3,11
10 1 629 618 1,75 3
11 2 643 649 -0,93 3,12
12 1 747 781 -4,55 2,85
13 1 888 910 -2,48 3,07

It is clear in table 3.3 that the error between the analytical and experimental natural frequencies is
lower than the error determined using EMA. Also, data from this table shows precisely the value of
the error for each mode. This phenomenon can be explained the impact of the meshing stiffness
variation on the natural frequencies as mentioned in section 3. The natural frequencies can change
from a point to another in one meshing period. It is also noticed that the modes (f3, fs, fs, fo, f12, f14,
f19) are missing. This fact is may be due to that these modes are not excited in stationary

conditions,. For this reason, another type of OMA is required.

5 Order based modal analysis:

5.1 Experimental setup:

In order to overcome the problem raised by the use of EMA and OMA, Order Based Modal
identification OBMA is implemented. In this method, the measurements are carried out during run
up regime. During this regime, there will be cross of several natural frequencies.

The variation of speed during this regime is performed by the help of the frequency converter

Micromaster 440 as well as LMS test lab “acquisition system”.
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5.2 Order tracking:
While the speed is variable, the order tracking (OT) method should be used in order to estimate

order function, ( Fyfe and Munck, 1997).

Several OT methods could be used such as Time Domain, Sampling-Based Fast Fourier Transform
(FFT), Angle domain, Vold-Kalman (VK) Filter-Based and Time Varying Discrete Fourier. In the
studied case, the angle domain is selected as order technique during OBMA test. Data are acquired
with a uniform At and then resembled to the angle domain using an adaptive digital resampling
algorithm. As a result, the uniform At data become uniformly spaced angle data A& . The
amplitude and phase estimates of the orders are obtained by processing the recorded signals with a
Discrete Fourier Transform (DFT) instead of an FFT for computational flexibility in performing
the transform without being restricted to a power of two numbers of samples. In order to achieve
the time domain data to angle domain data transformation, a reference signal must be selected to
define the time instant at which the uniform angular intervals have been spaced. Usually, this
signal is considered to be the tachometer signal measured on a reference shaft of the operating
machine.

The kernels of the Fourier transform were computed as shown in Egs. (3.6) and (3.7), where oy, is

the order which is being analyzed:

N
a, = %Z X(nA@) cos(2770,,nAG) (3.6)
n=1
y 3.7
b, = %Z X(nAB)sin(270,,nAG) 3.7)
n=1

Frequency and orders are closely the same: a measure of events over an observation frame. The

order should be multiple; they can be computed according to the following expression:

Order — freg.rot.In (3.8)
freg.rot.out

During this test, the structure is excited instantly using the frequency inverter. A ramp of speed was
applied on the structure at 1300 rpm over 15s as shown in the following figure:
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Figure 3. 10. Evolution of rotational speed

The principal order can be resumed in the following table.
Table 3. 4. Principal order

Order Correspondence Order Correspondence meshing frequency
1 12.88 1.GMF
2 25,25 2.GMF
3 38.49 3.GMF
4 51.32 4.GMF
5) 64.15 5.GMF

The frequency at which a rotating system is operating can be calculated from an order and the

rotational speed (expressed in rpm) via the equation below:

(order).rpm (3.11)
60
After measurements, order map is plotted (figure 18). It is clear from the figure that the tachometer

Frequency =

detects only 12.88 and 25, 25. This error may be caused by the vibration issued from the test bench,
the tachometer vibrates also and the accurateness of the encoder zebra can cause a variation on
mesh order. Also, error can be caused by the fact that the extremity of the encoder zebra are not
matching well.

Figure 3.1 show the OT map.
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Figure 3. 11. Order map

Only the two first orders are displayed in figure 3.11. The order 12.88 corresponds to the first
meshing order while the order 25.25 is that of the 2" gear mesh order. Therefore, the OT was will
be achieved by examining in details these orders and ignoring all the others.

The order resolution was set from 0.01 for a maximum order equal to 32.

Figure 3. 2 displays the two first selected orders measured on the test gear ring.
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Figure 3. 12. Order function (a) Order 1 (b) Order 2

While examining figure 3.3, some peaks can be identified directly even before applying the
Polymax method to these orders to extract the modal parameters.

5.3 Natural frequencies, damping and modes:
Before applying the PolyMAX method to order function and using stabilization diagram, the modal

parameters can be estimated.
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Table 3.4 shows a comparison between the numerical and experimental natural frequencies using
OT during the run-up test as well as the amount of error and the damping ratio of each mode.
Table 3. 5. Modal properties during the run-up test.

Mode Experimental Analytical Error (%) Damping ratio (%)
1 72 77 6,49 3,2
2 125 154 18,83 3.6
3 159 172 7,56 33
4 191 197 3,05 3,7
5 250 241 -3,73 3
6 294 291 -1,03 3,41
7 325 320 -1,56 3,13
8 354 342 -3,51 35
9 375 384 2,34 3,76

10 404 413 2,18 3,7
11 441 436 -1,15 3,29
12 471 - - 3,15
13 521 531 1,88 3,41

The difference between the achieved experiments and the analytical model results is noticeable.

The frequency error is lower, and the modal damping is higher than that obtained by the EMA.

6 Comparison between different modal analyses:

The comparison between the different techniques is presented through contrasting the natural
frequency modal damping and the random error (table 3.5).

It is clearly noticed from this table that the natural frequencies identified with EMA are close to
those by OBMA. In the other hand, some natural frequencies are missed for the OMA.

The variation of natural frequencies is related to several factors like the evolution of temperature in
the inner component as well as the variation of the boundary conditions and the influence of gear
mesh stiffness.

The difference between the three methods is more accentuated when identifying damping ratio.

The modal damping increases when moving from EMA to OMA and OBMA.
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Table 3. 6. Estimated modal parameters for the three techniques.

EMA OMA OBMA
Mode | Analytical} o 1) Damping Error 00) o [Camping Error 06 f. () | Dameing Error 06
1 77 | 76 | 077 13 |74 33 | 435 [ 72 | 32 6,49
2 154 | 136 | 136 | 11,69 [129] 3 233 | 125 | 36 18,83
3 172 | 169 | 161 174 | - - - 159 | 33 7,56
4 197 | 195 | 149 1,02 | - - - 191 | 37 3,05
5 241 | 251 [ 1.06 415 [248] 311 | 484 [ 250 | 3 3,73
6 291 301 1.57 -3,44 298 | 3,42 0,76 294 341 -1,03
7 320 325 141 -1,56 322 | 3,01 -0,31 325 3.13 -1,56
8 342 [ 352 | 138 292 | - - - 354 | 35 -3,51
9 384 378 2.00 1,56 - - - 375 3.76 2,34
10 413 406 2.54 1,69 394 | 3,27 0,76 404 2.7 2,18
11 | 436 [ 436 | 2.09 0 [432] 351 | 093 [ 441 | 320 | -115
12 - 466 | 2.04 - - - - 471 | 215 -
13 531 526 2.16 0,94 540 | 2,29 3,52 521 341 1,88

Let’s focus on the difference between EMA and OBMA. These two methods allow the
identification of almost all frequencies. Table 3.7 shows the difference between identified natural
frequencies and damping using EMA and OBMA techniques.

Table 3. 7. Difference between the results of EMA with respect to the OBMA test.

Difference of EMA vs OBMA
fa[%] dn[%]
1 4 2.43
2 11 2.24
3 10 1.69
4 4 2.21
5 1.9
6 1.8
7 0 1.7
8 -2 2.1
9 1.7
10 0.16
11 -5 1.2
12 -5 0.11
13 5 1.25

e ——
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It can be concluded from table 3.6 that the estimated dampings have a smaller deviation between
the two tests than the estimated natural frequencies. This fact is expected since the inaccuracy of
the frequency estimates is well known to be larger than the damping estimation (Orlowitz and
Brandt 2017). The results coming from EMA are closed to others obtained OBMA results. The
amount of difference can be due to the variation of behavior of such parameter from a static test to
dynamic one.

Following these results, it is assumed that OBMA technique is an efficient technique to understand

the dynamic behavior of the system and is more useful in the extraction of the modal proprieties.

7 Modal proprieties sensitivity to load variation using OBMA

In this section, the influence of load on modal parameters of the back-to-back PGs is investigated.
The experimental tests were carried when the test bench is excited in run up condition for different
levels of load. The obtained results were compared to others obtained numerically.

7.1  Experimental set up:
For the dynamic test, the motor is driven in run up. The sensors are mounted on the two rings in a

tangential direction in order to extract the angular accelerations of the components and an optical
tachometer is used to measure the instantaneous angular velocity.

For both experiments and numerical simulation, a random speed between 0 and 1000 rpm is
imposed to the electrical motor over 15 s.

For signal processing, Spectrogram is plotted for both experimental and numerical vibration
signals. It provides very useful information about the evolution of gear mesh frequencies and
harmonics. Numerically, a Matlab function “Spectrogram” with a Hamming window of 1000
samples and 50% overlap giving a frequency resolution of 2 Hz/line is implemented for
simulated vibration signals. OT method, as mentioned in the previous chapter, will be adopted to
remove speed fluctuations from the signal and enable the tuning of order function to have a
confident analysis with high accuracy. After the OT process and removing the fluctuations of
speed from the signal, order function can be extracted.

To estimate the most important orders, an angle domain OT method was developed and

stabilization diagram is adopted to extract the modal parameters for each load level.
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7.2 Effect of load on the dynamic behavior:
The same load levels used previously in EMA are used in the dynamic test and implemented in the

numerical model. The main load influence is in the gear meshes stiffness. The stiffness functions
mean value increase when the loads increase (Fernandez et al., 2013).Also, the influence of load on
the inertia and mass of the reaction ring is considered too.

However, these functions are modelled as square functions according to (Lin and Parker, 1999);
(Maatar, 1995).

During the run-up regime, (Viadero et al., 2014), (Khabou et al., 2011) claim that the period of
mesh stiffness function decrease when the speed increase,

Figure 3.13 shows the evolution of ring-planets and sun-planets gear mesh stiffness functions on
the test gear set during run-up.
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Figure 3. 13. Mesh stiffness function for the ring- planets (a) and sun-planets (b) on the test gear
set during run up
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After taking into account this gear mesh stiffness function in the equation of motion, time
response is computed, whereas the measured acceleration of the fixed ring is recorded for the
different load levels. It can be noticed from the figures 3.14 and 3.15 that the vibration amplitude
is increasing respectively with time. This matter could be explained by the way that during the
run-up regime the speed and the accelerating torque is increasing allowing the increase of
vibration. The influence of loading condition on dynamic behavior during start-up regime on the
measured and simulated acceleration is manifested by the increasing of vibration level with the
increasing of load. This phenomenon can be explained to the influence of several parameters like
the elastic coupling, the contact friction and the effect of the oil film stiffness (Xiao et al 2019).

Figures 3. 14 and 3. 15 display the acceleration measured and simulated on the fixed ring.
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Figure 3. 14.Experimental time response measured on the fixed ring (a) 200 N-m (b) 400 N-m (c)
600 N-m (d) 800 N-m
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Figure 3. 15.Numerical time response simulated on the fixed ring (a) 200 N-m (b) 400 N-m (c) 600
N-m (d) 800 N-m

It is noticed that the acceleration amplitude increases as the load increase. This phenomenon is
related to the increasing of the meshing stiffness amplitude and the decrease of the period of teeth
in contact when the speed increases. This fact can introduce instability on the system. (Drago
2009) confirmed that the run up regime is critical when the system is loaded.
The measurement is also carried out on the inner shaft that connects the two suns. Figure 3.16
shows the time response signal issued from the strain gauge placed in the inner shaft. The
magnitude of this input load is well noticeable on the gauge signal; also the trend of the strain

gauge signal is with agreement with the input speed.

]
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Figure 3. 16. Strain gauge signal: red: 200 N-m, green: 400 N-m, blue: 600 N-m, pink: 800 N-m

The collected signals from the strain gauge are processed with the stabilization diagram in order
to estimate the modal parameters related to the shaft. As mentioned, the system was driven in
run-up regime, so it is excited in non constant period as consequence the meshing frequencies
cannot be not harmonic. For this reason, a time-frequency presentation (Short Time Fourier
Transform) is used.

Figure 3.17 and 3.18 display the STFT issued from simulation and experiment for acceleration on
the test ring gear. An interesting energy increase is remarked in the spectrograms between 0 and 1
kHz band proving an excitation of structural resonances. Oblique lines appear on the STFT map
showing the increase of the gear mesh frequency and its harmonics. Furthermore, vertical lines
are observed and there are particular zones where the higher amplitude corresponds to the cross
of some natural frequencies of the system allowing their immediate identification.
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Figure 3. 18. Numerical STFT on the fixed ring (a) 200 N-m (b) 400 N-m (c) 600 N-m (d) 800
N-m.

It can be noticed that the amplitude of gear mesh frequency increase with load. An important
energy distribution are presented on the second gear mesh frequency, this phenomenon was
highlighted by Mitchell (Mitchell, 1982). He defined an intermediate frequency band which is
produced by the resonance of gear components of a turbine generator. In our case, during run up
regime, with the increasing of the speed, the period of double teeth pairs contact decrease. Also,
the contact area between teeth increase which leads to an increasing of meshing forces, a
variation of the pressure angle and therefore an increase of the contact ratio (Hammami et al
2016),(Fernandez et al 2013). Moreover, the inertia and the mass of the reaction ring gear

increase when masses are added.

7.3 Order functions:
To track the order, angle domain method is used. This method was investigated experimentally

and numerically. It uses tachometer signal as input data as well as the response signal.
Figure 3.19 illustrates the obtained OT map during the experimental and numerical test.
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The most important orders observed on the order maps are displayed in the following figure.
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Figure 3. 19. Order map (a) experimental (b) numerical

Typically, the principal order corresponding to the mesh frequency should be multiple to consider
its harmonics. It is noticed a slight difference between the presented numerical and experimental
order map. This difference can be explained by the influence of some parameters such as the way
how the strip band is rolled and the influence of the white noise issued from the test bench.
Meanwhile, the order resolution was set from 0.01 for a maximum order equal to 75.

In order to estimate the modal parameters, order 65 will be processed in the order map.

Figure 3.20 and 3.21 show respectively the experimental and numerical order “65” for the
different levels of load.

The effect of load appears on order response since the amplitude of accelerations increases as the

load increase.
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Figure 3. 21.Numerical order function simulated on the fixed ring (a) 200 N-m (b) 400 N-m (c)
600 N-m (d) 800 N-m

7.4  Natural frequencies and modal damping sensitivity to the load:

The OBMA techniques allow the estimation of modal parameters during run up condition and
using order function.

The effect of load on modal parameters is well noticeable confirming that natural frequencies and
modal damping depends on it. With increasing the load, the contact area between teeth increase,
so the bending and fillet stiffness increase as well as mesh stiffness function. Thus, it was
expected because of the mass matrix, stiffness matrix and the damping matrix change, (Ericson
and Parker (2014).
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Fourteen modes are estimated experimentally for the different load cases. The natural frequencies
(Figure 3. 4.a) and the modal damping (Figure 3. 5.c) are varying according to the load variation as
well as the frequency error (Figure 3. 6.b).

Obviously, natural frequencies and modal damping varies. Figure 3.22.b shows the frequencies
errors between experimental test and numerical results. The error related to mode 10 is missing
because the natural frequency associated to the shaft was identified only experimentally. The
observed errors are due to the fact that bearings are considered as isotropic. Moreover, this
phenomenon is caused by the influence of mesh stiffness variation on the modal proprieties. The
natural frequencies may change by about 3%. Also an important deviation appears on the modal

damping.

8 Conclusion:

In this chapter, three modal analyses techniques which are EMA, OMA and OBMA are applied on
PGs with power recirculation in order to extract the modal parameters. For EMA, natural
frequencies, damping ratio and modes shapes are identified; the MAC is used in order to compare
the experimental and numerical modes shapes. The influence of meshing stiffness variation on the
modal properties is highlighted.

For the OMA and OBMA, only natural frequencies and modal damping are identified. A
comparison between identified natural frequencies using these three techniques are performed, the
comparison is based on natural frequencies and modal damping.

It is noticed that the comparison is difficult because the OMA technique suffers from missing
modes. This phenomenon is due to the fact that some modes cannot be excited during the stationary
conditions. For this reason, a comparison between the EMA and the OBMA is presented.

No significant differences are found between the modal parameters obtained by EMA and OBMA.
The natural frequencies are deviated by less than 11% and those of the damping ratios by less than
2.43%.

In addition, OBMA is an interesting technique allowing the identification of the modal proprieties
of system that works under its real conditions. Moreover, the effect of load on modal properties by
using the OBMA is investigated and the experimental results are correlated to results obtained by

the numerical model. Angle domain OT method is developed and correlated to experimental
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results. The important order is extracted and highlighted in the text. Stabilization diagram is used
to extract the natural frequencies and the modal damping.
After using modal analysis techniques to characterize the PG system,a further study on the

dynamic behavior of the system in non stationary regimes will be highlithed in the next chapter

e ——
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1 Introduction

The gearbox systems are frequently running under variable loading and variable speed conditions.
The diagnosis and the characterization of those systems under the non stationary regime is a
challenge for research and investigation. In this chapter, the dynamic behavior of PGs is
investigated in stationary condition, run up regime, variable speed and variable loading conditions.
The experimental measurements are compared to the numerical results computed through

developed model.

2 Stationary regime:

In this section, the system is set to run under fixed input speed (1500 rpm) and fixed input load
(300N-m). Sensors are mounted on both fixed and free ring and the accelerations are recorded on
the test ring where the sensors are mounted. The time responses were determined experimentally
and computed from the model presented in chapter 2. A complete characterization of the system
leading to modulation sidebands of PG sets due to rotation of the planet carrier will be presented. In
this context, Inalpolat and Kahraman (Inalpolat and Kahraman, 2009), presented a classification of

the PG based on the sidebands and the mesh phasing functions, (Table 4.1).
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Table 4. 1. PG classification (Inalpolat and Kahraman, 2009).

N 1 2 3 4 5
Planets Planets Planets Planets Planets
equally-space | equally-space | Unequally-space | unequally-space | unequally-space

Case |dand d and dand d d and arbitrarily
in-phase sequentially | in-phase and sequentially | phased.
phased phased.
Spacin ~2x(i-) ~2x(i-0) 27(i-1) 27(i-1) 27(i 1)
v = N V= N v # N v # N v # N
g of
planets
Phasin | zy, _ Wi, wi_, Wi, Wi,
27 2r 2r 2r 2r
g of (n:integer) s - -
' ZZ,% =mr Z:Zry/i =mr er'//i #mMr
gear i=1 i=1 i=1
meshes

Our studied PG falls in case n° 2. In fact, three equally spaced planets are considered for each PG.

The ring planets and sun planets meshing stiffness functions are modeled as square functions

taking into account the mesh phasing.

The position of each planet i (i=1, 2, 3) in each stage j (j=r, t) is defined by angle y;;. The 3 planets

positions of the reaction gear set are (0, 2n/3, 4n/3) whereas the 3 planets positions of the test gear

set are (n/3, m, 5n/3). All of the angles are measured according to a rotating frame linked to the

carrier. Sequentially phased, meshes stiffness are considered for the two sets since % +#k and

Y n=1Zr ¥;; = mm where k and m are integers. The mesh phasing was considered too.

Figure 4.1 shows the evolution of ring-planet 1 mesh stiffness.
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Figure 4. 1. Evolution of mesh stiffness on test gear : (a) ring-planet 1 (b) ring-planet 2 (c)
ring-planet 3
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It can be seen through the figure that a change in the number of pairs in contact ,the meshing
stiffness is maximal when the pair tooth in contact.

In case of PG, mesh stiffness fluctuation is the main source of excitation for stationary regime.
For the test rig, the structure is excited by the f,=320 Hz and its harmonics when the motor is
running at 1498.5 rpm. The same conditions are adopted for the simulations.

Thus, an individual influence of each planet on the accelerometer will be assumed for a duration
Tc/N (N=3: number of planets). Hence, the signal reaches its maximum when a planet i approach to
the location of the accelerometer, and then diminishing to zero at the next period. It is a periodic
phenomenon, so, when a planet i approach to the sensor mounted on the ring, its effect will increase
for the first Tc/2N time period, reaching its maximum and then it is decreased to zero at the end of

the next Tc/2N time period.

Figure 4. 2. Influence of the position of planets on the accelerometer (Hammami. 2015)

A Hanning function is modeled to represent this phenomenon.
27Nt

w(t) = %(1— cos( ) (4-1)

c

In the case of perfect load sharing, a weighting function is used respecting the position of the
planet:

‘//nj c

We; (1) = (t cos( U (1) (4-2)

Upj(t) can be expressed as :

Uy )= ZH UL 1)T}—u[t—(—“‘1)NN+”)TC}} (4-3)

Where terms u (t—a) are unit step functions that ensure the influence of planet n on the

accelerometer and lasts only for a period of T./3.
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The force due to the rotation of carrier is:
N
Fi ) = D W (DU () Fy COS(Z Wt +Z, ) (4-4)
i=1
In this case, the added force that takes into account the effects of the individual passage of each

planet close to the accelerometer has a period T,/3=0.2027s. Figure 4.3 shows the evolution of this
force on the test ring.
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Figure 4. 3. Force due to rotation of carrier on the test ring

Figure 4.4 shows the simulated and measured acceleration on the test ring in time domain.
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Figure 4. 4. Time response on the fixed ring (a) Experimental (b) Numerical
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From figure 4.4, modulation amplitude can be detected in the numerical simulation and the
experimental results as mentioned by (Inalpolat and Kahraman, 2009).This modulation is related
principally to the force due to the rotation of carrier figure 4.3.

In figure 4.5, the spectra of acceleration measured and simulated on the test ring are presented. We
notice that the dynamic component of the test ring is dominated by the fy,. Also, lateral sidebands

are active around the fy,; this fact confirmed the modulation amplitude presented in figure 4.5.
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Figure 4. 5. Spectra of acceleration on the fixed ring (a) Experimental (b) Numerical

A zoom around the first fi,, is displayed in figure 4.6. These sidebands frequency appears at 3.n.fc
(n: integer). This can be explained by the force due to the carrier which was considered in the

numerical model and detected experimentally.
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Figure 4. 6. Zoom of the spectra of acceleration on the fixed ring: (a) Experimental (b) Numerical

It is noticeable that the sidebands are not symmetric to f,=320 Hz, they respect the symmetric
position to f,x=325 that is nearest to fy, also they respect this condition:
|fmax - fml < %Nfc
(4.5)
In fact, (McFadden and Smith 1985) studied this behavior, they affirm that the largest component is
usually at the nearest harmonic of the planet carrier speed which is a multiple of 3 (the number of

planets).
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On the experimental spectra (Figure 4.6.a) another sidebands with frequency m.fc (m: integer) are

detected which are related to the gravity of the carrier. However, only the fm appears on the
numerical spectra (Figure 4.6.b).
The difference between the simulated and the experimental results is related to transmitted load,
the contact ratio and the damping ratio. Also, parametric instability is observed leading to unstable
running regimes. The damping has a significant effect on the system stability, its increase reduces
the unstable regions. Besides, increasing of meshing stiffness leads to the enlargement of the
unstable regions(Yang et al 2019).

3  Effect of gravity of carrier on the dynamic behavior of PGs

The carriers’ components in the studied PG system are heavy; their gravity can impact on the
distances between the planets, the ring and the sun components. When the system run, these
distances will be varying in time. This fact is periodic, it affects directly on gear meshing. When the
distance between gears (sun-planets and ring-planets) increase, the amplitude of meshing stiffness
decrease and vice versa which leading to a variation on the mean value of these functions. Based on
finite element method proposed by (Fernandez et al., 2013) the gear mesh stiffness functions are
determined.

Figure 4.7 shows the evolution of gear mesh stiffness ring-planets during one period of rotation of

ring -planet 1
ring -planet 2
ring planet3
[ LAARA T‘ vr,-rm'r “'m‘

carrier with effects of gravity of carrier. These functions will be integrated in the numerical model.
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Figure 4. 7. Ring-planet mesh stiffness
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The results are obtained for the input rotational speed of motor 1498.5 rpm and an external load
100 Nm.
The spectrum of acceleration of the test ring is dominated by f,, (320.66 Hz) and its harmonics.

Obtained numerical results are correlated with the experimental results.(figure 4.8).
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Figure 4. 8. Spectra of acceleration on the test ring: (a) Numerical (b) Experimental

A zoom around the first fy, is displayed in figure 4.9; based on the frequency characteristics of the
sidebands, two kinds of sidebands are noticed, sidebands due to the influence of the rotation of
carrier as explained in section 2 which have symmetric behaviour, their associated frequency is
3.n.fc (n: integer), and the other sidebands are caused by the gravity of carrier ,they are also
multiple, their associated frequency is m.fc (m: integer). As example we can cite 281.2Hz, 286.1
Hz, 345.3 Hz, and 350.3 Hz as mentioned on figure 4.9.They are missing in the spectra (figure

4.9-a) when the gravity of carrier was neglected in simulation.
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Figure 4. 9. Response spectrum of the test ring on the first harmonic of the mesh stiffness:
Numerical (a) and experimental (b)

4 Run up regime:

The run up regime is obtained by using the frequency converter; the gearbox was driven from 0 to

500 rpm over 15s.
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Figure 4. 10. Evolution of the rotational speed in case of run up

During run-up regime, when the rotational speed increase the period of time varying stiffness
period decreases (Viadero et al., 2014, Hammami et al., 2015). Figure 4.11 displays the trend of

ring-planet and sun-planet mesh stiffnesses function.
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Figure 4. 11. Gear mesh stiffness function evolution during run-up regime: (a) ring-planet (b)

sun-planet
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During this regime, the system is excited by the time varying meshing stiffness (see Figure 4. 9). It
can be noticed that with the increasing of speed, the torque increase and as consequence the

amplitude of vibration increase.
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Figure 4. 12. Time response of acceleration on the ring (a) measured (b) simulated

During run up regime, the period of meshing stiffness function is not constant. So, in order to
characterize accurately the evolution of acceleration a time frequency map done by Short Time
Fourier Transforms (STFT) is presented. Figure 4.13 displays the measured and simulated (STFT)
of test ring of the acceleration.
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Figure 4. 13. STFT on the fixed ring (a) experimental and (b) numerical

From figure 4.13, the evolution of the f,, and its harmonics during measurement and simulation is
observable by the inclined line showing their evolution in time and highlighting the frequency and
amplitude modulation. The amplitude is important for 1x f,, because it is related principally to the
(Hammami. 2015 ).The frequency modulation of frequency is related mainly to the gear meshing
function having variable period. Besides, vertical lines appears on the map proving the presence of

some natural frequencies of the structure.

5 Variable loading regime
In order to show the effect of loading conditions on the dynamic behaviour of the system, the load

shape presented in figure 4.14 is applied to the system during experiments and for simulation. As
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mentioned previously, the external load can be obtained by adding mass on the arm which is
connected to the test ring.
The speed during this regime is fixed at 600 rpm by the speed controller.

The load is applied manually by adding and removing masses. The loading period T_is fixedto 1 s,

400

350 *

300 *

250 *

200 *

Load (N/m)

(AN

100

50 *

[¢]

[0} 1 2 3 4 5 6 7 8 9
Time (s)

Figure 4. 14. External applied load
The mesh stiffness function follow the same trend of the load, this is related principally to the
sensitivity of hertzian contact to the load which will be discussed in the next chapter. Moreover, the
amplitude of variation of the external load introduces a variation on the amplitude of the time
varying stiffness function (Figure 4.15).Also the contact ratio increase as indicated by (Fernandez
et al, 2013).
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Figure 4. 15. Ring-planet 1 mesh stiffness
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It can be noticed from figure 4.16 that the variation of the external load causes an amplitude
modulation on the measured and simulated acceleration on the test ring. The load variation (figure
4.14) creates a change in the amplitude of vibration on time response signal. With the increasing of

load, the vibration amplitude increase.
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Figure 4. 16. Time evolution of the acceleration on the fixed ring (a) Experimental (b) Numerical
In the studied cases, the input speed is fixed at 590 rpm by the frequency inverter. it is well
observed in the spectra shown in figure 4.17 that the fundamental gear mesh frequency is
dominant. It can be moved to the second GMF if the amount of the introduced load will

increased.(Hammami et al., 2016)
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Figure 4. 17. Spectra of acceleration on the fixed ring (a) Experimental (b) Numerical
High activity of sidebands is noticed for experimental spectra than that numerical. This fact can be
explained by several effect presented during the experimental measurement such as the white

noise, the presence mounting errors as well as the noise issued from the motor.

6 Variable speed regime

In this section, the dynamic behavior in variable speed regime is studied. The variation of speed is
performed using the frequency inverter.

The input speed has a sawtooth shape with speed ranging from 500 to 1200 rpm as shown in Figure
4.18. However, the load is fixed to 300 N-m.
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Figure 4. 18. Evolution of rotational speed in case of variable speed.

During the acceleration of motor, the period of mesh stiffness function decreases as we increase the

speed whereas during the deceleration of motor, the period of mesh stiffness function increases as

we decrease the speed. The time response of the acceleration on the fixed ring is shown in Figure

4.19. Vibration signals are modulated by the variation of speed. Amplitude reaches its maximum

values when the speed

IS maximum, (Zimroz et al, 2011).
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Figure 4. 19. Time response measured on the fixed ring (a) Experimental (b) Numerical.

In fact, the meshing frequency is not constant. If we represent the (STFT) of the simulated and
measured accelerations on the test ring (Figure 4.20), it is noticeable the presence of inclined lines
from the right to the left due to the increase of the meshing frequency (increase of speed) and its
harmonics inclined lines from the left to the right due to the decrease of the meshing frequency

(decrease of speed) and its harmonics.
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Figure 4. 20. STFT of the acceleration on the test ring (a) Experimental (b) Simulated.

The theoretical STFT (figure 4.20.b) present vertical lines showing the presence natural
frequencies at 241Hz and 815Hz while the natural frequencies presented in the experimental
result (figure 4.20.a) are on the neighborhood of the frequencies, 136 Hz, 195Hz and 301 Hz. This
regime is widely present in gear transmission. Moreover, it is very important to characterize the

dynamic behaviour since natural frequencies can be excited.

7 Conclusion:

In this chapter, a series of simulations and measurement under stationary and non-stationary
regimes has been performed using the developed numerical model and the experimental test rig.
The main remarks are highlighted as following:

- In the case of stationary regime (fixed load and speed), the dynamic response show that the
meshing frequency and its harmonics dominate the spectra of acceleration.

- The gravity of the carrier impact on the vibration response through the apparition of the sidebands
corresponding to the frequency of carrier.

- Time frequency representations done by STFT could be an efficient tool to analyze the dynamic
response of the system in non-stationary regimes.

- The non-stationary nature of the response was highlighted by the fact that the variability of the
loading will induce a variability of the speed and consequently a variability of the meshing

frequency and its harmonics.
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- A double modulation is observed in the response signals: an amplitude modulation in the
temporal responses is induced by the variation of the applied load and a frequency modulation
induced by the variation of the speed of rotation.

The dynamic behavior of the PG system in the stationary and non stationary regimes is related
principally to the meshing function. In the studied cases, these functions are modeled as linear
function but in reality they are not due to the Hertzian contact.

In the next chapter, the influence of the non-linear Hertzian stiffness on the dynamic behavior of

the system in stationary and non-stationary condition will be highlighted.
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1 Introduction

PG systems operate often under non stationary conditions. These systems remain a major source of
noise and vibration due to the internal or external excitations. The internal excitations for these
transmissions are generally due to the meshing process. The computation of the mesh stiffness
function is generally performed in literature by a local approach considering Hertzian stiffness
between the teeth in contact or by overall approach considering the bending stiffness of the tooth
and fillet foundation stiffness. In this chapter, the dynamic behavior of the PG system will be
investigated in non stationary conditions taking into account the non-linear Hertzian stiffness. The
study of the Hertzian contact is of great importance for computing the transmission errors of the
gear, the stiffness of teeth as well as dynamic loads applied to the teeth and also for the
investigation of the vibration response of gear system as well as for the designers to estimate the

capacity of the load transmission of gears.

2 Non linear model:

2.1 Modelling of gear mesh-stiffness:
The ring-planets and the sun-planets mesh stiffness are modelled by setting in series the bending
stiffness Ky, the fillet stiffness K¢ and the Hertzian stiffness K.

K, =1/ 1+1+1+1+i

K Kip Ky Ky Ky (5.1)

The meshing stiffness function Kij(t) is obtained through the knowledge of the number of teeth pairs

in contact (Velex, 1988). Considering a rotational speed N of the motor, the meshing period is
defined by:

To = (zzsi )%
S r (5.2)
2.1.1 Bending deflection
The bending deflection &y, of a tooth is modelled as in (Chaari et al. 2008):
1
. |d—ed +>€e% 2
5, =F.cos’a, Y e S B L L (5.3)
= El, s;GA AE

Chapter 5: Non-linear model of planetary gear 121



Contribution to the study of the dynamic behaviour of planetary gears in non-stationary regimes in presence of defects Ayoub MBAREK

Where an, is the operating pressure angle, F denotes the applied force, sy, stands to a shear factor, G
is the shear modulus, e; and d; are defined in Figure 5.1, E’, I[; and A; are computed according to the

following equations:

.___E@-v)
E'= 1L+v)(1-2v) (54)
]7/I_i:(]7/|i+]7/|i+l)/2 (5.5)
YA =UA+YA,)/2 (5.5)

li ,Ai,Si ,v and E denotes respectively the moment of inertia, the tooth cross section, the Poisson
ratio and the Young's modulus.

The bending stiffness ki can be obtained by:

(5.6)

Figure 5. 1. Modellingl of the spur gear tooth

2.1.2 Fillet foundation deflection
The analytical expression of fillet foundation deflection is given by equation (5-7) assuming that
the variation of stress is linear and constant, (Muskhelishvili ,1975).
) 2
5, =0 E{ﬁﬂ +M*F£}+P%1+Qﬁmfam) (5.7)
WE S; S;

Sf and us are shown in Figure 5.2 and W is the tooth width. The coefficients L*, M*, P*and Q* can

be obtained by polynomial functions (Sainsot et al., 2004).
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Xi*(hﬁ’ef) = A/Hfz +B h?i +Cihfi/9f + Di/gf + Eihfi +F (5.8)
hsi = ri/rint, s and s are defined in Figure 5.2.

The bending stiffness can be defined by:

Ke =— (5.9)

Figure 5. 2. Geometrical parameters for the fillet foundation deflection

2.1.3 Contact deflection:
The contact deflection equation in the case of elastic deformation involving line contact between

solid bodies is derived by (Harsha, 2006):
_ 4.O5FO°'925

h = W (5.10)
Where | is the length over which teeth are in contact. It is equal to the width of the tooth in the

case of one pair of teeth is in contact and twice when two pairs of teeth are in contact. The

non-linear contact force is given by:

F, =56065.703.1%%2.5+% (5.11)
Hence, the non-linear stiffness is expressed by:
k, = ? =56065.703.1%7 5% (5.12)

h
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2.2 Non linear numerical model:

In order to study the influence of the nonlinear Hertzian contact, a torsional lumped parameter is
developed.

The masses and the inertia are me, I, my, Iy, Mg, Is, Mpg, Ip1, Mp2, lp2, M3, 1p3 for the carrier, the ring,
the sun and the three planets respectively.

The same meshing stiffness functions used for the tridimensional model are also adopted in this
model.

The planets are linked respectively to the reaction ring by the ring planets mesh stiffness K1 Ky,
and K3 and to the reaction sun by the sun planets mesh stiffness Kg1, K2 and Kgs. The same
functions are used in the test gear with Ky K2 and Kz are ring planets mesh stiffness and Kga, Kt
and Kgs sun planets mesh stiffness.

The sun's shaft and the carrier's shaft are modeled respectively by the torsional stiffness ks and K.

Figure 5. 3. PG torsional model

The system equation of motion is:
Mq + Cq + ch + I:nl = I:ext (t) (5-13)

q:{ecr, 9rr D esr, ep1r D eer, ep3r D ect, ert D est, eplt D ep2ta ep3t }T (5-14)
is the vector degree of freedom of the system and M is the mass matrix.
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M0
|0 wm (5.15)
_% +nm, 0 O 0 0 0 |
0 la 0 0 0 0
IFri
0 0 % 0 0 0
M, = - i=r,t (5.16)
0 o o - o0 o0
rp1i
I 2
0 0 0 0 = 0
r-p2i
I 3i
0 0 0 0 0 P
L Yosi |
K t) = KmrK O K
()= 0 K. + K, (5.17)
Z (Ksri (t) + Krri (t)) _Z Krri (t) _Z Krri (t) Krrl(t) - Ksrl(t) Krrz(t) - Ksrz(t) Krr3 (t) - Ksrs(t)
_Z Krri (t) Z Krri (t) 0 _Krrl (t) _Krrz(t) _KrrS(t)
Kmr ) _Z Ksri (t) 0 Z Krri (t) Ksrl(t) Ksrz (t) Ksrs(t) (5 18)
Krrl (t) - Ksrl(t) _Krrl (t) Ksrl(t) Krr1 (t) + Ksrl (t) 0 0
Krr2 (t)_ Ker (t) _KrrZ (t) Ksr2 (t) 0 Krr2 (t)+ Ksrz(t) 0
KrrS(t) - Ksrs(t) _Krrs(t) Ksrs(t) 0 0 Krrs(t) + Ksr3 (t)_
Z (Ksli (t) + Kni (t)) _Z Kni (t) _Z Krti (t) Knl(t) - Ksll(t) an (t) - KstZ (t) an(t) - Ksts(t)
_Z Kni (t) Z Kni (t) 0 _Krn(t) _Krtz(t) _KrtS(t)
T 0 KO KO KO K | O
Krll(t) - Kstl (t) _Kru (t) Ksll(t) Knl (t) + Ksll (t) 0 0
an(t)_ KstZ (t) _KrtZ (t) Kstz(t) 0 KrtZ (t)+ KstZ (t) 0
L Krt3 (t) - Kst3(t) _Krt3(t) Ksts (t) 0 0 Krt3(t) + Kst3 (t)_
C denotes the proportional damping matrix expressed by:
C—aM + K (5.20)

Where a and £ are two constants.
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Fext(t) presents the external torque vector applied on the system.

F.(t)={0,0,T,(t),0,0,0,0,07T,(t),0,0,0 (5.21)

ext
The nonlinear force is induced by the Hertzian Stiffness. It is expressed by (Faik and
Witteman, 2000) :

F, = (XK, {a}= (XK, ©)5 (5.22)
J is the transmission error and {X} is vector of tooth defection

This equation is adopted in the developed model

Fo=(F Fu)' (5.23)
Fu(={0, F; (0, Fy(® . Foy (0 Fiy (0, Fpy () (5.24)
n
; T
Frj (t)= 'Z Krij (t) S:i (t) {rli 1o Iy } (5.25)
i=1
n
i T
R ()= 'Z Ky (0) 04 (1) {Sli 1S ’SBi} (5.26)
i=1
F, (=K (3% () {1 Too T} = K (035 (1) {841, 551:86 ) ; avec: i=1,...,n. (5.27)
Table 5. 1. Components of the tooth deflection
Coefficients s; Coefficients r;
S1i=52i=53i="Ior F1i=r2i=I3i=-Ipp
S4i=55i=56i=Ibs F4i=I5=I6i=Ibp
With
T
{X } = {rbcr +Torr» Thsr s rbplr J rbp2r J rbp3r + oot Tort s Fhst » rbplt ) rbp2t J rbp3t } (5'28)

The transmission error 8 is a relative displacement along the line of action between planetary gears

element and is expressed by (Velex 1988):
o' =r.0, +1.0 (5.29)

brr~rr bir ir

5rit = O + ity (5.30)
5sri = rrbsresr + I’birgir (5-31)
5sti =IOy + iy (5.32)

Chapter 5: Non-linear model of planetary gear 126



Contribution to the study of the dynamic behaviour of planetary gears in non-stationary regimes in presence of defects Ayoub MBAREK

2.2.1 Electric motor modelling:
From the kinetic energy theorem, the rotational velocity of an electric motor can be linked to its
torque and to the receiver torque by:

dQ 4
Ny -

p
The mechanical characteristic of the motor is the relation between the driving torque and the speed

of the motor. It is expressed by
Tb

(l+(sb —5)2)(2—b32] (5.34)

Where s, and Ty, are the slip and torque at the breakdown, respectively. a and b are all constant

T

m=

properties of the motor and s is the proportional drop in speed which is given by:
. N,-N
NS
N is the synchronous speed and N is the actual rotational speed of the motor. Load torque

(5.35)

characteristic T, is chosen to be proportional to the square of the rotational speed.
T =hQ’ (5.36)
Where h is a coefficient depending on the characteristics of the driven system. Eq. (5.33) is
transformed into the following differential equation:
dQ 1 Z
e j[Tm Q1) _Z_;Tr (Q,t)) (5.37)
(5.38)

2.2.2 Resolution of the equation of motion:
The equation of motion is achieved using the classical Newton Raphson method coupled with the

implicit Newmark algorithm as shown in the following algorithm.
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Figure 5. 4. Resolution algorithm (Newmark and Newton-Raphson)
Before applying the Newmark algorithm, we need to compute the initial value corresponding to
0. Gg. Gy and transform the equation of motion.
The system equation of motion given by equation 5.13 can be transformed to an approximated

version at time t=ty+1

The system equation will be written as :
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M{G},.. + C{a}.; + Kby +{Fy ({03003 = {Fo (D} (5.39)

To start the time integration procedure, the initial values of the displacement, velocity, and

acceleration vectors are required. These initial values are determined as follows:
do=0(0), vo=4(0),20=4(0)
. 1 N .
{a}, ={a} +At{q}; +bAt’ {(ﬁ—l){q}i +{q}i+1} (5.40)
{a},, ={a}; + ar*(1-a)}a}; + (@* At){d},, (5.41)
At denotes the time step between two instants while a and b are the Newmark constants.

Extracting{i(}ﬂ1 from equation (5.40) we obtain:

- 1 VU L,
{0}, = gz [0~k - At |- Ak -D{ah, (5.42)

(5.37) and (5.38) gives :
I:R:I{q}l = {E}I +1 (5.43)
Where

(K@ =FY =(F} o+ M ](bf&z (A {Zib —1j{q}i j +

A b (5.44)
a a . .
[C](b*At ORI +(7](5—1j{q}ij
So, the residue can be computed as:
R= [R]{q}m + Fnl _{E}Hl (5-45)

The convergence criterion for the Newton Raphson method coupled with the implicit Newmark
algorithm is reached if the residue R is higher than a small predefined value e.
In the case of the residue R is higher than ¢, a correction should be made. At the iteration k+1, this

residue can be written as a Taylor expansion by:

k
R-k+1 — R-k + a_R

i+1 i+1

Aq (5.46)

i+1

Rikf must be equal to 0, so the correction to be made is:

Aq :[% ] (-RK.) (5.47)

{a}..,.{d}..,and {¢},., can be determined at the iteration k + 1 when Aq is computed.
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2.2.3 Relationship between the non linearity and the non stationary regime
In the case of a variable rotation speed or variable loading, the meshing stiffness isn't periodic.
An increase in the speed of rotation or increase of load with a decrease in the meshing period. The
non-linearity is coupled with the non stationary conditions through the non linear force Fy (5.22).
Also, the input torque as mentioned in equation (5.34) will be modified as the non linear Hertzian

stiffness is time depend to the input torque and the displacement (equation (5-12)).

3 Influence of combined non linear hertzian contact and non stationary
conditions on the dynamic behavior:
In this section; the dynamic behavior simulated from the non linear model will be investigated in

two case studies of non stationarity, run up regime and variable loading regime.

3.1 Run-up condition:

By using the Euler method for the resolution of Eq. (5.37), figure 5.5 shows the evolution of the
rotational speed of the electrical motor. We can notice the presence of two distinct regimes. The
first one called Regime (A) is the stationary regime during which the motor runs under its nominal
rotational speed. The second regime (B) is the run-up regime characterized by an increasing of
rotational speed.

Figure 5.6 shows the evolution of driving and load torques used for simulation.
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Figure 5. 5. Rotational speed evolution of electrical motor.
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Figure 5. 6. Mechanical characteristics of the driving and driven system.

Figure 5.7 shows the time response of the acceleration measured on the fixed ring. The signal is
divided into two parts following the evolution of rotational speed. Part A in which the amplitude of
vibration are constant. Part B is run up régime during which we can notice that the vibration is
increasing with respect to time. This phenomenon is due to the fact that during run up, the
accelerating torque defined by the difference between motor and load torques is increasing giving

rise to increased vibration.
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Figure 5. 7. Accelerations measured on the test ring: (a) Numerical (b) Experimental

A time varying amplitude evolution of the equivalent mesh stiffness and the Hertzian stiffness is
well-observed on figure 5.8.

The gear mesh stiffness are computed according to the procedure given in section 2. The bending
and fillet foundation stiffness are computed for the ring, sun and the planets, as described in the
following manner and coupled in series with the Hertzian stiffness. It is well observed the time
varying evolution of this gear mesh stiffness around a mean value that amplitude is also varying in
the run-up regime.

This matter is explained by the time varying teeth pairs in contact. This evolution has the similar
shape to the torque value applied on the PG transmission (Figure 5.6).
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Figure 5. 81. Mesh stiffness evolution, (a) Ring-planet 1(b) sun-planet 1
The behavior of the Hertzian contact is reflected on the time varying mesh stiffness. In fact, the
mean value of this stiffness acquires a maximum value before becoming constant after the run-up
regime. This fact can lead several bad consequences especially for transmissions works under
frequent start up regime like wear, pitting and spalling defects.

To confirm the influence of run-up regime on gear teeth, the transmission error and inter mesh
forces are studied in ring-planets and sun planets mesh zones. The time evolution of transmission

error function corresponding to ring-planetl s is shown in figure 5.9.

Transmission error [m]

Time [s]

Figure 5. 9. Transmission error function for the Ring and Planet 1 mesh

As mentioned for the ring acceleration, the same zones were recovered. The transmission errors are
constant during the stationary regime (A) and they reach a maximum value during run up regime
(B).

The dynamic force on teeth can be computed by:

Fa(t) = K (t)o(t) (5.48)
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Figure 5.10 shows the evolution of intermesh forces for ring-planetl gear teeth pairs. We can
notice that an overload is applied on teeth during the run-up regime. This phenomenon could
absolutely cause effects to the transmission like pitting and bending of the teeth. This phenomena
was highlighted by (Freese and Hill 2002),. They confirmed that during run up, electric motors
can cause peak torques much higher than recommended for continuous operation which is
transmitted by gear teeth.
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20

Dynamic force [N]
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Figure 5. 9. Ring-planet 1 meshing force evolution

In the run up, the meshing frequency is not constant as specified in section .... To describe the
evolution of the frequency content during this phase, a time-frequency map is drawn based on
Short Time Fourrier Transform (STFT).

Figure 5.11 displays STFT map obtained for acceleration on the test ring. We can notice that the
map is divided into two parts. In part A, it is clear that mesh frequency and harmonics are constant
over time. Zones with dark yellow correspond to high amplitudes obtained when crossing some
Eigen frequencies.

For part (B) inclined lines show the increase of the meshing frequency and its harmonics during run

up condition.
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Natural frequencies

Figure 5. 10. STFT of the acceleration of the ring: (a) Numerical (b) Experimental

3.2 Variable load regime:

A special load shape (Figure 5. 12) was adopted during simulation.

The load in this case is varying with time which can introduce an instantaneous change in the mesh
stiffness frequency and then the frequency modulation. In this case, the transmission was supposed
driven by the asynchronous motor in which a speed controller impose desired speed evolution and

values.
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Figure 5. 11. External applied load
The variation of the external load introduces a variation on the amplitude of the Hertzian stiffness

as a consequence mesh stiffness function and on the period of teeth in contact as shown on
(Fig.5.13).
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Figure 5. 12. Ring-Planet 1 meshing stiffness
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Figure 5. 13. Hertzian stiffness between the Ring and Planet 1

The time varying load applied on the system introduces a variation on different functions such as
the transmission error and the meshing forces.

The sensitivity of transmission error to the load is shown in figure 5.15 for test ring-planetl mesh .
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With the increasing of load the contact between teeth increases as well as the dynamic transmission
error. The load introduces a variation also on modal parameter (Ericson and Parker 2013). The
increasing of load introduces an increasing of stiffness and masses of the system as consequence
the natural frequency and modal damping change.
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Figure 5. 14. Transmission error between test ring and planet 1

As mentioned for the transmission error, the same behavior was recovered for the meshing forces.
With the increasing of load, the contact between teeth increases. This fact induces bending, shear
and compression as well as Hertzian contact between teeth which lead a tooth deflection.
Moreover, the effort in bearing and teeth varied too which may introduce an increasing in
meshing force.
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Figure 5. 15. Dynamic force between test ring and planet 1
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4 Conclusion:

The dynamic behavior of nonlinear PG model in non-stationary conditions was investigated in this
chapter. The nonlinearity due to the Hertzian stiffness was developed and coupled with non
stationary condition. In cases of run up, a series of measurement were carried out. The main
Results obtained are:

- For the run regime: the time signal determined numerically and experimentally are correlated,
during this regime the time varying mesh stiffness is not periodic in the transient regime which
causes higher vibration levels when starting an electric motor. The sensitivity of dynamic force and
transmission error to the transient regime are also investigated. Hertzian stiffness and the gear
mesh stiffness are constant during stationary condition before reaching maximum values of
amplitude during run up condition.

- For variable loading condition, obtained results clearly the variability of load induce a variability
of Hertzian stiffness, transmission error and meshing force.

The vibration response of the system in non stationary regime in presence of defect will be

discussed in the next chapter.
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Chapter 6: Dynamic behavior in presence of defects in

non-stationary conditions
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Chapter 6: Dynamic behavior in presence of defects in stationary and
non-stationary conditions
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1 Introduction:

PG systems are frequently running under non-stationary operation in which loads or speeds are
variable. These conditions affect on the behaviour of the system. In addition, different kind of
defects can occur and that are related to teeth or to the geometry of gears. In order to study the
behavior of the test bench in presence of teeth defects, two kinds of defects which are spalling and
crack are studied through experiments done on the test bench and through simulations using the
developed numerical model. The behaviour of the gear system will be studied for these defects and

under time varying running conditions.

2 Stationary conditions:

In this section, the effects of spalling and cracked tooth are firstly studied in stationary conditions
with constant load and speed. Both defects are created using electro erosion machine and

numerically simulated using LPM.

2.1 Case of spalling defect on the planet:

The spalling defects located on the planet impact on the principal excitation source in PG which is
the mesh stiffness function.

The defect is identified by its width wp (35 mm), its height h, (2mm) and its thickness t, (2 mm).

Figure 6. 1. Spalling defect located on the planet gear
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Since the defect is located on one of the three planets of the test gear, the sun-planets and
ring-planets mesh stiffness functions are modified. This kind of local defect is usually considered
having rectangular shape on the tooth flank. The spalling defect can be modelled as indicated by
(Chaari et al., 2006) by a reduction in the width of the tooth and as consequence an increasing of the
deflection due to the bending. (Ma et al., 2016, Saxena et al. 2016) studied the influence of
rectangular spalling shape and its location on meshing function.

Therefore, a fall of gear mesh stiffness when the defected tooth is in contact will occur as presented
in figure 6.2. Tqp denotes the period of the defected tooth mesh. Its corresponding frequency is
expressed by fop=((zs/zp)*fs)-fc where zs and z, are respectively the sun and the planet ,f; and f.
present respectively the sun and the carrier; this period is given by Tqp,=1/f3,= 0.22 s.

10°
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Figure 6. 2. Ring-planet 1 gear mesh stiffness trend in case of combined defect

Experimental investigations on the influence of spalling on the vibration response of PG is limited
in literature. (Ma and Chen 2012) used time response and spectrum analysis to study the influence
of spalling defect on dynamic behaviour of single stage gear transmission.

The simulation and the experimental tests were carried out at fixed speed (590 rpm) and fixed load
(100 N.m).

When the damaged tooth enters in contact with another tooth, periodic "impulses™ appear in time
response as presented in the Figure 6.3. The period Tq, of damaged tooth mesh is clearly identified

on both simulated and measured time response.
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Figure 6. 3. Time response of the acceleration measured on the angular direction (©) of the test

ring (a) simulated (b) experimental

A similar behaviour is shown for both simulation and experimental time signals. However, it is
observable that figure 6.3 b is contains much spikes than figure 6.3.a.This fact is related to such
parameter like the white noise presented during experimental tests, also, the effect of the elastic

coupling which is not considered in the developed model and the presence of mounting errors.
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The spectrum of the measured and the simulated acceleration on the test ring is displayed in
figures 6.4 and 6.5.
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Figure 6. 4. Simulated spectra of the acceleration measured on the angular direction (©) of the test
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Figure 6. 5. Experimental spectra of the acceleration measured on the angular direction (©) of the

test ring.

The spectrum of the acceleration measured and simulated on the angular direction (©) of the test
ring is dominated by fy, and its harmonic. The frequency of the damage is fqp=1/Tqp, this frequency
is noticeable with sidebands around the gear mesh frequency and its harmonics.

The gear mesh frequency is modulated by the frequency of the defected planet and the frequency
of the carrier multiplied by three (number of planets). The amplitude of sidebands related to the

defect are low due to the geometry of the defect.
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2.2 Influence of load on the dynamic response:

Influence of load on the dynamic response is studied numerically and experimentally. Based on the
procedure given by (Fernandez et al, 2013), the meshing stiffness are determined and included in
the model. Experimentally, two levels of load (300 N-m and 900 N-m) are studied by adding mass
on the arm.

Figure 6.6 shows the time response of acceleration recorded on the angular direction (©) of the test

ring. Figure 6.7 shows the corresponding spectra.
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Figure 6. 6. Time response of acceleration on the test ring (a) measured (b) simulated
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Figure 6. 7. Spectra of acceleration on the test ring (a) measured (b) simulated

It can be observed from figure 6.7 that the increase of load leads to an increase of vibration level.
This fact is also detected in frequency domain, the gear meshing frequency and its harmonics
increase in amplitude as well as the sidebands around them. Therefore, the amplitude of peaks due
to the defect increases. This behaviour confirms the sensitivity of load on meshing function.
(Fernandez et al, 2013, Hammami et al 2016), noticed that when the load increase, the contact

between teeth increase which lead to an increasing of the stiffness function amplitude. This fact

Chapter 6: Dynamic behavior in presence of defects in non-stationary conditions 148



Contribution to the study of the dynamic behaviour of planetary gears in non-stationary regimes in presence of defects Ayoub MBAREK

implies an amplification of vibration amplitude. Also, the meshing stiffness depends on the

geometry of the defect, (Liang et al 2016).

2.3 Case of combined spalling defect on the planet and crack defect on the sun:

In this sub-section, a crack defect on the sun of the test gear is added to the existing spalling defect
on planet tooth. Figure 6.8 illustrates the location of this defect. The crack initiation and
propagation can be caused by several factors like the rim and the web thickness as indicted in
Lewicki (Lewicki 2002). The combined two failures impact directly on the mesh functions.
Researchers agreed that a tooth crack can be modelled by a reduction in meshing function (Chaari
et al., 2006, Cheng et al 2012). In the studied case, this reduction is considered in the sun planet 1
meshing function respecting the period of the defect.

When the cracked tooth enters in contact with another healthy tooth, the time varying mesh
function will be modified.

The crack at the sun tooth is identified by its inclination os (70°) and its length p. (5.7 mm).

Figure 6. 8. Crack defect located on the test sun

The fact that the spalling defect is located on the planet 1, and a crack defect is introduced on the
sun, two kind of reduction will appears on the ring planet mesh stiffness function following the
period of each defect.

The investigations on combined defect are missed in literature. In our work, the PG is submitted to
three main independent sources of excitation which are on the meshing phenomenon, the faulty sun

and faulty planet.
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The signal associated to this kind of defect will lead to combined amplitude modulations and a
complex spectrum characterized by the presence of lateral bands spaced by fgs and fy,. The defect
frequencies are expressed as follows:
fas=N*(fs-fc) (6.1)

fap=((zs/zp)*s)-fc (6.2)
With fs and f; are the rotational frequencies of the sun and the carrier, z; and z, are the number of
teeth of sun and planets and N is the input speed.
Tqp and Tgs are respectively the period of the defected planet and sun. In this case, we assume that
the meshing function start in mesh with the cracked tooth and then the spalled one.

Figure 6.9 illustrates the evolution of ring-planet 1 mesh stiffness function.
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Figure 6. 9. Sun-Planet 1 gear mesh stiffness trend in case of combined defect

Figure 6.10 shows the time response of the acceleration measured on the angular direction (0) of
the test ring.
During each period of rotation of carrier, two kinds of peaks are noticed in time responses: peaks

related to the faulty sun and the others to the faulty planet (figure 6.10.)
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As mentioned before, a difference between the time response obtained by experiments and
simulation is noticeable. This difference is related to several parameters like the presence of
mounting errors, effect of gravity of carrier and noise. Therefore, it is possible through spectra
(figures 6.11 and 6.12) to detect the presence of peaks related to both defects by the activity of

sidebands around 3xGMF that show clearly periodic spikes at fg, and fgs
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Figure 6. 11. Simulated spectra of the acceleration on the angular direction (©) of the test ring
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Figure 6. 12. Experimental spectra of the acceleration measured on the angular direction (©) of the

test ring

Figures 6.11 and 6.12 show that the gear mesh frequency is modulated by the frequency of the
defected sun, the frequency of the defected planet defect and the frequency of the carrier
multiplied by three (number of planets). The sidebands related to the defect are characterized by

low amplitude due to the dimension of the defect.
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3 Non stationary conditions: run up regime:
In this section, the two kinds of defects studied for stationary regime will be investigated for run up
regime.

During run up regime the system is driven to 1000 rpm over 10 s as shown in figure 6.13
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Figure 6. 13. Input rotational speed

3.1 Case of spalling defect on the planet:

Figure 6.16 shows the ring planet meshing stiffness function in presence of defect during run up
regime. The time response of acceleration follows the rotational speed trend. The amplitude of
vibration increases with time. Besides, peaks are noticed caused by the mesh of the test planet
defected tooth. These pulses appear at each meshing of the faulty tooth.
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Figure 6. 14. Sun-planet 1 mesh stiffness evolution in presence of spalling defect

Figure 6.15 shows the time response measured and simulated during run up in presence of spalling
defect.
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Figure 6. 15. Time response of the acceleration measured on the angular direction (0) of the test

ring (a) Experimental (b) Simulated

The recorded time response gives general information about the presence of the defect but it did not
indicate which component is faulty especially when the system runs under non-stationary regime.
For this reason, an angular method is proposed is order to define the faulty component.

The frequency-based techniques are only applicable for stationary operating conditions. In
practice, most of rotating machineries will experience time varying speed conditions. As a result,
vibration signals are intrinsically angle-cyclostationarity rather than time-cyclostationarity
processes (J. Antoni et al 2004, S. Lu et al 2016). As a consequence, frequency and spectral
smearing phenomenon will be observed in the vibration signals; the frequency-based techniques
based on assumption of constant rotating speed are no longer applicable. Among the fault diagnosis
approaches, order tracking (OT) has been validated to be one of the most effective tools.

The OT method resamples the raw signal with a uniform angle increment, which transforms the
irregular signal in time-domain into regular periodic or quasi-periodic signal in the angle-domain.
On this basis, the spectral smearing phenomenon will be eliminated in the angular domain. As a
consequence, the traditional frequency-based techniques become applicable again for further
analysis, (Luo and Mathew (1993).

Figure 6.16 shows the order map of the acceleration of the test ring. The signal is obtained after
transforming the time data to angular data using angle domain order tracking. Numerically, the

order map is determined based on the procedure explained in chapter 3.
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Figure 6. 16. Order map of the acceleration simulated on the test ring

The meshing orders are well observed in the figure by the presence of the vertical lines.

The orders presented in this figure are a multiple of the transmission ratio.

A zoom around the ten first orders is displayed in figure 6.17. By computing the order of the faulty
planet which is O,=2.4, a slight energy due to this defect is detected.

This order in computed using the following expression:
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_ZT-I-Zp

p (6.3)

Zp + Zs

The low energy level can be explained by the small geometry of the defect
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Figure 6. 17. Zoom around the first ten order of the acceleration measured on the test ring

3.2 Case of combined spalling defect on the planet and crack defect on the sun:

The two defects are modelled and implemented in the numerical model. The Sun-planet 1 mesh
stiffness function evolution during run up and in presence of combined defects is displayed in
figure 6.18.
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Figure 6. 18. Sun-planet 1 mesh stiffness evolution in presence of combined spalling and crack

defects

The time response is recorded for the test bench for the run up regime and in presence of the two
defects. Order tracking method is also used to process the time signals.

Figure 6.19 shows the measured and simulated vibration signal on the angular direction (8) of the
test ring.
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Figure 6. 19. Time response of the acceleration measured on the angular direction (0) of the test

ring (a) simulated (b) experimental

Different peaks appear on the time response signal showing the presence of defect. The PG system,
is driven, as mentioned before, in non stationary conditions, the period of defect is variable, so the
frequency of the defect during this stage cannot be identified. To identify the orders associated to

these defect, order maps are presented in figure 6.20 for measured and simulated signals.
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Figure 6. 20. Order map of the acceleration on the test ring (a) Experimental (b) Numerical

It is clear from figure 6.20 the presence of vertical lines proving the meshing orders. Also, the
meshing orders are observed for simulation.
To detect the presence of defects on the order map, a zoom around the first ten orders is achieved.

The order associated to the sun tooth defect is:

0, =22
s — Z.r (64)

The spalling and crack defects are characterized respectively by the order Op =2.4 (pink cursor)

and Os=0.4(black cursor). The defect orders are harmonic.
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Figure 6. 21. Zoom around the first ten order of the acceleration measured on the test ring

Chapter 6: Dynamic behavior in presence of defects in non-stationary conditions 161



Contribution to the study of the dynamic behaviour of planetary gears in non-stationary regimes in presence of defects Ayoub MBAREK

4  Conclusion

In this chapter, the dynamic behaviour of two PGs in presence of defect in discussed using
measurement test and simulations issued from the numerical model. The frequency
characterization of the system in stationary condition (fixed load and speed) is highlighted in the
cases of single and combined defects. Two kinds of defect which are spalling and crack defects are
studied. The meshing stiffness functions in presence of defects are modified by a progressive
reduction of the meshing stiffness which causes an amplitude modulation of the meshing
frequency.

The vibration amplitude is increased in both time and frequency domain comparing to the healthy
cases. The amplitude of sidebands depends of the location of the defect (sun or planet). The
sensitivity of defect to the load is analyzed for two cases of load. With increasing of load, the
amplitude of sidebands referred to the defect increase.

The impacts of defects are also analyzed in non stationary condition during run up regime, by using

order tracking method; the defects are identified experimentally and numerically.
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Conclusion

This chapter is dedicated to the conclusion of the thesis by presenting the thesis statement and
main findings, and finally the author’s view, on the scope of further research in this area.

Thesis statement and main findings

In this research work, the dynamic characterization of planetary gear transmission, under
stationary and non-stationary operating condition in healthy and damage cases, were
achieved. The thesis provided also better knowledge of the planetary gear modals parameters
through the implementation and confrontation of different modal analysis techniques in the
identification of these parameters especially for different loading conditions. The influence of
the external excitation which leads to non stationary conditions was investigated. The
incorporation of non linear contact formulation in the mesh stiffness functions allowed the
computation of vibration response taking into account Hertzian formulation. On the other
hand, the dynamic behaviour of the system in presence of single or combined defect is
highlighted especially for non stationary conditions. The results were obtained through the
implementation of different dynamic models that are validated through experiments done on
test bench.

The principal findings accomplished throughout this research can be summarized as follows:

e A three-dimensional lumped parameter of planetary gear system was developed. The
corresponding results were confronted successfully to experimental results issued from
test bench.

e Planetary gear natural frequencies and damping ratios were identified using three
different modal analysis techniques.

e The mesh stiffness variation impacts on the modal properties of the system.

e The natural frequencies and modal damping depend on the applied loading conditions.

e The non linear Hertzian contact has an effect on the dynamic behavior of the system in
non stationary condition.

e The diagnosis of combined teeth defects in non stationary conditions was performed

using Order tracking method.

Conclusion 163


https://www.sciencedirect.com/topics/engineering/damping-ratio

Contribution to the study of the dynamic behaviour of planetary gears in non-stationary regimes in presence of defects Ayoub MBAREK

Conclusions
The main conclusions issued from this research work are presented as follows:

In a first step, modal analysis techniques which are EMA, OMA and OBMA were
investigated and then compared. A LPM of the gear transmission was used to implement these
three techniques numerically jointly with an experimental investigation on a test bench. Using
the Stabilization diagram and modal assurance criterion and based on FRFs, a complete
thorough modal analysis was done. The natural frequencies, modal damping and mode shapes
were identified and correlated to others issued from the LPM. Thus, based on CPSD and order
functions respectively for the cases of OMA and OBMA, natural frequencies and damping
ratio were extracted numerically and experimentally. However, the building of modes shapes
in those cases is difficult due to the limitation of instruments. These two techniques are
applied when the system is driven in stationary regime or non-stationary regime (run up or run
down conditions). A comparison between these three techniques allowed us to conclude that
OBMA technique is close to EMA, but it is powerful for practical engineering application
since it allows modal analysis even in non stationary conditions. To provide a further insight
in OBMA, the effect of load change and run up on the dynamic characterization is
highlighted. Four different loading conditions were treated. It was shown that that the
amplitude of meshing forces and the period of teeth double contact increase as the torque
level increases. It was found also that inertia of the ring and the average value of mesh
stiffness function change. This behavior was noticed on mesh stiffness trends. Moreover, an
increase in vibration amplitude on the test ring was observed as well as the spectral density
associated to the first (GMF) which moves to second (GMF) harmonic. The results confirmed
the fact that when the torque is increased, the contact force between the teeth increase, which
lead to an increasing in internal force values at the bearing and the teeth and a fluctuation of
the pressure angle and therefore an increase of the contact ratio.

For modal parameters estimation, load plays an important load and contributes significantly to
their change. With increasing of the load, natural frequencies and modal damping change.
This fact was explained by the increase of mesh stiffness amplitude as well as an increasing of
forces transmitted to teeth and bearings.

In a second step, series of simulations and experiments were carried out in stationary regime
and under non-stationary operating conditions whether in healthy or damaged cases. What
stand out from the obtained results are:
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- The dynamic responses of system in healthy case have shown the presence of amplitude
modulation on vibration signals explained by the actuating force induced by the rotation of
carrier, which is related mainly to the influence of periodic passage of planets close the
sensor. The vibration amplitude increase when a planet approaches sensor location.

- The spectrum of acceleration is dominated by the meshing frequency and its harmonics.
Sidebands are observed around these components as a consequence of the above cited
phenomenon.

- The influence of carrier on the vibration response is identified. In fact, the gravity of carrier
creates a variation in the amplitude of meshing function giving rise to sidebands on the
spectra spaced by the rotational frequency of carrier.

- Non-stationary conditions which can be found in run up regime, variable speed and variable
loading conditions were studied. Two kinds of modulation were observed. An amplitude
modulation due to the evolution of the rotational frequency of the carriers’ components is
noticed. Added to that, a frequency modulation related mainly to gear meshing function is
also observed induced by the variability of speed. Short time Fourier analysis was carried out
experimentally and numerically in order to characterize frequency content and to identify the
speed variation. The STFT showed inclined lines corresponding to the variation of the
meshing frequency.

-The influence of the non linear Hertzian contact stiffness between mating teeth on the
dynamic behaviour in run up and variable loading conditions was examinated. The meshing
stiffness amplitude is found to be is non constant. In fact, it is sensitive to the speed and the
applied load which affect the vibration response. The sensitivity of dynamic force and

transmission error to those regimes were also investigated.

The final part of this thesis is dedicated to the study of the dynamic behaviour of planetary
gear system in presence of teeth defects in stationary and non-stationary regimes. The main
principal points issued from this study are as follow:

- A reduction on the meshing function respecting the period of rotation of the considered
component indicates the presence of defects on the damaged tooth whether in cases of single
or combined defect.

- The presence of defect has an impact on time response and spectra by an increase of the
vibration amplitude. This is well noticed on meshing frequency amplitude and its harmonics

as well as the presence of sidebands which allow the identification of the faulty components.
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-The external applied load has an impact on the dynamic response of faulty system. With
increasing of load, the vibration amplitude increase. This phenomenon is noticed in time and
frequency domain related mainly to the increasing of contact area when the system is loaded.
-The identification of the faulty components in non stationary condition using time response
and STFT presentation is limited due to the small geometry of the introduced defect and the
change of frequency content over time.

- The Order Tracking method could be the solution for the identification of defects in such

conditions. This was demonstrated for single or combined defects detection in run up regime.

This research work contributed to the dynamic characterization of planetary gear system by
the identification of modal parameter, the highlight of the influence of internal and external
excitations dynamic behaviour of those systems. Moreover, it offers tools for vibration
diagnosis that could be used for condition monitoring of machines operating in non stationary

condition in healthy and presence of defects.

Future works

As perspective and future works of this thesis we can define the following tasks:

- More kinds of defects whether tooth or geometrical defect can be studied and implemented
numerically and in the test bench in order to investigate the dynamic behavior of these system
in stationary and non stationary operation.

- More powerful signal processing techniques can be developed allowing the identification
and the characterization of these defect.

- Experimentally, different supplementary instruments can be added in the inner component
that can be developed allowing a refined measurement of vibration response.

-A common time invariant model based on proportional damping will be developed .

—
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Conclusiones

Este capitulo se dedica a las conclusiones y los principales hallazgos, y finalmente se incluye
la opinién del autor sobre el alcance de la investigacién y las lineas futuras que quedan

abiertas en esta area.

Estado de la tesis y principales conclusiones

En este trabajo de investigacion se ha conseguido la caracterizacion dindmica de una
transmision de engranajes planetarios, en condiciones de operacidon estacionarias y no
estacionarias, para casos sin y con defectos. Este trabajo de tesis también ha proporcionado un
mejor conocimiento de los parametros modales de los engranajes planetarios a través de la
implementacion y confrontacion de diferentes técnicas de analisis modal en la identificacion
de estos parametros, especialmente para diferentes condiciones de carga. Se ha investigado la
influencia de la excitacion externa que conduce a un funcionamiento en condiciones no
estacionarias. La incorporacion de la formulacion del contacto no lineal en las funciones de
rigidez de la malla, ha permitido el célculo de la respuesta vibratoria teniendo en cuenta la
formulacién hertziana. Por otro lado, el comportamiento dindmico del sistema en presencia de
un defecto Gnico o combinado se destaca especialmente en condiciones no estacionarias. Los
resultados se obtuvieron a través de la implementacion de diferentes modelos dinamicos, que

han sido validados mediante ensayos experimentales realizados en un banco de pruebas.

Los principales hallazgos logrados a lo largo de esta investigacion se pueden resumir en los

siguientes puntos:

e Se ha desarrollado un modelo tridimensional con pardmetros concentrados del sistema
de engranajes planetarios. Los resultados correspondientes se confrontaron con éxito
con los resultados experimentales obtenidos en el banco de pruebas.

e Se han podido identificar las frecuencias naturales de los engranajes planetarios y las
relaciones de amortiguamiento utilizando tres técnicas de analisis modal diferentes.

e Lavariacion de la rigidez de engrane afecta a las propiedades modales del sistema.
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e Las frecuencias naturales y la amortiguacion modal dependen de las condiciones de
carga aplicadas.

e El contacto hertziano no lineal tiene un efecto sobre el comportamiento dinamico del
sistema en condiciones no estacionarias.

e El diagnostico de defectos de dientes combinados, en condiciones no estacionarias, se

ha realizado mediante un método de andlisis de 6rdenes.

Conclusiones

A continuacion se presentan las principales conclusiones obtenidas de este trabajo de

investigacion:

En un primer paso, se investigaron las técnicas de analisis modal EMA, OMA y OBMA y
posteriormente se procedidé a una comparacién de las mismas. Se utilizd6 un LPM de la
transmision de engranajes para implementar estas tres técnicas numéricamente,
conjuntamente con una investigacion experimental sobre un banco de pruebas. Utilizando el
diagrama de Estabilizacion y el criterio de garantia modal y basandose en las FRF, se realizo
un andlisis modal completo. Las frecuencias naturales, la amortiguacion modal y las formas
de los modos se identificaron y se correlacionaron con otras emitidas desde el LPM. Por lo
tanto, segun las funciones de CPSD y de orden, respectivamente, para los casos de OMA y
OBMA, las frecuencias naturales y la relacion de amortiguacion se extrajeron numérica y
experimentalmente. Sin embargo, la construccion de las formas de los modos en esos casos es
dificil debido a la limitacion de los instrumentos. Estas dos técnicas se aplican tanto cuando el
sistema se acciona en régimen estacionario como cuando se hace en no estacionario
(condiciones de funcionamiento hacia arriba o hacia abajo). Una comparacion entre estas tres
técnicas ha permitido concluir que la técnica OBMA esté cerca de la EMA, pero es potente
para aplicaciones practicas de ingenieria, ya que permite el analisis modal incluso en
condiciones no estacionarias. Para proporcionar una vision mas detallada de OBMA, se ha
resaltado el efecto del cambio de carga y la variacion hacia arriba en la frecuencia de
funcionamiento en la caracterizacién dinamica. Se han tratado cuatro condiciones de carga
diferentes. Se ha demostrado que la amplitud de las fuerzas de engrane y el periodo de doble
contacto de los dientes aumentan a medida que aumenta el nivel de par. También se ha
encontrado que la inercia del anillo y el valor promedio de la funcién de rigidez de engrane

cambian. Este comportamiento se ha notado en las tendencias de la rigidez de engrane.
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Ademas, se ha observado un aumento en la amplitud de la vibracion en el anillo de prueba, asi
como la densidad espectral asociada al primer arménico (GMF) que se mueve hacia el
segundo armonico (GMF). Los resultados confirmaron el hecho de que cuando aumenta el par
motor, aumenta la fuerza de contacto entre los dientes, lo que conduce a un aumento en los
valores de la fuerza interna en el rodamiento y los dientes y una fluctuacion del angulo de
presion y, por lo tanto, un aumento de la relacion de contacto.

Para la estimacién de los parametros modales, la carga juega un importante papel y contribuye
significativamente a su cambio. Con el aumento de la carga, cambian las frecuencias naturales
y la amortiguacion modal. Este hecho se explica por el aumento de la amplitud de la rigidez
de engrane y el aumento de las fuerzas transmitidas a los dientes y rodamientos.

En un segundo paso, se llevaron a cabo unas series de simulaciones y experimentos en
régimen estacionario y en condiciones de operacion no estacionarias, tanto en casos sin como
con defectos. De los resultados obtenidos se destaca lo siguiente:

- La respuesta dindmica del sistema para el caso de ausencia de defectos ha mostrado la
presencia de modulacion de amplitud en las sefiales de vibracion, hecho que se explica por la
fuerza de accionamiento inducida por la rotacion del porta satélites, que esta relacionada
principalmente con la influencia del paso periddico de los planetas cerca de los sensores. La
amplitud de la vibracion aumenta cuando un planeta se acerca a la ubicacion del sensor.

- El espectro de aceleracion estd dominado por la frecuencia de engrane y sus armonicos. Las
bandas laterales se observan alrededor de estos componentes como consecuencia del
fendmeno mencionado anteriormente.

- Se ha identificado la influencia del porta satélites en la respuesta vibratoria. De hecho, el
efecto de la gravedad sobre el porta satélites crea una variacion en la amplitud de la funcion
de engrane que da lugar a bandas laterales en los espectros, espaciados por la frecuencia de
rotacion del porta satélites.

- Se han estudiado las condiciones no estacionarias que se presentan en casos como al acelerar
el sistema, velocidad variable y condiciones de carga variables. Se observaron dos tipos de
modulacion. Una modulacion en amplitud debido a la evolucion de la frecuencia de rotacion
de los componentes de los porta satélites. Ademas, tambien se observa una modulacion de
frecuencia relacionada principalmente con la funcion de engrane, inducida por la variabilidad
de la velocidad. Por ello, se realiz6 un analisis de Fourier de tiempo corto (STFT), tanto de
forma experimental como numeérica, con el fin de caracterizar el contenido en frecuencia e
identificar la variacion de velocidad. EI STFT mostré lineas inclinadas correspondientes a la

variacion de la frecuencia de engrane.
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- Se ha examinado la influencia de la rigidez de contacto hertziana no lineal entre los dientes
en el comportamiento dindmico en condiciones de carga variable. La amplitud de la rigidez de
engrane no es constante. De hecho, es sensible a la velocidad y la carga aplicada y que afectan
a la respuesta vibratoria. También se ha investigado la sensibilidad de la fuerza dinamica y el

error de transmision a esos regimenes.

La parte final de esta tesis se ha dedicado al estudio del comportamiento dinamico del sistema
de engranajes planetarios en presencia de defectos en los dientes, en regimenes estacionarios
y no estacionarios. Los principales aspectos de este estudio son los siguientes:

- Una reduccidn en la funcion de engrane que respeta el periodo de rotacion del componente
considerado que indica la presencia de defectos en el diente dafiado, ya sea en casos de
defectos Unicos 0 combinados.

- La presencia de defecto tiene un impacto en la respuesta en el tiempo y en los espectros,
debido a un aumento de la amplitud de vibracion. Esto se nota bien en la amplitud de la
frecuencia de engrane y sus armonicos, asi como en la presencia de bandas laterales que
permiten la identificacion de los componentes defectuosos.

- La carga aplicada externa tiene un impacto en la respuesta dinamica del sistema defectuoso.
Con el aumento de la carga aumenta la amplitud de la vibracion. Este fendmeno se nota tanto
en el dominio de tiempo como en el de la frecuencia, relacionado principalmente con el
aumento del area de contacto cuando se incrementa la carga del sistema.

- La identificacion de los componentes defectuosos en condiciones no estacionarias utilizando
la respuesta en el tiempo y la presentacion STFT esta limitada debido a la pequefia geometria
del defecto introducido y al cambio de contenido en frecuencia a lo largo del tiempo.

- EI método de andlisis de ordenes podria ser la solucion para la identificacion de defectos en
tales condiciones. Esto se ha demostrado para la deteccion de defectos simples o combinados

en un régimen transitorio de aumento de la velocidad.

Este trabajo de investigacion ha contribuido a la caracterizacion dinamica de un sistema de
engranajes planetarios mediante la identificacion de parametros modales, siendo lo maés
destacado de la influencia en el comportamiento dindmico ante excitaciones internas y
externas de esos sistemas. Ademas, ofrece herramientas para el diagnostico de vibraciones
que podrian usarse para el monitorizado en condicidon de maquinas que funcionan en

condiciones no estacionarias con y sin defectos.
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Trabajos futuros

Como perspectiva y trabajos futuros de esta tesis se pueden definir las siguientes tareas:

- Estudiar més tipos de defectos, ya sean en el diente o en la geometria, e implementarse
numéricamente y en el banco de pruebas para investigar el comportamiento dinamico de estos
sistemas en funcionamiento en régimen estacionario y no estacionario.

- Se pueden desarrollar técnicas de procesamiento de sefiales més potentes que permitan la
identificacion y la caracterizacion de estos defectos.

- A nivel experimental puede ser de interés incluir nuevos instrumentos suplementarios en el

componente interno que permitan una medicién refinada de la respuesta vibratoria.

—
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Scientific Publications

As result of this work, two research articles are published and five conference papers are

presented:

Articles

Mbarek, A., Hammami, A., Del Ringon, A. F., Chaari, F., Rueda, F. V., & Haddar, M.
(2017). Effect of load and meshing stiffness variation on modal properties of planetary

gear. Applied Acoustics.

Mbarek, A., Del Rincon, A. F., Hammami, A., Iglesias, M., Chaari, F., Viadero, F., &
Haddar, M. (2018). Comparison of experimental and operational modal analysis on a back

to back planetary gear. Mechanism and Machine Theory, 124, 226-247.

International conferences papers

Mbarek, A., Del Rincon, A. F., Hammami, A., Iglesias, M., Chaari, F., Rueda, F. V., &
Haddar, M. (2018, March). Dynamic Behavior of Back to Back Planetary Gear in
Presence of Pitting Defects. In International Conference on Acoustics and Vibration(pp.
16-22). Springer, Cham.

Mbarek, A., Hammami, A., Del Rincon, A. F., Chaari, F., Rueda, F. V., & Haddar, M.
(2017, March). Effect of Gravity of Carrier on the Dynamic Behavior of Planetary Gears.
In International Conference Design and Modelling of Mechanical Systems (pp. 975-983).
Springer, Cham.

Mbarek, A., , Hammami, Del Rincon, A. F. A., Iglesias, M., Chaari, F., Rueda, F. V., &
Haddar, M. (2018, December). Non linear dynamic behavior of planetary gear in run up
regime in presence of spalling defect. In International Conference On Advanced
Materials, Mechanics and Manufacturing.

Mbarek, A., , Hammami, Del Rincon, A. F. A., Iglesias, M., Chaari, F., Rueda, F. V., &
Haddar, M. (2017, June). Non linear dynamic behavior of planetary gear in run up regime.
In International Conference "Condition Monitoring of Machinery in Non-Stationnary
Operations” CMMNO’2018. Springer, Cham.

National conferences papers

Mbarek, A., , Hammami, Del Ringon, A. F. A., Iglesias, M., Chaari, F., Rueda, F. V., &
Haddar, M. (2018, October). Non linear dynamic behavior of planetary gear in run up
regime in presence of crack defect. congrées Tunisian de mécanique.
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s .
M . Ce travail de thése porte sur l'analyse du comportement dynamique des transmissions a engrenages planétaires
dans des conditions non stationnaires en présence de défauts. La stratégie de cette thése est basée sur la construction d’un modele
numérique qui est référé a un banc d’essai composé d’un train planétaire d’essai monté dos a dos avec un train d’entrainement a
réaction qui permet la recirculation de la puissance.

Tout d'abord, des techniques d'analyse modale ont été étudiées pour caractériser le comportement dynamique du systéme. Une étude
comparative entre trois techniques d'analyse modale a été réalisée afin de déterminer les propriétés modales dans différentes
conditions de fonctionnement. Le diagramme de stabilisation et le critére d'assurance modale ont été utilisés pour estimer les modes
obtenus. Les modes expérimentaux et numériques de chaque technique ont été comparés et discutés. De plus, I'effet de la variation
de charge et de la rigidité d'engrénement sur les paramétres modaux a été mis en évidence.

L'étude du comportement dynamique du modele correspondant au banc d'essai a été réalisée initialement dans des conditions
stationnaires ou la vitesse et le couple sont constants. Les bandes latérales de modulation sont mises en évidence par des simulations
numériques issues d'un modele tridimensionnel et de mesures expérimentales. L'influence de la gravité du porteur sur la réponse
dynamique a également été étudiée en tenant compte de l'interaction entre les engrenages en prise, le poids des systemes de porte-
satellites. Ensuite, le comportement dynamique sous des excitations non stationnaires telles que les régimes de charge variable, de
vitesse variable et de montée en régime a été étudié. L'analyse temps-fréquence a été développée pour caractériser la fréquence des
signaux de vibration issus de conditions de fonctionnement non stationnaires. Les résultats numériques obtenus par la transformée
de Fourier en temps court sont validés par des mesures de vibrations effectuées sur un banc d’essai pendant le fonctionnement dans
ces conditions. Cependant, un modéle non linéaire du modéle prenant en compte la rigidité hertzienne a été développée et étudié en
régime non stationnaire présenté par la charge variable et le régime de montée en régime.

Enfin, la réponse dynamique du systeme en présence de deux types de défauts a été analysée et discutée dans les régimes
stationnaires et non stationnaires. Une méthode de suivi des commandes a été utilisée pour identifier les défauts de démarrage et les
conditions de charge variables pour les signaux simulés et déterminés expérimentalement.

AbStraCt: The present PhD study is focused on analyzing the dynamic behavior of planetary gear transmissions in non-
stationary conditions in presence of defects. The strategy of this thesis is based on building a numerical model which is referred to a
test bench composed of a test planetary gear set mounted back to back with reaction gear set which allow the power recirculation.
First of all, modal analysis techniques were studied to characterize the dynamic behavior of the system. a comparative study
between three modal analysis techniques was carried out in order to determine the modal properties in different running condition.
Stabilization diagram and Modal assurance criterion were used to estimate the obtained modes. Experimental and numerical modes
of each technique were compared and discussed. In addition, the effect of load and meshing stiffness variation on the modal
parameters were highlighted.

The study of the dynamic behavior of the model corresponding to the test bench was performed initially in stationary conditions
where the speed and the torque are constant. Modulation sidebands are highlighted through numerical simulations issued from a
three-dimensional model and experimental measurements. Influence of the gravity of carrier on the dynamic response were also
investigated taking into account the interaction between meshing gears, the weight of the planet carrier systems. Then, the dynamic
behavior under non-stationary excitations such as the variable load, variable speed and run up regimes was investigated. Time
frequency analysis was developed to characterize frequency of vibration signals issued from non-stationary operating conditions.
Numerical results obtained by the Short Time Fourier Transform are validated through vibration measurements on test bench during
operation under these conditions. However, a non linear model of the model taking into account the Hertzian stiffness was
developed and studied in non stationary regime presented by the variable load and run up regime.

Finally, the dynamic response of the system in presence of two kinds of defect was analyzed and discussed in stationary and non
stationary regimes. Order tracking method was used to identify the defects in run up and variable loading condition for the simulated
and experimental determined signals.

Mots clés: engrenage planétaire, regime non stationnaire, défaut, analyse modale, dynamique, essai expérimentaux, modele
numérique

Key-word: planetary gear, non stationary regimes ,defect ,modal analysis ,dynamic, experimental test, numerical model
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