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Abstract

When a camera is affixed on a dynamic mobile robot, image stabilization is the

first step towards more complex analysis on the video feed. This thesis presents a novel

electronic image stabilization (EIS) algorithm for small inexpensive highly dynamic mobile

robotic platforms with onboard camera systems. The algorithm combines optical flow

motion parameter estimation with angular rate data provided by a strapdown inertial

measurement unit (IMU). A discrete Kalman filter in feedforward configuration is used

for optimal fusion of the two data sources. Performance evaluations are conducted by a

simulated video truth model (capturing the effects of image translation, rotation, blurring,

and moving objects), and live test data. Live data was collected from a camera and

IMU affixed to the DAGSI WhegsTM mobile robotic platform as it navigated through a

hallway. Template matching, feature detection, optical flow, and inertial measurement

techniques are compared and analyzed to determine the most suitable algorithm for this

specific type of image stabilization. Pyramidal Lucas-Kanade optical flow using Shi-Tomasi

good features in combination with inertial measurement is the EIS algorithm found to be

superior. In the presence of moving objects, fusion of inertial measurement reduces optical

flow root-mean-squared (RMS) error in motion parameter estimates by 40%. No previous

image stabilization algorithm to date directly fuses optical flow estimation with inertial

measurement by way of Kalman filtering.
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ELECTRONIC IMAGE STABILIZATION FOR MOBILE ROBOTIC VISION

SYSTEMS

I. Introduction to Electronic Image Stabilization

S
tabilization is the process by which undesired output fluctuations are removed from

a system. Stabilization is found in many areas of life. A robotic manipulator uses

stabilization to maintain control of its mechanical arms. Traction controls on automotive

vehicles stabilize the acceleration forces on the tires. The nation’s economic leaders use

financial stabilization tools to keep the American markets under control. Even the simple

act of eating a bowl of cereal requires active biological stabilizers to successfully bring food

from bowl to mouth.

Image stabilization is a specific type of stabilization with versatile and necessary use.

Inherent to image stabilization is vision. For stationary vision systems image stabilization

is unnecessary, but the vast majority of visual systems are mobile. Both biological and

engineered vision systems have mobile elements which require stabilization. Walking down

the street would be very painful without a natural internal image stabilizer allowing for

accurate determination of object location and depth to aid in notifying you of a poten-

tial collision. A camera attached to an Unmanned Aerial Vehicle (UAV) requires image

stabilization for the clearest video sequences.

Electronic image stabilization (EIS) is a specific type of image stabilization involving

signal processing on a digital camera video feed. Other types of image stabilization are

mechanical, involving the physical movement of the camera, and optical, involving the

manipulation of the camera lenses [1:3-8]. This thesis focuses on EIS and its applications

to highly dynamic mobile robotic platforms with onboard camera systems.

The most familiar form of EIS is found on commercial digital photographic cameras

and digital video cameras. These stabilizers are used to counteract hand jitters which can

1
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Figure 1.1. The EIS Concept. Performing EIS involves

the conversion of an unstable video feed into a stabilized

video feed.

ruin a photo or video. In addition, EIS is used for video overlay algorithms. If certain

objects in a video feed are marked using an overlay, it is necessary for the overlay to move

with the object for correct classification. EIS is used to estimate the movement of the

images and correct the overlay as necessary. EIS is also used as a first step towards more

complex video analysis. Object shape characterization, object detection and tracking,

and simultaneous localization and mapping (SLAM) algorithms, among others, all require

stabilized video in order to operate most effectively.

The aim of EIS is the elimination of unwanted camera motion effects from an image

feed. It seeks to convert an unstable image feed into a stable image feed. EIS is comprised of

two main functions, shown in Figure 1.1. These are motion estimation, followed by motion

compensation. In the motion estimation stage, the physical movement of the video image

pixels between frames are defined within the parameters of a particular motion model.

Once a set of parameter estimates is found frame to frame, compensation is applied to

counteract the perceived motion. This is done using digital warping of the image. The

result is a stable image feed.

1.1 Research Motivation

The motivation for this thesis is non-Global Positioning System (GPS) navigation

systems. Precision navigation in non-GPS coverage areas is becoming a necessity in modern

combat operations. As warfare continues to move into urban areas, GPS navigation is

becoming less reliable. The line-of-sight vector between the GPS receiver and the satellite

is often blocked in urban areas due to buildings and other obstructions. Enter a building

and the GPS signal is severely degraded or lost entirely. Further, the susceptibility of

2



the GPS signal to jamming, intentional or unintentional, is an ever present concern [2:43].

These problems in GPS availability necessitate the development of non-GPS navigation

systems.

The advantages of non-GPS navigation is an increase in military asset mobility and

control, and additional navigation redundancy where GPS is available. It provides the

capability to track and monitor people and material in non-GPS coverage areas where

they currently cannot be tracked or monitored. Non-GPS navigation can be used to

guide UAV’s into regions of the urban air space they could not enter previously. Non-GPS

navigation can also be used to guide teleoperated robotic platforms and Unmanned Ground

Vehicles (UGV’s) into regions of the battlefield where they currently cannot venture due

to GPS constraints. In the event of sudden GPS denial or degradation on the battlefield,

non-GPS navigation systems can ensure continued precision navigation.

1.1.1 Robotic Platforms and Their Relation to Non-GPS Navigation. In recent

years, it has become apparent that robotic platforms have a variety of beneficial uses to the

combat soldier. They can be used for reconnaissance or as transport vehicles; they can be

used as decoys; or they can be armed with munitions and engage the enemy, among other

uses. The use of these valuable systems in GPS degraded areas may reveal new combat

capabilities.

Recent developments in biologically inspired robotic platforms have allowed these

systems to physically venture into areas robots have never gone before. Snake mimicking

robots can navigate in and around very confined spaces. Insect mimicking robots can

crawl or fly into any small opening. Walking robots can traverse large obstacles. The EIS

algorithm developed for this thesis operates on the video feed of a camera mounted on the

DAGSI WhegsTM mobile robotic platform [3], shown in Figure 1.2. This particular platform

is capable of climbing stairs, rocks, and other difficult terrain. Ordinary wheeled platforms

simply cannot navigate in environments where these types of biologically inspired robots

thrive.

It has been proven that non-GPS navigation is achieved by optical and inertial sensor

fusion [4]. However, this kind of complex video analysis requires a stabilized video feed in

3



(a) DAGSI Whegs (b) Camera/IMU Setup

Figure 1.2. The (a) DAGSI Whegs Mobile Platform, with

(b) Camera/IMU Setup.

order to achieve the best performance. Optical sensors mounted on biologically inspired

robotic platforms have one major drawback; they undergo highly dynamic motion. Thus,

if non-GPS navigation is implemented on one of these highly dynamic mobile robotic

platforms, image stabilization is necessary. The EIS algorithm developed in this thesis

is the preparatory step required for this type of navigation solution for highly dynamic

mobile robotic platforms.

Biologically inspired robotic platforms using non-GPS navigation will allow the en-

trance of combat capabilities into areas of the battlefield never thought possible. Explosive

devices could be sent secretly up sink drains to destroy enemy assets. Ammunition and

supplies could be sent across a pile of rubble impassible by humans to the people who

need it. An audio sensor could secretly find its way under the sofa of a prominent enemy

leader and gather valuable intelligence. The list is endless. The integration of these types

of robotic platforms with non-GPS navigation will allow our military forces to go farther

and accomplish more than ever before.

1.2 Problem Statement

The problem statement for this work is to develop an effective EIS algorithm capable

of use on highly dynamic mobile robotic platforms. When traversing difficult terrain, the

video feed undergoes a substantial amount camera movement, noise, and imaging effects.

These aspects of dynamic motion make complex video feed analysis difficult to achieve.

4



An effective EIS algorithm is necessary in order to accurately utilize non-GPS navigation

on these systems.

The use of the developed EIS algorithm is not contained to the video feed only. If

other sensors are rigidly attached to the platform and face the same direction, the frame

to frame motion estimates can be applied to them as well.

1.3 Equipment and Testing

The equipment used in this work is the Pixelink PL-A741 monochrome video camera,

operating at 7 frames per second, and the MIDG IMU, operating at 50 Hz. Both devices are

mounted on the front of the DAGSI WhegsTM mobile platform. These devices are shown in

Figure 1.2. Testing was accomplished inside the Air Force Institute of Technology, located

at Wright Patterson Air Force Base, Ohio.

1.4 Research Scope

This research develops the theory and numerically analyzes several current EIS tech-

niques. An in depth presentation of applicable theory is provided, laying the foundational

understanding of the four major classes of EIS; template matching, feature detection, op-

tical flow, and inertial measurement. Algorithms representative of each of these methods

are developed and their accuracies compared against a video truth model whose motion

parameter values are known. Further, using the camera and IMU affixed to the DAGSI

WhegsTM mobile platform, a live data collect was performed. This allows for real world

performance analysis of the algorithms. Algorithm computation time is also compared.

1.5 Research Contributions

The main contribution of this thesis is a novel EIS algorithm capable of use on highly

dynamic mobile robotic platforms. Optical sensor information is fused with inertial sensor

information by way of Kalman filtering. Specifically, pyramidal Lucas-Kanade optical flow

using Shi-Tomasi good features [5] is fused with inertial data provided by an IMU by

way of a discrete Kalman filter. Previous work has used inertial systems to initialize EIS

5



algorithm motion estimates [6, 7, 8], but none have directly fused the two data sources by

way of a discrete Kalman filter.

The secondary contribution of this work is the creation of an image stabilization

algorithm that operates on the DAGSI WhegsTM platform. To date no image stabilization

algorithm has been developed for this specific platform.

The third contribution of this work is the discovery of an algorithm that reduces the

errors caused specifically by moving objects and image blurring. To date, these two effects

have never been specifically addressed by EIS techniques.

The fourth contribution of this work is a numerical analysis comparing the perfor-

mance of the four main classes of EIS. Template matching, feature detection, optical flow,

and inertial measurement algorithms are evaluated and compared using video truth models

in a fair and standard fashion. To date, a numerical comparison between these methods

has never been done.

1.6 Summary

Image stabilization is a necessary and exciting field of study, with applications in

many different areas of life. Electronic image stabilization in particular is useful as the

preparatory step for non-GPS navigation algorithms utilized on highly dynamic mobile

robotic platforms. Integration of pyramidal Lucas-Kanade optical flow using Shi-Tomasi

good features with inertial data from an IMU by way of a discrete Kalman filter is shown

to be an effective EIS algorithm in this type of application.

This thesis is organized as follows. The second chapter addresses the necessary

technical background information and related work pertaining to EIS. The third chapter

details the EIS algorithms developed for this thesis. The fourth chapter presents the

numerical analysis of the algorithms. Chapter five concludes the thesis with final results

and ideas for future work.
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II. Electronic Image Stabilization Technical

Background and Recent Work

E
lectronic image stabilization is a subject of study which covers topics within the

fields of computer vision, inertial navigation, and Kalman filtering. Several aspects

of calculus, linear algebra, and statistics are necessary for a full and complete understanding

of EIS and its methods. A brief introduction to EIS was given in chapter one. This chapter

presents an in depth review of the relevant technical background. Knowledge of the topics

covered in this chapter will prepare the reader for the algorithm descriptions in chapter

three.

First the mathematical notation used in this thesis is explained. Then the funda-

mental topics of video and video motion are discussed. Next, causes of EIS errors are

described. The four different motion parameter estimation techniques, template match-

ing, feature detection, optical flow, and inertial measurement, are then presented. Outlier

compensation techniques are given next, followed by a description of Kalman filtering and

the OpenCV programming library. The chapter concludes with current work on EIS.

2.1 Mathematical Notation

To provide insight regarding the mathematical equations at a quick visual inspection,

the notation for this thesis is as follows:

Scalars: Scalars are denoted by lower or uppercase unitalicized Times New Roman

font, for example h or D.

Vectors: Vectors are denoted by lower or uppercase Helvetica font, for example x

or T.

Matrices: Matrices are denoted by boldface Bookman font, for example F.

Dimensional Parameters: Dimensional parameters are denoted by lowercase ital-

icized font, for example (x, y).

7



Estimated Variables: Estimated variables are given a hat character directly above

the variable, for example x̂.

Functions: Functions are denoted by uppercase unitalicized Times New Roman,

with their parameters depicted in parentheses, for example ESSD(u).

All other notation is straightforward and understood from context.

2.2 Digital Video and Video Motion

2.2.1 Digital Video Feeds. The video feed is the most important source of data for

EIS. The video feed is made up of a consistent input stream of images. An image consists

entirely of pixels, and it is the pixel and its manipulation which is the major concern in EIS.

Two important descriptions of an image pixel are its intensity value and its location in the

image. Pixel intensity is the numerical value assigned to a pixel, representing the amount

of light entering into the camera lens at that point [4:35-37]. The pixel intensity is then

matched to a particular color value using a color map. For example, with the grayscale

color map, high pixel intensity is conveyed with white color, and low pixel intensity is

conveyed with black color. Often color pictures are encoded using three separate sub

images, each called an image channel, with each channel reflecting intensity values for one

of three color maps. Use of a red color map, a green color map, and a blue color map

comprise the well known RGB color format. The three image channels are portrayed on

screen at the same time, and their combination forms the complete color picture.

Pixel location is the position of a pixel within an image. Pixel location is often

described using raster coordinates, using the (m row, n column) description, where the

origin lies in the top left corner of the image. This description works well for simple image

and pixel manipulation such as translation, but for more complicated motion such as image

rotation, Cartesian coordinates are used. Cartesian coordinates are expressed by an x-y

axis whose origin rests at the center of the image.

An additional step is normalization of the coordinates. Normalizing coordinates allow

for the handling of images at different resolutions. The longer image axis is normalized

to [−1, 1] and the shorter axis is normalized to [−a,a], where a is the inverse of the aspect
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Figure 2.3. Pixel Coordinate Descriptions. The left fig-

ure displays raster coordinates. The right figure displays

Cartesian coordinates.

ratio [9:2]. Both raster and normalized Cartesian coordinate descriptions are shown in

Figure 2.3. Aspect ratio is described as

aspect ratio =
1
a

=
H
W

(2.1)

where H is the height of the image and W is the width.

Given an image pixel coordinate (m,n), the normalized Cartesian coordinate pair

becomes

x =
2m − W

S
and y =

2n − H
S

(2.2)

where S = max(W,H). The (x, y) coordinate pair is referred to in matrix form as c, where

c =





x

y



. (2.3)

The homogeneous representation is c̃, where an untransformed image point (x, y) is rep-

resented as

c̃ =











x

y

1











. (2.4)

2.2.2 Motion Models. The motion model is the expression of pixel movement in

the video feed. It is a transformation frame to frame of every pixel in the image. There are
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(a) Translation (b) Scaling

Figure 2.4. Effects of Translation and Scaling. The left

images portray a positive x translation and a positive y

translation. The right images portray positive scaling.

several types of motion models. Simple motion models have few parameters to consider,

and thus have a computational advantage, but require certain assumptions on the type

of scenes depicted in the video frames for accurate use. Complex motion models have

many parameters and can correctly describe complex motions, but are computationally

expensive. Two-dimensional models are the simplest, but assume that the video feed is

receiving images from a flat surface scene. This is a reasonable assumption when pixel

movement is determined primarily by the camera motion (the scene is sufficiently far from

the camera), but when camera movement is less dominant, three-dimensional scene effects

become more important, and the two-dimensional model loses effectiveness. The most

common two-dimensional motion models are described below [9:3-4].

Translation: This model describes movement in the x and y directions only. It

assumes that frame to frame there is negligible rotation of the image, and negligible scaling

(Figure 2.4 shows the effects of translation and scaling). It is governed by the equation

c+ =
[

I T
]

c̃− (2.5)

where

T =





Tx

Ty



 (2.6)

is the pixel translation in the x and y directions, and I is the 2× 2 identity matrix. The −

and + superscripts refer to the pixel coordinates before and after the transformation,
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respectively. Note that this transformation converts a homogeneous coordinate into an

inhomogeneous coordinate. The same is true for the rigid body model, discussed next.

Rigid Body: This model accounts for both translation and rotation of the image, and

is also known as the Euclidean transformation since Euclidean distances are maintained.

It assumes negligible scaling, and is described as

c+ =
[

R T
]

c̃− (2.7)

where the rotation matrix R is

R =





cos(α) − sin(α)

sin(α) cos(α)



 . (2.8)

The α parameter is the rotation angle of the image. The sign of the angle α is positive in

the counter-clockwise direction.

Similarity: This model accounts for translation, rotation, and image scaling. It

preserves angles between lines in the image. The similarity transform is described as

c+ =
[

λR T
]

c̃− (2.9)

where λ is the scale factor for the transform. The similarity model is the model chosen for

the development of the algorithms in chapter three, due to two desirable characteristics.

Besides computational speed, the similarity model also only requires two pixel matches

between frames to be calculated accurately. This will be shown later in Section 2.5.6. This

transformation also requires a homogeneous coordinate and returns an inhomogeneous

coordinate.

Affine: The affine transformation is a general transform that contains all of the

above three more specific transforms. It is any 2 × 3 matrix with arbitrary values for the

variables a11...a23. The affine transformation preserves parallel lines, and is expressed as

c+ =





a11 a12 a13

a21 a22 a23



 c̃− . (2.10)
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Figure 2.5. Homography Transform. As the cube is ro-

tated, the front face of the cube has transformed shape

with respect to the camera.

Tran
sla

tio
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Similarity
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y

Figure 2.6. Two-Dimensional Transforms. A square un-

dergoes several transformations: translation, rigid body,

similarity, affine, and projective.
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Homography: The homography, projective, or perspective transform, is even more

general than the affine transform. It is represented by an arbitrary 3×3 matrix comprised

of components h11...h33. The homography preserves straight lines, both horizontal and

vertical. It is used when characterizing motion in a three-dimensional environment, where

image depth is important. Figure 2.5 shows the homography transformation for the face

of a rotating cube. The transform is expressed as

c̃+ =











h11 h12 h13

h21 h22 h23

h31 h32 h33











c̃− . (2.11)

To summarize, Figure 2.6 portrays graphically the different types of two-dimensional

transforms.

2.3 Causes of Motion Estimation Error

Before presenting how motion estimation is performed, the major causes of estimation

error will first be discussed. Moving objects, blurring, washout, occlusion, parallax, and

shot noise are all effects that occur within video feeds. They are the major causes leading

to inaccurate motion parameter estimation. These effects are due in part to the camera

hardware and also due in part to the scene environment of the camera. At any given time,

an EIS algorithm will experience some of these errors. The mark of a robust EIS algorithm

is its resistance to estimation error in the presence of these effects.

A moving object is an object in the video feed with different motion than the back-

ground. Feature detection algorithms function very poorly in the presence of moving

objects. When the surface of a moving object has strong corners, feature correspondences

associated with the moving object are created. Because the motion of the object is not

equivalent to the motion of the image, determination of the motion model parameters will

be inaccurate if these correspondences are used to calculate the transformation matrix.

Blurring is caused when camera motion is too quick for the image capture rate of the

camera. Objects are registered onto a larger pixel area than their true representation. The
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result is pixel intensity smearing within certain regions of the image. Bright objects which

have high pixel intensity values, such as light fixtures, tend to bleed their pixel intensity

into the surrounding pixels. Blurring makes features difficult to detect in an image by

covering over potential corners.

Washout occurs when the video images become one uniform color. This is caused

when the camera approaches closely to an object of solid color, such as a wall. Without

strong gradients in the spatial scene, features are difficult to detect. Washout reduces the

number of feature points that can be found in an image.

Occlusion occurs when part of the image scene creates edges that are caused by

objects that are not depth-continuous. For example, consider two large buildings, one in

the foreground and one in the distance. Set the camera so that both buildings can be seen,

with the foreground building slightly overlapping the background building. As the camera

moves laterally across the front building, the edge created between the front building and

the back building will move. This edge is not associated with any real physical surface

on an object, and is an unreliable feature point. The edge will disappear altogether as

the foreground building passes completely in front of the background building. Also, the

movement of the edge is not necessarily dependent upon camera motion. For these reasons,

occlusions create unreliable features.

Parallax occurs as a camera moves laterally across a scene of objects with different

depths. Objects far away appear to move slower than objects close to the camera. Fea-

tures being tracked on distant objects will move slowly compared to features on closeup

objects. This inconsistency makes determination of the transformation matrix inaccurate

for simplified motion models such as the similarity model.

Shot noise is random Gaussian distributed error which is introduced onto random

pixels in the image. It is due to anomalies in the video camera hardware and the intensity

radiance of the scene objects. Shot noise can reduce the accuracy of template matching

error scores, or can be misinterpreted as a strong feature. Either way, the result is a less

accurate motion estimate.
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Figure 2.7. Template Matching. A template is taken

from the current frame and applied throughout the next

frame. When the template match is found, the template

displacement is noted and this is equivalent to the frame

movement itself.

2.4 Motion Parameter Estimation Using Template Matching

Given two images, each affected by the above causes of error, there are several tech-

niques available to determine the transformation matrix accurately characterizing the mo-

tion between the frames. There are four main classes of estimation algorithms; template

matching, feature detection, optical flow, and inertial measurement. Each class has several

variant algorithms, and combinations of techniques are also used.

In template matching algorithms [9:11-26], a small template window is copied out of

the image, and this location is stored. On the next image, the template is moved up, down,

left, and right, until a suitable match is found, as portrayed in Figure 2.7. The template

movement required for the match is the image displacement. Two primary choices must

be made for template matching; the error metric and the search method to use.

2.4.1 Error Metrics. The error metric determines how the best template match

location is found. Some form of sum of squared difference or cross correlation are most

commonly used.
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Figure 2.8. Pixel Numbering System. A template is com-

prised of pixels which can be numbered sequentially.

2.4.1.1 Sum of Squared Difference (SSD). This approach takes the intensity

values of the template and subtracts them from the intensity values of the image at the

particular template location [9:14]. This is expressed as

ESSD(u) =
∑

k

[

II(ck ) − IT(ck + u)

]2

=
∑

k

e2
k (2.12)

where II represents the large image, and IT represents the template image. The vector u

is the displacement of the template from its original position, and ck is the location in the

large image for pixel number k. Figure 2.8 shows an orientation for numbering the pixels

in the template image. The last term, ek is the residual error between the pixels.

A particular ESSD value for a displacement u is found by the following: each pixel in

the template is subtracted from the corresponding pixel in the larger image. This is the

residual error, which is squared. All of the pixel square residuals in the image-template

correspondences are then added, and this value is the ESSD.

The value u which yields the lowest ESSD is the best estimate for the true displacement

of the frame. This least-squares approach is the optimal estimate when dealing with

Gaussian noise, and thus most often used. However, depending on the vision environments,

better results will be obtained using different error metrics.

16



2.4.1.2 Cross Correlation Function. Instead of minimizing, cross correla-

tion seeks the maximum ECC(u) value [9:18]. The cross correlation between the template

and the image is found from

ECC(u) =
∑

k

[

II(ck + u) ∗ IT(ck )

]

(2.13)

where ∗ is the two-dimensional convolution operator.

This process is sped up significantly by using the Fast Fourier Transform (FFT) [9:15].

Mathematically, the FFT version is

ECC(u) = F−1

{

II(f )I∗
T(f )

}

(2.14)

where II(f ) is the Fourier transform of the large image, and I∗
T(f ) is the complex conjugate

of the Fourier transform of the template image.

2.4.2 Search Methods. Given a template and an image, the search method

dictates the process by which the template is run across the image.

2.4.2.1 Full Search. In full search, the template is run across every single

pixel in the image. The location yielding the best error value is used. This incurs a

large computational cost. For an m× n sized image, and an k × l sized template, the

computational cost is O(mnkl). As the template increases in size to the complete image,

the cost approaches O(mn)2 [9:14].
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Figure 2.9. Hierarchical Image Pyramid. Each level up in

the pyramid is a downsampled version of the level below

it. The intensity values of the four pixels in the bottom

level are averaged to produce the intensity value of the

pixel above it.

Figure 2.10. The Stochastic Constraint Method. A gyro

sensor is used to initialize and bound the template search

area to within one standard deviation in the x and y di-

rections.
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2.4.2.2 Hierarchical Image Pyramid. A much faster method is the hierar-

chical pyramid approach, shown in Figure 2.9. In this method, a pyramid of down-sampled

images is constructed [10]. The lowest level of the pyramid is the unaltered image. In the

next level up, the image is downsampled by two. In each subsequent level the image is

progressively downsampled. For example, if a 256 × 256 image is used, the lowest level

will be the unaltered image, and the next level up will be a 128 × 128 image. Each pixel

value at a particular level is the mean value of the four pixels below it in the lower level.

The downsampling continues until a level is reached which does not benefit the template

search.

Once an image pyramid is constructed, a template pyramid is made. Then, using

the highest level of the image and template pyramids, a full search is implemented. Once

the best match is found for a higher level, the displacement value is used to initialize the

level underneath it. As long as the highest level displacement estimate is accurate, each

subsequent lower level only requires a search space of two pixels. Thus with a pyramid

approach computation is significantly reduced.

2.4.2.3 Stochastic Constraint Method. The stochastic constraint method,

shown in Figure 2.10, constrains the search space on the image by predicting the location

for the template match. In [4:139-141], the stochastic constraint method is used to limit

the search space for feature matching discussed next, but it can be used for template

searching as well. The angular displacements frame to frame, output by the gyro sensor,

are converted to pixel movement. The search space is then constrained to ±1 standard

deviation around the the template. In optical and inertial sensor fusion, this process is

used in what is known as tightly coupled integration. It results in a fast and accurate

template search.

Template matching provides an intuitive process of motion estimation that is simple

to implement. Some forms of template matching are more computationally expensive than

others, but for many EIS needs, template matching is a viable option.
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Figure 2.11. One-Dimensional Edge. The left line depicts

a distinct edge. The right line has no edge.

Figure 2.12. Two-Dimensional Corner. Image rotation is

determined by applying a two-dimensional corner detec-

tor.
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Figure 2.13. Sobel Kernel. This 3× 3 matrix is convolved

with an image to determine directional derivatives.
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2.5 Motion Parameter Estimation Using Feature Detection

An alternative to template matching techniques is feature detection. Frame displace-

ment is determined from tracking prominent and unique points in successive frames.

The fundamental concept of feature detection is the one-dimensional edge. The edge

is any change in value along a line as. An edge is shown in Figure 2.11, which depicts a

line of pixel intensities in an image.

Applying a local derivative along the line is a simple solution to detect this type of

edge. This is effective for discontinuous lines. The derivative returns a zero value along

the line until it comes across the discontinuity. At the discontinuity, the derivative will

spike and yield a value of high magnitude. It will then immediately return to zero along

the rest of the line.

If this derivative detector is implemented on a line of steady gradient, an issue arises.

There are no points of prominence along the line, yet the derivative will return a steady

nonzero value along the entire length of the line.

A solution to this problem is the second derivative. The second derivative still spikes

at the discontinuity, but neither uniform values nor a constant gradient affect it. This is a

more robust edge detector.

A two-dimensional edge is known as a corner. The corner is a powerful feature

because it relates information about orientation. A corner rotation of 90◦ is shown in

Figure 2.12.

2.5.1 Hessian Operator. The two-dimensional second derivative is known as the

Hessian operator [11:317]. The Hessian operator is described as

H(p) =





∂2
I(p)
∂x2

∂2
I(p)

∂x∂y

∂2 I(p)
∂y∂x

∂2 I(p)
∂y2



. (2.15)

At each point p in the image I, the 2× 2 Hessian matrix provides information about

the principal curvatures at that point. The principal curvatures are the magnitudes of

the increase in pixel intensity as the corner is crossed over. A good corner has two large
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principal curvatures. This means that good corner points will have two large eigenvalues in

the Hessian matrix. Points with small eigenvalues are not good corners. Implementation

of the Hessian requires an image gradient operator, discussed next.

2.5.2 Sobel Derivative Operator. One popular image gradient operator is the

Sobel derivative [12]. The Hessian operator can be calculated by using the Sobel derivative.

This gradient is calculated by convolving a two-dimensional kernel with the image. The

kernel can be of any square size, but for demonstration a 3×3 kernel is shown in Figure 2.13.

The point in the kernel in which the final convolution value is place on the image is known

as the anchor point.

One implementation of the Sobel operator, at the image point corresponding the

anchor e, approximates the gradients by

∂

∂x
= (c + 2f + i) − (a+ 2d+ g) (2.16)

∂

∂y
= (g + 2h + i) − (a+ 2b+ c). (2.17)

The gradients in the x and y directions are thus obtained. To obtain the second derivatives,

convolve the Sobel filter again over the resulting gradient image. The Sobel derivative is a

fast and simple gradient operator.

The Sobel concept is expanded into many different applications. Different kernel

sizes and weightings provide different results. For example the Scharr kernel uses a unique

weighting designed to allow more accurate gradient angle determination than the original

Sobel kernel [11:150].
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Figure 2.14. Corner/Edge Classifier. The classification

and quality of a corner/edge can be determined by calcu-

lating its response R. Positive R corresponds to a corner,

negative R to an edge, and small R to flat region. The

R = 0 lines are dashed.

2.5.3 Harris Features. Harris features [13] are found by using a localized two-

dimensional autocorrelation function to determine the Hessian matrix. This is described

as

M(c) =





∑

−K≤i,j≤K
I
2
x(x + i , y + j )

∑

−K≤i,j≤K
Ix(x + i , y + j ) Iy(x + i , y + j )

∑

−K≤i,j≤K
Ix(x + i , y + j ) Iy(x + i , y + j )

∑

−K≤i,j≤K
I
2
y(x + i , y + j )



 (2.18)

where c is the pixel coordinate, and K is the maximum range of the autocorrelation around

the point. The Harris feature detector looks for points where the eigenvalues of the Harris

operator are both large. This is the mark of a strong corner.

Harris further developed a corner/edge response function which relates corner and

edge classification and quality. Given the autocorrelation matrix,

M =





m11 m12

m21 m22



 (2.19)
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the trace and determinant of the autocorrelation are

Tr(M) = m11 + m22 (2.20)

Det(M) = m11m22 − m2
12. (2.21)

Note that m12 and m21 are equivalent. The corner/edge response function is then given as

R = Det− Tr2. (2.22)

Classification and quality of the corner/edge is found by examining the graph in

Figure 2.14. The parameter R is positive in the corner region, negative in the edge regions,

and small in the flat region.

2.5.4 Shi-Tomasi Good Features. Shi and Tomasi simplified the Harris corner [5].

The two eigenvalues of the M matrix are taken, and as long as they are both larger than

some threshold, the point is a good corner. Thus calculation of the Trace and Determi-

nant is not needed. Further, Shi-Tomasi uses Sobel derivatives to calculate the M matrix,

instead of the localized autocorrelation. These differences reduce computation, while main-

taining good feature detection.

2.5.5 Scale Invariant Feature Transform (SIFT). SIFT belongs to a sepa-

rate class of feature detectors apart from the simple edge and corner detectors discussed

above [14]. It was initially designed for object recognition in images. The two main com-

ponents are the keypoint and the descriptor. The keypoint is a blob type feature, and the

descriptor contains information about the feature. A blob is point of extremum in an image

region. The descriptor is a vector containing information about directional gradients about

the keypoint. Working together, they provide robust feature matching. SIFT involves four

stages: scale-space extrema detection, keypoint localization, orientation assignment, and

keypoint description.

Scale-space extrema detection: Potential keypoints are found in an image by de-

tecting the local maxima and minima of an image transformation understood as a difference
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of Gaussian (DoG) function over a scale-space upon the image. First, the unaltered im-

age, I(x, y), is convolved with a set of Gaussian functions G(x, y, σ) with variable scale, σ.

The resulting collection of images are called L(x, y, σ).

G(x, y, σ) =
1

2πσ2
e

−(x2+y
2)

2σ2 . (2.23)

L(x, y, σ) = G(x, y, σ) ∗ I(x, y). (2.24)

Scale-space is determined by a constant multiplier k, such that the difference of

Gaussian between two neighboring scales, D(x, y, σ), can be computed from

D(x, y, σ) =

[

G(x, y, kσ) − G(x, y, σ)

]

∗ I(x, y). (2.25)

Equation (2.24) is substituted into Equation (2.25),

D(x, y, σ) = L(x, y, kσ) − L(x, y, σ). (2.26)

These smoothed images are placed together into an octave. Each octave consists of a set

number of images s such that the multiplier k is defined as

k = 2
1
s (2.27)

so that each octave contains double the scale-space of the octave below it.

Local extrema are detected by analyzing the entire stack of the DoG images. A

sample point is compared with the surrounding eight neighboring points and the 18 neigh-

boring points in the scales directly above and below it. If the sample point is the maximum

or minimum of its neighbors, it is considered a possible keypoint. See Figure 2.15. The

number of local extrema detectable is dependent upon the frequency of sampling the image

and the number of definite scales used in each octave.
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Figure 2.15. Possible Keypoint. This sample point is a

local maximum among its immediate neighbors.
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Figure 2.16. Octaves of the Difference of Gaussian Func-

tions over a Scale-Space. Gaussian blurred images us-

ing the variable scale σ are stacked on the left. On the

right are stacked the subtractions between the blurred

images [14].
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The octave of DoG’s is the particular image sampling undergoing the DoG over the

scale-space. As shown in Figure 2.16, each octave is an image downsampling of the octave

below it.

Once all possible keypoints have been found, they are localized to exact positions in

the space (x, y, σ), and invalid keypoints are rejected.

Keypoint localization: Originally, the explicit value of the sample point (x,y,σ)

was used to localize the point. However, a more accurate three-dimensional quadratic

function is now used, providing better matching and stability in the algorithm. This

quadratic is expressed as

D(x, y, σ) = D(x) = D +
∂D

T

∂ x
x +

1

2
xT∂

2
D

∂ x2
x. (2.28)

Here, x = (x, y, σ)T, and is the offset of the sample point from the origin. the extremum x̂

are determined by setting Equation (2.28) to zero. This results in

x̂ = −

[

∂2
D

∂ x2

]−1
∂D

∂ x
. (2.29)

By substituting Equation (2.29) into Equation (2.28), a useful function D( x̂) is created for

rejecting low contrast unstable sample points,

D( x̂) = D +
1
2

[

∂D

∂ x

]T

x̂. (2.30)

If image pixels are constrained to values between [0,1], a good threshold value is |D( x̂)| = 0.03 [14].

27



After low contrast error checks have been performed, weak corners are considered.

If the DoG image has strong principal curvature in one direction, but weak principal

curvature in the perpendicular direction, the point is not a strong corner and the point is

rejected. This corner strength determination is accomplished by dividing the square trace

of the Hessian matrix by the determinant of the Hessian, expressed as

Tr(H)2

Det(H)
<

(r + 1)2

r
(2.31)

where r is the maximum ratio allowed between the principal curvatures. If the ratio is less

than some threshold value, the sample point is rejected.

Orientation assignment: Next a gradient magnitude m and orientation θ are

computed for an image L(x, y) at the closest scale for a keypoint. A 36 bin orientation

histogram is created for the keypoint, representing 360◦ of orientation. In the immediate

pixel range around the keypoint, a Gaussian window is used upon the gradient magnitudes

of each pixel, and this is added to that particular pixel’s corresponding orientation bin.

Then the three highest valued orientation bins are used to interpolate the peak orientation,

and this value is the final determination of the keypoint orientation. If the orientation

histogram has two peaks where the one is greater than 80% of the other, then two keypoints

are created at that point, with two separate orientations.

Keypoint descriptor: Finally, each keypoint is given a feature vector descriptor

which contains information concerning the gradient magnitudes and orientations of the

pixels immediately surrounding the keypoint. The regions immediately around the key-

point are subdivided, and local orientation histograms are created in each subdivision.

Trilinear interpolation is used when a pixel gradient slides across into another bin, thereby

reducing boundary effects. This provides a robust method of describing a unique keypoint

in the presence of affine and projective transforms of the keypoint.

For EIS, SIFT is performed upon the previous image and the current image in the

video feed. The result is two sets of keypoint pixel locations, with possible correspondences

among them. Feature matching is performed by finding the descriptors which have the

smallest inverse cosine of the dot product between them. For example, the descriptor
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from the previous image is taken and compared against every descriptor in the current

image. The match that provides the lowest valued inverse cosine of the dot product is

most likely the equivalent feature. A threshold distance ratio is used to maintain that a

descriptor from the previous image is distinctly matched to a descriptor in the current

image. If one descriptor from the previous frame is too similar to two different descriptors

in the current frame, the keypoint is not matched. This process results in accurate feature

correspondences between the previous frame and the current frame.

2.5.6 Calculation of Motion Parameter Estimates. The transformation matrix

can be determined once features have been matched between the previous frame and the

current frame. The motion parameter estimates are then extracted from the transformation

matrix. Given a set of n feature correspondences, a matrix C
+ is created with the set of

homogeneous feature pixel coordinates in the current frame,

C
+ =

[

c̃+
1 · · · c̃+

n

]

(2.32)

and a matrix of homogeneous feature pixel coordinates in the previous frame,

C
− =

[

c̃−1 · · · c̃−n

]

. (2.33)

The general homography transformation is then described as

C
+ = HC

− (2.34)

where H is the homography matrix. By post multiplying both sides by C
−T

, and solving

for H, Equation (2.34) is rearranged into

H = C
+

C
−T

[

C
−

C
−T

]−1

(2.35)

A solution for H exists as long as

[

C
−

C
−T

]

is invertible, which is true if there are at least

four vectors in C
+ and C

−, where at least three of the point are not collinear [15:88].
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An alternative method is known as the discrete linear transform (DLT) [15:88-91].

Let Equation (2.34) is be expressed as

C
+
i × HC

−
i = 0 (2.36)

where i is the i th correspondence homogeneous point. If h1, h2, and h3 are the first, second,

and third rows of the H matrix, respectively, then this cross product becomes





[0 0 0] −C
−
i

T
y+
i C

−
i

T

C
−
i

T
[0 0 0] −x+

i C
−
i

T















h1

h2

h3











= 0. (2.37)

where x+
i and y+

i are from the homogeneous point of the feature correspondence in the

current image, c̃+
i =

[

x+
i y+

i 1
]T

. Now let

Ai =





[0 0 0] −C
−
i

T
y+
i C

−
i

T

C
−
i

T
[0 0 0] −x+

i C
−
i

T



 (2.38)

and

h =











h1

h2

h3











. (2.39)

Then Equation (2.37) can be written as

Ai h = 0 (2.40)

where Ai is a 2 × 9 matrix.
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The matrix A is constructed as

A =











A1

...

An











(2.41)

where A1 · · · An are the matrices for each of the n correspondences. The final solution

for H is found by determining the vector h which lies in the null-space of the A matrix.

The matrix A is of rank 8, and thus has only a one-dimensional null-space [15:90]. The

null-space can be determined using singular value decomposition (SVD) [16:427], which

decomposes the A matrix into two normal matrices, U and V
T, and a non-negative diagonal

matrix D.

A = UDV
T. (2.42)

If SVD is implemented so that D is in descending order, then the last column of V is the

vector h. The final H is then reconstructed from this h vector.

When the homography matrix is simplified into the similarity transform, the DLT

can be simplified enough so that only two correspondences are necessary to calculate the

transform. The similarity homography transform is

H =











h11 h12 h13

h21 h22 h23

h31 h32 h33











=











λ cosα −λ sinα Tx

λ sinα −λ cosα Ty

0 0 1











. (2.43)

Thus the parameters h31, h32, h33, are already determined. Further,

h11 = h22

h12 = −h21.

(2.44)
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This allows for a reduction in Equation (2.37). Instead of solving for nine unknowns, it is

necessary to solve for only four. This is shown if Equation (2.37) is expanded into

[0 0 0] h1 + C
−
i

T
h2 + y+

i C
−
i

T
h3 = 0

C
−
i

T
h1 + [0 0 0] h2 − x+

i C
−
i

T
h3 = 0

(2.45)

and then reduced to

−x−i h21 − y−i h22 − h23 + y+
i x

−
i h31 + y+

i y
−
i h32 + y+

i h33 = 0

x−i h11 + y−i h12 + h13 − x+
i x

−
i h31 − x+

i y
−
i h32 − x+

i h33 = 0.
(2.46)

Because of the simplifications offered by Equation (2.44), this reduces again to

−y−i h11 + x−i h12 − h23 + y+
i = 0

x−i h11 + y−i h12 + h13 − x+
i = 0

(2.47)

which can be represented in matrix form as





−y−i −x−i 0 1

x−i y−i 1 0





















h11

h12

h13

h23

















=





−y+
i

x−i



 . (2.48)

The values for h11,h12,h13,h23 are then found by row reduction. The final H matrix

becomes

H =











h11 h12 h13

−h12 h11 h23

0 0 1











. (2.49)
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Once the homography matrix has been determined, the motion parameters are ex-

tracted. Returning back to the original transformation matrix description,

H =











h11 h12 h13

h21 h22 h23

h31 h32 h33











(2.50)

the motion parameters are extracted according to

∆x = h13 (2.51)

∆y = h23 (2.52)

∆λ =
√

h2
11 + h2

21 (2.53)

∆α = arcsin
−h21

∆λ
. (2.54)

The motion parameters have now been determined, given two image correspondences.

2.6 Motion Parameter Estimation Using Optical Flow

An alternative method for determining feature correspondences between two images

is optical flow. Optical flow calculates pixel velocity between two frames. However, for the

purpose of EIS, pixel velocity is equivalent to the actual frame displacement. There are

two strategies to optical flow; sparse and dense. In sparse optical flow, a select group of

prominent feature points are tracked between frames. In dense optical flow, every pixel in

the image is tracked.

2.6.1 Sparse Optical Flow. A popular sparse technique is the Lucas-Kanade

method [17]. It relies on three assumptions; brightness constancy, temporal persistence,

and spatial coherence. The fundamental optical flow equation is

Ixa + Iyb + It = 0 (2.55)
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where Ix and Iy are the spatial derivatives of the feature point in the x and y directions,

respectively, a and b are the feature point velocities (displacements) in the x and y di-

rections, respectively, and It is the image time derivative. The optical flow equation is

constructed using the brightness constancy assumption and the temporal persistence as-

sumption. However, the optical flow equation is fundamentally inaccurate because it has

two unknowns. Multiple points must be considered for an accurate solution, and this is

acceptable only when spatial coherence is assumed. Finally, solving the overdetermined

system, the values for the displacement estimates a and b are found using a method of

least-squares. These ideas are now presented in more detail.

The initial two-dimensional image is understood as

I(x , y). (2.56)

Adding a time dependence to the image results in

I(x , y , t). (2.57)

Brightness constancy states that

I
+(x + a, y + b, t + ∆t) = I

−(x , y , t). (2.58)

Thus for any image movement between frames, a particular feature does not change in-

tensity value as it moves around the image in time. This can be understood in terms of a

feature point F. Define a feature point F, whose movement can be tracked over time within

an image I(x , y , t) according to

F(g(t),h(t), t) (2.59)

where g(t) and h(t) are arbitrary functions describing the motion of the feature over

time along the x and y directions, respectively. Thus for any time t , the exact x and y

coordinates for a feature are known. Equation (2.59) can then be understood as

F(x , y , t), where x = g(t), and y = h(t). (2.60)
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The brightness constancy assumption may now be restated in terms of this feature

point
∂F(x , y , t)

∂t
= 0. (2.61)

Again, this equation states that the feature exhibits no change in intensity as it moves

around the image over time.

Temporal persistence now becomes important. Assuming that velocities in the x

and y directions are differentially small, then a and b are understood as

a =
dx

dt

b =
dy

dt
.

(2.62)

Further, temporal persistence dictates that the time derivative of the image at the feature

point is differentially small. Define a particular feature location (i, j), outputs of g(t)

and h(t) at a particular time t = τ , as

i = g(τ)

j = h(τ).
(2.63)

Then the image time derivative is some value It,

It =
∂F(x , y , t)

∂t

∣

∣

∣

y=j
x=i . (2.64)

The image time derivative It for a feature point at pixel location c in the previous image I
−,

given the current image I
+, is calculated as

It = I
+(c) − I

−(c). (2.65)
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Combining the brightness constancy assumption and the temporal persistence as-

sumption allows for the final determination of the optical flow equation. Referring back

to Equation (2.61), it is clearly a multivariate function. Applying the chain rule for mul-

tivariate functions, the result is

∂F(x , y , t)

∂t
=

[

∂F(x , y , t)

∂x

∣

∣

∣

t=τ
y=j

dx

dt

]

+

[

∂F(x , y , t)

∂y

∣

∣

∣

t=τ
x=i

dy

dt

]

+

[

∂F(x , y , t)

∂t

∣

∣

∣

y=j
x=i

dt

dt

]

(2.66)

which simplifies to

∂F(x , y , t)

∂t
=

[

∂F(x , y , t)

∂x

∣

∣

∣

t=τ
y=j

dx

dt

]

+

[

∂F(x , y , t)

∂y

∣

∣

∣

t=τ
x=i

dy

dt

]

+

[

∂F(x , y , t)

∂t

∣

∣

∣

y=j
x=i

]

. (2.67)

Now let the following definitions be made,

Ix =
∂F(x , y , t)

∂x

∣

∣

∣

t=t
y=j

Iy =
∂F(x , y , t)

∂y

∣

∣

∣

t=t
x=i

(2.68)

where the parameters Ix and Iy are the spatial instantaneous derivatives of the feature

point in the x direction and y directions, respectively. These remain constant for all time,

assuming the feature does not alter its appearance, as follows the brightness constancy

assumption. Substituting the definitions for Ix, Iy, a, b, and It back into Equation (2.61),

the final optical flow equation is formed as

Ixa + Iyb + It = 0. (2.69)

This can we rewritten into

∇ IT u = −It (2.70)

where

∇ I =





Ix

Iy



 . (2.71)
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This equation has two unknowns, the a and b values. Thus, in order to determine this

value, optical flow equations for multiple points must be generated. The spatial coherence

assumption allows for this.

Spatial coherence states that neighboring pixels belong to the same object in the

image, and move in a similar fashion. Thus the pixels immediately surrounding the feature

point are used as the additional points necessary to solve Equation (2.70). An n× n window

is created, depending on how many additional pixels are used. A value of n = 5 is typical.

The overdetermined system is now











Ix(p1) Iy(p1)
...

...

Ix(pn2) Iy(pn2)











u = −











It(p1)
...

It(pn2)











. (2.72)

This can be rewritten as

Au = −d (2.73)

where

A =











Ix(p1) Iy(p1)
...

...

Ix(pn2) Iy(pn2)











(2.74)

and

d =











It(p1)
...

It(pn2)











. (2.75)

For an overdetermined system, the least-squares minimum error is determined by solving

min ||Au − d||2. (2.76)

This is accomplished by
[

A
T
A

]

u = A
T d. (2.77)
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Rearranging and solving for u, the final displacement estimate is

u =

[

A
T
A

]−1

A
T d. (2.78)

As long as

[

A
T
A

]

is invertible, a unique solution for u exists. This is true when at least

two corners with large principle curvature are used as features.

Once the displacement vector u has been calculated for a feature correspondence,

it is added to the feature location in the previous image, and the new feature coordinate

in the current image is obtained. The set of feature correspondences are then used to

calculate the transformation matrix and the motion parameter estimates are extracted, as

presented in Section 2.5.6.

2.6.2 Dense Optical Flow. Sparse optical flow is concerned with tracking a few

prominent features in the image. Dense optical flow attempts to calculate the velocities

for every pixel in the image. The Horn-Schunck method is a popular dense optical flow

method [18]. It uses the brightness constancy assumption and an additional smoothness

constraint, and also uses Laplacians in the x and y directions. The optical flow equations

for the Horn-Schunck method are

∂

∂x

∂a

∂x
−

1
α

Ix

[

Ixa + Iyb + It

]

= 0

∂

∂y

∂b

∂y
−

1
α

Iy

[

Ixa + Iyb + It

]

= 0

(2.79)

where α is the regularization coefficient, which controls the smoothness of the vectors.

displacements a and b are determined by using Lagrange multipliers to minimize the errors

in the optical flow equations for an overdetermined system. Once displacements have been

calculated, they are applied to every pixel and the correspondences are made.

As with feature detection and sparse optical flow, at least two correspondences must

be matched between two images, then the similarity homography matrix H is calculated,

and finally the motion parameter estimates extracted.
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2.7 Motion Parameter Estimation Using Inertial Measurement

Motion estimation algorithms dealing with optical sensors have been presented. Next

inertial devices are presented. Estimation using an IMU is determined by integrating the

output of a gyro sensor and multiplying it by the appropriate constant. First a brief

overview of IMU’s is presented, followed by the steps to determine the motion parameter

estimates.

2.7.1 IMU Overview. Inertial measurement units provide data concerning ac-

celeration along the three orthogonal axes, and angular rates about the three axes [19].

A reasonably accurate micro electromechanical systems (MEMS) based IMU can be pur-

chased for a few hundred dollars. More precise IMU’s are purchased for strategic systems

like ICBM’s, but cost hundreds of thousands of dollars and are beyond the scope of this

effort.

The IMU is comprised of accelerometers and gyro sensors. Accelerometers measure

specific force, which is the acceleration with respect to the inertial space plus the gravity

vector. The inertial space is the reference frame which is non-rotating with respect to the

stars, and whose origin lies at the center of the earth [19:21]. Gyro sensors measure angular

rates with respect to the body reference frame.

For image stabilization, when the camera is viewing long distance scenes, angular

rates are far more significant than accelerations. Translation effects of the camera do not

alter the scene significantly, whereas angular displacement produces strong effects upon

the scene. By using direct integration, image displacement (x, y, α) caused by yaw, pitch,

and roll can be directly calculated.
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Gyro sensors suffer from several sources of error. These include g-insensitive bias,

g-sensitive bias, anisoelastic bias, scale-factor error, cross-coupling, and zero-mean random

bias [19:76]. The full measurement model for a rate integrating gyroscope is

ω̃x = (1 + Sx)ωx + Myωy + Mzωz + Bfx + Bgxax + Bgzaz + Baxzaxaz + nx (2.80)

where ω̃x is the angular rate output by the gyro sensor, Sx is the scale factor, My and Mz

are cross-coupling coefficients, Bfx is the g-insensitive bias coefficient, Bgx and Bgz are the

g-sensitive bias coefficients, Baxz is the anisoelastic bias coefficient, and nx is a zero-mean

random bias. The variables ωx, ωy, and ωz are the true rotation rates, and ax,az are the

accelerations of the gyroscope.

In general, these negative effects are most disastrous in low frequency long duration

use of the gyro sensor. For high frequency short duration use, the gyro sensor is quite

accurate. Depending the specific use of the IMU, this comprehensive measurement model

is simplified for reduced computation. The simplification of these combined errors as a

first-order Gauss-Markov noise process was used in [4].

2.7.2 First-Order Gauss-Markov Error Process. A first-order Gauss-Markov

process is a stationary Gaussian process [20:94]. The autocorrelation function of a first-

order Gauss-Markov process is of the form

R(τ) = ρe−β|τ | (2.81)

and of differential form

ṅ(t) =
−1
τ

n(t) + wn(t) (2.82)

where n(t) is the current value of the noise, τ is the time constant for the noise process,

and wn(t) is zero-mean additive white Gaussian noise of strength σ2. The time constant τ

and β value are related by

τ =
1
β

(2.83)
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The Gauss-Markov process is often used to describe errors because it appears to fit much

natural error phenomena, and the process is completely described by the parameters of

Equation (2.81) [20:95].

2.7.3 Integration and Estimate Determination. The angular rate output by the

gyro sensor is integrated to determine angular displacement. It is shown in [21:32] that for

a constant velocity v over time t, the total displacement x(t) is given as

x(t) = x(0) + tv (2.84)

where x(0) is the initial displacement a time t = 0. This is understood in angular terms as

Ω(t) = Ω(0) + t
d

dt
Ω(t) (2.85)

where Ω(t) is the angular displacement, and d
dt
Ω(t) is the angular rate output by the gyro

sensor. If a constant time step ∆t is assumed, then the displacement between time steps is

represented as

Ωk = Ωk−1 + ∆t
d

dt
Ωk−1 (2.86)

where k is the index of the time step. Thus for a vector of angular rates, the vector of

angular displacements is generated.

Between the times of image capture, these angular displacements are summed. The

result is the angular displacements, φ, θ, ψ, between frames. Multiplying these by an

associated coefficient results in the final motion parameter estimate expressed as











m

n

α











=











0 Kθ 0

0 0 Kψ

Kφ 0 0





















φ

θ

ψ











(2.87)

where Kφ, Kθ, and Kψ are the displacement coefficients. These coefficients describe how

much pixel movement is caused by a particular amount angular displacement.
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Because inertial measurement is not affected by video image error, it has a unique

benefit against template matching, feature detection, and optical flow.

2.8 Other Methods for Motion Parameter Estimation

Template matching, feature detection, optical flow, and inertial measurement com-

prise the main classes of EIS. However there are some alternative techniques which do not

fit exactly into one of the main classes of algorithms.

2.8.1 Phase Correlation. Phase correlation is used to estimate translation and

rotation [22]. It is based on the Fourier transform. A time difference τ of a function f is

equivalent to multiplication of e−τωj , expressed as

F {f (t − τ)} = e−τωjF {f (t)}. (2.88)

This is extended to images. Given a translated image I
+(x, y) = I

−(x − r, y − s),

where r and s are arbitrary displacements, then

F
{

I
+(x, y)

}

= e−(rω+sω)jF
{

I
−(x, y)

}

. (2.89)

A function, D(x , y), is created such that

φ {D(x, y)} = φ
{

I
+(x, y)

}

− φ
{

I
−(x, y)

}

= −(rω + sω) (2.90)

where φ denotes phase. Thus

F {D(x, y)} e−(rω+sω)j (2.91)

which leads to the useful Dirac-Delta function,

D(x, y) = δ(x− r, y − s). (2.92)

The final displacements r and s are determined by the peak value for D(x , y).
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Figure 2.17. Heisenberg’s Uncertainty Principle. As cer-

tainty in the frequency domain is increased, time domain

certainty decreases, and vice versa [23:46].

Phase correlation is simple and fast, but lacks accuracy in calculating translation

and rotation; especially in the presence of blurring.

2.8.2 Wavelets. Wavelet analysis is a recent development in digital signals pro-

cessing [23]. Traditionally, temporal and frequency characteristics of a signal are deter-

mined with separate analysis. For instance, Bode plots are used to determine spectrum

information within a signal, but this finds the spectrum characteristics of the entire signal,

and particular frequency/time relationships are not determined. With time domain anal-

ysis, it is difficult to understand the spectrum information for a particular length of the

signal, due to the presence of noise and several different frequencies acting simultaneously.

Wavelets analysis allows insight into both temporal and frequency characteristics.

A form of Heisenberg’s uncertainty principle is observed in this type of analysis.

As more certainty in the frequency domain occurs, it results in less certainty in the time

domain, as shown in Figure 2.17. The contrary holds as well.

The wavelet works by interrogating a signal with an asymmetric pulse at different

scales. The scale determines the width of the pulse. High frequency interrogation is

performed by a small scaled pulse, and low frequency interrogation is performed by a large

scaled pulse. Signal response from corresponding scales are put together to form a graph
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Figure 2.18. One-Dimensional Wavelet Analysis.

Wavelet allows for time and frequency analysis simulta-

neously. Depicted is the wavelet analysis of a complex

sinusoid.

with time as the x-axis and scale as the y-axis. A sample one-dimensional wavelet analysis

on a complex signal is shown in Figure 2.18. Five regions are delineated. The upper

left region shows the existence of a simple sinusoid of high frequency. The upper center

region shows a simple sinusoid of low frequency. The two circled regions in the bottom left

of the figure depict two signal discontinuities; the beginning and end of a zero-frequency

signal. The final region in the bottom right shows the existence of noise added onto a high

frequency sinusoid.

Wavelets are used upon two-dimensional data as well as one-dimensional signals. For

images, they perform well as edge detectors. Wavelet decomposition is a technique used to

separate an image into isolated edge response images. A horizontal, vertical and diagonal

decomposition can be performed, which results in horizontal, vertical, and diagonal edge

detection, as shown in Figure 2.19.

Wavelet decomposition can be used to simplify an image while still maintaining good

features, and it is computationally fast.
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Figure 2.19. Sample Wavelet Decomposition. Two-

dimensional wavelet decomposition can be used as a hor-

izontal, vertical and diagonal edge detector.

2.9 Outlier Compensation

The algorithms used for motion estimation have been presented. It was shown that

both feature detection and optical flow result in sets of correspondences between the pre-

vious frame and the current frame. Motion estimation algorithms that result in a large

collection of data values must obtain a single set of parameters. Using the mean average of

the set is not suitable because when a small set of values is averaged, one outlier will ren-

der the estimate inaccurate. Some type of outlier compensation is necessary. For feature

detection and optical flow parameter estimation, the combination of mismatched features

along with well-matched features between images must be dealt with in order to determine

an accurate transformation matrix. An outlier compensating algorithm provides a way to

handle this problem.

2.9.1 Median Filter. A simple outlier compensation technique is the median

filter. The median filter applies a window to a set of data, and replaces the data set value

corresponding to the center value of the window with the median of the window. The filter

size can be altered to change the performance.
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2.9.2 LMedS. Least median of squares (LMedS) regression is a variant of the

sum of square difference (SSD) [24]. Instead of minimizing the sum of square residuals e2
i ,

the median of the values of e2
i is minimized.

min
[

medi e2
i

]

(2.93)

the displacements resulting in the lowest median value are used as the motion parameter

estimates.

2.9.3 RANSAC. Random sample and consensus (RANSAC) is capable of han-

dling large outliers disrupting up to 50% of the data points [25]. The fundamental idea

behind RANSAC is model fitting [26].

A vector of parameters, θ, capable of satisfying some model, must be determined from

a given data set. In the data set, several of the values are corrupted. These corrupted

values are the outliers, and if they are included in the final model fitting by averaging,

these outliers have a great deal of leverage to throw off the final parameter determination.

Thus RANSAC is used to model fit in the presence of great number of outliers. It involves

a repeated two step process: hypothesis and test.

Hypothesis: In the hypothesis stage, a minimal sample set (MSS) is chosen at

random from the whole of the data. The size of the MSS is the lowest number required to

generate a complete model parameter vector θ.

Test: In the testing stage, this model is applied to all the data points. The set of

data points which are consistent with the parameters is called the consensus set (CS).

This process of hypothesis and test is repeated until the probability of finding a

better CS falls below a certain threshold.

Let q be the probability that for a random MSS, all data points are inliers (points

which match the true model parameters). Then (1− q) is the probability that the MSS

will contain at least one outlier. Applying the hypothesis-test process several times will

increase the probability of obtaining a complete inlier data set.
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After h iterations, the probability of an outlier being chosen is equal to (1− q)h.

Thus an alarm rate, ǫ, is determined such that

(1− q)h ≤ ǫ. (2.94)

Once the probability of an outlier drops below the alarm rate, no more iteration is necessary.

Solving this equation for h,

h ≥
log ǫ

log(1− q)
. (2.95)

The value of q is needed. In [26], the value of the probability q is best estimated as

q ≈

(

NI

N

)k

(2.96)

where NI is the total number of inliers and is best approximated as N̂I, the number of

inliers found so far. N is the total number of data points, and k is the number of data

points selected for each hypothesis.

Once q and ǫ are set, the algorithm repeats h times and results in a ranking of the

best fitting model parameters. The original ranking criteria was the actual number of data

points in the CS, but other methods have also been developed.

Before the MSS, comprised of the data points C = [c1 · · · cn], with associated param-

eter vector, θc, can be included in the CS, its consistency with the current model must be

rated and pass some measure of similarity to the parameters that fit the model. Specif-

ically, define a model M(θ), with a parameter set θ0 that perfectly fits the model. The

associated minimum set of data points that instantiate θ0 are denoted as C0. A distance

measure D(C, C0) is defined such that the difference between the current MSS C and the

zero-level MSS C0 can be found. A threshold δ is created such that as long as

D(C, C0) ≤ δ (2.97)

then the parameter vector θc is considered consistent with the model and the associated

data points C are included in the CS.
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Using the Euclidean norm as the distance measure,

D(C, C0) =

√

√

√

√

n
∑

i=1

(ci − c∗i ), (2.98)

where c∗i is an element of C
∗, the orthogonal projection of C onto C0. A probability Pin,

is then associated to this threshold,

P[D(C, C0) ≤ δ] = Pin. (2.99)

Simply stated, Pin is the probability that if the MSS C has a distance below or equal to δ,

then the MSS is an inlier.

Assuming that the data points are corrupted by a zero-mean Gaussian noise η of

variance σ2, then

P[D(C, C0) ≤ δ] = P

[

n
∑

i=1

ηi ≤ δ

]

. (2.100)

Multiplying each side of the inequality by ηi
σ2 ,

P

[

n
∑

i=1

ηi ≤ δ

]

= P

[

n
∑

i=1

(
ηi

σ
)2 ≤

δ2

σ2

]

= Pin. (2.101)

The expression (ηi
σ

)2 represents a χ2 distribution [26]. Thus rearranging Equation (2.101),

δ = σ
√

F−1
χ2

n
(Pin) (2.102)

where F−1
χ2

n
is the inverse cumulative distribution function associated with a χ2

n random

variable. It follows from [15:119], that for homographies, n = 2 for the χ2 distribution.

Once the qualification for the CS has been made, the hypothesis-test procedure is

conducted h times or until a maximum iteration threshold is passed.

For EIS, RANSAC can be used to calculate the transformation matrix between sev-

eral feature correspondences more accurately than a least-squares method. Using the

similarity transform, only two data points are necessary for the MSS.
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2.10 Kalman Filtering Overview

The Kalman filter is a method of state estimation which fuses information from mul-

tiple sensors [27]. Each sensor produces an estimate of a particular state, or combination

of states, with a known variance. The filter combines the estimates according to variance

in a way that optimally reduces Gaussian distributed errors. The Kalman filter requires

development of a state dynamics model and a measurement model. The discrete time

dynamics model is of the form

xk+1 = φxk + Buk + Gwk (2.103)

where xk is the state vector, uk is the control input vector, and wk is a vector of zero-mean

additive white Gaussian noise. The matrix φ is the state transition matrix, B is the control

matrix, and G is the noise matrix. The state transition matrix is calculated from the state

dynamics matrix F, as

φ = eF∆t (2.104)

where ∆t is the time step for the system.

The measurement model is defined as

zk = Hxk + vk (2.105)

where the discrete time measurement vector zk relates to the discrete state vector xk

through the observation matrix H, and is corrupted by zero-mean additive white Gaussian

noise vk .

The general Kalman filter equations for this type of state space model are shown in

Figure 2.20.
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Kalman Gain:

K = P
−

k H
T

[

HP
−

k H
T+ Rk

]−1

Measurement Update:

x̂
+

k = x̂
−

k + K

[

zk − H x̂
−

k

]

Covariance Update:

P
+

k =

[

I − KH

]

P
−

k

Time Projection:

x̂
−

k+1 = φ x̂
+

k

P
−

k+1 = φP
+

k φ
T+ Qk

Figure 2.20. Kalman Filter Equations [27:219].

The dynamic model is modified into the dynamic perturbation model

δ ẋk = Fδ xk + Buk + Gwk (2.106)

where δ xk is the error in the state and is defined as

δ xk = x̃k − xktrue
(2.107)

where x̃k is the nominal state value. For EIS, this value is assumed to be the output of an

IMU. The associated perturbation measurement model is

δ zk = Hδ xk + vk (2.108)

where H is the observation matrix of the current measurement, and δ zk is the perturbation

measurement. The perturbation measurement δ zk is defined as

δ zk = zk − H x̃k (2.109)

where zk is the actual measurement collected. Identification of state uncertainty matrix Qk

and measurement uncertainty matrix Rk is required for implementation of the Kalman
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filter equations as presented in Figure 2.20. Matrices Qk and Rk are found from state

variances and measurement variances, and must be determined from hardware testing.

Calculation of these values is often the most significant and challenging task for a Kalman

filter application.

Kalman filtering can be used for the fusion of optical and inertial sensor data [4].

2.11 OpenCV

OpenCV is an open source C/C++ library specially designed for computer vision

applications [11]. The official release occurred in 2006, but the project began in 1999 from

an Intel Research initiative with influence from the MIT Media Lab. The majority of the

library work was developed under Intel’s Russian team. OpenCV has now experienced

over 2 million downloads and it’s users group has expanded to 20,000 members. It’s

libraries cover a multitude of computer vision topics, from machine learning and three-

dimensional vision to image processing and motion tracking. It is an invaluable resource

for the computer vision engineer, and was used in the development of this work.

2.12 Current EIS Work

2.12.1 Current Template Matching Methods. Hierarchical distributed template

matching (HDTM) [28] is a novel approach to the template matching algorithm. Instead

of using a full template to search across the image, only a select number of pixels from the

template are used. This is called a distributed template. The pixels chosen are determined

from an optimization algorithm that attempts to find the distributed template which has

the most difference with it’s surroundings. Hierarchical image pyramids are used for a

computationally fast template search. This approach was used on static photos in which a

very a small template containing some object was run across the image. For example one

test was a specific electronics chip on a silicon board filled with much electronics clutter.

The implementation found in [29] is an image stabilization algorithm for a surveillance

camera. It uses phase correlation to obtain an initial image translation value. Next, a

hierarchical image pyramid is generated and a search template. Using SSD, the template
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is matched using a coarse-to-fine approach for model parameters. This algorithm uses color

space instead of grayscale.

In [30], the camera is attached to a mine tunnel robot experiencing violent bumping

motion. The proposed algorithm uses a grid of templates all performing sum of absolute

difference template matching. Each grid is sized so that the maximum motion does not

cause the template to jump outside its grid. Once the motion vectors from the different

grids are determined, the true global motion of the frame is recovered from a least squares

estimation method. The motion model used in this approach is the Similarity model.

2.12.2 Current Feature Matching Methods. The work in [31] uses Harris features

and RANSAC for video mosaicing. The video mosaic was constrained to temporally local

frames, instead of a large mosaic covering all time. The camera was affixed to a micro-UAV

(µUAV), notorious for jittery feeds. The algorithm uses correspondence points from two

frames via Harris features and inputs these into the RANSAC routine. The best estimate

for the frame displacement is then determined. A Euclidean motion model is used.

The image stabilizer found in [32] uses feature points to determine frame displace-

ment. A two dimensional rigid body motion model is used. A hierarchical image pyramid

is used, where the levels are downsampled and further smoothed using a Laplacian of

Gaussian technique. A template match is performed at each level to determine frame

displacement.

Stationary wavelet transform decomposition is used in [33]. The image is decomposed

to the second level, and the vertical and horizontal detail images are then projected into

the vertical and horizontal axis, respectively. One-dimensional projection matches are then

performed on the images to provide an initial estimate of image translation. A gradient-

based approach is then used around a select number of feature points to refine the frame

displacement. The feature points are selected by a unique algorithm that combines the

vertical and horizontal detail information, yielding strong two-dimensional corners.

A novel affine model based approach is found in [1]. Feature tracking is performed

upon six sub images. The sub images are constructed from binary pixels. An intensity

histogram is first generated from the original image. The histogram is then divided into six
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regions. Each region contains the information for one sub image. Each sub image is formed

from thresholding the histogram values associated with it. The feature detector used is a

binary image centroid extractor. Several centroids are extracted from each sub image. A

data clustering approach is then used to calculate final parameter estimates for the frame

displacement. Additionally, an alternative phase correlation algorithm is presented.

2.12.3 Current Optical Flow Methods. In [7], airborne video mosaicing is accom-

plished. A three step process is implemented; first phase correlation is used to provide

initial frame movement estimates, second an optical flow algorithm refines these estimates,

and third an SSD minimization technique is used to register the image to the mosaic. The

inertial estimate is used to initialize the starting position of the SSD minimization upon

the mosaic.

The approach in [6] uses mechanical and electronic image stabilization for a head

mounted vision system. The Lucas-Kanade optical flow method is used to calculate dis-

placement. A discrete Kalman filter is used to estimate camera pan and tilt from controlled

inputs and gyro sensor data. However, it does not fuse EIS measurements into the Kalman

filter. Pan and tilt servos, in conjunction with EIS, are used for motion compensation.

2.12.4 Current Inertial Measurement Methods. In IMU based methods, the gyro

sensor is either stand-alone or integrated with an additional EIS algorithm. For instance,

[34] presents a stand-alone gyro sensor used to predict camera motion aboard a moving ship.

Angular displacement is multiplied by a constant to produce frame movement estimates.

In [8], the camera is attached to a walking robot. The algorithm works by integrating

gyro sensor information with template matching. Frame movement estimates, provided

by inertial measurement, are used to initialize the template starting position for a local

search.

2.13 Conclusions on Current Image Stabilization Approaches

The consistent philosophy for the non-IMU stabilizer is to develop an accurate single

or cascaded motion estimation method. The consistent philosophy for IMU use in EIS is
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limited to initialization or constraining of the EIS algorithm. This application of the IMU

is aimed at reducing the computational costs for the EIS algorithm. None of the current

work seeks to address algorithmically the main causes of estimation error such as noise,

moving objects, image, blur, and washout. In the following chapter, the development of

the novel optical flow with inertial fusion algorithm is presented, with the aim of increasing

the tolerance of standard EIS against noise, moving objects, image blurring, and image

washout.
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III. Description of Stabilizer Algorithms

E
lectronic image stabilization can be accomplished by myriad ways, as presented

in chapter two. In this chapter five EIS algorithms are presented; one algorithm

from each of the main classes of EIS and one algorithm which is a combination of two

of them. The template matching algorithm is presented first, followed by the feature

detection algorithm. The optical flow algorithm is then explained, followed by the inertial

measurement algorithm. Finally, the novel contribution of this thesis, the optical flow with

inertial fusion algorithm, is presented as the optimal solution to the image stabilization

problem faced by camera systems affixed to highly dynamic mobile robotic platforms.

The coordinate frame for the system is shown in Figure 3.21. The φ, θ, and ψ

angular directions follow the right hand rule and coincide with the x, y, and z directions,

respectively. Observe that in the video feed, positive φ displacement generates negative α

image rotation, positive θ displacement generates negative m pixel movement, and positive

ψ displacement generates positive n pixel movement.

Note that because the camera and IMU are both mounted on a rigid body, each

experience the same rotation. Also, translation is of negligible significance to this particular

application of EIS because distant scenes are assumed. Based on this truth and this

assumption, no transformation matrix is necessary between the IMU and camera.

CAMERA

IMU

X

Y

Z

Figure 3.21. Platform Coordinate Frame.
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3.1 Template Matching

3.1.1 Template Generation. The block diagram for the template matching al-

gorithm is shown in Figure 3.22. The development will start on the left hand side. The

current unstable image and the previous unstable image are taken from the video feed.

Six templates evenly spaced within the previous image, each of size 64 × 64 pixels, are

copied out of the image. The number of templates, the size of templates, and the number

of pyramid levels to use were all determined by parameter sweeps to optimize the accuracy

of the algorithm. The accuracy of the algorithm saturates at six templates of size 64× 64,

utilizing four-level image and template pyramids. Enough space from the edges of the im-

age allow for detection of up to 128 pixels of movement in the m and n directions. This was

chosen because the live test data collected had an approximate maximum displacement of

100 pixels.

Once the templates have been generated, they are decimated and collected into the

template pyramid. Likewise, the current unstable image is transformed into its four-level

pyramid. Once the image and template pyramids have been generated the search begins.

3.1.2 Template Search. Template searches are performed across the images of

the pyramid. At the highest level, the search is constrained to 16 pixels in the m and n

directions, corresponding to the maximum translation detection amount set by the spacing

of the templates. 16 pixels works its way down to 128 pixel movement in the lowest level of

the pyramid. Each subsequent level then performs a more localized search, until the final

match is achieved. The search is for the m and n displacement which brings the correlation

value C as close to unity as possible. The equation for the C score is

C(m,n) =

N−1
∑

j=0

M−1
∑

i=0

{

[

II(m+ i , n+ j ) − II

][

IT(i , j ) − IT

]

}

√

√

√

√

N−1
∑

j=0

M−1
∑

i=0

{

[

II(m+ i , n+ j ) − II

]2
}

·
N−1
∑

j=0

M−1
∑

i=0

{

[

IT(i , j ) − IT

]2
}

(3.110)
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where II is the large image and IT is the template image. The parameter II is the mean

intensity for the image, and IT is the mean intensity for the template. The parameters M

and N are the height and width, respectively, for the template. The variables m and n

are the pixel location of the top left corner of the template on the image. The variables i

and j are the pixel coordinates inside the template.

The (m,n) location yielding the highest C value is then subtracted from the known

template corner position from the previous frame. The difference is the m and n pixel

movement of the frame. This is performed with all six templates. Once the six different

estimates have been determined, they are passed through a median filter of window size

three. The last step is to average these filtered estimates, and the motion parameter

estimates are found. These estimates are the values of the total motion of the camera,

however. Undesired local motion must be separated from the desired global motion.

3.1.3 Global Motion Detection. Image stabilization on mobile platforms require

a distinction between undesired camera jitter, known as local motion, and desired motion,

known as global motion. For example, as the platform rounds a corner, the stabilized

image should follow the turn, while removing unwanted high frequency bumps and jitters.

This separation is accomplished by low pass filtering.

A low pass filter of the lowest order is desirable to keep filter latency as low as

possible. By constraining the filter to second-order, the correction delay is limited to two

frames. Stated another way, the correction for the current frame is dependent upon the

current frame and the last two frames.

A second-order infinite impulse response (IIR) filter is expressed as a transfer function

in the Laplace domain as

H(s) =
b0s

2 + b1s + b2

a0s2 + a1s + a2
(3.111)

where b0,b1,b2,a0,a1, and a2 are the filter coefficients. The parameter a0 is usually set to

unity. Out of the many different types of IIR and Finite Impulse Response (FIR) filters,

the IIR elliptic filter is the most efficient in terms of amplitude response [35:485]. For a

given filter specification, it results in the lowest filter order. Thus, the IIR elliptic filter
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Figure 3.23. Bode Response of the LPF.

is used for this application. However, calculation of the coefficients of an elliptic filter is

difficult. In practice, it is best to use a table lookup, or use filtering software [35:485].

Using the filtering toolbox in MATLAB, a second-order infinite impulse response

elliptic filter was designed, with a sampling frequency of 7 Hz (The frame rate of the

camera), and a cutoff frequency of 0.2 Hz. This cutoff frequency was determined by finding

a frequency which allowed the video to remain approximately still on straightaways, and

track turns around corners. The resulting coefficients are

b =
[

7.3 × 10−3 14.2 × 10−2 7.3 × 10−3
]

a =
[

1 −1.789 0.822
]

. (3.112)

This filter is used for the m, n, and α directions. The Bode plot and step response of the

filter are shown in Figure 3.23 and Figure 3.24. The system is stable, and the true cutoff

is close to 0.2 Hz. The 5% settling time is approximately four seconds.

The step response can be understood as follows. When the LPF receives an image

displacement, initially it considers the displacement completely as jitter and compensates

completely for it. However, as long as the camera does not move from this new orientation,

the image will center itself about the new orientation after four seconds.

59



0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Steady State

Figure 3.24. Step Response of the LPF. The dotted line

is the steady state value.

The desired cutoff frequency will change depending on what the desired motion of the

platform is. For example, a platform with slow side to side turning allows for a lower cutoff

frequency. A platform with fast side to side turning will require a higher cutoff frequency

to maintain video tracking during turns. A platform that is expected to track significant

roll angle will require a higher cutoff frequency for its rotation filter. Each of the m, n,

and α directions can modify its LPF filter cutoff frequency for desired performance.

Once the global motion is calculated for a frame using the low pass filter, it is

subtracted out of the current set of optimal motion parameter estimates. This prevents

compensation of the global motion, while performing compensation for the undesired local

motion.

3.1.4 Image Registration. The last stage is to compensate for the undesired

motion. This is accomplished by transforming the image by the negatives of the local

motion parameter estimates. The result is a stable frame capable of tracking the low

frequency motion of the platform.
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3.1.5 Template Matching Summary. The template matching algorithm is straight-

forward and can be effective in certain uses of EIS where the video feed undergoes small

frame displacement. However, for EIS on highly dynamic mobile robotic platforms, small

frame displacement cannot be guaranteed. Also, the algorithm operates at an average

speed compared to the other methods.

3.2 Feature Detection

The next algorithm considered is the feature detection algorithm. The block diagram

for the feature detection algorithm is shown in Figure 3.25. Again, the development will

proceed from the top left of the block diagram.

3.2.1 Feature Matching. The SIFT algorithm is performed on both the current

image and the previous image. Each feature has a particular pixel location and a directional

gradient descriptor.

Feature matching is performed by finding the descriptors which have the smallest

inverse cosine of the dot product between them. For example, the descriptor from the

previous image is taken and compared against every descriptor in the current image. The

match that provides the lowest value of the inverse cosine of the dot product is most likely

the equivalent feature. A threshold distance ratio of 0.5 is used, which maintains that a

descriptor from the previous image is distinctly matched to the current image. The next

closest match distance must be at least 0.5 greater than the first match distance in order to

be a valid match. This value of 0.5 was found by using a parametric sweep to determine the

best tradeoff between the total number of matches and the number of incorrect matches.

The SIFT algorithm often produces multiple matches for a single pixel. This happens

if the descriptor for a particular pixel has very distinct attributes that can be separated

into two features. These are not useful for calculating the transformation matrix, however.

We reduce the vector of feature matches to those which are at least one pixel apart.

3.2.2 RANSAC Determination of Transformation Matrix. The vectors of the fea-

ture correspondences are put through the RANSAC algorithm as created by [26], and the
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output of RANSAC is the most probable transformation matrix. The algorithm uses the

RANSAC parameters shown in Equation (3.113). The ǫ and Pin values are recommended

in [26]. The σ value was determined by a parameter sweep for the most accurate perfor-

mance during the testing in chapter four. The number of iterations to use was determined

by first evaluating the performance of RANSAC with a very high number of iterations,

and then lowering the value just until the point performance was noticeably degraded.

σ = 1× 10−3

ǫ = 1× 10−3

Pin = 0.99

minimum iteration= 0

maximum iteration= 1000

(3.113)

Once RANSAC outputs the most probable transformation matrix, H, the x, y, and α

motion estimates are determined from the elements of the matrix.

H =











h11 h12 h13

h21 h22 h23

h31 h32 h33











. (3.114)

∆x = h13. (3.115)

∆y = h23. (3.116)

∆λ =
√

h2
11 + h2

21. (3.117)

∆α = arcsin
−h21

∆λ
. (3.118)

Scale ∆λ is negligible since this image stabilizer assumes long distance scenes, thus con-

sideration of the ∆λ value is only necessary for except the calculation of ∆α.

These estimates are then converted back to raster coordinates, and the motion pa-

rameter estimates are achieved. Next, low pass filtering is accomplished to determine local

motion, and finally the local motion of the video feed is removed by warping the image.
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3.2.3 Feature Detection Summary. The feature detection algorithm is an accu-

rate method of motion estimation, but is not reliable in the presence of image blurring and

moving objects, as will be seen in the next chapter. Additionally, it incurs a high compu-

tational cost. However, The feature detection algorithm is still an effective stabilizer for

many EIS applications.

3.3 Optical Flow

The block diagram for the optical flow algorithm is shown in Figure 3.26. Develop-

ment will begin from the unstable video feed in the upper left corner of the block diagram.

Motion estimation at the current time requires both the current image and the pre-

vious image. The good features are found using the Shi-Tomasi technique. Pyramidal

Lucas-Kanade optical flow is then performed. The algorithm uses the find good features

function and the pyramidal Lucas-Kanade optical flow function provided by the OpenCV

library.

The vectors of matched points in the image, output by the Lucas-Kanade algorithm

in raster coordinates, must be converted into Cartesian in order for RANSAC determina-

tion of the transformation matrix. The motion parameters are then extracted from the

transformation matrix, and converted back into raster coordinates. Finally, the images are

registered by applying the negative values of the calculated local motion.

3.3.1 Optical Flow Summary. Optical flow is an accurate EIS algorithm that is

capable of robust estimation even in the presence of image blur. It is also computationally

fast. Because of these reasons, optical flow was chosen for integration with inertial data to

provide the optimal EIS motion parameter estimates. The optical flow with inertial fusion

algorithm is discussed in Section 3.5.

3.4 Inertial Measurement

The next algorithm considered is inertial measurement. The block diagram is shown

in Figure 3.27. Inertial measurement is unique because it does not rely upon an optical

sensor. All that is necessary is an IMU.
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Inertial measurement works as follows. First the inertial data stream is received, and

the angular rates, p,q, and r are taken. These angular rates are then integrated according

to

Ωk = Ωk−1 + ∆t
d

dt
Ωk−1. (3.119)

where Ωk is the angular displacement at time step k, Ωk−1 is the angular displacement at

the previous time step k − 1, ∆t is the time step magnitude, and d
dt
Ωk−1 is the angular

rate at the previous time step k− 1. This results in vectors of angular displacements, φ, θ,

and ψ. These displacements are then summed between image capture times, and multiplied

by their respective coefficients, Kφ, Kθ, and Kψ. The results are the motion parameter

estimates frame to frame.

The values for Kφ, Kθ, and Kψ were found by performing parametric sweeps and

visually matching the output plots to a section of video of known displacement. The final

fittings are shown in Figure 3.28. The hand determination of the video displacement is

discussed in Section 4.3.1.

Once the motion parameter estimates are found, global motion is detected and then

subtracted from the motion parameter estimates. This leaves the local motion for the final

compensation. Once the local motion is compensated, a stabilized video feed is the result.

3.4.1 Inertial Measurement Summary. Inertial measurement is the only algo-

rithm that is invariant to errors caused by image blur and moving objects. However, its

accuracy depends on the specific IMU used. The errors in the MIDG IMU used in this

thesis degraded the accuracy of inertial measurement. With the use of better IMU’s, more

accurate results can be achieved. Because of the the algorithm’s invariance to image blur

and moving objects, it is chosen for integration with optical flow.

3.5 Optical Flow with Inertial Fusion

The final algorithm, the novel optical flow with inertial fusion, is the optimal solution

to the image stabilization problem. Shown again in Figure 3.29, EIS contains a motion

estimation block and a motion compensation block. The motion estimation block is further
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defined in Figure 3.30. The EIS algorithm performs directly upon the input video feed,

while the IMU operates concurrently and is affected by the motion of the platform. For

each frame time, a fusion step is performed to combine information from both estimation

methods. In this way, the unique and useful traits of optical flow and inertial measurement

can be utilized to provide optimal motion parameter estimates from frame to frame.

The block diagram for the optical flow with inertial fusion algorithm is found in

Figure 3.31. Development begins from the top left corner of the diagram.

Motion estimation at the current time requires both the current image frame and the

last captured image frame. The good features are found using the Shi-Tomasi technique.

Pyramidal Lucas-Kanade optical flow is then performed. The algorithm uses the find good

features function and the pyramidal Lucas-Kanade optical flow function provided by the

OpenCV library.
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Figure 3.30. Motion Estimation Block.
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The track error vector is used with the number of feature correspondences to gen-

erate a detector value. The detector yields values close to unity when there is significant

disturbance and differences between the current frame and the previous frame, and close

to zero when there is great similarity between frames. The equation used to generate the

detector value is

D(T,C) = (
T

1000
)(1−

C
500

) (3.120)

where T is the average track error for the frame, and C is the number of correspondences.

The track error ratio, T
1000, and the correspondence ratio, (1− C

500), are multiplied to cal-

culate the detector value. The number 1000 is used in the track error ratio because the

maximum track error value during testing was approximately 1000. The track error ratio

is close to unity when there is significant track error, and close to zero when there is not.

The value of 500 was selected for the correspondence ratio because the maximum number

of correspondences allowed in the algorithm is 500. This choice of a 500 correspondence

maximum was chosen because the approximate maximum number of correspondences be-

tween two frames during live testing was found to be 500. When there is a high number of

correspondences, the correspondence ratio is close to zero, and when there is a low number

of correspondences, the correspondence ratio is close to unity. Multiplying the two ratios,

the final detector value gives insight into the reliability of the motion parameter estimates

found by optical flow.

Note that even though the detector value is correlated to actual performance of the

stabilizer, a high detector value does not necessarily mean features could not be accurately

matched. It states only that there is significant pixel intensity difference between the

image, whatever the reason for the difference could be.

The vectors of matched points in the image, output by the Lucas-Kanade algorithm

in raster coordinates, are converted into Cartesian coordinates in order for RANSAC deter-

mination of the transformation matrix. The motion parameter values are then extracted

from the transformation matrix. The x, y, and α displacements are then fused with gyro

sensor data from the inertial device to generate the optimal motion estimate. This fusion

is accomplished by way of Kalman filtering.

71



3.5.1 Kalman Filter Development. A Kalman filter is developed to generate the

optimal estimates of the angular displacements of the camera given data from the IMU

and the EIS motion parameter estimate. The particular filter used is a nine state discrete

Kalman filter using a perturbation model to estimate the IMU output errors. The IMU

output errors are sufficiently characterized and modeled as a first-order Gauss-Markov

process.

The state vector for the system is shown in Equation (3.121). There are three angular

displacement states, φ, θ, and ψ, three angular rate states, p, q, and r, and three drift bias

states bφ, bθ, and bψ . The translational states have negligible significance to this particular

application of EIS and are ignored.

x =
[

φ θ ψ p q r bφ bθ bψ

]T
(3.121)

3.5.1.1 Characterization of IMU Error. The IMU errors affecting the

angular outputs are approximated as a first-order Gauss-Markov process. This is described

as a noise source whose autocorrelation function is of the form

R(τ) = ρ−β|τ |e (3.122)

and of differential form

ṅ(t) =
−1
τ

n(t) + wn(t) (3.123)

where n(t) is the current value of the noise, τ is the time constant for the noise process,

and wn(t) is zero-mean additive white Gaussian noise of strength σ2. The time constant τ

and β value are related by

τ =
1
β

(3.124)

To determine the values of ρ and β in Equation (3.122) for the particular IMU used in the

experiment, the device was left motionless on a table and three sets of data were collected,

each of duration of at least 20 minutes. Each angular rate was affected by a random

drifting bias. These drifts are shown in Figure 3.32, which were arrived at by cumulative

summing of the angular rate vector provided by the IMU.
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Table 3.1. Autocorrelation Parameter Values.

Run 1 Run 2 Run 3 Average

0.08 0.12 0.17 0.123 ρφ

4.0 × 103 3.0 × 103 3.0 × 103 3.33 × 10−3 βφ

0.025 0.025 0.035 0.0283 ρθ

2.5 × 10−3 1.5 × 10−3 1.5 × 10−3 1.83 × 10−3 βθ

0.15 0.045 0.035 0.04 ρψ

2.5 × 10−3 1.3 × 10−3 1.0 × 10−3 1.115 × 10−3 βψ
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Figure 3.34. Example Angular Rate Output.
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Autocorrelations of the unsummed angular rate vector are calculated, and ρ and β

values determined by exponential curve fitting. An example plot with its curve fit is

shown in Figure 3.33. The complete collection of Gauss-Markov parameter values is found

in Table 3.1. IMU sensor noise is characterized by using the averages of these values.

3.5.1.2 Dynamic Model Development. The general form for the dynamic

perturbation model of the platform is

δ ẋk = Fδ xk + Buk + Gwk (3.125)

where δ xk is the perturbed state vector, uk is the deterministic input vector, and wk is a

vector of zero-mean additive white Gaussian noise. F is the system dynamics matrix, B

is the control matrix, and G is the noise matrix. There is no control mechanism for the

system, so B = 0. The G matrix is the identity matrix. The F matrix is

F =

















































0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −βφ 0 0

0 0 0 0 0 0 0 −βθ 0

0 0 0 0 0 0 0 0 −βψ

















































. (3.126)

The state uncertainty matrix, Qk , is comprised of the variances of the different states.

The variances of the three bias states, bφ, bθ, and bψ, are found from using Equation (3.127)

for each run and averaging the results. The units for the variance of the bias states are

degrees squared. The three angular rate state variances, p, q, and r, are found from the

variance of the output of the motionless IMU and averaging the results from the three runs.

The units for the variance of the angular rates are degrees squared per second squared.

An example plot of the angular rate value over time is shown in Figure 3.34. The variance
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of the angular displacement states, φ, θ, and ψ, are determined by integrating the angular

rates and averaging the variances of the results from the three runs. The units of the

angular displacement variances are degrees squared. The final values for Qk are found in

Equation (3.128).

σ2 = 2βρ (3.127)

Qk =





































4.3E − 9 0 0 0 0 0 0 0 0

0 4.3E − 9 0 0 0 0 0 0 0

0 0 9.2E − 9 0 0 0 0 0 0

0 0 0 1.6E − 5 0 0 0 0 0

0 0 0 0 1.6E − 5 0 0 0 0

0 0 0 0 0 3.6E − 5 0 0 0

0 0 0 0 0 0 8.2E − 4 0 0

0 0 0 0 0 0 0 1.0E − 4 0

0 0 0 0 0 0 0 0 9.2E − 5





































(3.128)
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3.5.1.3 Measurement Model Development. The measurement model is de-

fined as

δ zk = Hδ xk + vk (3.129)

with observation matrix H defined as

H =











−55 0 0 0 0 0 0 0 0

0 1898 0 0 0 0 0 0 0

0 0 −1898 0 0 0 0 0 0











. (3.130)

These values were found by performing parametric sweeps and visually matching the output

plots, as described in the inertial measurement algorithm. Note that for a perturbation

measurement model, the H matrix is the negative of the true observation matrix.

The zk vector in the measurement model is comprised of the frame to frame dis-

placement estimates provided by EIS. EIS is a particularly unique kind of measurement,

because it offers relative measurements and not absolute. The displacement is given from

the x
true

at the last time of frame capture, which is estimated by x̂ in the Kalman filter. The

perturbation model must account for this. The new δ zk is found to be

δ zkcf = zkcf − H

[

xkcf − x̂kpf

]

. (3.131)

where kcf is the current frame time and kpf is the previous frame time. The full perturbation

measurement model is then

δ zkcf = Hδ xkcf − H x̂kpf + vkcf . (3.132)

To make the appropriate changes to the Kalman filter equations in Figure 3.35, replace

every occurrence of x̂k with δ x̂k , and every occurrence of zk with δ zk , and proceed as

normal.

3.5.1.4 Measurement Variance Determination. The Rk matrix values de-

fine how much of EIS measurement is incorporated, or how little. When the detector value
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+
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−
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−
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+
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k

P
−

k+1 = φP
+

k φ
T+ Qk

Figure 3.35. Kalman Filter Equations [20:219].

is near zero, all of the EIS measurement is desired. When the detector value is close to

unity, all of the IMU measurement is desired.

The data from one of the three stationary test sets is used to determine the precise

relationship between R and the amount of EIS measurement to incorporate. The IMU

was left motionless on a table, thus the true values of the angular rates are zero for all

time. EIS measurements are simulated by a zero vector. The state estimate x̂k of the filter

should then be close to zero if EIS is fully incorporated, and deviate from zero if none

of the EIS measurement is incorporated. This corresponds to the total error. The state

estimate should have minimum error if all of the EIS estimate is fully incorporated, and

maximum error if none of the EIS estimate is incorporated.

RMS errors were collected for values of R ranging from 1×10−5 to 1×1015. Maximum

RMS error occurs when no EIS information is incorporated into the measurement, and

minimum RMS error when EIS is incorporated into the measurement. The left plot in

Figure 3.36 shows the normalized error to R value relation. These complex curves are

difficult to match with a simple equation. However if the view is constrained to the linear

portions of the curves, as shown in the right plot in Figure 3.36, the curves resemble
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exponential form. Thus the R(D) equations should be of some exponential form

ηeγD. (3.133)

The final values for the η and γ coefficients are determined by using parametric sweeps.

these sweeps were conducted during the moving object hallway test, as presented in Sec-

tion 4.3.3. The coefficients are chosen so as to minimize the total RMS error for the run.

These values are thus optimized for the specific environment of building hallways. De-

pending on the scene environment of the platform, these values may be altered to provide

better results. The final R(D) equations are

Rm = (1 × 10−3) × e8D

Rn = 0.1 × e6D

Rα = (1 × 10−3) × e18D.

(3.134)

3.5.1.5 Camera to IMU Bias Determination. A bias exists between the

camera clock and the IMU clock. This bias prevents effective fusion of optical and inertial

data. It is unknown whether this bias is random at turn on, or whether it is constant for

every run as a hardware latency. The bias must be known in order to match up frame

capture times to the appropriate IMU times. This bias was determined to be 0.13 seconds

by matching up the hand calculated displacement to the displacement plot output the

IMU, as shown in Figure 3.37.
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With the necessary Kalman filter components now specified, optimal fusion of the

optical flow estimates and inertial data is achieved. The Kalman filter corrects the output

of the IMU by integrating optical flow measurements. The result is a more accurate

angular rate and angular displacement estimate contained in x̂. To determine the optimal

frame to frame displacements, sum the angular displacements in between frame times and

multiply the result by the appropriate Kφ, Kθ, or Kψ coefficient, as was done in the inertial

measurement Algorithm.

These motion parameter estimates are then low pass filtered, and the local motion

extracted. Compensation on the image is then accomplished by warping the image by the

negative values of the local motion estimate. The result is a stabilized video feed.

3.5.2 Optical Flow with Inertial Fusion Summary. This concludes the develop-

ment of the novel optical flow with inertial fusion algorithm. EIS is implemented in an

optimal fashion by integrating information from optical and inertial sensors. The optical

flow with inertial fusion algorithm is both fast and accurate, and is resistant to errors

caused by imaging effects such as blurring and moving objects.

80



3.6 Summary

Five solutions to the motion estimation problem are presented, encompassing all four

of the major classes of EIS. The five algorithms are template matching, feature detection,

optical flow, inertial measurement, and the novel optical flow with inertial fusion algorithm.

Each algorithm is well-structured, and presents a unique approach to the EIS problem.

The template matching algorithm is conceptually straightforward, does not incur a large

computational cost, and performs well in estimating small image displacement, however

for the purpose of EIS on highly dynamic mobile robotic systems it should not be used.

The feature detection algorithm is effective when image blurring and moving objects are

not significant, but it is computationally expensive. Optical flow is both fast and effective

even in the presence of image blurring. However it too incurs large errors in the presence

of moving objects. Inertial measurement is unique because it is inherently invariant to

image blurring and moving objects, but its accuracy completely depends upon the specific

IMU used. Optical flow with inertial fusion is both the fastest and most accurate method

of EIS for use on highly dynamic mobile robotic platforms, even in the presence of image

blurring and moving objects.
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IV. Simulation and Experimental Analysis

T
he performance of the five stated algorithms are now considered. It is necessary to

compare the algorithms using a standard evaluation procedure in order to determine

the best algorithm for EIS on highly dynamic mobile robotic systems. Optical flow with

inertial fusion is shown to be the most effective algorithm, and also the fastest.

First, non-inertial EIS is tested. A video truth model is developed to simulate camera

motion of a robot walking through a hallway. The truth model generates precise frame

to frame motion parameter values for image translation and rotation, with the added

capability of injecting image blur and moving objects into the video sequence. Each non-

inertial EIS algorithm is utilized upon the truth model, and its estimated values compared

to the true values. In this way an accurate and standard evaluation is achieved.

To begin, only translation is considered in the video truth model. Then translation

and rotation is combined in the model. Then translation, rotation, and blurring is incor-

porated. Finally, translation, rotation, blurring, and moving objects are used. It is shown

that optical flow performs the best of the non-inertial EIS algorithms.

Next, inertial EIS is tested. This is done by live test data of a camera and IMU affixed

to the DAGSI WhegsTM mobile platform as it navigates through a hallway. True motion

parameter values are estimated using a manual determination. These values are compared

against optical flow, feature detection, inertial measurement and the novel optical flow with

inertial fusion. Additionally, a simulated moving object is injected into the hallway video

and the algorithm performance is rated for each of the methods. Of the four methods,

optical flow with inertial fusion offers superior performance.

Note that global motion detection is disregarded for the purposes of evaluating the

algorithms. The effectiveness of estimating complete image motion is desired. For perfect

stabilization, the final video is completely stationary.
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4.1 Truth Model Description

To rate the effectiveness of a particular EIS algorithm, a simulated truth model

is created. This truth model allows for the observation of the exact motion parameters

between frames. Knowing these values, we can describe the errors associated with a given

EIS algorithm.

The base image used for the truth model is shown in Figure 4.38. It is a hallway

scene, which captures the scene environment of the live test data. Thus results from the

truth model are comparable to expected results of EIS operating on the live test data.

The input parameters of the truth model generator function are the maximum values

for rotation, θ translation, T, blur angle, γ, blur length, ξ, and blur frequency, f . The

function then generates random values for these parameters according to a uniform distri-

bution from the negative maximum to the positive maximum. The function takes a large

image, 1024 × 1280, and rotates it by random θ. The rotated image is cropped to match

the original 1024 × 1280 size. A window of size 512 × 640 is then taken from the center

of the rotated image, plus the random horizontal and vertical translation values T. This

allows for perfect simulation of m, n, and α for the duration of the video.

In the truth model, the actual displacement values of m, n, and α are determined

as an offset from the original base image. In order to calculate the true frame to frame

displacements, the current frame value is subtracted by the previous frame value. This

results in accurate frame to frame values, which are useful to compare against the outputs

of the EIS algorithms.

The effects of blur are captured by parameters γ, ξ, and f . The values of γ and ξ

are input into a point spread function (PSF) which is applied to the image at a regular

interval 1
f
.

The determination of error between the EIS parameter estimate and the true param-

eter value is accomplished by subtracting the estimated frame to frame displacement vector

from the true frame to frame displacement vector. The residual vector is the estimation

error for the duration of the test. Using the root-mean-squared (RMS) value of this error
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Figure 4.38. Base Image for Truth Model.

vector is effective to compare the overall performance of an EIS algorithm for a particular

run.

Note that algorithms utilizing inertial data cannot be used on this truth model.

This is because estimated IMU values are not determined for a particular video sequence.

However, the development of such a model would be useful.

4.2 Evaluation of Non-Inertial EIS Algorithms

4.2.1 Translation Testing. With the truth model described, simulation and

evaluations are now considered. Translation testing is performed upon each of the three

algorithms. The truth model is given a uniformly sampled 100 pixel maximum movement in

the m and n directions. This value of pixel movement was chosen because it approximates

the actual maximum pixel movement for the live data set.
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Figure 4.39. Translation Test Performance.

Table 4.2. Translation Test Performance.

m Error n Error α Error

RMS σ RMS σ RMS σ

Template Matching 27.67 27.41 63.84 64.06 N/A N/A

Feature Detection 0.0 0.0 0.0 0.0 0.01◦ 0.01◦

Optical Flow 0.67 0.50 0.67 0.50 0.01◦ 0.01◦
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Table 4.3. Average Time for One Estimation Loop

Time [s]

Template Matching 2.5

Feature Detection 4.6

Optical Flow 1.1

Inertial Measurement 0.6
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The results are shown in Figure 4.39 and Table 4.2. Both feature detection and optical

flow prove to be reliable algorithms for detecting translation and rotation. Both algorithms

have translation RMS error value less than one pixel, and rotation RMS error near zero.

The template matching algorithm fairs far worse, with RMS error of approximately 28

pixels in the m direction and 64 pixels in the n direction. There is no rotation error for

template matching because the algorithm does not detect rotation.

The template matching algorithm is capable of better performance when the image

translation is not as extreme. See Figure 4.40 for the performance of the template matching

algorithm using a 50 pixel movement maximum. Here the RMS error is approximately 6

in the m direction and 5 in the n direction. Thus the template matching algorithm can be

effectively used for for small displacement estimation.

The speeds of each method are also determined from the translation testing. The

mean required time for optical flow is 1.1 seconds for each estimation loop. Feature de-

tection requires 4.6 seconds. Template matching requires 2.5 seconds per loop. Inertial

measurement is evaluated later during hallway test in Section 4.3.2, but its value of 0.6 sec-

onds is listed here for consistency. These times are presented in Table 4.3. The simulations

were conducted on a personal laptop running a 2.1 MHz processor. With faster hardware

and speed optimized code the algorithms will run much faster, however these loop time

values provide insight into relative time requirements between the three approaches.

4.2.2 Translation and Rotation Testing. A rotation of 6◦ is now incorporated in

the video truth model. This choice of rotation is based upon the approximate maximum

rotation of the live data set. The resulting error plots and data are shown in Figure 4.41

and Table 4.4. Even in the presence of rotation, both the feature detection algorithm and

the optical flow algorithm do an excellent job of estimating motion. The RMS error is held

to 5 pixels in the m and n directions for both algorithms. Errors in rotation are negligibly

small.
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Figure 4.41. Translation and Rotation Test Performance.

Table 4.4. Translation and Rotation Test Performance.

m Error n Error α Error

RMS σ RMS σ RMS σ

Feature Detection 4.88 4.90 4.67 4.67 0.01◦ 0.01◦

Optical Flow 4.76 4.77 4.69 4.63 0.01◦ 0.01◦
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4.2.3 Effects of Blurring. When a random blur function is incorporated into

the video truth model, the results shown in Figure 4.42 and described in Table 4.5 are

observed. Blurring produces large errors in the feature detection algorithm. RMS errors

are increased to 35 pixels in the m direction, and 37 pixels in the n direction. Significant

rotation error also results, with an RMS value of 1.5◦.

The optical flow algorithm maintains good performance, however. RMS errors are

held to 5 pixels in the m and n directions, and rotation error is approximately 0.2◦ .

4.2.4 Effects of Moving Objects. A moving object is now added to the video truth

model. A large black box of pixel size 300 × 300 is sent across the screen at a constant

speed. The block first enters the screen at frame 51, and exits around frame 90. A picture

of the box is shown in Figure 4.44. Errors are greatly increased in the presence of the

moving object. For feature detection, RMS pixel errors are 38 and 39 in the m and n

directions, respectively, and 8.5◦ in rotational RMS error. Optical flow experiences RMS

pixel errors of 24 in the m direction, 38 in the n direction, and 3.1◦ in RMS rotational

error.

4.2.5 Non-Inertial EIS Summary. This concludes the evaluation of non-inertial

EIS algorithms. Of the non-inertial algorithms, optical flow is the only algorithm robust

against image blurring, whereas feature detection estimates are significantly degraded.

However, both optical flow and feature detection are effective for estimating large image

displacements, both in translation and rotation. The template matching algorithm is shown

to be the weakest performer. However, when image displacements are constrained to 50

pixels performance is acceptable with template matching. None of the non-inertial EIS

algorithms are capable of effective motion estimation in the presence of moving objects.

Inertial measurement performance is rated next, followed by optical flow with inertial

fusion.
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Figure 4.42. Translation, Rotation, and Blur Test Per-

formance.

Table 4.5. Translation, Rotation, and Blur Test Perfor-

mance.

m Error n Error α Error

RMS σ RMS σ RMS σ

Feature Detection 34.97 35.09 36.98 36.93 1.47◦ 1.45◦

Optical Flow 4.99 4.99 5.19 5.21 0.21◦ 0.21◦
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Figure 4.43. Translation, Rotation, Blur, and Moving

Object Test Performance.

Table 4.6. Translation, Rotation, Blur, and Moving Ob-

ject Test Performance.

m Error n Error α Error

RMS σ RMS σ RMS σ

Feature Detection 38.20 38.15 26.01 26.05 3.33◦ 3.43◦

Optical Flow 28.93 29.06 38.44 38.41 4.21◦ 4.21◦
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Figure 4.44. Video with Moving Object

Figure 4.45. Hand Determination Snapshot.
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4.3 Evaluation of Inertial Algorithms

To rate the effectiveness of EIS using inertial measurement, an IMU is placed on the

DAGSI WhegsTM platform, and video and IMU data is collected as the robot navigates

through the hallway. This allows for analysis of the IMU performance. Precise truth values

for the motion parameters for the hallway tests are not available, however, a systematic

process is developed to manually approximate the true motion parameter values. Though

the approximations are exact only to a few pixels, they are accurate enough to compare

the performance of the EIS algorithms in a conclusive manner.

4.3.1 Manual Determination of Motion Parameter Estimates. Because of the

lack of a truth model for the IMU values, a manual determination of frame movement is

accomplished. This is done systematically using the program shown in Figure 4.45. The

program displays the difference between two images, and provides controls to alter the

image translation and rotation, invert the image intensities, and zoom in on the images.

When a good match between two images is visually determined, the displacements are

saved.

After this process is conducted on the video sequence, the resulting motion estimates

are used to create a new stabilized video. The parameters are then fine tuned visually,

correcting for any movement the video appeared to undergo. After several iterations of

this process, a stable video is achieved, and the true frame to frame motion parameter

estimates well approximated.

The manual determination is very accurate, except in some cases of image blurring.

Image blurring presents a difficulty to ascertain true locations of objects in an image. Thus

errors are introduced into the determination. However, significant blurring is not frequent,

and it does not degrade the accuracy by more than a few pixels when it is present.

93



0 10 20 30 40 50

−50

0

50

100

Frame Transition

E
rr

o
r

[p
ix

el
s]

Feature Detection Translation Error

m RMS = 12.5204
n RMS = 9.0377

m
n

0 10 20 30 40 50
−5

0

5

Frame Transition

E
rr

o
r

[d
eg

]

α RMS =0.7044

Feature Detection Rotation Error

0 10 20 30 40 50
−15

−10

−5

0

5

10

15

Frame Transition

E
rr

o
r

[p
ix

el
s]

Optical Flow Translation Error

m RMS = 3.0430
n RMS = 2.9120

m
n

0 10 20 30 40 50
−3

−2

−1

0

1

2

3

Frame Transition

E
rr

o
r

[d
eg

]

α RMS =0.4757

Optical Flow Rotation Error

0 10 20 30 40 50
−100

−50

0

50

100

150

Frame Transition

E
rr

o
r

[p
ix

el
s]

Inertial Measurement Translation Error

m RMS = 23.7601
n RMS = 23.4278

m
n

0 10 20 30 40 50
−4

−2

0

2

4

Frame Transition

E
rr

o
r

[d
eg

]

α RMS =0.9950

Inertial Measurement Rotation Error

0 10 20 30 40 50
−20

−10

0

10

20

Frame Transition

E
rr

o
r

[p
ix

el
s]

Filtered Translation Error

m RMS = 2.5768
n RMS = 5.6232

m
n

0 10 20 30 40 50
−5

0

5

Frame Transition

E
rr

o
r

[d
eg

re
es

] α RMS =0.7937

Filtered Rotation Error

Figure 4.46. Hallway Test Performance.
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Table 4.7. Hallway Test Performance.

m Error n Error α Error

RMS σ RMS σ RMS σ

Feature Detection 12.52 12.65 9.03 8.90 0.71◦ 9.69◦

Optical Flow 3.04 3.05 2.91 2.53 0.48◦ 0.48◦

Inertial Measurement 23.76 21.53 23.43 23.23 1.00◦ 0.98◦

Optical Flow with Inertial Fusion 2.58 2.59 5.62 5.55 0.79◦ 0.78◦

4.3.2 Hallway Testing. The accuracy of the manual method to determine frame

displacements is good enough to compare performance of one algorithm against the other.

Figure 4.46 and Table 4.7 shows the performance of the inertial measurement EIS algo-

rithm along with the feature detection, optical flow, and optical flow with inertial fusion

algorithms. Feature detection has acceptable performance, except for an occasional spike.

RMS errors are 13 pixels in m direction, 9 pixels in the n direction, and rotational RMS

error of 0.7◦. The optical flow algorithm works well, with RMS error approximately 3

pixels for both the m and n directions, and rotational RMS error is held to 0.4◦. The

inertial measurement algorithm does not perform well, with RMS error of 24 pixels in

the m direction and 23 pixels in the n direction, and rotational RMS error of 1.0◦. The

optical flow with inertial fusion algorithm has RMS pixel errors of 3 in the m direction, 6

in the n direction, and 0.8◦ in rotational RMS error. Observe that the filtered estimate

incurs errors slightly greater than the optical flow algorithm. This is because it integrates

too much of the IMU estimate. Certain frames have a high detector value even though

the EIS estimate is reliable. This is the unfortunate tradeoff for better performance in the

presence of moving objects. However, errors are still acceptable even with the increase.

The exact nature of this tradeoff is dependent upon the R(D) equations used to determine

the measurement uncertainty matrix for the Kalman filter.
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Figure 4.47. Hallway Test with Moving Object.

Table 4.8. Hallway with Moving Object Test Perfor-

mance.

m Error n Error α Error

RMS σ RMS σ RMS σ

Feature Detection 18.01 18.09 31.03 31.11 2.92◦ 2.93◦

Optical Flow 16.16 16.29 21.08 21.11 2.20◦ 2.22◦

Inertial Measurement 23.76 21.53 23.43 23.23 1.00◦ 0.98◦

Optical Flow with Inertial Fusion 11.82 11.93 14.47 14.57 0.78◦ 0.83◦

96



0 10 20 30 40 50

−100

0

100

200

Frame Transition

E
rr

o
r

[p
ix

el
s]

Feature Detection Translation Error

m RMS = 18.0155
n RMS = 31.0300

m
n

0 10 20 30 40 50
−20

−10

0

10

20

Frame Transition

E
rr

o
r

[d
eg

]

α RMS =2.9240

Feature Detection Rotation Error

0 10 20 30 40 50
−100

−50

0

50

100

150

Frame Transition

E
rr

o
r

[p
ix

el
s]

Optical Flow Translation Error

m RMS = 16.1623
n RMS = 21.0181

m
n

0 10 20 30 40 50
−10

−5

0

5

10

15

Frame Transition

E
rr

o
r

[d
eg

]

α RMS =2.2046

Optical Flow Rotation Error

0 10 20 30 40 50
−100

−50

0

50

100

150

Frame Transition

E
rr

o
r

[p
ix

el
s]

Inertial Measurement Translation Error

m RMS = 23.7601
n RMS = 23.4278

m
n

0 10 20 30 40 50
−4

−2

0

2

4

Frame Transition

E
rr

o
r

[d
eg

]

α RMS =0.9950

Inertial Measurement Rotation Error

0 10 20 30 40 50

−50

0

50

100

Frame Transition

E
rr

o
r

[p
ix

el
s]

Filtered Translation Error

m RMS = 12.5523
n RMS = 14.5849

m
n

0 10 20 30 40 50
−10

−5

0

5

10

Frame Transition

E
rr

o
r

[d
eg

re
es

] α RMS =0.8544

Filtered Rotation Error

Figure 4.48. Hallway with Moving Object Test Perfor-

mance.
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The inertial measurement algorithm is ineffective because of the inherent errors of

IMU gyro sensors. For inexpensive IMUs, these errors are large enough to significantly

degrade EIS performance. However, if a precision IMU is used, the inertial measurement

algorithm will perform much better. This would improve the accuracy of the optical flow

with inertial fusion algorithm as well.

4.3.3 Moving Object Simulation. Moving objects are now injecting into the hall-

way video sequence. Figure 4.47 depicts the moving object. This allows for the operation

of inertial measurement in the presence of moving objects. A large 300 × 300 pixel black

box is injected into the video sequence and sent across the video starting at frame 30.

Observe in Figure 4.48 that large errors are introduced into the feature detection and

optical flow algorithm from frame 30 to the end of the video. Feature detection RMS pixel

errors are 18 in the m direction, 31 in the n direction, and 2.9◦ in rotational RMS error.

Optical flow performs slightly better, with RMS pixel errors of 16 in the m direction, 21

in the n direction, and 2.2◦ in rotational RMS error.

When inertial data is fused with the optical flow estimate, much better results are

achieved. Using the novel optical flow with inertial fusion algorithm, RMS error is reduced

to 12.5 in the m direction, 14.6 in the n direction, and 0.85◦ in rotational RMS error.

Note that the final result yields a lower RMS error than either the IMU or the optical flow

algorithms do on their own.

4.3.4 Inertial Algorithm Summary. In the presence of moving objects, using

optical flow with inertial fusion results in a 27% reduction in RMS error in the m direction,

a 31% reduction in RMS errror in the n direction, and a 63% reduction in rotation RMS

error, compared to the non-inertial best alternative optical flow algorithm. Averaging

these values, optical flow with Inertial Fusion is capable of 40% lower RMS error than it’s

non-inertial optical flow counterpart in the presence of moving objects.

Optimally fusing the inertial data with the optical flow motion estimates is an ef-

fective way to minimize errors introduced by moving objects. Optical flow estimates are

incorporated when the image scene provides good features to track. Inertial measurement
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estimates are incorporated when the image scene does not provide good features, and the

optical flow estimates are inaccurate. The result is a robust EIS algorithm that operates

effectively even in the presence of moving objects.

4.4 T-Significance Testing

To obtain more insight into the fusion of inertial data, a T-significance test is con-

ducted between the error plots of the optical flow algorithm and the optical flow with

inertial fusion algorithm. The resulting p-values are

m : p− value= 0.801

n : p− value= 0.762

α : p− value= 0.303

(4.135)

We see that for the m and n directions, there is not much statistical difference be-

tween the performance of the optical flow algorithm and the optical flow with inertial

fusion algorithm. This can be directly interpreted from the plots in Figure 4.48. Large

spikes occur at the same frame transitions for both algorithms. This occurs because for

these specific frame transitions, both optical flow and inertial measurement incur large

estimation errors. The substitution of a bad IMU measurement is made for a bad optical

flow measurement. Use of a higher grade IMU will improve the IMU measurements, re-

sulting in greater statistical difference between the optical flow algorithm and the optical

flow with inertial fusion algorithm.

However, even though both algorithms experience peak errors at the same frame

transitions, these errors are significantly reduced.

4.5 Summary

The four major classes of EIS algorithms can be used for effective motion parameter

estimation. The performance of these algorithms in this particular use of EIS on highly

dynamic mobile robotic platforms can be determined by developing a standard video truth

model capable of simulating the video feed of a camera affixed to such a platform.
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A video truth model is developed capable of such simulation, accurately depicting the

effects of image translation, rotation, and blurring, and moving objects for a mobile robotic

platform traveling down a hallway. Template matching, feature detection, and optical flow

algorithms were all evaluated by this truth model. Optical flow is determined to be the best

performing algorithm in the presence of image translation, rotation, and blurring. Feature

detection and optical flow both have the same performance when blurring is not present,

however feature detection requires a significant computational cost. Template matching is

only accurate when frame displacements are small, and thus is not a viable option for EIS

on highly dynamic mobile robotic platforms.

Using live data collected from a camera and IMU affixed to the DAGSI WhegsTM

robotic platform, the effectiveness of the inertial measurement algorithm and the novel

optical flow with inertial fusion algorithm is rated. The inertial measurement algorithm

is shown to be an ineffective stabilizer on its own. This is because the IMU used in the

experiment is corrupted by significant gyro sensor errors. However, inertial measurement

does have the beneficial property of invariance to moving objects.

Optimally combining these two methods in the novel optical flow with inertial fusion

algorithm is the most effective way to integrate the benefits of both. This is shown by

injecting the video sequence with a large moving object and comparing the performance

of the optical flow algorithm to the performance of the optical flow with inertial fusion

algorithm. The result is a 40% drop in RMS error for the duration of the run. Further,

the result is a lower RMS error than either the optical flow algorithm or the inertial

measurement algorithm on their own.
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V. Conclusions

Electronic image stabilization is an important concern for work with video systems and

video motion. Accurate and robust stabilization is necessary for complex video analysis,

especially on highly dynamic mobile robotic platforms such as the DAGSI WhegsTM. EIS

is a complex problem, and effective solutions require knowledge from many disciplines,

including computer vision, Kalman filtering, and inertial navigation. In this thesis, the

four main classes of EIS algorithms are presented; namely template matching, feature

detection, optical flow, and inertial measurement. Each algorithm has unique benefits and

drawbacks.

Template matching is an intuitive and straightforward method of EIS that is capable

of effective frame to frame motion estimation in the presence of small image displacements.

It requires average computational speed. However, in the presence of large image displace-

ments template matching is ineffective. Because large image displacements are a frequent

occurrence in EIS for highly dynamic mobile robotic platforms, template matching should

not be used.

Feature detection is an effective EIS algorithm capable of precise motion param-

eter estimation in the presence of large image translation and rotation. However, it is

computationally expensive. Further, image blurring significantly degrades performance.

Optical flow is the most accurate EIS algorithm in the presence of image blurring.

It is effective for accurate estimation of large image translation and rotation as well. It is

also a computationally fast algorithm. However, in the presence of moving objects, optical

flow algorithms result in large estimation errors.

Inertial measurement is the only EIS algorithm invariant to moving objects. It is

also the fastest algorithm. However, the accuracy of translation and rotation estimation

depends upon the specific IMU used. This is due to the inherent drifting bias errors present

within gyro senors.

For robust image stabilization, it is necessary to combine the effectiveness of optical

flow and inertial measurement. This is accomplished in the novel optical flow with inertial
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fusion EIS algorithm contributed in this thesis. It utilizes the positive aspects of both

optical flow and inertial measurement, and at the same time minimizes their drawbacks.

Reliable translation and rotation estimation as provided by optical flow is incorporated

when it is detected as being trustworthy. When it is detected that optical flow is no longer

reliable, inertial measurement estimation of translation and rotation is incorporated. The

result is a robust EIS algorithm capable of 40% reduction in RMS error compared to optical

flow alone.

The numerical analysis of these algorithms is conducted using a video feed truth

model simulating a robotic platform traveling down a hallway. The truth model is capable

of portraying image translation, rotation, blurring and moving objects. Live data collected

from a video camera and IMU affixed to the DAGSI WhegsTM platform is also used to rate

algorithm performance.

The main contribution of this thesis is the novel electronic image stabilization algo-

rithm, optical flow with inertial fusion. It uses Shi-Tomasi good features and pyramidal

Lucas-Kanade optical flow fused with inertial data by way of a nine state discrete Kalman

filter. No EIS algorithm to date uses optical flow and inertial data provided from an IMU

by way of discrete Kalman filter.

The secondary contribution of this thesis is an EIS algorithm capable of effective

stabilization on the DAGSI WhegsTM robotic platform. This highly dynamic mobile robotic

platform is capable of traversing difficult terrain such as stairs and large rocks. To date,

no EIS algorithm has been developed for this specific platform.

The third contribution of this thesis is an algorithm that specifically reduces the

errors associated with image blurring and moving objects. To date, these effects have

never been addressed by specific EIS algorithms.

The fourth contribution of this work is a numerical analysis performed on the four

main classes of EIS. Template matching, feature detection, optical flow, and inertial mea-

surement algorithms are evaluated and compared using video truth models. To date, a

numerical comparison of these methods has never been done.
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5.1 Future Work

There are several aspects of this work which could be developed in the future to

provide greater understanding into EIS.

5.1.1 Speeding Up the Algorithm. Speeding up the algorithm using novel tech-

niques would allow for better integration into larger systems. One way this can be done is

by converting the algorithm into C/C++ language.

5.1.2 Determination of Global Motion Filter Coefficients. The low pass filter

used to detect global motion was selected as the most visually acceptable second-order

filter. Though its performance is acceptable, a more rigorous determination is possible.

Desired global motion must be characterized by some method. One method could be to

maximize the desire motion of the robot. For example, the robot could walk in a figure

eight loop for several minutes. The stabilized video should track precisely on the center

of the camera during extreme right turn and left turn motions. A low pass filter whose

cutoff frequency allows for this kind of track would have the necessary coefficients. Note

however that this would only apply for n directional movement. A similar approach could

be used to find coefficients for m and θ movements. Create a course which will maximize

the desired motion, and then find the filter cutoff frequency that keeps the stabilized video

centered on the image frame.

5.1.3 Inertial Truth Model Development. The truth model used to simulate the

video sequence of a robotic platform traveling down a hallway has one major shortfall; it

does not provide simulated IMU values. Thus algorithms using inertial fusion cannot be

evaluated with the truth model. The development of such a truth model would allow for

evaluation and optimization of inertial EIS algorithms.

5.1.4 Manual Determination Accuracy. Hand determination of the pixel move-

ment was acceptable for comparing the effectiveness of the algorithms amongst themselves,

however a more accurate method is desirable for better analysis. This could be done

through several different ways. One method could be using a high grade IMU also placed
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on the platform, providing more accurate angular rate data. Another method would be to

use a laser system capable of estimating the precise angular motion of the platform, such

as the Vicon system, which estimates attitude and position using IR lasers providing 360◦

of coverage.

5.1.5 Detector Value for the Feature Detection Algorithm. In order to be imple-

mented in a Kalman filter, a feature detection algorithm must have some way to determine

the variance of its estimates. This could be done using the number of feature correspon-

dences, or a track error number similar to the Lucas-Kanade optical flow function. Other

unique metrics can be developed. Once a reliable detector value is determined frame to

frame, feature detection can be incorporated with inertial data to provide an optimal

motion parameter estimate.

5.1.6 Numerical Analysis of Other Methods. Only the four main classes of EIS

algorithms were considered for truth model evaluation in this thesis. However, several

other techniques exist. These can be implemented and rated according to the evaluation

process used in chapter four.

5.1.7 Console Bias Determination. The source of the time bias between the

camera clock and the IMU clock is unknown. For the purposes of this work, a one time

determination was acceptable for testing. However, for realtime operation of the EIS

algorithm, the precise nature of the error must be known. If this is not done, the fused

results of the EIS estimate and the inertial data will be significantly inaccurate.

5.1.8 Effects of Angular Rotation. Rotation was set to a maximum of 6◦ in the

truth model because it approximated the maximum rotation in the live data set. However,

more analysis on the effects of rotation on the performance of the algorithms can be

conducted. Further, ways to lessen the errors caused by rotation can be studied.

5.1.9 Use of a Higher Grade IMU. The IMU used had significant errors in

its angular rate outputs. This resulted in reduced accuracy for the motion parameter
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estimates. Using a higher grade IMU would allow for much better performance of the

optical flow with inertial fusion algorithm.

5.2 Summary

Stabilization is prevalent in many aspects of life. Of particular importance is im-

age stabilization and visual systems. For vision systems affixed to highly dynamic mobile

robotic platforms, EIS is a necessary preparatory step towards more complex analysis on

the video feed. Because of large frame displacement and undesired image effects such as

blurring and moving objects, this particular application of EIS is difficult. The novel op-

tical flow with inertial fusion algorithm presented in this thesis is a viable solution to the

problem. It integrates pyramidal Lucas-Kanade optical flow using Shi-Tomasi good fea-

tures and inertial data provided by an IMU by optimally fusing the two by way of discrete

Kalman filter. The algorithm is fast and effective, and is capable of robust stabilization in

the presence of large image displacement, image blurring, and moving objects.
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