22 research outputs found

    Root-Based Nonlinear Companding Technique for Reducing PAPR of Precoded OFDM Signals

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) signals are characteristically independent and identically distributed Gaussian random variables that follow Rayleigh distribution. The signals also exhibit high peak-toaverage power ratio (PAPR) problem due to the infinitesimal amplitude component distributed above the mean of the Rayleigh distribution plot. Since the amplitudes are nonlinearly and non-monotonically increasing, applying roots to the amplitude distribution is shown in this work to change the probability density function (PDF) and thus reduces the PAPR. We exemplify these by imposing this constraint on standard μ-law companding (MC) technique in reducing PAPR of OFDM signals which is known to expand the amplitudes of low power signals only without impacting the higher amplitude signals. This limits the PAPR reduction performance of the MC scheme. Since companding involves simultaneously compressing/expanding high/low amplitude OFDM signals respectively, in this study, we refer to the new method as a root-based MC (RMC) scheme that simultaneously expands and compresses OFDM signal amplitudes unlike MC. In addition, we express a second transform independent of the MC model. The results of the two proposed schemes outperform four other widely used companding techniques (MC, log-based modified (LMC), hyperbolic arc-sine companding (HASC) and exponential companding (EC)). Besides these, we precode the OFDM signals using discrete Hartley Transform (DHT) in order to further reduce the PAPR limits achieved by RMC by distorting the phase. While preserving the BER, DHT-precoded RMC outperforms all four other companding schemes (MC, EC, HASC, LMC) in terms of PAPR

    On PAPR Reduction Techniques in Mobile WiMAX

    Get PDF

    A NEW DISCRETE HARTLEY TRANSFORM PRECODING BASED INTERLEAVED-OFDMA UPLINK SYSTEM WITH REDUCED PAPR FOR 4G CELLULAR NETWORKS

    Get PDF
    High peak-to-average power ratio (PAPR) reduction is one of the major challenges in orthogonal frequency division multiple access (OFDMA) systems since last decades. High PAPR increases the complexity of analogue-to-digital (A/D) and digital-to-analogue (D/A) convertors and also reduces the efficiency of RF high-power-amplifier (HPA). In this paper, we present a new Discrete- Hartley transform (DHT) precoding based interleaved-OFDMA uplink system for PAPR reduction in the upcoming 4G cellular networks. Extensive computer simulations have been performed to analyze the PAPR of the proposed system with root-raised-cosine (RRC) pulse shaping. We also compare simulation results of the proposed system with the conventional interleaved-OFDMA uplink systems and the Walsh-Hadamard transform (WHT) precoding based interleaved-OFDMA uplink systems. It is concluded from the computer simulations that the proposed system has low PAPR as compared to the conventional interleaved-OFDMA uplink systems and the WHT precoded interleaved-OFDMA uplink systems

    Enhanced Artificial Bee Colony, Square Root Raised Cosine Precoding, and Mu law Compandor for Optimization of MIMO-OFDM System

    Get PDF
    The efficiency and high-speed data transfer rate of the communication system are increased based on Orthogonal Frequency Division Multiplexing (OFDM). The existing research in OFDM involves applying optimization methods to improve the system's efficiency. The high Peak Average Power Ratio (PAPR) value is a major limitation in the OFDM system, and this provides distortion due to the non-linear High-Power Amplifier (HPA). Local optima trap and lower convergence are two main limitations in existing optimization methods. This research proposes Enhanced Artificial Bee Colony (ABC) optimization method with a precoding-compandor technique to increase the efficiency of the OFDM system. Enhanced ABC method is applied with Boltzmann search to increase the exploitation capacity of the optimization efficiency. The selective mapping technique is applied to transform the candidate signal in the system. The ABC method increases exploration, and Boltzmann search increases exploitation. The enhanced ABC method increases the exploitation process that helps to overcome local optima traps and lower convergence. Square Root Raised Cosine (SRRC) precoding and Mu law compandor techniques were applied to reduce the PAPR. The Discrete Cosine Transform (DCT) technique is applied for domain conversion in the OFDM system. The proposed method has a convergence rate of 6.4069, and the existing one has a 6.4033 convergence rate. The enhanced ABC method provides higher efficiency in the MIMO-OFDM system regarding Symbol Error Rate (SER), PAPR, and Bit Error Rate (BER)

    PAPR reduction in OFDM system using combined MCS and DHMT precoding

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) has become a preferable scheme for most high data rate wireless communication standards. However, the non-linear power amplifier effect experienced in the OFDM system has increases the peak-to-average power ratio (PAPR). This paper proposed a Median Codeword Shift (MCS) as a new solution to alleviate the effect of high PAPR. MCS takes advantage of the codeword structure and bit position changes through the manipulation of the codeword structure and permutation process to achieve a low PAPR value. Additionally, the enhanced version of MCS is also being proposed by merging MCS with the Discrete Hartley matrix transform (DHMT) precoding method to boost the PAPR reduction. Simulation results show that MCS is capable of minimizing PAPR of conventional OFDM with 24% improvement and at the same time outperform Selective Codeword Shift (SCS) with a 0.5 dB gap. A remarkable result was also achieved by MCS-DHMT with a 15.1% improvement without facing any bit error rate (BER) degradation

    An Enhanced Nonlinear Companding Scheme for Reducing PAPR of OFDM Systems

    Get PDF
    A new companding scheme for reducing the peak-to-average power ratio (PAPR) of orthogonal frequency-division multiplexing (OFDM) systems is proposed in this study. It proceeds from speech signal processing similar to the earliest μ -law companding (MC) model. The proposed scheme compands (compresses and expands) the amplitudes of OFDM signals to a maximum of 1 V. Besides significantly reducing the PAPR, the proposed technique is also able to function as a limiter, thus reducing the system complexity and limiting the amplitudes of OFDM symbols to a unity maximum voltage, which does not exist in other companding PAPR techniques. Over frequency-selective fading channels with frequency domain equalization and using minimum mean square error (MMSE) to minimize the noise overhead, the proposed technique outperforms four other companding schemes over light and severe fading conditions. Finally, we demonstrate that PAPR reduction using companding can dispense with corresponding decompanding scheme at the receiver as it amplifies the distortion noise, thereby reducing the bit error ratio performance and increasing the receiver complexity. We investigate the out-of-band interference of the proposed scheme and also show that it outperforms the other existing techniques by up to 5 dB

    New methods of partial transmit sequence for reducing the high peak-to-average-power ratio with low complexity in the ofdm and f-ofdm systems

    Get PDF
    The orthogonal frequency division multiplexing system (OFDM) is one of the most important components for the multicarrier waveform design in the wireless communication standards. Consequently, the OFDM system has been adopted by many high-speed wireless standards. However, the high peak-to-average- power ratio (PAPR) is the main obstacle of the OFDM system in the real applications because of the non-linearity nature in the transmitter. Partial transmit sequence (PTS) is one of the effective PAPR reduction techniques that has been employed for reducing the PAPR value 3 dB; however, the high computational complexity is the main drawback of this technique. This thesis proposes novel methods and algorithms for reducing the high PAPR value with low computational complexity depending on the PTS technique. First, three novel subblocks partitioning schemes, Sine Shape partitioning scheme (SS-PTS), Subsets partitioning scheme (Sb-PTS), and Hybrid partitioning scheme (H-PTS) have been introduced for improving the PAPR reduction performance with low computational complexity in the frequency-domain of the PTS structure. Secondly, two novel algorithms, Grouping Complex iterations algorithm (G-C-PTS), and Gray Code Phase Factor algorithm (Gray-PF-PTS) have been developed to reduce the computational complexity for finding the optimum phase rotation factors in the time domain part of the PTS structure. Third, a new hybrid method that combines the Selective mapping and Cyclically Shifts Sequences (SLM-CSS-PTS) techniques in parallel has been proposed for improving the PAPR reduction performance and the computational complexity level. Based on the proposed methods, an improved PTS method that merges the best subblock partitioning scheme in the frequency domain and the best low-complexity algorithm in the time domain has been introduced to enhance the PAPR reduction performance better than the conventional PTS method with extremely low computational complexity level. The efficiency of the proposed methods is verified by comparing the predicted results with the existing modified PTS methods in the literature using Matlab software simulation and numerical calculation. The results that obtained using the proposed methods achieve a superior gain in the PAPR reduction performance compared with the conventional PTS technique. In addition, the number of complex addition and multiplication operations has been reduced compared with the conventional PTS method by about 54%, and 32% for the frequency domain schemes, 51% and 65% for the time domain algorithms, 18% and 42% for the combining method. Moreover, the improved PTS method which combines the best scheme in the frequency domain and the best algorithm in the time domain outperforms the conventional PTS method in terms of the PAPR reduction performance and the computational complexity level, where the number of complex addition and multiplication operation has been reduced by about 51% and 63%, respectively. Finally, the proposed methods and algorithms have been applied to the OFDM and Filtered-OFDM (F-OFDM) systems through Matlab software simulation, where F-OFDM refers to the waveform design candidate in the next generation technology (5G)

    Adjustable dynamic range for paper reduction schemes in large-scale MIMO-OFDM systems

    Get PDF
    In a multi-input-multi-output (MIMO) communication system there is a necessity to limit the power that the output antenna amplifiers can deliver. Their signal is a combination of many independent channels, so the demanded amplitude can peak to many times the average value. The orthogonal frequency division multiplexing (OFDM) system causes high peak signals to occur because many subcarrier components are added by an inverse discrete Fourier transformation process at the base station. This causes out-of-band spectral regrowth. If simple clipping of the input signal is used, there will be in-band distortions in the transmitted signals and the bit error rate will increase substantially. This work presents a novel technique that reduces the peak-to-average power ratio (PAPR). It is a combination of two main stages, a variable clipping level and an Adaptive Optimizer that takes advantage of the channel state information sent from all users in the cell. Simulation results show that the proposed method achieves a better overall system performance than that of conventional peak reduction systems in terms of the symbol error rate. As a result, the linear output of the power amplifiers can be minimized with a great saving in cost

    Peak to average power ratio reduction and error control in MIMO-OFDM HARQ System

    Get PDF
    Currently, multiple-input multiple-output orthogonal frequency division multiplexing (MIMOOFDM) systems underlie crucial wireless communication systems such as commercial 4G and 5G networks, tactical communication, and interoperable Public Safety communications. However, one drawback arising from OFDM modulation is its resulting high peak-to-average power ratio (PAPR). This problem increases with an increase in the number of transmit antennas. In this work, a new hybrid PAPR reduction technique is proposed for space-time block coding (STBC) MIMO-OFDM systems that combine the coding capabilities to PAPR reduction methods, while leveraging the new degree of freedom provided by the presence of multiple transmit chairs (MIMO). In the first part, we presented an extensive literature review of PAPR reduction techniques for OFDM and MIMO-OFDM systems. The work developed a PAPR reduction technique taxonomy, and analyzed the motivations for reducing the PAPR in current communication systems, emphasizing two important motivations such as power savings and coverage gain. In the tax onomy presented here, we include a new category, namely, hybrid techniques. Additionally, we drew a conclusion regarding the importance of hybrid PAPR reduction techniques. In the second part, we studied the effect of forward error correction (FEC) codes on the PAPR for the coded OFDM (COFDM) system. We simulated and compared the CCDF of the PAPR and its relationship with the autocorrelation of the COFDM signal before the inverse fast Fourier transform (IFFT) block. This allows to conclude on the main characteristics of the codes that generate high peaks in the COFDM signal, and therefore, the optimal parameters in order to reduce PAPR. We emphasize our study in FEC codes as linear block codes, and convolutional codes. Finally, we proposed a new hybrid PAPR reduction technique for an STBC MIMO-OFDM system, in which the convolutional code is optimized to avoid PAPR degradation, which also combines successive suboptimal cross-antenna rotation and inversion (SS-CARI) and iterative modified companding and filtering schemes. The new method permits to obtain a significant net gain for the system, i.e., considerable PAPR reduction, bit error rate (BER) gain as compared to the basic MIMO-OFDM system, low complexity, and reduced spectral splatter. The new hybrid technique was extensively evaluated by simulation, and the complementary cumulative distribution function (CCDF), the BER, and the power spectral density (PSD) were compared to the original STBC MIMO-OFDM signal
    corecore