2,148 research outputs found

    Open-source Simulation of Underwater Gliders

    Get PDF
    Autonomous underwater gliders (AUGs) are currently deployed in oceans throughout the globe and are recording real-time, in-situ data. Simulating AUGs is rendered particularly difficult by the identification of the underlying dynamic model, as these vehicles embed several internal movable components. Acausal simulators can significantly improve the possibility to study and understand the dynamics of this class of vehicles and can in turn support the design of more robust control systems. In this paper, an open-source simulator architecture designed in OpenModelica is proposed to simulate underwater gliders. The validation is carried out using two different AUGs models, a ROGUE and a Seawing. The vehicle dynamics is firstly compared with analytical results and, following, with values obtained by means of another simulator. Further steps will entail comparing the dynamics of a simulated Seaglider with real deployment data publicly available. In this work, some of the main hydrodynamic and geometrical properties of a Seaglider are identified, computed through Computational Fluid Dynamics (CFD) analyses and retrieved from the mission ballast sheet. Overall, the developed model is expected to enhance gliders’ control strategies, thus improving their performance and mitigating incidents such as being carried away by undesired ocean currents

    Preliminary Numerical Study on Designing Navigation and Stability Control Systems for ITS AUV

    Get PDF
    In this paper, the numerical study of designing on navigation and stability control system for AUV is studied. The study started by initiating hydrostatic forces, added masses, lift force, drag forces and thrust forces. Determining the hydrodynamic force which is the basic need to know the numerical case study on designing on navigation and stability control system for AUV where Autonomous Underwater vehicles (AUV). AUV is capably underwater vehicle in moving automatically without direct control by humans according to the trajectory. The result of numerical study is properly to be the reference for the next developing for AUV

    The predictive functional control and the management of constraints in GUANAY II autonomous underwater vehicle actuators

    Get PDF
    Autonomous underwater vehicle control has been a topic of research in the last decades. The challenges addressed vary depending on each research group's interests. In this paper, we focus on the predictive functional control (PFC), which is a control strategy that is easy to understand, install, tune, and optimize. PFC is being developed and applied in industrial applications, such as distillation, reactors, and furnaces. This paper presents the rst application of the PFC in autonomous underwater vehicles, as well as the simulation results of PFC, fuzzy, and gain scheduling controllers. Through simulations and navigation tests at sea, which successfully validate the performance of PFC strategy in motion control of autonomous underwater vehicles, PFC performance is compared with other control techniques such as fuzzy and gain scheduling control. The experimental tests presented here offer effective results concerning control objectives in high and intermediate levels of control. In high-level point, stabilization and path following scenarios are proven. In the intermediate levels, the results show that position and speed behaviors are improved using the PFC controller, which offers the smoothest behavior. The simulation depicting predictive functional control was the most effective regarding constraints management and control rate change in the Guanay II underwater vehicle actuator. The industry has not embraced the development of control theories for industrial systems because of the high investment in experts required to implement each technique successfully. However, this paper on the functional predictive control strategy evidences its easy implementation in several applications, making it a viable option for the industry given the short time needed to learn, implement, and operate, decreasing impact on the business and increasing immediacy.Peer ReviewedPostprint (author's final draft

    Underwater Glider Modelling And Analysis For Variable Control Parameters

    Get PDF
    Underwater glider is a type of autonomous underwater vehicle that can glide by controlling their buoyancy and attitude using internal actuators. By changing the vehicle’s buoyancy intermittently, forward motion can be achieved. Deriving the mathematical model directly from the system can be too complicated due to time constraints in prototyping development processes. This thesis presents the early development of the USM underwater glider platform consist of prototype development involves vehicle concept design using SolidworksTM, vehicle simulations by Computational Fluid Dynamics (CFD) and alternative way of modelling known as system identification in order to obtain the underwater glider system model. The appropriate control parameters for underwater glider control were determined by selecting the ballast rate as the input. Three aspects of the dynamics of a glider will be observed, i.e. net buoyancy, depth of the glider and pitching angle. The best three parametric models that are able to estimate the system correctly are chosen, and the fit between measured and estimated outputs is presented in order to get an optimal underwater glider vehicle model for USM underwater glider platform

    NOC Liverpool Unit 117 Glider deployment report for the DEFRA MAREMAP Project, April - May 2012 deployment

    Get PDF
    This document summarises the extended deployment of a 200 metre depth rated Slocum Electric glider by the National Oceanography Centre, Liverpool, UK from the 2nd April to 17th May 2012. The deployment was aimed as a pilot study for the use of gliders by environment agencies to monitor marine conservation zones. Lithium expendable batteries were used inside the glider to provide an extended endurance. The glider had a series of science sensors installed to measure physical oceanographic and biological parameters that included water quality and algal activity. The glider was deployed from the Liverpool Bay and successfully navigated to the intended survey area that was more than 100km from the initial deployment location. Extensive independent scientific measurements were taken during the glider deployment and subsequent operation. These measurements were used for glider sensor calibration and the monitoring of any sensor drift. Avoidance and managing of the many hazards typical in the survey area such as shipping, strong tidal currents and fixed platforms were required during the deployment. This was achieved by remotely piloting the glider with using a satellite based communications link. After a deployment of just over six weeks a suspected glider entanglement close to the seabed occurred during a routine survey dive and attempted subsequent climb underwater. This compromised the glider operation during its return to shallower, more sheltered coastal waters for an intended recovery. An emergency recovery was then required that used a small charted deep sea fishing vessel. This document provides an overview of the deployment requirements, the glider operations and the recovered glider initial evaluation. A summary of the results achieved is also provided in the report

    Biomimetic oscillating foil propulsion to enhance underwater vehicle agility and maneuverability

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2008Inspired by the swimming abilities of marine animals, this thesis presents "Finnegan the RoboTurtle", an autonomous underwater vehicle (AUV) powered entirely by four flapping foils. Biomimetic actuation is shown to produce dramatic improvements in AUV maneuvering at cruising speeds, while simultaneously allowing for agility at low speeds. Using control algorithms linear in the modified Rodrigues parameters to support large angle maneuvers, the vehicle is successfully controlled in banked and twisting turns, exceeding the best reported AUV turning performance by more than a factor of two; a minimum turning radius of 0.7BL, and the ability to avoid walls detected> 1.8BL ahead, are found for cruising speeds of 0.75BL/S, with a maximum heading rate of 400 / S recorded. Observations of "Myrtle", a 250kg Green sea turtle (Chelonia mydas) at the New England Aquarium, are detailed; along with steady swimming, Myrtle is observed performing 1800 level turns and rapidly actuating pitch to control depth and speed. Limb kinematics for the level turning maneuver are replicated by Finnegan, and turning rates comparable to those of the turtle are achieved. Foil kinematics which produce approximately sinusoidal nominal angle of attack trace are shown to improve turning performance by as much as 25%; the effect is achieved despite limited knowledge of the flow field. Finally, tests with a single foil are used to demonstrate that biomimetically inspired inline motion can allow oscillating foils utilizing a power/recovery style stroke to generate as much as 90% of the thrust from a power/power stroke style motion

    Modeling And Identification Of An Underwater Glider.

    Get PDF
    Underwater gliders are type of autonomous underwater vehicle that glide by controlling their buoyancy and attitude using internal actuators

    CFD approach to modelling, hydrodynamic analysis and motion characteristics of a laboratory underwater glider with experimental results

    Get PDF
    Underwater gliders are buoyancy propelled vehicle which make use of buoyancy for vertical movement and wings to propel the glider in forward direction. Autonomous underwater gliders are a patented technology and are manufactured and marketed by corporations. In this study, we validate the experimental lift and drag characteristics of a glider from the literature using Computational fluid dynamics (CFD) approach. This approach is then used for the assessment of the steady state characteristics of a laboratory glider designed at Indian Institute of Technology (IIT) Madras. Flow behaviour and lift and drag force distribution at different angles of attack are studied for Reynolds numbers varying from 10(5) to 10(6) for NACA0012 wing configurations. The state variables of the glider are the velocity, gliding angle and angle of attack which are simulated by making use of the hydrodynamic drag and lift coefficients obtained from CFD. The effect of the variable buoyancy is examined in terms of the gliding angle, velocity and angle of attack. Laboratory model of glider is developed from the final design asserted by CFD. This model is used for determination of static and dynamic properties of an underwater glider which were validated against an equivalent CAD model and simulation results obtained from equations of motion of glider in vertical plane respectively. In the literature, only empirical approach has been adopted to estimate the hydrodynamic coefficients of the AUG that are required for its trajectory simulation. In this work, a CFD approach has been proposed to estimate the hydrodynamic coefficients and validated with experimental data. A two-mass variable buoyancy engine has been designed and implemented. The equations of motion for this two-mass engine have been obtained by modifying the single mass version of the equations described in the literature. The objectives of the present study are to understand the glider dynamics adopting a CFD approach, fabricate the glider and its variable buoyancy engine and test its trajectory in water and compare it with numerically obtained trajectory in the vertical plane. (C) 2017 Shanghai Jiaotong University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

    Design of a Mobile Underwater Charging System

    Get PDF
    Autonomous Underwater Vehicles (AUVs) are extremely capable vehicles for numerous ocean related missions. AUVs are energy limited, resulting in short mission endurance on the scale of hours to days. Underwater Gliders (UGs) are able to operate on the order of months to years by using nontraditional propulsion methods. UGs, however, are unable to perform missions requiring high speed or direct forward motion due to the nature of their buoyancy driven motion. This work reviews the current state of the art in recharging AUVs and offers an underwater recharging network concept at a significantly reduced cost to traditional methods. The solution includes the design of a UG capable of serving as charge carrying agent that couples with and charges AUVs autonomously. The vehicle design is built on the work done previously at the Nonlinear and Autonomous Systems Lab on the development of ROUGHIE (Research Oriented Underwater Glider for Hands-on Investigative Engineering). The ROUGHIE2 design is a rethinking of the original ROUGHIE capabilities to serve as a mobile charger by increasing depth rating, endurance, and payload capacity. The recharging concept presented will be easy to adapt to many different AUVs and UGs making this technology universal to small AUVs
    corecore