17,596 research outputs found

    Public Response to a Catastrophic Southern California Earthquake: A Sociological Perspective

    Get PDF
    This paper describes a hypothetical scenario of public response to a large regional earthquake on the southern section of the San Andreas Fault. Conclusive social and behavioral science research over decades has established that the behavior of individuals in disaster is, on the whole, controlled, rational, and adaptive, despite popular misperceptions that people who experience a disaster are dependent upon and problematic for organized response agencies. We applied this knowledge to portray the response of people impacted by the earthquake focusing on actions they will take during and immediately following the cessation of the shaking including: immediate response, search and rescue, gaining situational awareness through information seeking, making decisions about evacuation and interacting with organized responders. Our most general conclusion is that the actions of ordinary people in this earthquake scenario comprised the bulk of the initial response effort, particularly in those areas isolated for lengthy periods of time following the earthquake

    Community rotorcraft air transportation benefits and opportunities

    Get PDF
    Information about rotorcraft that will assist community planners in assessing and planning for the use of rotorcraft transportation in their communities is provided. Information useful to helicopter researchers, manufacturers, and operators concerning helicopter opportunities and benefits is also given. Three primary topics are discussed: the current status and future projections of rotorcraft technology, and the comparison of that technology with other transportation vehicles; the community benefits of promising rotorcraft transportation opportunities; and the integration and interfacing considerations between rotorcraft and other transportation vehicles. Helicopter applications in a number of business and public service fields are examined in various geographical settings

    Distributed drone base station positioning for emergency cellular networks using reinforcement learning

    Get PDF
    Due to the unpredictability of natural disasters, whenever a catastrophe happens, it is vital that not only emergency rescue teams are prepared, but also that there is a functional communication network infrastructure. Hence, in order to prevent additional losses of human lives, it is crucial that network operators are able to deploy an emergency infrastructure as fast as possible. In this sense, the deployment of an intelligent, mobile, and adaptable network, through the usage of drones—unmanned aerial vehicles—is being considered as one possible alternative for emergency situations. In this paper, an intelligent solution based on reinforcement learning is proposed in order to find the best position of multiple drone small cells (DSCs) in an emergency scenario. The proposed solution’s main goal is to maximize the amount of users covered by the system, while drones are limited by both backhaul and radio access network constraints. Results show that the proposed Q-learning solution largely outperforms all other approaches with respect to all metrics considered. Hence, intelligent DSCs are considered a good alternative in order to enable the rapid and efficient deployment of an emergency communication network

    Usability of Urban Air Mobility: Quantitative and Qualitative Assessments of Usage in Emergency Situations

    Get PDF
    The purpose of these four studies was to determine participants’ willingness to support the use of urban air mobility (UAM) in response to natural disasters, along with the preferred locations to establish vertiports. Study 1 assessed the willingness to support using a mixed factorial design. The findings demonstrated strong, robust support for the use of UAM when responding to natural disasters. Study 2 worked to create and validate a scale that could assess vertiports\u27 current and proposed locations. The Vertiport Usability Scale was developed and shown to have strong psychometric properties to validly assess vertiport locations through a multi-stage process. Study 3 used the Vertiport Usability Scale to understand the most highly preferred locations for vertiports in three conditions from a multi-stage process: temporary disaster locations, permanent disaster locations, and permanent consumer locations. Study 4 was conducted using qualitative methods to complement the earlier quantitative approaches. Through an initial survey and follow-on interview, three themes emerged related to UAM in response to natural disasters and vertiports: 1) human involvement in UAM operations, 2) scenarios for usage, and 3) setup and deployment of vehicles

    A Survey on Multihop Ad Hoc Networks for Disaster Response Scenarios

    Get PDF
    Disastrous events are one of the most challenging applications of multihop ad hoc networks due to possible damages of existing telecommunication infrastructure.The deployed cellular communication infrastructure might be partially or completely destroyed after a natural disaster. Multihop ad hoc communication is an interesting alternative to deal with the lack of communications in disaster scenarios. They have evolved since their origin, leading to differentad hoc paradigms such as MANETs, VANETs, DTNs, or WSNs.This paper presents a survey on multihop ad hoc network paradigms for disaster scenarios.It highlights their applicability to important tasks in disaster relief operations. More specifically, the paper reviews the main work found in the literature, which employed ad hoc networks in disaster scenarios.In addition, it discusses the open challenges and the future research directions for each different ad hoc paradigm

    The Role of Transportation in Campus Emergency Planning, MTI Report 08-06

    Get PDF
    In 2005, Hurricane Katrina created the greatest natural disaster in American history. The states of Louisiana, Mississippi and Alabama sustained significant damage, including 31 colleges and universities. Other institutions of higher education, most notably Louisiana State University (LSU), became resources to the disaster area. This is just one of the many examples of disaster impacts on institutions of higher education. The Federal Department of Homeland Security, under Homeland Security Presidential Directive–5, requires all public agencies that want to receive federal preparedness assistance to comply with the National Incident Management System (NIMS), which includes the creation of an Emergency Operations Plan (EOP). Universities, which may be victims or resources during disasters, must write NIMS–compliant emergency plans. While most university emergency plans address public safety and logistics management, few adequately address the transportation aspects of disaster response and recovery. This MTI report describes the value of integrating transportation infrastructure into the campus emergency plan, including planning for helicopter operations. It offers a list of materials that can be used to educate and inform campus leadership on campus emergency impacts, including books about the Katrina response by LSU and Tulane Hospital, contained in the report®s bibliography. It provides a complete set of Emergency Operations Plan checklists and organization charts updated to acknowledge lessons learned from Katrina, 9/11 and other wide–scale emergencies. Campus emergency planners can quickly update their existing emergency management documents by integrating selected annexes and elements, or create new NIMS–compliant plans by adapting the complete set of annexes to their university®s structures

    Communication and Control in Collaborative UAVs: Recent Advances and Future Trends

    Full text link
    The recent progress in unmanned aerial vehicles (UAV) technology has significantly advanced UAV-based applications for military, civil, and commercial domains. Nevertheless, the challenges of establishing high-speed communication links, flexible control strategies, and developing efficient collaborative decision-making algorithms for a swarm of UAVs limit their autonomy, robustness, and reliability. Thus, a growing focus has been witnessed on collaborative communication to allow a swarm of UAVs to coordinate and communicate autonomously for the cooperative completion of tasks in a short time with improved efficiency and reliability. This work presents a comprehensive review of collaborative communication in a multi-UAV system. We thoroughly discuss the characteristics of intelligent UAVs and their communication and control requirements for autonomous collaboration and coordination. Moreover, we review various UAV collaboration tasks, summarize the applications of UAV swarm networks for dense urban environments and present the use case scenarios to highlight the current developments of UAV-based applications in various domains. Finally, we identify several exciting future research direction that needs attention for advancing the research in collaborative UAVs
    • 

    corecore