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Abstract
Due to the unpredictability of natural disasters, whenever a catastrophe happens, it is vital that not only emergency rescue
teams are prepared, but also that there is a functional communication network infrastructure. Hence, in order to prevent
additional losses of human lives, it is crucial that network operators are able to deploy an emergency infrastructure as
fast as possible. In this sense, the deployment of an intelligent, mobile, and adaptable network, through the usage of
drones—unmanned aerial vehicles—is being considered as one possible alternative for emergency situations. In this paper,
an intelligent solution based on reinforcement learning is proposed in order to find the best position of multiple drone small
cells (DSCs) in an emergency scenario. The proposed solution’s main goal is to maximize the amount of users covered by
the system, while drones are limited by both backhaul and radio access network constraints. Results show that the proposed
Q-learning solution largely outperforms all other approaches with respect to all metrics considered. Hence, intelligent DSCs
are considered a good alternative in order to enable the rapid and efficient deployment of an emergency communication
network.

Keywords Emergency communication network · Machine learning · Reinforcement learning · Unmanned aerial vehicles

Introduction

Although sporadic, natural large-scale disasters, such as
earthquakes, hurricanes, and tsunamis, produce a profound
impact in human society, not only in terms of the
infrastructure that is destroyed, but most importantly, in
terms of human lives that are lost. Whenever a disaster
occurs, it is crucial that search and rescue teams are
deployed in a very quick and effective manner, as the first
48 to 72 h after a disaster, also known as the golden hours,
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are the most critical [1, 2]. However, one major problem
that arises during this period is the lack of communication
infrastructure, as most of the existing network can be
destroyed during a disaster, degrading the rescue team’s
effectiveness and ability to find isolated people. Hence, in
order to overcome a disaster situation, it is also vital that
an emergency communication network (ECN) is deployed
as fast as possible, so that communication can be restored
quickly, preventing additional casualties.

In general, ECNs must be extremely adaptable, flexible,
and intelligent in order to adjust themselves to the
environment and situations that they can be inserted
in. Hence, conventional solutions that are found today
in wireless cellular networks may not be applicable,
as deploying a completely new network from the very
beginning can take several days. This can occur either due
to the conditions in which the environment is, such as a
city being completely devastated, limiting the accessibility
to certain areas, and by consequence, limiting network
coverage, or due to the complex process of configuring
and setting up all new base station (BS) parameters. Thus,
more robust solutions, involving networks that are capable
of self-organization and that can be deployed quickly and
effectively to the exact area where coverage is needed,
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should be designed. In this sense, algorithms that can
adapt themselves, such as artificial intelligence and machine
learning, should be deployed [1–4], to enable a fully
autonomous network.

One possible solution for a rapid deployment of an ECN that
can provide the desired flexibility, quickness, and intelli-
gence is the utilization of drones with wireless capabilities
[1, 2, 5–7]. These drones, also known as drone small
cells (DSCs), would be equipped with a small BS and
would serve as radio access points in the network. In addi-
tion, since after a disaster reaching certain locations of the
affected area can be problematic, due to debris blockage or
flooding, for example, positioning conventional BSs can be
a rather difficult task for network operators. Thus, because
of their flexibility and mobility, drones can perform a cru-
cial role in emergency situations, by flying to the affected
area and providing service exactly where it is needed.

In this paper, a positioning algorithm for DSCs in
an emergency situation is proposed. The solution aims
at finding the best position of multiple drones in a
scenario where the old cellular network infrastructure was
completely destroyed and users are in need of coverage. The
DSCs are considered to have limited resources in both radio
access network (RAN) and backhaul. In addition, users
could have different requirements in terms of throughput
and different mobility characteristics, depending if the user
is from a rescue team or a regular user. Based on that,
a distributed algorithm, based on reinforcement learning
(RL), more specifically Q-learning, is proposed, so that
the drones can explore the affected area and find the
best possible position. This way, the main objective, to
maximize total network coverage (or minimize the number
of users in outage), can be achieved. The proposed solution
is compared to different positioning strategies, such as
deploying the drones in fixed random positions, fixed
around a circle centered in the middle of the area at evenly
spread angles, and deploying the drones in the locations of
hot spots of the previous destroyed network, and the results
show that the intelligentQ-learning solution outperforms all
of them in all considered metrics.

RelatedWork

Aerial platforms, such as drones, are expected to have an
important role in the next generation of mobile networks.
Because of their flexibility, adaptability, and mobility capa-
bilities, these platforms can be deployed in a wide range
of situations, ranging from providing extra coverage and
capacity whenever a big event takes place, supplying the
necessary communication infrastructure in case of an emer-
gency, or bringing service in rural and isolated areas, to name
a few. Because of these reasons, the deployment of drones

in mobile communication networks has seen an increased
attention recently [1, 3, 5–15]. In addition, the deployment
of machine learning solutions in cellular networks, more
specifically self-organizing cellular networks, has also seen
an increase in recent years and research groups all over the
world are developing intelligent solutions in order to tackle
the various challenges of cellular networks [4].

Erdelj et al., in [1], present a survey of the advances
in drone technology focused on wireless sensor networks
and disaster management. The survey divides a disaster
into three main stages and presents drone applications and
challenges for each one of them. In [8], the authors show key
aspects of the design and implementation of future aerial
communication networks; however, instead of focusing on
small drones, the authors focus on Helikite platforms.

Other works, such as [9–11], attempt to find the best
position of DSCs analytically. In [9], for example, the
authors attempt to find the best position for low altitude
platforms (LAPs) in order to maximize their coverage range.
The authors develop an analytical solution to determine
the best altitude of a LAP and end up concluding that the
optimum altitude is strongly dependent on the environment.
Mozaffari et al., in [10], derive the optimal altitude of DSCs
which gives the maximum coverage, while minimizing
the transmit power. The system is investigated in two
different scenarios, one considering interference between
drones and another being interference-free. Results showed
that, when interference is considered, there is an optimal
separation distance between drones in order to maximize
the network coverage. In [11], Alzenad et al. present
an optimal placement algorithm for DSCs that maximize
the coverage while minimizing the transmit power of
the drones. In addition, the authors also decouple the
problem in two, considering the placement of the drones
as two separate problems in both horizontal and vertical
dimensions. Results show that their system is able to save
a significant amount of power, while also increasing the
number of covered users.

Kalantari et al., in [3], propose to find the best
position of DSCs, but instead of determining it analytically,
they utilize a particle swarm optimization (PSO). Their
results show that the algorithm is capable of adapting
to different scenarios and that the drones were able to find
by themselves the best positions in order to maximize the
number of users being covered. Ahmadi et al., in [5], propose
a novel mobile network architecture, considering drones as
a core part of the network. Their work formulates the
optimum placement of drones, while also presenting some
challenges and future research directions. Also, regarding
the positioning of drones, Merwaday et. al. show in [12]
that, in an emergency scenario, finding the optimal position
for temporary DSCs via exploiting the mobility of the drones
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yields improvements in network throughput and spectral
efficiency.

Another work by Kalantari et al., in [13], investigates
the usage of flying base stations considering different types
of backhaul links. The authors introduce two different
approaches, mainly a network-centric approach and a user-
centric approach, and determine the best 3D position of
DSCs. Their results show that the network-centric approach
is able to maximize the number of covered users and that the
user-centric solution maximizes user throughput. Another
paper which considers backhaul limitations is the work in
[11], by Alzenad et al., wherein the authors study the fea-
sibility of a novel backhaul framework considering aerial
platforms and free-space optics point-to-point links. Their
results demonstrate that this type of backhaul is capable of
delivering higher data rates than others, but it is also very sen-
sitive to the environment, including clouds and fog. In [7],
the authors consider the utilization of drones as a comple-
mentary approach to future terrestrial mobile networks. The
authors present some design opportunities and challenges
and also develop a case study on the positioning of DSCs.

Mozaffari et al., in [6], present the deployment of a drone
network on top of an already existing device-to-device
network. The authors evaluate the system in two different
scenarios, considering static and mobile drones. The authors
derive the outage and coverage probabilities for each case
and show that the mobile strategy performs better than the
static one in terms of coverage and energy efficiency. Azari
et al., in [14], propose a framework for the analysis and
optimization of air to ground systems considering altitude
and cooperation diversity. The authors consider drones as
relays and develop analytical solutions for the drones’
height in order to maximize its reliability and coverage
range. Lastly, Shah et al., in [15], propose a new solution to
the problem of user cell association considering flying BSs
with backhaul constraints. The authors present a distributed
solution based on a greedy search algorithm and show that
the proposed approach has better results than other baseline
approaches and it is less computational complex.

Regarding the application of intelligent techniques, a
particular family of algorithms that has gained a lot of
attention recently are the ones based on RL. Because of
their capability of online learning despite the environment
they are inserted in, RL algorithms can be applied in many
different domains. One example of application is the one in
[16], in which the authors useQ-learning together with deep
learning to develop an algorithm that can play several Atari
2600 games, like Pong and Breakout. By taking only the raw
pixels of the screen as inputs, the authors were able to show
that their algorithm was capable of learning by itself how to
play each game and was even able to outperform previous
approaches and beat human experts in some games.

Another example is the work in [17], in which the
authors propose a brain-inspired cognitive architecture
for autonomous learning of knowledge representation.
This architecture presents key concepts in terms of
acquiring knowledge based on behavioral needs and reusing
patterns to explain new situations. Results show that their
implementation is able to solve simple problems, but the
authors state that this approach might be better in terms
of scalability of more complex tasks. In [18], the authors
describe an approach to control a robot based on the
actor critic algorithm. The proposed method is tested in
a landmark approach, involving movable cameras, which
successfully control two types of robots in performing a
navigational task. Results show that the proposed solution
is capable of performing autonomous navigation and
highlighted the possibilities toward a more independent
robot control in the future. Moreover, Zhao et al., in [19],
propose a general computational model inspired by the
human brain and RL concepts. The proposed algorithm is
verified in a drone application, in which drones had to fly
through specific paths, such as through windows and doors
in order to avoid certain obstacles.

In the context of wireless networks, several intelligent
solutions are being proposed. The work in [20], for example,
proposes a novel cognitively inspired clustering algorithm
in order to manage the energy consumption of a wireless
sensor network. However, shifting the focus toward the
applications of RL algorithms in cellular networks, the
works by Jaber et al., in [21–23], are a good example.
In these works, the authors propose a Q-learning solution
in order to tackle the problem of user cell association
considering backhaul constraints. By adjusting the offsets
of small cells in order to allocate users with different
requirements to the best fitting cell, based not only in RAN
requirements, but also in backhaul parameters, the proposed
solution is able to mitigate user dissatisfaction at a slight
reduction in total perceived throughput.

Despite some works covering the deployment of drones
in emergency situations [1, 8], other works covering
the deployment of drones with backhaul limitations [11,
13, 15], and others considering the positioning of aerial
platforms [3, 5–7, 9–11, 14], only [3] proposes an intelligent
solution in order to determine the best position of DSCs.
Also, as it can be seen from the reviewed literature, most
studies address the drone positioning problem analytically,
through the development of closed-form equations. These
methods, although important, require several assumptions,
such as the knowledge about how many users are in the
network and their positions. In addition, most of these
works also do not take into account user mobility and
perform the drone placement optimization for a specific,
static scenario. Hence, these types of solutions might not
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be suitable for real situations, in which the environment is
constantly changing, users can move at different speeds, and
even network parameters, such as cell load and backhaul
conditions, can change as well.

In addition, as previously mentioned, the only work
that proposes an intelligent solution to the problem of
drone positioning optimization is the work of Kalantari et
al., in [3]. However, the proposed work utilizes a PSO
algorithm, which can be viewed as a branch of genetic
algorithms or heuristic methods (in constrast to genetic
algorithms, PSO does not perform selection in between
generations) [24, 25]. Although able to solve the proposed
problems in a simulated environment, solutions such as
GA, heuristics, and PSO, due to their inherit nature of
having to search for the best possible solution among a
family of available ones, are not suitable for applications
that require continuous interaction between the system and
its environment. This occurs because any change in the
initial original set of solutions would require the whole
computation to be performed again. For instance, PSO is not
able to perform an online optimization of the problem.

As the authors show in [3], the approach is tested in
two fixed scenarios, without considering user mobility.
Because PSO performs an offline computation, this solution
is also not capable of adapting itself to real-time changes
in the network. For example, if mobility was taken into
account, the proposed PSO algorithm would have to run
again, every time a user would move, in order to determine
the best new solution for this new network configuration,
resulting in an impractical system. Additionally, due to the
vast search space that the PSO solution has to evaluate,
a centralized unit would be required in order to perform
all the required computations and determine the best
configuration. Again, in real systems this is not practical,
as this would result in an increase in communication
signaling between the centralized unit and the drones, as
well as the need of synchronization. Lastly, due to the
heuristic nature of PSO, this approach would also not be
scalable as well as computationally efficient due to the
vast search space that it must compute in order to find
the best possible configuration. In a real environment, for
example, in which network conditions and user positions
change frequently, PSO would not be able to cope with
these changes, becoming an impractical solution in real
scenarios.

Based on the issues mentioned above, it is clear that
the development of a novel solution that is capable of
adapting itself online and that is also able to analyze the
environment and determine the best possible actions to be
taken is needed. Based on that, RL algorithms are a suitable
approach since, independently of the environment they are
inserted in, they can explore the possibilities and determine
the best actions to be taken.

Objectives and Contributions

The main objective of this paper is to provide a distributed and
intelligent solution to the problem of positioning multiple
DSCs in order to maximize the number of covered users
in an emergency situation. As previously mentioned, this
problem is of high importance in emergency situations;
since the fastest communication network can be established,
more human lives can be saved. This optimization problem
also poses a difficult challenge, due to the varying conditions
of the environment, such as users moving with different
speeds, users having different requirements, and the DSCs
being limited in both RAN and backhaul resources. In
addition, as the deployment of conventional BSs might not
be possible, either due to the infrastructure being destroyed
or parts of a city not being accessible, the deployment
of drones is considered to be a good solution in case of
emergency situations.

In order to provide a solution to the problem of drone 3D
placement, the development and evaluation of an adaptable
and flexible solution based on RL using Q-learning are pro-
posed. The developed algorithm is shown to be robust enough
in order to adapt itself to different network conditions,
such as the position of other DSCs, interference between
DSCs, user movements, and requirements. To the best of the
author’s knowledge, there are no other works that consider
the optimization of drone positioning using RL in an emer-
gency communication scenario, while also considering user
mobility, user requirements, and network constraints.

The main novelty of this work can be described as the
development of an intelligent solution based on RL, in order
to tackle the problem of user coverage in an emergency
situation. As discussed before, most of the current state-
of-the-art solutions do not provide the needed flexibility or
adaptability in order to cope with a changing environment;
hence, the development of an intelligent solution that is
capable of providing coverage exactly where and when
needed is essential. The proposed solution utilizes a Q-
learning algorithm in every DSC and each DSC will attempt
to find the best position in the environment so that the
global reward, given by the total number of users covered,
is maximized. Results show that the proposed solution
achieves better results than fixing the drones either in
random positions, in a circular manner, or in the location of
the previous hot spots.

The remainder of this paper is organized as follows.
Table 1 contains a list of symbols used throughout the paper,
“Method” describes the system model, “Proposed solution”
presents the proposed solution and the metrics used to
measure the performance of the system, while “Results”
discusses numerical results. Lastly, “Conclusions” provides
a summary of the key findings of the paper and some
suggestions for future work.
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Table 1 List of symbols

Symbol Definition

Scenario

B Set of all base stations
L Side of the considered area
NB Number of base stations
Nu Number of users
U Set of all users
ITU-R
α Ratio of buildup to land area
β Building density
γ Scale parameter for building height

distribution

W Width of buildings
S Separation between buildings
Link
B Bandwidth
c Speed of light
Ch Antenna height correction factor
dm/d Distance between user and macro cell/drone

EIRP Equivalent isotropically radiated power
fc Carrier frequency
hB Base station height
hd Drone height
hu Height of user device
N Additive white Gaussian noise power
PLm/d Path loss between user and macro cell/drone
RSRP Reference signal received power
ρ Drone coverage radius
SINR Signal to interference plus noise ratio
T Throughput
θ Drone antenna major lobe angle
ξ Additional path loss
Algorithm

a Action
ε Chance of choosing a random action
φ Discount factor
λ Learning rate
MAXit Max iterations per episode
MAXit,r Max iterations with same reward
MINit Min iterations per episode
Q Action-value function
r Reward (total number of users allocated)
s Agent state
t Time instant

Performance metrics

Dτ Average throughput dissatisfaction

Du Percentage of users in outage

No Number of users in outage

� Set of unsatisfied users

in terms of throughput

τ User required throughput

Methods

SystemModel

The problem of maximizing coverage in an emergency
situation scenario, via the deployment of a temporary
network is considered. This network is composed of a
truck BS, along with movable DSCs. The objective of the
proposed system is to find the best possible positions of
DSCs, given that users with different requirements and
mobility characteristics are distributed in the scenario and
that both the truck BS and the DSCs have limited resources
in terms of RAN and backhaul.

UrbanModel

The International Telecommunication Union (ITU-R)
defines in [26] three parameters to characterize any urban
environment, which are defined as:

– α, the ratio of buildup land area to the total land area;
– β, the average number of buildings per square

kilometer;
– γ , scale parameter for the heights of the buildings.

Following [27], the urban scenario in this paper is
modeled considering these parameters, and a building
disposition following a Manhattan grid layout, as in Fig. 1,
in which squares of a given width (W ) are separated by
a distance (S) [28]. The height of the squares is obtained
following a Rayleigh distribution with scale parameter γ ,

Fig. 1 Manhattan grid urban layout
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whereasW and S are assumed equal across all buildings and
are determined via [27]

W = 1000 ·
(

α

β

) 1
2

(1)

and

S = 1000√
β

− W . (2)

Users

The scenario considers Nu users spread across an L by
L square area. A portion of the users is assumed to be
concentrated near hot spots randomly distributed around
the area, while the rest of the users is uniformly random
distributed.

In addition, two types of users are considered: either
users that belong to an emergency team, or regular users.
Regardless of their type, the most important requisite for
all of them is to be connected (to have coverage). Aside
from that, rescue team users can have different throughput
requirements, depending on their needs, while normal users
are all assumed to have low throughput requirements.
Furthermore, different mobility levels are assumed between
users. Regular users, for example, are considered to have
low mobility, whereas rescue team users are assumed to
have high mobility.

Temporary Network

The scenario considered in this paper assumes that there
was a fully functional network in a certain location, but
due to a natural disaster, it was completely destroyed. In
this particular case, however, it is assumed that either part
of the original backhaul of the previous network was still
accessible or that a backhaul link could be deployed after
the emergency happened and could be used by network
operators in order to establish a connection to their servers.
In other situations, in which the original backhaul links of
the previous network are also destroyed, a solution can be
developed first, to deal with the backhaul connection issue,
and then the proposed solution, involving the deployment of
drones, can be installed.

Truck Base Station

In order for operators to access the original backhaul of the
network, a fully equipped truck with a macro BS powered
either by fuel or solar energy is considered, such as in
[29]. This truck could be placed in a position similar to
where the original BS was positioned and, by connecting
to the available backhaul link, it can enable the connection
between the truck BS and the network operator.

The path loss from the macro BS to the users follows the
Okumura-Hata model [30]
PLm = 69.55 + 26.16 · log10 (fc) − 13.82 · log10 (hB) − CH +

+[44.9 − 6.55 · log10 (hB)] log10 (dm) , (3)

where fc is the carrier frequency, hB is the height of the
macro BS, and CH is the antenna height correction factor,
which is given by

CH = 0.8 + (
log10 (fc) − 0.7

) · hu − 1.56 · log10 (fc) , (4)

where hu is the height of users’ mobile devices.

Drone Small Cells

Additionally to the truck BS, it is also considered that
DSCs are deployed in the network in order to provide the
additional needed coverage. Each drone is considered to
have a dedicated out of band backhaul link, composed of
a microwave link, which is able to contact the truck BS in
order to connect to the network operator. The traffic from
the drones are routed to the truck BS and then to the network
operator, as the truck BS is the only one with a direct
backhaul connection to the operator. Also, it is assumed
that the drones use a dedicated spectrum slice of their band
to perform this connection to the macro BS. Furthermore,
since the drones are flying at relatively high altitudes and
the antenna from the macro cell is positioned higher than
nearby buildings, it is assumed that the link between drones
and macro BS has very large capacity, similarly to what is
considered in [12]. Moreover, as recently shown in [31],
the noise and LOS characteristics of the channel affect the

Fig. 2 DSC flying at a height, hd, and with an antenna with aperture
angle of θ
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Fig. 3 Considered scenario. A
DSC providing coverage to a
certain amount of users, both
regular and rescue team users, in
an emergency situation

link between ground BS and drones far less than when
considering the communication between the ground BS and
a ground user, further supporting this assumption.

It is also considered that the antenna of each DSC has
strong directivity, such that its major lobe1 (defined as the
region in which the antenna gain is the highest) has an
aperture angle of θ , as in Fig. 2. Therefore, the signal
irradiated from its antenna is considered highly attenuated
outside its coverage radius ρ defined by

ρ = hd · tan
(

θ

2

)
, (5)

where hd is the drone flight altitude.
The path loss between DSCs and users (PLd) follows the

model presented by Al-Hourani et al., in [27], wherein PLd

is split between a free-space path loss and an additional
loss, which depends on whether there is line of sight (LOS)
between the drone and the user or not [10]

PLd = 20 log10

(
4πfcdd

c

)
+ ξ, (6)

where dd is the distance between drones and users, c is the
speed of light, and ξ is the additional loss which assumes
different values for LOS or non-line-of-sight (NLOS) links.
Figure 3 presents the scenario considered in this paper,
with a DSC covering regular users and rescue team in a
post-disaster urban scenario.

User Allocation

Considering the set of all usersU = 1, 2, . . . , Nu and the set
of all BSs B = 1, 2, . . . , Nb, with Nb as the total number of

1In practical antennas [32], there is one major lobe, which concentrates
the majority of its power and can be defined using two angles named
elevation and horizontal angles. It is assumed in this work that both
have the same value, θ .

BSs, the received signal power, in dB, for user i ∈ U, from
BS j ∈ B, is denoted by RSRPi,j and can be computed as

RSRPi,j =
{
EIRPm − PLm, if j is a macro BS,

EIRPd − PLd, if j is a DSC,
(7)

where EIRP stands for equivalent isotropically radiated
power and represents the transmitted power combined with
its antenna gain, in dB. According to that, EIRPm and
EIRPd represent the total transmit power from the macro
BS and the DSCs, respectively. PLm represents the path loss
between the macro BS and users, calculated according to
(3), and PLd is the path loss between drones and users as
given in (6).

Next, the signal to interference plus noise ratio (SINR),
for a BS/user pair, SINRi,j , is given by

SINRi,j = RSRPi,j

N +
Nb∑

k=1,k �=j

RSRPi,k

, (8)

where N is the additive White gaussian noise (AWGN)
power and the RSRPs are expressed in linear form.

The throughput T for a user i allocated to BS j , in
bits per second, is determined following Shannon’s channel
capacity formula [33]

T = B · log2(1 + SINRi,j ), (9)

where B is the bandwidth in Hz.
As in [21], the amount of throughput that the user

consumes from the backhaul is considered to be 30% higher
than its actual throughput, because of overhead signals. In
addition, if the sum of the backhaul throughput of any BS
exceeds its capacity, i.e., if the backhaul is overloaded, the
throughput of all users connected to that cell is reduced
equally by taking the amount of overloaded capacity and
dividing it by the total number of users connected to that
cell. This guarantees that the total throughput of the cell
does not exceed its capacity, while also penalizing cells
having its backhaul overloaded.
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Lastly, users are then allocated to the best BS according
to their SINR. If the SINR of a user is above a certain
threshold, and the BS has enough space in its RAN, then a
user is allocated to that BS in that time slot. However, if that
BS has no resource blocks available or the user SINR is too
low (below the connection threshold), the next BSs are tried,
in order of highest SINR. After all BSs are tried, if a user is
still unable to be associated with a BS, the user is considered
to be out of coverage (in outage) for that time slot.

Proposed Solution

The goal of this work is to propose and evaluate an
intelligent algorithm, based on RL, to find the best positions
of multiple DSCs, which maximize the number of served
users in an urban area where a disaster has occurred. RL
is a type of machine learning technique based on a goal-
seeking approach [34]. In contrast to supervised learning,
for example, in which the system learns by analyzing a
labeled data set, or unsupervised learning, in which given
unlabeled data, the system tries to correctly infer the output.
In RL, a system must explore the environment in order to
discover which actions are the best to take at specific states
[34, 35].

Positioning Algorithm

The proposed algorithm is based on Q-learning, which is an
off-policy, dynamic programming method. In Q-learning,
agents are able to learn, without having a model of the
environment, their optimal behavior by experiencing the
consequences of their actions [36].

Each agent in the Q-learning algorithm has an action-
value matrix, Q matrix, which represents the value of being
in a specific state st , while taking an action at , at time t .
By trying different actions in different states (exploring),
but also by picking the best possible action at other states
(exploiting), Q-learning is shown to converge for any type
of policy being followed [34].

In the proposed solution, a distributed approach is assumed.
Each DSC is considered an agent of theQ-learning solution,
and the disaster scenario (composed of the buildings, user
distribution and movement, and macro cell location) is the
unknown environment that the agents are inserted in. The
states of the DSCs are defined as their three-dimensional
position in the environment, and each drone can take any
of seven possible actions, namely move up, down, left, right,
forward, backward, or not move at all. In addition, the drones
follow an ε-greedy policy [34] to choose their actions, with
a decaying ε, depending on the number of iterations.

Since the main target of the proposed solution is
to maximize the amount of covered users, the reward

experienced by each drone is the total of users allocated by
the system. The total number of users allocated was chosen
as a reward metric, instead of considering the number of
users allocated by each drone, so that drones would have a
better incentive to allocate more users instead of each drone
being greedy and trying to maximize their own reward.
If the individual number of users allocated per DSC was
used as reward, this could result in a drone allocating users
from other drones, so that its reward would be maximized
at the expense of the reward of the others, leading to a
sub-optimal (or local) optimization. Thus, a reward that
represented a global metric, in this case the total number of
users allocated, was chosen. A summary of the Q-learning
parameters is provided next and Algorithm 1 summarizes
the proposed solution.

Agents Agents correspond to the DSCs. Each agent has a
different Q-matrix, which describes the value of a drone
taking an action for every given state.

States A state s is the three-dimensional position of a DSC
in space. In addition, for the considered model, the space
is divided into a grid, such that the set of possible states a
drone can be in is finite.

Actions Each drone can take seven possible actions. These
actions are moving one step in any direction (up, down, left,
right, forward, backward), or to stay still. Furthermore, if an
action would take the DSC out of the grid, it has the same
effect as staying still.

Reward Since the goal is to maximize the number of served
users, the reward, r , is given by the total number of allocated
users. For that to be possible, the DSCs and the macro
cell are assumed to share the information of the number of
allocated users with each other, via the connection with the
macro BS. More formally, the reward of the system can be
defined as follows:

r =
Nb∑
j=1

Uj , (10)

where Uj is the number of users allocated to BS j .

Update Strategy Each DSC updates its Q matrix according
to
Q(st , at ) ← Q(st , at )+λ[rt+1+φ max

a
Q(st+1, a)−Q(st , at )], (11)

where Q(st , at ) is the current action-value function, λ is
the learning rate, rt+1 is the expected reward at the next
time step, φ is the discount factor, and max

a
Q(st+1, a) is an

estimate of the optimal future action-value function at the
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next time step. The DSCs also keep track of the state which
yielded the best reward.

Initialization At the start, all the DSCs are positioned at
random locations and with their Q matrices set to zero in all
entries.

Stopping Criteria The stopping criteria are based on three
conditions. The drones have moved for a maximum number
of iterations Maxit, the value of the reward has not improved
in a certain number of iterations Maxit,r, or the drone has
used all its resource blocks and has explored for a minimum
number of iterations Minit. When one of them is met, the
DSC moves to the state which yielded the best reward and
stops until the next episode.

Episode Whenever there is a notion of time steps in RL
algorithms, the agent-environment interaction can be broken
into subsequences. These subsequences are called episodes
and are composed of repeated interactions between the
agent and the environment, until a terminal state, or a
stopping criteria, has been met [34]. In the context of
the proposed problem, an episode can be defined as a
snapshot of the environment, or in this case, the emergency
communication network. In each episode, the DSCs take
actions based on their current state and evaluate their
reward. This process is repeated for a certain number of
iterations until one of the three stopping criteria is met.

In addition, during each episode of the network, the
users are considered to be static, so that the drones can
evaluate and determine the best actions for that snapshot
of the network. After all drones have moved and found
the best possible positions for that episode, the current
episode ends, users eventually move according to their
mobility levels, and a new episode begins. Furthermore,
since there is a high correlation between episodes, whenever
a new episode begins, the DSCs start at the previous
position of the last episode. Also, the DSCs keep their Q

matrices between episodes, in order to explore the previous
knowledge gathered from previous episodes of the network.

In a real scenario, however, as there is no notion of
episodes, the DSCs could perform the position optimization
every certain time intervals, for example, whenever the
global reward of the system is below a certain treshold.
By analyzing the network at certain time slots, and moving
according to the user positions of that time slot, the DSCs
would still be able to find on the fly an optimal solution.
In addition, this interval (the frequency that the algorithm
is run in each DSC) could also be tuned in order to have
a higher or lower resolution, at the trade-off of energy and
complexity at each DSC as well as based on the assumed
user mobility model.

Metrics

In order to evaluate the proposed strategy, the metrics
considered are the percentage of users in outage Du and the
average user throughput dissatisfaction Dτ per total number
of users. The percentage of users in outage is given by

Du = 100 · No

Nu
, (12)

where No is the total number of users in outage and is
defined as

No = Nu −
Nb∑
j=1

Uj . (13)

By its turn, Dτ is computed considering all the users
which have a throughput below his/her requirement, τ , such
that

Dτ = 1

Nu

∑
y∈�

τy − Ty

τy

, (14)

where Ty and τy are the allocated and required throughput of
user y, respectively, and � is the set of users with Ty < τy .
In addition, if a user has not been allocated to any cell, it is
considered dissatisfied and his/her perceived throughput is
assumed to be Ty = 0.

Results

Simulation Scenario

In order to showcase the effectiveness of the proposed
solution, a simulation scenario in MATLAB has been built.
It is considered that a network operator had a previously
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fully functional network in the area, composed of a macro
and several small cells. However, a disaster happened and
the previous network was fully destroyed, with only parts of
its original backhaul connection available, so the operator

Table 2 Simulation parameters

Parameters Value

Ratio of buildup to total land area, α 0.3 [26]

Average number of buildings, β 500 buildings/km2 [26]

Scale parameter for building heights, γ 15 m [26]

ξ LOS 1 dB [27]

ξ NLOS 20 dB [27]

Side of the square area, L 1 km

Drone X-axis step 50 m

Drone Y -axis step 50 m

Drone Z-axis step 100 m

Minimum drone height 200 m

Maximum drone height 1000 m

Low mobility users X-axis step 3 m

Low mobility users Y -axis step 3 m

Low mobility users Z-axis step 0 m

High mobility users X-axis step 10 m

High mobility users Y -axis step 10 m

High mobility users Z-axis step 0 m

Number of users, Nu 768 [21, 22]

User height, hu 1.5 m

Ratio of rescue team users 20%

Number of hot spots 16

Number of DSCs 16

Ratio of users in near hot spots 2/3 [21, 22]

Macro BS EIRP 0 dBW [21, 22]

Macro BS height, hB 20 m

DSC EIRP − 3 dBW [31]

DSC antenna directivity angle, θ 60◦ [32]

RBs in macro cell 50 [21, 22]

RBs in DSCs 50 [21, 22]

Macro cell backhaul capacity 100 Gbps [21, 22]

Microwave backhaul capacity per drone 37.5 Mbps/drone [21, 22]

Bandwidth of one RB 180 kHz [21, 22]

Carrier frequency, fc 1 GHz

High SINR requirement 5 dB

Low SINR requirement 0 dB

Total number of episodes 100

Number of independent runs 100

Max iterations per episode, Maxit 1000

Max iterations, same reward, Maxit,r 100

Min iterations per episode, Minit,r 200

Learning rate (λ) 0.9

Discount factor (φ) 0.9

has to choose other means in order to restore connectivity as
fast as possible.

For this scenario, it is considered that the operator chose
to deploy a macro cell in a temporary fixed infrastructure,
as for instance in a truck, in a position similar to the
original one. Since it might be difficult for the operator
to deploy the macro BS in its original position, either
due to debris or blockages, in the simulations, the truck
containing the macro BS is positioned at its initial position
added to an offset depending on a random distribution. In
addition, drones are also deployed in the network to perform
the role of the previous small cells. Regarding the drones
positioning, several approaches are tested, such as fixing the
drones in random positions, fixing the drones in a circular
manner around the macro cell, fixing the drones in the
previous location of the small cells, and, lastly, deploying
movable and intelligent drones using the proposed Q-
learning solution. The proposed solution is compared to
those baselines as there are no other methods, to the best
of the author’s knowledge, that perform the optimization
of drone positioning in an emergency scenario, considering
both RAN and backhaul constraints. We remark that the
only other similar approach, the PSO-based scheme in [3],
would not be a feasible and appropriate solution to the
proposed scenario, as it is not able to cope with the changes
in the environment, nor scalable enough to be an adequate

Fig. 4 Upper view of the simulation scenario. The macro cell, in
orange, is positioned near the center of the area, while the drones are
shown as colored triangles. The DSC coverage radius is represented
as the colored circles and users served by the BSs (either truck BS
or DSCs) are displayed with different colors, while users in outage
are represented as black X’s. The trajectory of one drone is plotted
(dashed)
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solution to a real situation. A summary of the simulation
parameters is shown in Table 2 and Figs. 4 and 5 show the
simulation scenario setup in MATLAB.

The Environment

The simulated scenario consists of an urban area of 1 km2,
following the model and parameters described in [27]. In
this area, 768 users are scattered, some belonging to rescue
teams and others consisting of regular users. Furthermore,
different users have different characteristics in terms of both
mobility and throughput requirements. As the throughput
can be calculated in terms of the perceived SINR, as in
Eq. 8, user requirements are modeled as SINR requirements
instead of throughput requirements. Table 3 presents the
different types of users, requirements, and mobility levels.

User Distribution

A third of the users is randomly distributed in the entire
1-km2 area, whereas the other two thirds are randomly
assigned to hot spots. In order to generate the hot spots,
a defined number of hot spots are artificially created, and
every hot spot has the same amount of users.

Fig. 5 Isometric view of the simulation scenario. DSCs adjust their 3D
position in order to maximize the amount of users covered. As it can
be seen, different DSCs prefer different heights, in order to minimize
interference between DSCs while also maximizing their coverage. The
trajectory of one drone is plotted (dashed)

Table 3 User characteristics

User types

Rescue team Regular

Mobility High Low

SINR High/low Low

Frequency Bands and Antenna

Regarding frequency bands, it is assumed that both drones
and macro cell would share the same frequency band,
meaning that drones and macro cell would interfere with
each other and a frequency reuse factor of 1 is considered.
However, in order to mitigate the interference between
drones, it is also considered that each drone has a single
antenna with an elevation and horizontal plane apertures of
θ = 60◦, which is a good approximation of commercially
available antennas [32]. This means that each drone has a
fixed radius of coverage, varying with its altitude, and that
users out of that radius of coverage would perceive a very
low signal coming from that drone.

RAN and Backhaul

In addition, the scenario also assumes that both macro and
DSCs are limited in both RAN and backhaul resources.
Both macro cell and DSCs are assumed to share a 10-
MHz bandwidth, which correspond to a capacity of 50
resource blocks (RBs), according to long-term evolution
(LTE) parameters. Moreover, it is considered that the macro
cell has an ideal backhaul [21, 22] and that the DSCs have a
microwave link that connects to the macro cell.

Simulation

In order to implement the Q-learning solution to the
problem, first, a discretization of the proposed environment
is performed. In terms of user mobility, it is considered that
users could move in steps of 1 m in any direction. It is also
considered that the user mobile phone distance to the ground
is of 1.5 m height. Regarding the DSCmovements, the aerial
space is discretized in steps of 50 m in the horizontal plane
(X and Y dimensions) and in steps of 100 meters in the
vertical domain (Z dimension). Drones could then either
move in this space in all three dimensions or stay still.

The simulation is ran for 100 independent runs, each with
a total of 100 episodes (snapshots of the network). First,
however, before the drones start moving and determining
their best positions, an initialization process is performed.
Before the simulation begins, user positions, requirements,
and mobility levels are generated. Then, a certain number
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of hot spots are generated with an equal amount of users
per hot spot and a fixed number of drones is also positioned
in the system, according to the scenario being evaluated.
In addition, the backhaul of the drones is also initialized
according to the microwave backhaul parameters and each
drone is assumed to have a random initial backhaul load, of
up to 10% of its initial capacity.

For the fixed position scenarios, the drones remain in
their locations for all episodes, while users move around
according to their mobility behaviors. On the other hand,
for the Q-learning approach, the DSCs try to find the best
possible position for every episode. For this to be possible,
however, each episode is also divided into iterations. For
every iteration, the drones move around the environment
looking for the best positions in the system, and during
this process, the users are considered to be static. Every
drone performs a certain amount of iterations, according
to the stopping criteria of the algorithm and determines
the best position for that episode. After all drones stop
moving, the episode is finished, all metrics are recorded,
and user positions are updated, so that the mobility of
users can be taken into account between episodes. Lastly,
whenever a new episode begins, the DSCs start from the
previous learned position and with the previous computed
Q matrices, in order to explore the correlation between
different snapshots of the network. This process is then
repeated and the results are averaged out between different
runs of the algorithm.

Numerical Results

Figure 6 shows the average number of users in outage per
episode for each of the considered strategies. As it can be
observed, the Q-learning approach yields the best results,
resulting in around 2% of users in outage after 100 episodes
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Fig. 6 Average number of users in outage per episode
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Fig. 7 Average DSC RAN load per episode

and down to less than 5% after only 10 episodes. In addition,
it can also be seen that both the random fixed positioning
strategy as well as the circular positioning strategy yield
very poor performance in terms of covered users, having
more than 50% of users in outage at any given episode.
Additionally, as the metrics are computed at the end of the
episodes (after the DSCs have performed their movements),
it is natural that the Q-learning and random position curves
start at different values, as in the former case, the DSCs
move, while in the latter they do not. Keeping the drones
fixed at the location of the hot spots also results in a poor
performance, albeit better than the random and circular
strategies.

This result emphasizes the importance of having a
movable solution, because as users move through the
network, the proposed solution is able to detect and track
user movement, learning the best positions to be in for
every episode. In addition, the proposedQ-learning solution
also shows that it is able to provide coverage and service
whenever and wherever it is needed.

Figures 7 and 8 show the RAN load of the drones
(averaged over all drones) and the macro cell, respectively,
per episode. Regarding the Q-learning strategy, the RAN
load of the drones increases from below 80% up to almost
90%, as can be seen in Fig. 7. This indicates that the
stopping criteria being reached are not the one related
to having full capacity, but rather the one in which the
reward does not improve after a certain number of iterations.
Moreover, this happens mainly because there is more RAN
resources than the minimum required to serve all users in the
network, such that the reward does not vary for longer than
Maxit,r iterations. In addition, looking at Fig. 8, it is possible
to observe that the load on the macro cell almost does not
vary as the DSCs find better positions in terms of reward
(served users overall), indicating that the drones moving
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Fig. 8 Average macro cell RAN load per episode

according to the Q-learning policy are not allocating users
which were served by the macro cell and leaving others in
outage, but instead they are finding users moving in a way
such that users in outage can now be served.

This behavior of following users and allocating users that
would be in outage, otherwise, can also be deducted from
Figs. 6 and 7, by comparing the trend of the curves for
users in outage and drone load. Note that both curves have
inverted trends, indicating that the DSCs are using their
spare capacity to provide coverage to a wider number of
users. On the other hand, also regarding Figs. 7 and 8, it can
be seen that the other positioning strategies have almost no
variation in the curves of drone RAN load, since they do not
adapt to the mobility patterns of users. Furthermore, because
the RAN load on the DSCs is relatively low, the macro cell
is always operating at full RAN capacity in these cases.
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Fig. 9 Average dissatisfaction of users with low throughput
requirement
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Fig. 10 Average dissatisfaction of users with high throughput
requirement

Figures 9 and 10 show the average dissatisfaction
per user in terms of throughput for users with low and
high requirement, respectively. As it can be seen, the Q-
learning solution, despite not being explicitly programmed
to mitigate user dissatisfaction, is the best performing
strategy by a large margin. This is mainly due to the fact that
users out of coverage are considered 100% dissatisfied. The
performance regarding throughput satisfaction could even
be improved if the reward considered this metric; however,
since this is not the main goal of the proposed solution
(nor the main requirement for the type of application), the
Q-learning approach does not optimize user satisfaction.

Figure 11 shows the average backhaul throughput for the
DSCs. As it can be seen, there is not a large variation of
the parameters in different episodes but the important thing
to note is that the backhaul capacity of the DSCs is not
being exceeded, showing that the throughput bottleneck is
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rates for the Q-learning positioning strategy

the SINR. In addition, when comparing to the maximum
possible backhaul capacity of each drone, it can be seen
that the Q-learning strategy is the one that best utilizes the
backhaul resources of the system, while the other strategies
do not use the backhaul resources very well, leaving more
capacity unused.

The impact of different learning rates, λ, was also
investigated and their influence is illustrated in Fig. 12.
As expected, the learning rate exerts some influence in the
convergence rate of the algorithm, as higher λ leads to
better results, as can be observed. For instance, considering
λ = 0.1 results in 4% of the users being in outage after
100 episodes, whereas increasing the value of λ gradually
improves performance. This difference can be explained due
to the fact that the drones learn less from the environment
when smaller λ are considered and thus are less able to adapt
to the changes in the environment, such as user mobility.
Hence, a value of λ = 0.9 was chosen.

Conclusion

In order to provide service whenever large-scale natural
disasters happen, it is crucial that network operators have
adaptable and intelligent solutions at hand. With that in
mind, new solutions have to be created, as conventional
approaches and regular BSs might not be suitable or
be fast enough in order to provide service in such an
emergency. Hence, one possible enabler for ECNs is the
deployment of intelligent drone BSs, as they can provide
coverage whenever and wherever needed, due to their
mobile characteristics.

In this paper, a RL approach to determine the best
position of multiple DSCs is proposed. The algorithm

is based on a distributed implementation of Q-learning.
Results show that the solution outperforms other fixed
methods in terms of all considered metrics. These results
showcase the importance that movable BSs can have in
future cellular networks, as they can learn the best positions
to be in dynamic environments.

Since this is a relatively new area, the 3D placement
optimization problem of DSCs in an emergency situation
can have several possible extensions. One extension of this
work can be the consideration of different ML techniques in
order to position the drones, such as SARSA or SARSA(λ).
In addition, RL can even be combined with other ML
techniques, such as supervised learning, in what it is known
as value function approximation, in order to approximate the
value of every state-action pair. By doing this, the algorithm
would generalize and estimate the value of every state-
action pair based on features of the system, being able
to determine the best actions for unseen states and also
avoiding the environment discretization.

Another interesting possible future work is to consider
additional parameters for the users, such as latency and
resiliency and perform an optimization not only based on
the connectivity of each user, but also with respect to
their satisfaction levels regarding each parameter. Lastly,
another future work idea can be to include additional
constraints in the DSCs, such as the flight time and the
total energy consumption from the DSC’s movements. This
would enable the algorithm to find a trade-off between
moving and coverage, in order to maximize both the amount
of users and the flight time of each DSC.
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