154 research outputs found

    Security for 5G Mobile Wireless Networks

    Get PDF
    The advanced features of 5G mobile wireless network systems yield new security requirements and challenges. This paper presents a comprehensive survey on security of 5G wireless network systems compared to the traditional cellular networks. The paper starts with a review on 5G wireless networks particularities as well as on the new requirements and motivations of 5G wireless security. The potential attacks and security services with the consideration of new service requirements and new use cases in 5G wireless networks are then summarized. The recent development and the existing schemes for the 5G wireless security are presented based on the corresponding security services including authentication, availability, data confidentiality, key management and privacy. The paper further discusses the new security features involving different technologies applied to 5G such as heterogeneous networks, device-to-device communications, massive multiple-input multiple-output, software defined networks and Internet of Things. Motivated by these security research and development activities, we propose a new 5G wireless security architecture, based on which the analysis of identity management and flexible authentication is provided. As a case study, we explore a handover procedure as well as a signaling load scheme to show the advantage of the proposed security architecture. The challenges and future directions of 5G wireless security are finally summarized

    Energy-Efficient Hybrid Beamforming for Multi-Layer RIS-Assisted Secure Integrated Terrestrial-Aerial Networks

    Get PDF
    The integration of aerial platforms to provide ubiquitous coverage and connectivity for densely deployed terrestrial networks is expected to be a reality in the emerging sixth-generation networks. Energy-effificient and secure transmission designs are two important components for integrated terrestrial-aerial networks (ITAN). Inlight of the potential of reconfigurable intelligent surface (RIS) for significantly reducing the system power consumption and boosting information security, this paper proposes a multi-layer RIS-assisted secure ITAN architecture to defend against simultaneous jamming and eavesdropping attacks, and investigates energy-efficient hybrid beamforming for it. Specifically, with the availability of imperfect angular channel state information (CSI), we propose a block coordinate descent (BCD) framework for the joint optimization of the user’s received decoder, the terrestrial and aerial digital precoder, and the multi-layer RIS analog precoder to maximize the system energy efficiency (EE) performance. For the design of the received decoder, a heuristic beamforming scheme is proposed to convert the worst-case design problem into a min-max one and facilitate the developing a closed-form solution. For the design of the digital precoder, we propose an iterative sequential convex approximation approach via capitalizing the auxiliary variables and first-order Taylor series expansion. Finally, a monotonic vertex-update algorithm with a penalty convex-concave procedure (P-CCP) is proposed to obtain the analog precoder with satisfactory performance. Numerical results show the superiority and effectiveness of the proposed optimization framework and architecture over various benchmark schemes

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    RIS-Assisted Robust Hybrid Beamforming AgainstSimultaneous Jamming and Eavesdropping Attacks

    Get PDF
    Wireless communications are increasingly vulnera-ble to simultaneous jamming and eavesdropping attacks due tothe inherent broadcast nature of wireless channels. With thisfocus, due to the potential of reconfigurable intelligent surface(RIS) in substantially saving power consumption and boostinginformation security, this paper is the first work to investigate theeffect of the RIS-assisted wireless transmitter in improving boththe spectrum efficiency and the security of multi-user cellularnetwork. Specifically, with the imperfect angular channel stateinformation (CSI), we aim to address the worst-case sum ratemaximization problem by jointly designing the receive decoder atthe users, both the digital precoder and the artificial noise (AN)at the base station (BS), and the analog precoder at the RIS, whilemeeting the minimum achievable rate constraint, the maximumwiretap rate requirement, and the maximum power constraint.To address the non-convexity of the formulated problem, we firstpropose an alternative optimization (AO) method to obtain anefficient solution. In particular, a heuristic scheme is proposedto convert the imperfect angular CSI into a robust one andfacilitate the developing a closed-form solution to the receivedecoder. Then, after reformulating the original problem into atractable one by exploiting the majorization-minimization (MM)method, the digital precoder and AN can be addressed by thequadratically constrained quadratic programming (QCQP), andthe RIS-aided analog precoder is solved by the proposed pricemechanism-based Riemannian manifold optimization (RMO).To further reduce the computational complexity of the pro-posed AO method and gain more insights, we develop a low-complexity monotonic optimization algorithm combined with thedual method (MO-dual) to identify the closed-form solution.Numerical simulations using realistic RIS and communicationmodels demonstrate the superiority and validity of our proposedschemes over the existing benchmark schemes

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A

    Physical-layer security in 6G networks

    Get PDF
    The sixth generation (6G) of mobile network will be composed by different nodes, from macro-devices (satellite) to nano-devices (sensors inside the human body), providing a full connectivity fabric all around us. These heterogeneous nodes constitute an ultra dense network managing tons of information, often very sensitive. To trust the services provided by such network, security is a mandatory feature by design. In this scenario, physical-layer security (PLS) can act as a first line of defense, providing security even to low-resourced nodes in different environments. This paper discusses challenges, solutions and visions of PLS in beyond-5G networks
    corecore