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Abstract

Using information-theoretic constructions, it is possible to characterise the

security of a communication system. This is called physical layer security.

The intrinsic randomness of the wireless channel allows for provable security

guarantees in the presence of an eavesdropper.

As telecommunications requirements and technologies evolve, questions

about point to point systems are re-framed in ways which have not yet been

explored. In this thesis we analyse the robustness of particular future wireless

technologies against eavesdropping at the physical layer.

In the first of the original research chapters the secrecy capacity of a

Gaussian multiple antenna system is considered. Despite the importance of

the secrecy capacity metric, the general solution remains an open problem.

This thesis resolves the secrecy capacity to be concave in a particular region in

the single antenna eavesdropper regime. This allows for efficient computation

of the secrecy capacity and gives communication rates which are secure.

In the second research chapter, we analyse a multiple antenna, multiple

access scheme. We show that the system is inherently secure, since the eaves-

droppers signal-to-noise ratio decreases with the number of users, amongst

other results.

The third research chapter introduces a novel channel coding scheme,

combining constant weight arithmetic coding with an existing combinatorial

scheme. The codewords are designed to be low-power and robust against time

dispersion. This has the advantage that several users may broadcast messages

simultaneously. The codebook design uses characteristics of the legitimate

channel, which the eavesdropper does not have access to. Simulation results

show that the eavesdropper has a low probability of success.

We conclude with a discussion of future work.
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Notation

• Upper case letters denote random variables, such as X.

• Vectors will be denoted as bold lower case symbols, such as x.

• Entries of vectors are denoted xi.

• Matrices are denoted by upper case letters, such as H.

• Hi,j denotes the (i, j)th entry of a matrix H.

• It will be clear from context whether an upper case letter denotes a

matrix or a variable.

• Conjugate transposes of matrices are denoted with a ∗, such as H∗

• All logarithms are to the base 2 unless stated otherwise.

• Matrix norms are denoted ‖·‖, and the Frobenius norm is denoted

‖·‖F .
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Introduction

Communication security is traditionally provided by methods such as shared

secret keys. Such techniques take place in the upper layers of the Open

Systems Interconnection (OSI) reference model [76] (Table 1), a standardised

model for telecommunications technologies, where each layer is independent

of one another and deals with different types of data. The work in this thesis

focuses on the physical layer, which is the layer concerning data at bit level.

Layer in OSI reference model Data type

Application Data

Presentation Data

Session Data

Transport Segments

Network Packets

Data Link Frames

Physical Bits

Table 1: The seven layers of the OSI reference model.

A layered architecture such as the OSI model means that it is possible to

have security measures at each of the seven layers, which for something as

crucial as data security, is surely desirable. The physical layer, the only layer

which deals with data at bit level, is ‘layer 1’ and typically concerns matters

of reliability and the physical medium for the transmission, such as the type

of wire or frequency. In most modern day cases this medium will be wireless.

The physical layer historically has not been used for security nearly as much

as other, higher, layers where the security protocols assume that the physical

layer is error free [7].

Classical security techniques have assumptions behind them which mod-
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Introduction

ern advances are surpassing. A cryptographic measure is considered secure

if it would take an unfeasible amount of computational power for an adver-

sary to break it [69]. Computational power available is increasing and thus

this assumption may not hold in a modern day scenario. What is considered

unfeasible depends on the current state of the art and is constantly changing.

All of this illustrates the desire to move away from a sole reliance on these

classical techniques. The stack based model which most devices are based

upon allows for security to be implemented at multiple layers. Therefore

these technologies may be used in parallel and complement one another where

feasible.

Fewer than 10% of the population used 1G [20] but developments in

telecommunications has led to reduced costs for these technologies and a far

greater uptake than could have been predicted in the days of Shannon. As

5G becomes a reality and 6G is being developed [74], much of the theory

underlying physical layer security remains unknown. Although the funda-

mental ideas date back to Shannon in 1949 [68] and Wyner in 1975 [73],

their work is based on classical point-to-point communication systems, and

new versions of these results are required for multiple-input multiple-output

(MIMO) and massive MIMO systems.

Physical layer security has an information-theoretic foundation and does

not rely on the computing power available to the users, overcoming the con-

cerns outlined above. It is instead based on the quality of the channel between

the users and the blocklength of the messages. Rather than requiring users to

generate random secret keys, physical layer security utilises the inherent ran-

domness of the physical medium (in a wireless channel, this could be due to

random electrical pulses in the environment) in order to improve secrecy. As

long as the legitimate users maintain some advantage over the eavesdropper,

their rate of perfectly secure communications may be positive.

This thesis studies security from the perspective of passive eavesdrop-

2
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ping attacks. That is where the adversary does not actively jam, spoof or

contaminate the legitimate signal, but simply overhears. Robustness against

passive eavesdropping protects users against unwanted interception and traf-

fic analysis. In this setup a legitimate user, Alice, is sending a message to

a legitimate receiver, Bob. This message is intercepted by an eavesdropper,

Eve, who observes the transmitted message through a different channel to

Bob. The difference in their channel is utilised to provide secrecy.

Alice Bob

Eve

Motivated by the evolution of telecommunications and security require-

ments, this thesis aims to address open problems and consider the inherent

security of advancing technologies.

Chapter 1 provides the mathematical background required for this the-

sis. Chapter 2 introduces the communications systems with the associated

definitions and results required. Chapter 3 surveys the literature in the rel-

evant areas of physical layer security. Chapter 4 states and proves results

about the concavity of the MIMO secrecy capacity, the theoretical maximum

rate for error free, perfectly secure communications for the Gaussian channel

in the case of a single eavesdrop antenna, contributing to the literature for

this open problem. Chapter 5 considers a downlink MIMO NOMA setup

and shows its robustness to eavesdropping. Using results from random matrix

theory, it is shown that the secrecy is enhanced as the number of antennas in-

creases. Chapter 6 introduces a novel combinatorial coding scheme, which

provides security against a passive eavesdropper while allowing several users

to communicate in a time dispersive environment. The scheme uses prop-

erties of the legitimate channel to generate a sparse codebook, making the

scheme robust to eavesdroppers who do not have access to these channels.

Chapter 7 summarises the key contributions of the preceding chapters and

3
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lays out future research directions.
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Chapter 1

Background

In this chapter we outline some of the mathematical preliminaries required for

analysing communication systems in later chapters. We begin by introducing

the mathematical framework for communication systems and coding rates,

information theory.

1.1 Information theory: an introduction

Information theory is the mathematical study of communications systems.

The field was founded by Claude Shannon in the paper ‘A Mathematical

Theory of Communication’ [67], information theory concerns transmitting

messages where noise is present.

1.1.1 Measuring uncertainty

A key metric in information theory is the entropy, which measures the uncer-

tainty of a variable, or the surprise associated with an outcome of a random

event. An event with high probability will have a low information content, as

it has less of a ‘surprise’ factor, whereas an unlikely event occurring carries

more information. For example if we see that it is raining in Bristol, a typ-

ically rainy city, this is not so surprising. The event has a high probability

and thus low information value. If it is raining in the Atacama Desert, this

is more surprising as it has a low probability and thus a high information

value. Shannon quantified information of an event with probability p to be

− log(p), and the entropy is the expected information content.

5



Chapter 1. Background

Definition 1.1.1: The entropy of a discrete random variable X, taking val-

ues in X , is

H(X) = −
∑
x∈X

p(x) log p(x), (1.1)

where we let 0 log 0 = 0.

When the logarithm is base 2, entropy is measured in bits.

Example 1.1.2: Consider a Bernoulli distribution with probability of suc-

cess p and probability of failure 1− p. The entropy may be written as

H(p) = −p log p− (1− p) log(1− p), (1.2)

also known as the binary entropy function. If p = 1 or p = 0 then the entropy

is zero. This is because there is no surprise as the variable is deterministic.

The entropy of a Bernoulli random variable can be seen in Figure 1.1. It is

maximised when p = 0.5, when the outcome is the least certain.

It is not only the binary entropy function which is maximised for a uniform

probability distribution; this is the case for random variables taking values in

larger sets as well. For a random variable X taking values in X , the entropy

is bounded above by H(X) ≤ log|X | [16, Theorem 2.6.4].

Definition 1.1.3: The joint entropy of discrete random variables X and Y ,

taking values in X and Y respectively, is

H(X, Y ) = −
∑

(x,y)∈X×Y

p(x, y) log p(x, y). (1.3)

Definition 1.1.4: The conditional entropy of discrete random variables X

and Y , taking values in X and Y respectively, is

H(X|Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x|y) ≥ 0. (1.4)

6



1.1. Information theory: an introduction

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

p

H(p)

Figure 1.1: The entropy of a Bernoulli distribution with parameter p.

The conditional entropy is the residual uncertainty of X after observing

Y = y and indeed H(X|Y ) is related to H(X, Y ) as follows [52, §8.1]

H(X, Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ). (1.5)

From the above, we see that

H(X | Y ) ≤ H(X), (1.6)

and thus conditioning may not increase entropy. More relationships between

information theoretic quantities are shown in Figure 1.2.

Definition 1.1.5: The mutual information between random variablesX and

Y is defined as

I(X;Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y ). (1.7)

7



Chapter 1. Background

H(X) H(Y )

H(X, Y )

I(X, Y ) H(Y |X)H(X|Y )

Figure 1.2: Relationships between entropy and mutual information [16, The-

orem 2.4.1].

Theorem 1.1.6 ( [16, Theorem 2.6.3]): The mutual information between

random variables X and Y satisfies I(X;Y ) ≥ 0 with I(X;Y ) = 0 if and

only if X and Y are independent.

1.1.2 Channel coding

Information theory gives a the mathematical framework for communications

in the presence of noise. In this section we outline the communication systems

and the key information theoretic measures. A transmitter, Alice, sends

a message to a receiver, Bob, over some channel. This channel may be a

telephone line, piece of optical fibre or a wireless medium, and is formally

defined later in Definition 2.1.2. If this channel is noisy, which almost all

8



1.1. Information theory: an introduction

Alice Encoder Bob Decoder
m x y

Figure 1.3: A general communication system from Alice to Bob

physical channels are, then how can Alice ensure Bob receives the correct

message? This question is the basis for channel coding. Here, we use the

term code to refer to the method used to transmit the message.

Definition 1.1.7: A symbol code of an ensembleX is a mapping fromX into

{s1, · · · , sk}+, or a binary code when {s1 · · · sk} = {0, 1}. The representation

of symbol x is called the codeword and the collection of codewords is the

codebook.

Example 1.1.8: In Morse code the message is plaintext in the Latin alpha-

bet. The code is the dots and dashes transmitted to represent the plaintext.

The collection of all 36 codewords (representing a-z and 0-9) is the codebook

for Morse code. The letters A-F are shown in Table 1.1. Note that a dot, .,

Plaintext symbol Codeword

A .-

B -...

C -.-.

D -..

E .

F ..-.

Table 1.1: Morse code plaintext and codewords.

has length one, whereas a dash, -, has length three meaning that the letter

e is assigned the shortest possible codeword due to its frequency of use.

In order for the code to be readable from left to right, one codeword

9



Chapter 1. Background

must not be a prefix for any other. That is, the code design should be prefix

free. Morse code is not prefix free, as the code for ‘E’ is ., which occurs at

the beginning of the code for ‘A’. In Example 1.1.8, symbols occurring with

high probability (for example ‘E’) are assigned short code lengths. Indeed, a

‘good’ code takes into account the underlying probability distribution in its

design. The expected length of a code with probabilities pi and corresponding

codeword lengths li is

E(L) =
∑
i

pili (1.8)

which we wish to minimise. The act of reducing the length of our codewords

as much as possible is called compression and a lower bound for the expected

lengths is H(X), the Shannon entropy (Definition 1.1.1). Indeed, this is the

Source Coding Theorem [67].

Theorem 1.1.9: For a random variable X, where xi has probability pi, there

exists a prefix free code with an expected length E(L) satisfying

H(X) ≤ EL ≤ H(X) + 1, (1.9)

and no prefix free code has expected length less than the entropy.

A proof of Theorem 1.1.9 may be found in [52, §5.4]. This result shows

that information may not be compressed below the entropy in an error free

way. How well a code performs may be measured by its rate, defined as

follows:

Definition 1.1.10: The rate of a code is the ratio of useful information bits

to total information bits transmitted per second, measured in bits/s. A rate

is said to be achievable if there exists a code which conveys information at

that rate.

Codes so far have been designed per symbol, but often the underlying

probability distribution will have implications for strings of symbols. In the

10



1.1. Information theory: an introduction

English language, for example, the pair ‘QU’ are far more likely to appear

than ‘QJ’. We may think of our decoder reading a string of codewords from

left to right, if they have seen a ‘Q’ they can expect to see a ‘U’ and so this

string may be compressed further than the string ‘QJ’. The optimal coding

scheme for this is arithmetic coding, introduced by [25]. In arithmetic coding,

binary strings have a one to one mapping with an interval on the real line.

These real intervals correspond to the probability that a sequence of symbols

occurs.

The real interval corresponding to a generic string x1 . . . xk has a width

p(xk | x1 . . . xk−1), (1.10)

which is mapped to a binary string.

Longer strings correspond to smaller intervals contained within the inter-

vals of their prefixes. That is, the string 010 corresponds to a subinterval of

01. The compression provided by arithmetic encoding is close to optimal [42].

Example 1.1.11: Consider random variableX with alphabet X = {x1, x2, x3}
with probabilities (p1, p2, p3) = (0.1, 0.3, 0.6) respectively. Consider strings

where each symbol is independent and identically distributed (IID) from the

previous choice. Initially, the interval I1 = [0, 1] is partitioned into the inter-

vals [0, p1), [p1, p1 + p2) and [p1 + p2, 1]. For strings of length 1, the encoded

string is the largest binary interval contained within these partitions. For

longer strings, the intervals are updated and then the same rule applies. The

following strings are depicted in Figure 1.4, with their probability intervals

and binary intervals shown.

• The most likely string of length 1 to occur, x3, corresponds to a parti-

tion width of 0.6 (which is just p1) and is encoded as the binary string

1.

11



Chapter 1. Background

• The length 2 string x3x3 (partition width of 0.36) is encoded as 11

while the string x3x2 (partition width of 0.18) is encoded as 100.

• The length 3 string x3x3x3 corresponds to a partition of width 0.216

and is encoded as 111. The string x3x3x3 corresponds to a partition

width of 0.108 and is encoded as the longer message 1011.

It can be seen that all strings exemplified above are encoded to messages

beginning with 1, this is because they all have x3 as a prefix and are their

intervals are contained within the x3 interval.

0

0.25

0.5

0.75

1

x1

x2

x3

x3x1

x3x2

x3x3

x3x3x1

x3x3x2

x3x3x3

1

11

111

100

1011

Figure 1.4: Arithmetic encoding partitions for Example 1.1.11.
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1.2. Differential entropy

In Example 1.1.11, the symbol strings were IID, but as was motivated

earlier, arithmetic encoding is particularly useful when the probability dis-

tribution is dynamic as is the case in the English language.

Example 1.1.12: Consider encoding binary strings x1 . . . xn of length n and

fixed weightm. Initially the probability of observing a 1 is m
n

. After observing

x1, the probabilities update

p(x2 = 1 | x1 = 1) =
m− 1

n− 1
, (1.11)

p(x2 = 1 | x1 = 0) =
m

n− 1
. (1.12)

If we use the example length 5 strings with weight 1, the arithmetic encoding

and probability intervals may be seen in Figure 1.5. Note that for the string

00100, the binary intervals of length 3 are not fully contained within the

probability interval and thus the string is assigned a binary codeword of

length 4.

1.2 Differential entropy

For continuous random variables, the summations in Definitions 1.1.1, 1.1.3

and 1.1.4 are replaced with an integral and the discrete probabilities are

replaced with the probability density function. To justify why it is possible

to do this, we first outline a quantisation argument from [16, §8.3].

Consider a random variable X with a continuous probability density func-

tion f . Split the real line into intervals of size δ: (tδ, (t+1)δ) for t ∈ Z. Then

the probability that the quantised version of X, denoted Xδ, takes a certain

value is given by

P(Xδ = t) =

∫ (t+1)δ

tδ

f(x) dx = δf(xt) (1.13)

13
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Figure 1.5: Arithmetic encoding intervals for length 5 strings of constant

weight 1.

for some xt in the interval. Then the entropy of the quantised variable is

H(Xδ) = −
∑
t

P(Xδ = t) log(P(Xδ = t))

= −
∑
t

δf(xt) log f(xt)− log δ. (1.14)

Then the differential entropy follows by the Riemann integrability of f .

Definition 1.2.1: The differential entropy h(X) of a continuous random

14



1.3. Mathematical preliminaries

variable X with probability density function f(x) is

h(X) = −
∫
Supp(X)

f(x) log f(x) dx, (1.15)

where the integral is taken over the support of X.

One key difference from the discrete entropy is that differential entropy

can take negative values. Consider the uniform distribution over the interval

[0, a] for some a > 0. The differential entropy is

h(X) = −
∫ a

0

1

a
log

1

a
dx = log a, (1.16)

this is negative when a < 1.

1.3 Mathematical preliminaries

The following section outlines some required definitions and theorems for

studying convex functions and matrices. Since this thesis concerns multiple

antenna systems, this will mean understanding their channel matrices (intro-

duced in Section 2.4.1) and some convexity results for functions of matrices.

1.3.1 Complex random vectors

Complex random variables and vectors are defined similarly to continuous

real random variables, but with entries drawn from C rather than R. More

information about complex random vectors and Gaussian random vectors

can be found in [63, §7.9]. Throughout, we let i denote
√
−1.

Definition 1.3.1: A complex random variable, Z ∈ C is a variable of the

form

Z = X + iY, (1.17)

where both X and Y are real random variables.

15
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In the real case, there is an inherent ordering of variables so the cumulative

distribution function (CDF) makes sense to be P (X ≤ x) for some real x.

This ordering does not exist in the complex plane, and thus the complex

random variable is defined by the joint distribution of its real constituents.

Definition 1.3.2: A complex Gaussian random vector, is one which can be

written as z = x + iy where both x and y are jointly Gaussian random

vectors.

Definition 1.3.3: A circularly symmetric Gaussian random variable de-

noted Z ∼ CN(0, σ2), with variance E(Z)2 = σ2 is one where Z and Zeiθ

have the same distribution for all θ ∈ [0, 2π). Z has probability distribution

function

p(z) =
1

πσ2
e−|z|

2/σ2

(1.18)

for z ∈ C.

Definition 1.3.4 ( [28, §7.7]): For matrices A and B, the generalised eigen-

values of A− λB are the values λ for which

det(A− λB) = 0. (1.19)

The generalised eigenvectors are the non zero vectors v satisfying

Av = λBv. (1.20)

Useful definitions and further background on random vectors, matrices

and their properties may be found in [58, §8].

1.3.2 Convexity

Definition 1.3.5: A function f : Rd → R is convex if its domain is a convex

set and for any any pair x, y in the domain, and any λ ∈ [0, 1]

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (1.21)

16
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If the inequality is strict for all λ ∈ (0, 1), then the function is strictly convex.

Likewise, a function is concave if the inequality in Equation (1.21) is reversed.

The binary entropy function seen previously in Figure 1.1 is a concave

function. Convex functions are ‘well behaved’ in the sense that there are

established methods for finding their minimum values. Boyd’s book [10] on

the optimisation of convex functions details many such methods. One family

of optimisation algorithms are descent methods, which take a sequence

xj = xj−1 + t∆xj

such that

f(xj) ≤ f(xj−1)

until the minimum, or a value close to the minimum is reached.

Example 1.3.6: The gradient descent method involves searching in the di-

rection of −f ′(x) as in Algorithm 1.

Algorithm 1: Gradient descent method

input : x ∈ dom(f).

output: Minimum of f(x) within a precision of η > 0.

while ‖f ′(x)‖ > η do
Determine a descent direction ∆x = −f ′(x).

Choose a step size t > 0.

Update x = x+ t∆x.

end

Theorem 1.3.7: For positive semidefinite matrices X, f(X) = log det(X)

is concave.

To prove Theorem 1.3.7, we follow the approach of [10, p74] and consider

taking an arbitrary line

X = Y + tZ

17



Chapter 1. Background

where X, Y, Z are positive symmetric matrices and t is some real number.

We may now define

g(t) = log det(X) = log det(Y + tZ). (1.22)

By restricting t to be such that Y + tZ is positive semidefinite, we may

assume without loss of generality that Y is positive semidefinite and t = 0

within this interval. Since X is positive semidefinite, there exists a matrix

X
1
2 such that X = X

1
2X

1
2 . Therefore

g(t) = log det
(
X

1
2X

1
2 + t(X

1
2X−

1
2ZX−

1
2X

1
2 )
)

(1.23)

= log det
(
X

1
2 (I + tX−

1
2ZX−

1
2 )X

1
2

)
. (1.24)

Since det(AB) = det(A) det(B), we may write

g(t) = log
(
det(X)det(I + tX−

1
2ZX−

1
2

)
(1.25)

= log det(X) +
n∑
j=1

log(1 + tλj), (1.26)

where λ1, . . . , λn denote the n eigenvalues ofX−
1
2ZX−

1
2 (where I+X−

1
2ZX−

1
2

is a positive semidefinite matrix and so 1 + λj ≥ 0 for each j). Standard

differentiation results give that g′′(t) ≤ 0 and thus f(X) is concave.

Theorem 1.3.8 ( [52, §2.7]): If f is a convex function then for any random

variable X

Ef(X) ≥ f(EX). (1.27)

This is known as Jensen’s inequality.

1.3.3 Linear Algebra

Wireless channels are modelled as matrices, as we will see in Chapter 2, and

consequently analysing them requires some results matrix algebra. This sec-
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tion provides the necessary definitions and theorems for matrices and vectors

used throughout this thesis.

Definition 1.3.9: For a matrix A, the Frobenius norm is

AF =
√

Tr (A∗A). (1.28)

It can be seen by properties of the trace that

‖A∗A‖F = ‖AA∗‖F ≤ ‖A‖2F . (1.29)

Since the trace is the sum of eigenvalues, the Frobenius norm can be written

as

‖A‖F =
√∑

λj, (1.30)

where λj are the eigenvalues of A∗A.

Theorem 1.3.10 ( [33, Example 5.6.0.2]): For square matrices, the Frobe-

nius norm satisfies the submultiplicative property. That is, for square matrices

A and B

‖AB‖F ≤ ‖A‖F‖B‖F . (1.31)

Definition 1.3.11 ( [33, §4.2]): For a given Hermitian matrix, A, and a

nonzero vector x the Rayleigh Quotient R(A, x) is

R(A,x) =
x∗Ax

x∗x
. (1.32)

Theorem 1.3.12: The standard complex polarisation identity states that

2Re 〈u,v〉 = ‖u‖2 + ‖v‖2 − ‖u− v‖2, (1.33)

meaning that ‖u‖2 − ‖u− v‖2 ≥ 0 if and only if 2Re 〈u,v〉 ≥ ‖v‖2.
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Chapter 1. Background

Definition 1.3.13: For a real positive definite matrix the Cholesky decom-

position is the factorisation

A = LLT , (1.34)

where L is a unique lower triangular matrix with positive diagonal entries.

For proof that such a decomposition always exists, see [28, Theorem 4.2.7].

Definition 1.3.14: The Kronecker product of m × n matrix A and p × q

matrix B is the mp× nq matrix

A⊗B =


a11B . . . a1nB

...
. . .

...

am1B . . . ammB

 . (1.35)

Theorem 1.3.15: Let A be an n×n matrix, the derivative of the quadratic

form (see [57, §IV] for more on quadratic forms) is

∂

∂u
[u∗Au] = (A+ AT )u, (1.36)

where u is some n × 1 vector. When A is Hermitian, A = A∗ and thus the

derivative becomes 2Au.
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Chapter 2

Communication Theory

In this chapter, we give the required background knowledge to understand

the communication models used in later chapters. We begin with the funda-

mental definitions and finish by introducing the 5G technologies which are

studied in later chapters.

2.1 Channels and capacity

So far we have considered coding and compression of data in an error free

sense. That is, what Alice sends is what Bob receives. In reality, there may

be some corruption or noise which alters Bob’s received message. At one

end of the spectrum, Bob may receive nothing useful and entirely fail to

understand what Alice sent. At the other end, Bob may receive the message

perfectly. In reality, the channel will be noisy and a scenario somewhere in

between will occur; Bob will make some errors. If Bob decodes a message

which is believable, but incorrect, how will they know that they have made

an error?

Example 2.1.1: To avoid errors, Alice may send each message T times.

Bob can then take a majority vote on the most likely message based on the

T received versions. This is called repetition coding and while it may work, it

takes a factor of T times as long to send each message, and a rate of 1/T in the

sense of Definition 1.1.10. As T increases, the error probability decreases,

but the communication rate is sacrificed. This is not always practical, as

information may be required quickly, or the cost of using the communication
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Chapter 2. Communication Theory

channel might be high.

The two key factors to consider in a communication system are the error

probability and the rate. Evidently, there is a trade off to be made between

the two. In the Example 2.1.1, we saw that by using repetition coding we

may sacrifice rate to improve our accuracy. For a given system, there is

an error threshold which is acceptable for its purpose. Teleconferencing or

gaming demands a high rate with a low latency. In these cases, more errors

are acceptable to the user. On the other hand for military communications,

for example, accuracy may take precedence over the rate. Naively one might

think the only way to achieve a zero error communication would mean the

rate of communication tends to zero. However Shannon’s notion of a system’s

capacity showed that it is possible to do far better than this and the rate of

communication can be positive for arbitrarily small error.

The plaintext that Alice wishes to send will be called the message denoted

m. Alice then encodes the message to a codeword, x, which they send over

a channel. Bob receives a potentially corrupted version, y, of this codeword

and aims to decode it, hopefully recovering m correctly.

Definition 2.1.2: A channel W is a function

W : X × Y → [0, 1]

for input alphabets X and output alphabet Y which satisfies

∀x ∈ X :
∑
y∈Y

W (y|x) = 1. (2.1)

The channel function can be thought of as a transition probability p(y|x).

Example 2.1.3: The simplest example of a channel is the binary symmetric

channel (BSC). This is the channel with a binary input and output alphabet

X = Y = {0, 1} and transition probabilities

p(0|1) = p(1|0) = p

22



2.1. Channels and capacity

1
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Figure 2.1: Binary symmetric channel with parameter p.

and

p(1|1) = p(0|0) = 1− p.

In other words, this is the channel where the bits are flipped with probability

p and correctly received with probability 1 − p. This can be seen in Figure

2.1.

We are now ready to define the capacity of a channel. With an arbitrarily

small error, information can be transmitted across the channel at a rate less

than C. If the rate of transmission exceeds C then the system will no longer

be considered reliable and the probability of errors tends to 1. Shannon

classified this in terms of the channel statistics, meaning that this capacity

is prescribed from the fundamental properties of the channel.

Definition 2.1.4: The capacity, C, of a channel with input alphabet X and
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output alphabet Y is the supremum over all achievable rates of communica-

tion

C = sup{R : R is an achievable rate for a reliable code}.

Theorem 2.1.5: Shannon’s Coding Theorem The capacity, C, of a commu-

nication system with discrete input X and output Y is

C = max
p(X)

I(X;Y ), (2.2)

where the maximum is taken over all input distributions and I(·, ·) denotes

the mutual information.

2.1.1 Continuous signals

In reality, all signals are continuous but computers only have a finite amount

of storage, we will first define how signals are reduced in order to store them.

Firstly, the signal is sampled at a rate and then these samples are quantised.

Definition 2.1.6: The process of taking a continuous range of numbers and

mapping these to a finite range of discrete values is called quantisation.

Example 2.1.7: Consider a continuous, real valued signal f(t) which fluc-

tuates above and below zero. We take taps of the channel at intervals of

length T and quantise as follows for n ∈ N

F (nT ) =

1, if f(nT ) > 0

0, otherwise.

This process outputs a binary string.

2.2 SISO Channel

In a wireless communication, the conventional model is that of a single an-

tenna at both the transmitter and receiver. This set up is also known as a
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2.2. SISO Channel

single input single output (SISO) system, which has been the basis for many

historical results.

Definition 2.2.1: The SISO channel has input x ∈ X and output y ∈ Y
defined by the relationship

y = hx+ n, (2.3)

where y is the received message, x is the transmitted message, h is the channel

coefficient and n is the noise added during the transmission.

2.2.1 AWGN Channel

A particularly useful channel model is that of a Gaussian channel. This

closely resembles a real life wireless communication system [72, Section 5.1]

and conveniently, is the most tractable, mathematically speaking.

Definition 2.2.2: The SISO Gaussian channel is the channel with input

and output alphabets X = Y = C. The transition p(Y | x) is defined by

Y = x+ Z

where the noise Z is drawn from a Gaussian distribution

Z ∼ CN(0, σ2)

with σ2 denoting the variance of the power, which since the mean is 0 is

equivalent to the channels noise power.

Noise can be a result of random electrical processes in the atmosphere or

agitation of electrons in the hardware. Thus the total noise is a summation

of several small random processes. By the central limit theorem, it follows

that this sum will be roughly Gaussian.
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Theorem 2.2.3: The capacity of the SISO Gaussian channel with a transmit

power of P and noise variance σ2 is

CAWGN = log

(
1 +

P

σ2

)
.

Note that P/σ2 is the signal to noise ratio (SNR) of the channel.

This tells us, somewhat unsurprisingly, that the optimal transmit strategy

to achieve capacity is to use all of the available power resource. It is also

known that Gaussian signalling achieves the capacity (see [16, §9.1]) meaning

that the input signal has the same shape of distribution as the noise, but a

different power.

P/σ2

CAWGN

Figure 2.2: The capacity of a Gaussian channel vs SNR.

Heuristic proof of Theorem 2.2.3.

A heuristic proof of the AWGN capacity, found in [72, §5.1.2] is detailed

below. For a more rigorous approach, see [16, §10.1], where the proof of both
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√
n(P + σ2)

√
nσ2

Figure 2.3: The capacity can be seen as the maximal number of non over-

lapping noise spheres inside the main sphere.

achievability and converse of the theorem can be found.

Let x be a blocklength n message with Gaussian entries and transmit

power of P . The received message is y = x + n where n is a length n vector

of Gaussian noise, with noise variance σ2.

By the law of large numbers, y lies, with high probability, in a sphere of

radius
√
n(P + σ2). As the blocklength n increases, the observed variance of

the noise will approximate σ2 and thus the observed signal y will, with high

probability, lie near the surface of a noise sphere of radius
√
nσ2 as seen in

Figure 2.3.

To achieve a zero error probability, it is required that the noise spheres do

not overlap, so that each y may be decoded uniquely to the corresponding x.

The volume of a general n dimensional sphere with radius r is proportional
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to rn [14, §1.4]. Therefore the maximum number of messages we can send

with zero errors is equivalent to the ratio

rn1
rn2
, (2.4)

where

r1 =
√
n(P + σ2) (2.5)

r2 =
√
nσ2 (2.6)

which gives the maximum number of noise spheres that fit inside the larger

sphere. Hence the maximum bits per symbol which may be communicated,

or equivalently the capacity of the system, is given by

1

n
log

(√
n(P + σ2)

n

√
nσ2

n .

)
=

1

2
log

(
1 +

P

σ2

)
, (2.7)

which is the desired result.

2.3 Diversity and fading

Note that all channels defined in Chapter 1 were static. That is, the channel

transition probabilities are fixed. In any physical channel there is fading and

noise which varies over time and due to other factors such as the physical

location or interference from other devices. Any wireless signal will have

multipath components due to reflection, refraction etc. These multipaths

will have differing arrival times at the receiver due to varying delays.

Diversity exploits the random fading of channels and is based on the

idea that several statistically independent channels are unlikely to experience

severe fading in the same places of the signal. A typical diversity system

would sum at least two, but often many more, received versions of the same

signal transmitted over multiple paths, each equipped with different fading
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statistics. A wireless communication between two devices happens over a

fading channel. If we move one of those devices, the channel statistics will

be different. Thus it is possible to exploit physical locations of transmitting

devices in relation to the receiving device, known as spatial diversity.

Although the channel is modelled as a random variable, in this thesis

we often refer to the channel coefficients as though they are fixed. This is

because we assume we are working within the coherence time of the channel,

defined as follows.

Definition 2.3.1: The coherence time of a channel is the duration of time

in which the channel statistics are considered to be static.

2.3.1 Dispersive channels

The random fading described in Section 2.3 may also contribute to disper-

sive channels. An environment is described as highly dispersive if the char-

acteristics change vastly over time, or it has a short coherence time (Defini-

tion 2.3.1). A simple multipath scenario is one where two multipath com-

pononents arrive with similar power. These multipaths arrive with a time

spread. Since each multipath component takes a unique path from trans-

mitter to receiver, they experience a unique time of flight. This spread of

timing leads to such a channel model being described as time dispersive and

the ouput is based on taking taps of the channel.

Definition 2.3.2: A channel is said to be time dispersive if several multi-

paths arrive at different times. For L taps of the channel, the signal input is

x

y = h ? x + n, (2.8)

where ? represents convolution. The L-tap channel is represented by vector

h of length L and the channel noise is the length L vector n. The received
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signal in time slot t is

yt =
L−1∑
i=0

hixt−i, (2.9)

where xj = 0 for j < 0.

2.4 The Evolution of Telecommunications

When Shannon wrote ‘A Mathematical Theory of Communications’ [67], the

world was a different place and he based most of his work on wired tele-

graphs as the basic communication model [70, §16]. In the years that have

passed since, there have been several generations of cellular communications.

Despite this, the basic theories developed by Shannon remain the building

blocks for studying these systems and are still of the utmost importance.

Generation Changes in services offered Year

1G Voice calling 1979

2G SMS capabilities, data rates up to 200kb/s 1991

3G Data rates of 2Mb/s 1998

4G Reduced cost of data, voice over IP 2008

Table 2.1: A high level overview of the new services offered in the evolution

from 1G to 4G [20].

With first generation communications (1G), voice calling was the main

offering. Second generation (2G) continued to improve these offerings and

was the first generation to introduce mobile data capabilities. Since 2G, de-

mand for data has risen and continues to rise with modern needs superseding

the offerings of fourth generation (4G) [20]. The key goals for 5G are detailed

in Figure 2.4 and are driven by a number of industries and applications (see
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5G goals

1000x

increase

in wireless

capacity 10-100x

more

devices

served

1 mil-

lisecond

latency

90% lower

power

Higher

data rates

Figure 2.4: Goals for 5G communications compared to 4G

Table 2.2). As the needs and requirements for communications grow and

develop, so do the technologies to meet these demands [9].

An increase in data rates can come from several avenues. We can increase

the power we transmit at, but this has an immediate limitation in a mobile

device since the battery life is finite and is impractical beyond a certain

level due to safety concerns for users and the interference caused for other

devices. Increasing the frequency resource may enable a higher transmission

rate theoretically but bandwidth is a limited and expensive resource with
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Goal Example use case

Low latency Connected autonomous vehicles

Higher data rates High definition video streaming

Higher wireless capacity Dense areas of mobile users

Lower power Sensor networks

Table 2.2: Driving factors for future wireless

access determined by policy. Utilising diversity, as explained in Section 2.3,

is a fruitful way to achieve these higher data rates and indeed spatial and

power diversity are present in the 5G specifications [55] as we will see in the

following sections.

2.4.1 MIMO and massive MIMO

Using the same power and frequency resources, multiple antenna systems can

achieve higher data rates than their single antenna counterparts by exploiting

the spatial diversity of the antennas. Theoretical results by Telatar [71]

and numerical results [27] in the late 1990s showed the potential gains for

MIMO systems, even with small numbers of antennas. For multiple users,

MIMO systems can improve data throughput by directing energy towards the

required user [11, §1.2], reducing interference issues. Since the early results,

MIMO has become well a well established technology, available in WiFi since

2006 [2, §C].

MIMO systems exploit spatial diversity by placing the multiple antennas

far enough apart from one another that they can be assumed to be statis-

tically independent. This distance is at least half of the wavelength. Each

transmit antenna has a different channel between each receive antenna and

the channel gains may now be represented as a matrix rather than a single

number in the SISO case.
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Definition 2.4.1: An n×m MIMO system is one with n transmit antennas

and m receive antennas has a corresponding channel matrix, H where entry

Hij corresponds to the channel from antenna i at the transmitter to antenna

j at the receiver.

Echoing Equation (2.3), the received vector in a MIMO system is

y = Hx + n. (2.10)

Where x is the n × 1 column vector containing the transmitted signal, y is

the m× 1 column vector containing the received signals at each antenna and

n is the column vector of noise present in each channel.

Alice Bob

Figure 2.5: A 3× 2 MIMO system.

Capacity of the Gaussian MIMO Channel

The Gaussian MIMO channel, which this thesis concentrates on, is a MIMO

system with a Gaussian noise vector (Definition 2.2.2) and independent and

identically distributed (IID) Gaussian entries for H.
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Theorem 2.4.2: The capacity of a MIMO channel with Gaussian channel

matrix H and input covariance matrix Q was found in [71] to be

max
Q

log det(I +HQH∗), (2.11)

where the maximum is taken over input distributions and subject to a power

constraint P .

Using Theorem 1.3.7 it can be seen that the capacity of a MIMO channel

is a concave optimisation, and therefore mathematically tractable.

Massive MIMO

MIMO antenna systems are being scaled up in current research [64] as well

as in practical applications for 5G to ‘massive’ MIMO. In a massive MIMO

system the number of antennas (typically over one hundred) at the base

station far exceeds the number of users. Massive MIMO is a technology

for unlocking higher data rates and is considered to be a central technology

for the development of 5G [1]. Practical results and trials such as those

undertaken at the University of Bristol [31] have confirmed the theoretical

promise.

2.4.2 Non-Orthogonal Multiple Access

Non-Orthogonal Multiple Access (NOMA) is a multiplexing technique in the

code or power domain, which is particularly useful when users have very dif-

ferent channels and path loss characteristics since it exploits their channel

diversity. In this thesis, NOMA in the power domain is considered. NOMA

in this form was introduced by Saito et. al in [65] and is a part of the

5G specification [5, 19] due to the increased coverage and good spectral effi-

ciency [18,37].
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It is typically considered for the downlink (base station to users) but

may be implemented in the uplink also [32] however this section concerns a

downlink NOMA system. Under this framework, the base station transmits

a linear combination of messages which are allocated varying power resources

depending on their channel quality. The receivers commonly use Successive

Interference Cancellation (SIC) to retrieve their signal. Users share a fre-

quency and time slot but the power allocated to each user differs depending

on their channel quality. Simply, a user with a poor channel is allocated a

higher power than a user with a better channel, as illustrated in Figure 2.6.

Power allocated

Time

User 1

User 2

Figure 2.6: Power allocation in a NOMA system where User 2 has a worse

channel than User 1.

In order to implement this, users with highly different channel character-

istics are paired.
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Example 2.4.3: Highly different channel characteristics may occur when

users are physically located far apart. Consider a pair of one near and one

far user. Suppose that User 1 is closer to the base station and User 2 is

further away with channel coefficients h1 and h2 respectively, then the base

station transmits the message s = α1s1 +α2s2 where si is the signal intended

for user i and the αi are power allocation coefficients with α2
1 + α2

2 = 1. In

this example, α1 ≤ α2.

For i = 1, 2, user i receives the message

yi = hi(α1s1 + α2s2) + ni (2.12)

where hi is the channel coefficient and ni is Gaussian noise and user interfer-

ence with noise power Ni. User 2 treats the message for User 1 as noise as

follows

y2 = h2α2s2 + h2α1s1 + n2︸ ︷︷ ︸
noise

. (2.13)

User 1 uses SIC to retrieve their message; first they find s2 (which is an

easier problem than for User 2, because they are closer to the base station),

then they subtract this and solve for s1.

Assuming that User 1 can perfectly decode s2, the two users have rates

of transmission as follows:

R1 = log

(
1 +

α1

N1

)
(2.14)

R2 = log

(
1 +

α2

α1 +N2

)
. (2.15)

It can be seen that the performance of the system depends heavily on the

power allocations, α1 and α2. The further user, User 2, does not need a SIC

receiver, which reduces the complexity requirement for their system.
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2.4.3 MIMO NOMA

Non-orthogonal multiple access (NOMA), introduced in Section 2.4.2, is an

enabling technology for 5G new radio [22, 35], due to the performance gains

obtained when users have highly different channels. Performance of NOMA

for single antennas at each of the users has been considered, both in the

original NOMA paper by [65] and further in [24]. It was shown that, asymp-

totically, NOMA performs similarly to an opportunistic orthogonal multiple

access schemes (OMA) [24] despite the potentially unfavourable conditions

with many of the users having worse channel gains.

Since 5G uses MIMO and Massive MIMO technology [2], it is natural

to ask whether MIMO and NOMA can be combined to deliver enhanced

throughput relative to either scheme acting alone.

Indeed, these techniques have been successfully combined in a number of

scenarios. It has been shown that, even with a loose interpretation of the

need for differing channel conditions, gains from MIMO-NOMA schemes can

be realised for internet of things (IoT) devices [21]. One multi-user MIMO-

NOMA scheme of note was proposed by Ding, Schober and Poor [23], and

has attracted considerable attention. Their scheme involves the base station

transmitting a linear combination of messages, mixed using a precoding ma-

trix P . This matrix P is carefully designed in terms of the row spaces of

the downlink channel matrices, in order to achieve signal alignment. The

key property is that, for each receiver, all but one of the interfering messages

are aligned in the same vector subspace, and so can be removed by projec-

tion into an orthogonal space, effectively reducing the system to a standard

two-user NOMA situation. We give more details in Section 5.2.

37



Chapter 2. Communication Theory

38



Chapter 3

Physical Layer Security

With modern day communications being used for a vast array of applications,

from banking to healthcare, it is not surprising that security is of the utmost

importance. 5G networks were required to provide 1000 times the data rates

of 4G [30] which requires the emergence of new technologies. These tech-

nologies provide great promise for physical layer security but for many, this

hasn’t been investigated.

In this chapter, we review the current literature in the relevant areas of

physical layer security. We begin with an example of a physical layer security

scheme. We then outline the early evolution of physical layer security followed

by the relevant literature, including the current state of the art, required for

Chapters 4, 5 and 6.

3.1 Introduction

Physical layer security concerns any security measures and protocols occur-

ring at layer 1 of the Open Systems Interconnection reference model (see

Table 1). The core concept for security at this layer is to exploit the noise

present in the communication channel to guarantee that a passive eavesdrop-

per receives no useful information.

3.1.1 Shannon’s Cryptosystem

The original model for studying physical layer security is known as Shannon’s

cryptosystem and comes from [68]. In this system, Alice and Bob share a
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secret key K which is used to encrypt Alice’s message, M , into a codeword

X. This system is noiseless, therefore Bob and Eve both receive X with no

errors.

Definition 3.1.1: A system is said to have perfect secrecy when the mutual

information

I(M ;X) = 0,

where M is the original message and X is the encoded message. Equivalently

H(M | X) = H(M).

Message Alice Bob

Eve

Output

Eavesdropper

Ouput

Shared Key K

Figure 3.1: Shannon’s cryptosystem

When a system has perfect secrecy, the best that an eavesdropper can

do is randomly guess the transmitted message as they have gained no useful

information from their observation, regardless of computational power, since

M and X are statistically independent.

Theorem 3.1.2 (Shannon [68]): It is possible to achieve perfect secrecy if

and only if H (K) ≥ H (M).

Proof. The proof uses a series of identities and inequalities. The following

version follows that of [6, Proposition 3.1]. Since K, M and X are discrete,
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we have that H (K|XM) ≥ 0, and so the first inequality follows:

H(K) ≥ H (K)−H (K|XM) (3.1)

≥ H (K|X)−H (K|XM) (3.2)

= I (K;M |X) (3.3)

= H (M |X)−H (M |KX) (3.4)

= H (M |X) (3.5)

= H (M) . (3.6)

Here, Equation (3.2) follows since conditioning does not increase the entropy

(see Definition 1.1.4) and Equations (3.3) and (3.4) follow by the definitions

of mutual information (see Definition 1.1.5).

The quantity H (M |KX) = 0 by the definitions of M , K and X and so

the equality in Equation (3.5) follows. Finally, if a coding scheme achieves

perfect secrecy, then H (M |X) = H (M) and so the result follows.

Remark 3.1.3: The constraint introduced in Theorem 3.1.2 means that,

in general, the secret key must be at least as long as the message Alice is

transmitting to obtain perfect secrecy. In a realistic setup, this is highly

restrictive as key management becomes difficult.

The assumed lack of noise and key management issues makes the results

of Shannon’s cryptosystem less applicable to a ‘real world’ noisy scenario

however, the results show that it is possible to communicate securely without

any requirement on computational power.

3.1.2 Wyner’s Wiretap Channel

Shannon’s results assume error free and noiseless channels, which means that

Bob and Eve see the same message and Bob must gain their advantage only

through the use of a secret key. Wyner proposed, in [73], a system without
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a shared key, but rather where the noise and channel properties are used

to secure the communication. This approach solves both the problem of

the length of the secret key required in Section 3.1.1 and the issue that the

original cryptosystem was noiseless and therefore less applicable to real world

systems. This setup is known as Wyner’s wiretap channel and is the typical

framework used for physical layer security. Alice is sending a message M ,

and encodes this to X. Bob receives Y and Eve receives a different signal,

Z.

While maintaining a reliable communication with Bob, Alice now has the

added requirement of ensuring their message is kept a secret from Eve.

Main

Channel
Encoder, X Decoder

Eavesdropper

Channel

Message,

M

Output,

Y

Eavesdropper

Ouput, Z

Figure 3.2: Wyner’s wiretap channel [73].

3.1.3 Measuring secrecy

Intuitively, eavesdroppers fail if they make a mistake, that is, their error

probability is 1 or very close. However Eve can always take a random guess,

and they might get lucky, meaning their error probability is not quite 1.

A better way of looking at secrecy is in terms of the encoding giving no

useful information about a transmitted message, meaning that Eve’s best

method is to take a random guess. This is the definition of perfect secrecy

(Definition 3.1.1) but as we have seen, this requires a shared secret key which

42



3.1. Introduction

is longer than the message and a noiseless environment. So how else may

we measure secrecy when these ideal conditions no longer hold? Wyner’s

work requires that, asymptotically with the blocklength, n, of the code, the

mutual information rate of the input message and Eve’s observation is 0.

This secrecy measure is known as weak secrecy.

Definition 3.1.4: The criterion for weak secrecy is met if for any ε > 0 there

exists some n such that

1

n
H(M)− 1

n
H(M |Z) ≤ ε (3.7)

or equivalently

1

n
I(M ;Z)→ 0 (3.8)

where the limit is in the blocklength and taken symbol by symbol.

As the blocklength n increases, the expression above tends to 0 regardless

of the scheme used. Thus it is possible to meet the criterion with a flawed

scheme. The criterion was later strengthened in [54] to overcome these issues

of aggregate information leakage - to obtain strong secrecy.

Definition 3.1.5: The criterion for strong secrecy is met if the limit

I(M ;Z)→ 0, (3.9)

tends to 0 with an increased blocklength.

Both M and Z are of length n, and the mutual information in Equation

3.9 is taken over the symbols and not the entire block. That is,

I(M1, . . . ,Mn;Z1, . . . , Zn)→ 0. (3.10)

This criterion depends on the probability distribution of the message, and

it has been argued (for example in [8]) that this is a drawback of using strong
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Perfect

secrecy
⇒ Semantic

secrecy
⇒ Strong

secrecy
⇒ Weak secrecy

Figure 3.3: Implication chain for secrecy metrics

secrecy as a metric. This had led to metrics such as semantic secrecy, coined

in [4], which is related to the cryptographic definition of semantic security.

Semantic security removes this dependence on the probability distribution

of the input message by measuring secrecy in terms of the Advantage of the

eavesdropper. Having an advantage bounded above by some security thresh-

old δ means that knowledge of Z may increase the probability of guessing

some function of M by at most δ. Semantic secrecy is the ‘strongest’ metric,

as semantic secrecy implies strong and weak secrecy. The full implication

chain of the outlined metrics can be seen in Figure 3.3. We note that when

a system has perfect secrecy, all outlined secrecy metrics are equal to zero.

For the purposes of this thesis, we concentrate on the idea of strong

secrecy, as this is a fundamental property relying only on the channel char-

acteristics. It has been shown that when a system meets the strong secrecy

criterion, Eve’s error rate approaches 1 exponentially fast [61], regardless of

their decoding procedure.

3.1.4 Secrecy Capacity

Now that we have a measure of secrecy, we can return to the overarching

question of how much information can Alice send securely and reliably to

Bob in the presence of Eve in Wyner’s model (Figure 3.2). Recall the notion

of the channel capacity, given in Definition 2.1.4, which characterises the

maximum rate at which Alice can transmit reliably. We now wish to extend

this concept to account for an additional secrecy constraint. Firstly, we define
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the parameters of a code with reliability and secrecy constraints.

Definition 3.1.6: A code with parameters

(n, kn, εn, δn)

is one where n denotes the blocklength, k denotes the number of distinct

codewords in the codebook. The parameter εn denotes the error threshold,

which is the maximum tolerable error rate for the system. The secrecy re-

quirement is denoted by δn and is the maximum tolerable secrecy leakage

subject to some measure of secrecy.

If strong secrecy is the metric of choice, then δn would be an upper bound

on the mutual information in Equation (3.9).

Now the secrecy capacity is the maximum achievable rate for which codes

above exist.

Definition 3.1.7: The secrecy capacity, Cs, is the supremum of all rates R =

kn/n such that there exists sequences (n, kn, εn, δn) codes with the following

properties

lim
n→∞

kn
n
≥ R

lim
n→∞

εn = lim
n→∞

δn = 0.

Maintaining reliability and secrecy seem to be conflicting goals. However,

it is possible to achieve both simultaneously, with the rate of communication

taking a penalty. This is perhaps the most important result, that the secrecy

capacity can be non zero, as it gives traction to the field of physical layer

security.

The central idea is to send useless information up to the capacity of

the eavesdropper channel and then use the remaining rate to send secure

communications across the main channel. This relies on the main channel

having some sort of advantage over the eavesdropper.
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Wyner was the first to establish the secrecy capacity for a discrete mem-

oryless channel in the case of a degraded channel (a channel which is affected

by noise) in [73]. This was then generalised by Csiszár and Körner for a non

degraded case in [17] as follows.

Theorem 3.1.8 ( [17]): For a discrete memoryless wiretap channel, with

encoded message X, the secrecy capacity is characterised to be

Cs = max{I(V ;Y )− I(V ;Z)}, (3.11)

where Y is the random variable associated with the legitimate channel output

and Z is the random variable associated with the eavesdrop channel output.

The maximum is taken over all random variables V and X satisfying the

Markov chain relationship V −X − (Y, Z).

Remark 3.1.9: The V in Equation (3.11) can be thought of as the variable

introducing noise in the channel, in Figure 3.2. Note that without the second

term, this is the capacity of the main channel (see Theorem 2.1.5) and there-

fore the the secrecy capacity is similar to the difference between the main

channel capacity and eavesdropper channel capacity.

3.2 The Gaussian Wiretap Channel

SISO Wiretap Channel

The most fundamental wiretap model is that of the Gaussian channel, de-

scribed in Definition 2.2.2. For the single input single output (SISO) Gaus-

sian channel, at time slot t, Bob receives

y = hBx+ nB

and Eve receives

z = hEx+ nE
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where hB and hE denote the Gaussian channels and nB and nE are additive

white Gaussian noise (AWGN) with zero mean and noise variance σ2
B and

σ2
E respectively. Here, the secrecy capacity has been fully established.

Theorem 3.2.1 ( [43, Theorem 1]): The secrecy capacity of the SISO Gaus-

sian wiretap channel with a power constraint P is

Cs = max

{
log

(
1 +

P |hB|2

σ2
B

)
− log

(
1 +

P |hE|2

σ2
E

)
, 0

}
.

This result shows that the secrecy capacity in this case is equivalent to

the difference of the capacity of the main channel and the capacity of the

eavesdropper channel. Therefore it is possible to achieve a positive secrecy

capacity if and only if the main channel capacity is higher than the eavesdrop

channel capacity or equivalently, the SNR from Alice to Bob is higher than

the SNR from Alice to Eve

|hB|2

σ2
B

>
|hE|2

σ2
E

.

3.2.1 Gaussian MIMO Wiretap Channels

The conventional point to point results, also known as Single Input Single

Output (SISO) systems are well understood in terms of physical layer secu-

rity. We have already seen in Section 3.2 that the Gaussian wiretap channel’s

secrecy capacity is known, for example. However, many of these results do

not generalise to the multiple antenna regime. Let NA denote the number

of antennas at the transmitter, NB denote the number of antennas at the

legitimate receiver and NE the number of antennas at the eavesdropper.

The MIMO wiretap channel is the multiple antenna extension of the tra-

ditional point to point wiretap channel as depicted in Figure 3.4.

Definition 3.2.2: The (NA, NB, NE) MIMO wiretap channel is one where

Alice, Bob and Eve have NA, NB and NE antennas, respectively, and is
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defined by the following relationships. Alice sends message vector x while

Bob and Eve receive y and z, respectively, defined as

y = HBx + nB, (3.12)

z = HEx + nE, (3.13)

where nB and nE are circularly symmetric Gaussian noise vectors, each

with zero mean and identity covariance matrix. The system is subject to

a power constraint P such that the covariance matrix of the input signal, Q,

is bounded above by P . That is,

TrQ =

NA∑
i=1

E[xix
∗
i ] ≤ P.

Alice

Bob

Eve

Figure 3.4: (3,2,2) MIMO wiretap channel.

The secrecy capacity for this type of wiretap channel was found in [40,

41,56] and is stated in the following theorem.
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Theorem 3.2.3: For the Gaussian MIMO wiretap channel, the secrecy ca-

pacity is, to take the form

max
Tr(Q)≤P

log det(I +HBQH
T
B)− log det(I +HEQH

T
E), (3.14)

Such that Q � 0

where P is the power constraint of the system.

The general solution to Equation (3.14) is unknown, since the optimisa-

tion is a non convex one and thus difficult to solve. It would be desirable

to know the covariance matrix Q which maximises the secure transmission

rate, as this would give an insight to the optimal secure signalling scheme. It

is known that the solution to this is a low rank matrix [56] for the Gaussian

wiretap channel however there is no known way of constructing this low rank

matrix.

Table 3.1 gives an overview of the scenarios where Equation (3.14) is fully

understood - that is, known in closed form and an optimal signalling scheme

is known. Here, the single antenna is a subset of the multiple antenna case.

Number of Antennas at

Alice Bob Eve Secrecy capacity fully understood?

Single Single Single Yes

Multiple Multiple Single Only for (2,2,1) [66]

Multiple Single Multiple Yes [40]

Multiple Multiple Multiple No

Table 3.1: Overview of open cases for the secrecy capacity of the Gaussian

MIMO wiretap channel. Single means one antenna where multiple means

any positive integer, including one. Note that the work in Chapter 4 extends

the knowledge in the highlighted row.
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Fully Understood Scenarios

There are some families of MIMO systems where the secrecy capacity and

optimal transmit strategy has been characterised. Some significant cases are

outlined below.

MISOME Wiretap Channel

The secrecy capacity for a Multiple-Input Single-Output channel with mul-

tiple eavesdrop antennas (MISOME) with power constraint P is fully un-

derstood. This is the channel where there are multiple antennas at Alice, a

single antenna at Bob and any number of antennas at Eve (NA ≥ 1, NB = 1

and NE ≥ 1). The secrecy capacity from Equation (3.14) was derived explic-

itly [40] in closed form (without a maximisation) to be

Cs =
1

2
log
(
λmax(I + PhBh

T
B, I + PHT

EHE)
)

(3.15)

where hB is the main channel vector and HE is the eavesdrop channel matrix.

Here, λmax denotes the largest generalised eigenvector (see Definition 1.3.4)

of the two matrices I + PhBh
T
B and I + PHT

EHE. The authors showed that

the scheme which is optimal for secrecy, achieving the secrecy capacity, is to

transmit in the direction of the generalised eigenvector which corresponds to

λmax.

This is the only ‘general’ multiple antenna case which is fully understood.

That is, no additional requirements other than the Gaussian channel are

necessary for these results to hold.

(2,2,1) channel

For the case where Alice and Bob have two antennas and Eve has one, known

as the ‘(2,2,1) channel’, the form of Q is explicitly known [66]. Since the

solution must be low rank, and the matrix in this case has dimensions 2× 2,

50



3.2. The Gaussian Wiretap Channel

the rank of Q must be 1. The proof in this paper proposes Gaussian signalling

as a scheme which achieves the optimal rate, and then provides a tight upper

bound to meet the rate achieved.

It should be noted that [51] proposed an algorithm to solve the saddle

point of a min-max problem to solve Equation (3.14). Their work gives an

algorithm for solving the secrecy capacity of a general MIMOME wiretap.

Special cases

Table 3.1 gives the current state of knowledge for the general Gaussian MIMO

wiretap channel. Although the general cases remain largely open, improve-

ments have been made for cases with more constraints. A few are outlined

below.

• Constrained power: When the input covariance matrix Q is bounded

above by a general matrix power constraint S � 0, the secrecy capacity

is known in closed form and Q has been specified in [12].

• Parallel channels: For a number of Gaussian parallel channels a num-

ber of results have been established for the broadcast channel. The se-

crecy capacity regions were established in [45] and the secrecy capacity

for transmitting a common message were found in [39].

• Full rank channels: A closed form expression for full rank Q has

been found in [49]. This work was then extended to the rank deficient

case in [50]. In these works, it is a necessary condition that the SNR

is finite.

Also of note is the case of the isotropic eavesdropper, that is an eavesdropper

with one parameter (the channel power gain). This differs to any cases

outlined in this chapter, as full eavesdropper channel state information (CSI)

is not considered. However it is proved in [50] that the case of an isotropic
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eavesdropper is the worst case for the MIMO wiretap channel. The optimal

signalling strategy is known here in closed form.

3.3 Achieving secrecy

So far, we have encountered the secrecy capacity and measures of secrecy for

communication systems. While these tell us that we can submit with perfect

secrecy, they do not tell us how to do so. The secrecy capacity, Cs, being

positive tells us that a code exists which can achieve the secrecy capacity but

finding such codes is another problem space.

For the SISO Gaussian channel, the secrecy capacity is achieved using

the full available power and Gaussian signalling [43]. Gaussian signalling is

also the way to achieve capacity for a Gaussian channel, without a secrecy

constraint, and this is why the secrecy capacity in this instance is exactly the

difference of the capacity of the main channel and that of the eavesdropper

channel (see Theorem 3.2.1). When considering semantic security as our

secrecy metric, wiretap lattice coding may achieve the secrecy capacity [46],

these are used since they maximise the error probability for the eavesdropper

at their decoder [26]. For example, a particular coding scheme based on polar

lattices [47] has been shown to achieve the secrecy capacity for the Gaussian

case.

More generally, to confuse an eavesdropper, Alice wishes to exploit the

difference in their channel when choosing a secure message. If the signal

is based on the main (Alice to Bob) channel, then Eve’s lack of knowledge

will prevent them from decoding the message. This is the basis of secret key

generation at physical layer, as Alice can use their channel with Bob to create

a secret key. As seen previously, key storage and key generation is impractical

for a number of reasons but this concept is used in the codebook design for

secrecy at physical layer. For example, Alice may use index modulation where
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the information is transmitted in the index of the codeword rather than the

codeword itself. An example of an index modulation scheme for secrecy is

the work of [38] where Alice uses CSI of the legitimate channel to generate an

integer value. This integer value is used as an antenna rotation index, which

is easily undone by Bob since perfect CSI is assumed. They show that by

doing this, their scheme had provable perfect secrecy. The work in Chapter

6 builds on such ideas to design a secure coding scheme and this specific

scheme is explored in further detail in Section6.1.
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Chapter 4

The Secrecy Capacity of a MI-

MOSE Wiretap Channel

In this chapter, the secrecy capacity for a Multiple-Input Multiple-Output

(MIMO) wiretap channel is discussed. We consider a passive eavesdropper

with a single antenna with Gaussian channels. The main result of this work

(Theorem 4.2.1) provides a concavity result for an equivalent problem to

find the secrecy capacity of such a system. This is done by reformulating

the secrecy capacity (a non convex optimisation problem with no general

solution) to a maximisation of a function with a scalar input. It is then

shown that this equivalent function has a concave region, meaning that ex-

isting convex solvers (see Section 1.3.2) may be used to efficiently find the

maximum and therefore the secrecy capacity. This work addresses the open

problem of the secrecy capacity for a MIMO wiretap channel and contributes

to the MIMO channel with a Single Eavesdropper (MIMOSE). The basis of

this work has been published as joint work with Oliver Johnson and Robert

Piechocki in [13], where all simulation and technical analysis was undertaken

by myself as first author. Section 4.4 is additional to this publication.

4.1 Introduction

Multiple antenna systems play a large role in achieving higher capacities and

thus are central in 5G technologies, with ‘massive’ MIMO being a central

technology for 5G and future wireless [34]. Security for any modern day sys-
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tem is vital however there are several fundamental questions which remain

open with regards to the physical layer security of a MIMO channel when

compared to the equivalent model for point to point single antenna systems.

Indeed, the secrecy capacity for a Gaussian MIMO wiretap channel, intro-

duced in Section 3.2.1, is one of these open problems. The work in this

chapter aims to addresses this, contributing a theorem which gives a region

where a MIMOSE channel has a concave secrecy capacity equation. Know-

ing when the equation is concave allows for the problem to be efficiently

solved, giving the secrecy capacity and thus the maximum rate for secure

communications for the given channel.

4.1.1 Theoretical setup

We begin by laying out the notation and system setup. This work concerns

a MIMO channel with NA transmit antennas and NB receive antennas at the

legitimate receiver. The legitimate users, Alice and Bob, are communicating

in the presence of a passive eavesdropper, Eve, with NE antennas. For the

results of this chapter to hold, Eve has a single eavesdrop antenna, that is

NE = 1 as depicted in Figure 4.1.

The channel between the transmitter and the legitimate receiver shall be

referred to as the main channel while the channel between the transmitter

and the eavesdropper shall be referred to as the eavesdropper channel. Their

channel matrices are described by HB, an NB × NA matrix for the main

channel and HE, an NE ×NA matrix for the eavesdropper channel.

The input signal, x, is drawn from a distribution with zero mean and co-

variance matrix Q � 0, which is a positive semidefinite matrix. The received

vectors at Bob and Eve, denoted y and z respectively, are:

y = HBx + nB,

z = HEx + nE.
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Alice

Bob

Eve

Figure 4.1: The MIMOSE wiretap channel

Definition Symbol

Number of antennas at Alice NA

Number of antennas at Bob NB

Number of antennas at Eve NE

Main channel matrix HB

Eavesdropper channel matrix HE

Transmitted signal x

Received signal y

Eavesdropped signal z

Covariance matrix of input signal Q

Power constraint of input P

Table 4.1: Notation for Chapter 4.
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where nB and nE are the Gaussian noise vectors for the two channels

nB ∼ CN(0, INB
)

and

nE ∼ CN(0, INE
)

where each element of the noise vector is statistically independent. Similarly,

the channel matrices are modelled with IID entries assuming independence

between each antenna element. The matrix Ik denotes the identity matrix of

size k×k. The input signal is subject to a power constraint P , meaning that

the trace of the covariance matrix, Q, is bounded above by this quantity.

That is,

TrQ =

NA∑
i=1

E[xix
∗
i ] ≤ P.

Without the power constraint above, the capacity is theoretically infinite,

which does not provide much insight in a practical setting.

4.1.2 Secrecy capacity

The open problem we are addressing in this chapter is the secrecy capacity

for the outlined system setup. Recall from Equation (3.14) that the secrecy

capacity, Cs, for the MIMO wiretap channel was established in [56], [40]

and [41] to be of the form

Cs = max
Q:Tr (Q)≤P

log det(INB
+HBQH

∗
B)− log det(INE

+HEQH
∗
E) (4.1)

where we note that, since the mean of the input signal is always zero, the

maximum is being taken over all input distributions satisfying the power

constraint.

The optimisation problem in Equation (4.1) is not easily solved for Q and

the solution is only known for a subset of scenarios, which were outlined in
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Section 3.2.1, it remains open in the general case. The difficulty lies in the

fact that the optimisation is not convex and thus analytically challenging.

Knowing the optimal Q is useful for a number of reasons, some of which are

outlined below.

• The mean of the input signal is always zero, so the covariance matrix,

Q, is the characterising variable for the input distribution.

• The input covariance gives details for the optimal input scheme for

secrecy and rate requirements.

• Knowledge of the optimum covariance matrix gives the true secrecy

capacity.

• Once the secrecy capacity is known, any rate of transmission below

this is secure by definition, giving a secure region for reliable rates of

transmission.

The key contribution of this chapter is for the Gaussian MIMO wiretap

channel with a single antenna eavesdropper, a subset of the unknown MI-

MOSE family of wiretap channels. The secrecy capacity is examined for this

open problem and a region is established where the problem is provably con-

cave. The concavity of the problem gives an efficient method of determining

the optimal input covariance matrix associated with the secrecy capacity of

a system. The scheme given is valid for the MIMOSE channel where the

receiver has at least as many antennas as the transmitter. That is, NB ≥ NA

and NE = 1.

This family of antenna configurations overlaps with only two known cases,

the point to point single antenna case where Alice, Bob and Eve each have

one antenna, and the so called ‘(2,2,1)’ case. Both of these are detailed in

Section 3.2.1. Our results are compared with their results in Section 4.2.2.
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The theory of this chapter goes as follows: the secrecy capacity equation

is reformulated into a problem which is convex, this allows existing convex

optimisation tools and software to find the optimal solution to Equation

(4.1).

The proof relies on properties of symmetric matrices and functions of

the channel and thus for ease of notation we define the following positive

semidefinite symmetric NA × NA matrices which are used in the statement

of Theorem 4.2.1 and throughout the proof:

KB = (H∗BHB)
1
2 , (4.2)

KE = (H∗EHE)
1
2 . (4.3)

4.2 Concavity region for the secrecy capacity

The key limitation in solving Equation (4.1) is the fact that it is non-convex.

In order to exploit existing convex solvers, we must first reformulate the se-

crecy capacity equation to an equivalent but tractable optimisation problem.

Recall from Theorem 1.3.7 that log det(·) is known to be concave and twice

differentiable for positive semidefinite arguments. It follows that each in-

dividual log det(·) term in Equation (4.1) is concave. This can be seen by

considering their arguments. Since Q is a covariance matrix, it is restricted to

positive semidefinite matrices by definition. The identity matrix is trivially

a positive semidefinite matrix and thus the terms

INB
+HBQH

∗
B

and

INE
+HEQH

∗
E

will also be positive semidefinite. This means that both of the terms

log det(INB
+HBQH

∗
B)
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4.2. Concavity region for the secrecy capacity

and

log det(INE
+HEQH

∗
E)

are concave. However, in general, their difference is neither convex nor con-

cave. We will reformulate the problem in order to restrict the problem space

to a region where the difference is concave. Broadly speaking, this is done

by fixing the second term and then varying its value. Hence we define the

following problem:

max
Tr (Q)≤P

log det(INB
+HBQH

∗
B)− log(s), (4.4)

such that s = det(INE
+HEQH

∗
E)

and Q � 0.

The following work is constrained to a single eavesdrop antenna since,

generally speaking, det(·) is not a convex constraint. When the problem

space is limited in this way, the matrix argument INE
+ HEQH

∗
E is a scalar

value. Since log det(INB
+HBQH

∗
B) is concave and the maximisation is taken

over a convex set, it can be seen that by fixing the value of s, this becomes

a concave problem.

With s fixed, Equation (4.4) is concave however it is no longer equivalent

to Equation (4.1). In order to bridge this gap, we must vary our value of s

and take an overall maximum. This is the overarching idea which is formally

laid out in the following section.

For the optimal value of s, Equation (4.4) is an equivalent problem to

Equation (4.1) and consequently will yield the same solution.

4.2.1 Statement of theorem

Each value of s gives a separate convex optimisation problem in Equation

(4.4). For each optimisation, the output is a corresponding covariance matrix
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Q and the maximum value of the argument. We aim to vary s and take the

maximum over each of the aforementioned outputs.

We begin by defining functions of the input covariance matrix Q

s(Q) = det(INE
+HEQH

∗
E) (4.5)

and

f(Q) = log det(INB
+HBQH

∗
B)− log s(Q). (4.6)

We wish to fix values of s, where s = s(Q) for some Q, and perform a

convex optimisation for f(Q) given this constraint. We then wish to take the

maximum value of f(Q) over all values of s. Therefore we define θ(·) as:

θ(s) = max
Q:s(Q)=s

f(Q). (4.7)

A plot of θ(s) can be seen in Figure 4.2. Motivated by the apparent con-

cavity of the simulation results, we aim to prove the concavity regions of

these curves. The simulations and figures presented in this chapter runs the

optimisation presented above for fixed values of s using convex optimisation

software CVX: Matlab Software for Disciplined Convex Programming [29]

but the theory holds for an arbitrary convex solver.

Finding the secrecy capacity is now a case of finding the maximum of

θ(s). This is facilitated by the following Theorem, which gives a concavity

result for θ which is the main result of our paper [13].

Let Qi be a matrix achieving the maximum value in Equation (4.7) cor-

responding to si, that is f(Qi) = θ(si), for i ∈ {1, 2}. By definition

si = INE
+HEQiH

∗
E (4.8)

where the det is no longer required since NE = 1. Without loss of generality,

assume that s1 ≥ s2. Let st be a convex combination of s1 and s2

st = ts1 + (1− t)s2 (4.9)

for t ∈ [0, 1].
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4.2. Concavity region for the secrecy capacity

Figure 4.2: θ(s) vs s for NA = 2, NB = 3, NE = 1 and P = 10 for a particular

HB and HE.

Theorem 4.2.1: For NE = 1 and any NB ≥ NA, then

θ(st) ≥ tθ(s1) + (1− t)θ(s2), (4.10)

if the matrices KB and KE from Equations (4.2) and (4.3) satisfy

s1

‖K−1B K2
EK

−1
B ‖F

− 1 ≥ max{λmax(HBQ1H
∗
B), λmax(HBQ2H

∗
B)}. (4.11)

4.2.2 Overlap with existing results

For the antenna configuration NE = 1, NB ≥ NA required for Theorem 4.2.1

to hold there is only one fully understood case. This is the ‘(2,2,1)’ case [66],
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Chapter 4. The Secrecy Capacity of a MIMOSE Wiretap Channel

where NA = 2, NB = 2 and NE = 1.

Example 4.2.2 (2,2,1): Figure 4.3 shows that the theoretical secrecy ca-

pacity found in [66] matches the maximum value of θ(s).

Figure 4.3: θ(s) vs s for the (2,2,1) case. The red mark indicates the theo-

retical secrecy capacity from the paper [66].

4.3 Proof of the concave region

The main argument in the proof of Theorem 4.2.1 involves a Taylor expansion

of a matrix term which is then bounded at the second order. The proof can
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4.3. Proof of the concave region

be broken down into three key steps as follows.

1. Firstly, we consider the function θ(s), defined in Equation (4.7), for a

convex combination of inputs, st (Equation (4.9)). Using Lemma 4.3.1,

which is a second order concavity bound for the log det, we find a lower

bound for θ(st).

2. We then minimise the difference between the bound from Step 1 with

the lower bound required for concavity.

3. Finally, we rewrite these bounds in terms of symmetric matrices which

allows us to exploit properties of the Frobenius norm resulting in the

conditions stated in Theorem 4.2.1.

4.3.1 Step 1

In this step of the proof, concavity results from [15] are applied to the function

θ(·) defined in Equation (4.7). The use of these results allows us to find a

tighter lower bound than the usual concavity lower bounds.

Lemma 4.3.1: Courtade et al. [15, Lemma 15] For positive definite matrices

A and B and for any t ∈ [0, 1]

log det(tA+ (1− t)B) ≥ t log det(A) + (1− t) log det(B)

+
t(1− t)

2 max{λ2max(A), λ2max(B)}
‖A−B‖2F , (4.12)

where λmax(·) denotes the largest eigenvalue and ‖·‖F is the Frobenius norm.

For ease of notation, define

Cmax(A,B) =
‖A−B‖2F

2 max{λ2max(A), λ2max(B)}
. (4.13)
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Considering the linear combination Qt = tQ1 + (1− t)Q2, it can be seen that

Qt satisfies the constraint s(Qt) = st since NE = 1 and

st =ts1 + (1− t)s2
=t(INE

s1 +HEQ2H
∗
E) + (1− t)(INE

s2 +HEQ2H
∗
E)

=INE
+HE(tQ1 + (1− t)Q2)H

∗
E

=INE
+HEQtH

∗
E

:=s(Qt).

Hence

θ(st) ≥ f(Qt). (4.14)

By Lemma 4.3.1, taking A = INB
+HBQ1H

∗
B and B = INB

+HBQ2H
∗
B then

f(Qt) is bounded below as follows.

f(Qt) = log det(INB
+HBQtH

∗
B)− log st (4.15)

≥t log det(INB
+HBQ1H

∗
B) + (1− t) log det(INB

+HBQ2H
∗
B)

− log st + t(1− t)CmaxA,B).

Rewriting the lower bound in Equation (4.15) gives

t(log det(INB
+HBQ1H

∗
B)− log s1)

+ (1− t)(log det(INB
+HBQ2H

∗
B)− log s2) + t(1− t)CmaxA,B)

+ t log s1 + (1− t) log s2 − log(ts1 + (1− t)s2)

=tf(Q1) + (1− t)f(Q2) + t(1− t)CmaxA,B)

+ t log s1 + (1− t) log s2 − log(ts1 + (1− t)s2)

=tθ(s1) + (1− t)θ(s2) + t(1− t)CmaxA,B)

+ t log s1 + (1− t) log s2 − log(ts1 + (1− t)s2), (4.16)

since each of the Qi are optimal by definition.
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4.3. Proof of the concave region

4.3.2 Step 2

In this step, we aim to minimise the difference between

tf(Q1) + (1− t)f(Q2)

in Equation (4.16) and the upper bound, θ(st) as defined in Equation (4.7).

To do this, we introduce a constant κ(s1, s2) and show that the following

Lemma holds.

Lemma 4.3.2: For t ∈ [0, 1],

t log(s1)+(1− t) log(s2)− log(ts1 + (1− t)s2)

≥ −t(1− t)κ(s1, s2), (4.17)

for

κ(s1, s2) =
(s1 − s2)2

2s21
. (4.18)

Proof. Define a function g as:

g(t) :=t log(s1) + (1− t) log(s2)− log(ts1 + (1− t)s2) + t(1− t)κ(s1, s2)

(4.19)

where κ(·, ·) is a constant. We wish to show that g(t) ≥ 0 for all t ∈ [0, 1].

By construction, g(0) = g(1) = 0 and therefore g(t) ≥ 0 in the interval

t ∈ [0, 1] is equivalent to g(t) being concave in this interval or when g′′(t) ≤ 0.

The second derivative of g with respect to t is:

g′′(t) = −2κ(s1, s2) +
(s1 − s2)2

s2t
.

Since s2 ≤ s1, g(t) is concave for the value of κ(s1, s2) in Equation (4.18) and

thus g(t) ≥ 0 on the interval.
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4.3.3 Step 3

Combining Lemma 4.3.2 with Equation (4.12), we see that Theorem 4.2.1

will follow from Equation (4.16) if

‖A−B‖2F
2 max{λ2max(A), λ2max(B)}

≥ κ(s1, s2)

≥ (s1 − s2)2

2s21
(4.20)

where, as before,

A := INB
+HBQ1H

∗
B (4.21)

and

B := INB
+HBQ2H

∗
B. (4.22)

Writing Q := Q1 − Q2 for simplicity, the Frobenius norm on the left of

Equation (4.20) can be rewritten as

‖A−B‖2F = Tr (HBQH
∗
BHBQH

∗
B)

= Tr (QK2
BQK

2
B)

= Tr ((KBQKB)(KBQKB))

= Tr (RR) = Tr (RR∗)

= ‖R‖2F (4.23)

where R is the symmetric matrix

R := KBQKB. (4.24)

In order to retrieve the value of Q from R requires that H∗BHB is invertible.

This implies that NB ≥ NA.

Similarly, considering the numerator of the right hand side of Equation
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4.3. Proof of the concave region

(4.20) gives:

(s1 − s2)2 = (HEQH
∗
E)2

= Tr (QK2
EQK

2
E)

= Tr ((KEQKE)(KEQKE))

= Tr (RTRT )

≤ ‖RT‖2F (4.25)

≤ ‖R‖2F‖T‖2F . (4.26)

where T is the symmetric matrix

T := K−1B K2
EK

−1
B . (4.27)

Here, Equation (4.25) follows by Cauchy-Schwarz, for any matrix C,

Tr (C2) ≤ Tr (C∗C) = ‖C‖2F ,

and Equation (4.26) follows by the submultiplicative property of the Frobe-

nius norm (see Theorem 1.3.10). Since both R and T are symmetric, the

following holds:

Tr (RTRT ) ≤ ‖RT‖2F . (4.28)

(s1 − s2)2 ≤ ‖R‖2F‖T‖2F . (4.29)

Therefore the inequality in Equation (4.20) is satisfied when

‖R‖2F
2 max{λ2max(A), λ2max(B)}

≥ ‖R‖
2
F‖T‖2F
2s21

. (4.30)

Since each of λ2max(·), ‖T‖2F and s21 is positive, it is possible to present the

conditions for satisfying Equation (4.30) as follows:

s1 ≥ max{λmax(A), λmax(B)}‖T‖F , (4.31)

and the proof of Theorem 4.2.1 is complete.
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4.4 Outside the concave region

The function θ(·) cannot be concave indefinitely, since the secrecy capacity

must be non negative by definition. A negative secrecy capacity would be a

worse regime than sending nothing, and thus a rate of 0 would be preferable.

We wish to show that the function does not have another maximum, and

therefore the maximum found in Equation 4.7 is the true secrecy capacity. If

we can show that there exists a cutoff, a, such that θ(·) is concave on [0, a),

is convex for (a,∞) and tends to 0 then this is sufficient.

In the proof of Theorem 4.2.1, Lemma 4.3.1 was used to find a lower

bound for log det(·). In this section, we prove a converse of Lemma 4.3.1 and

then apply this to θ(·).

Firstly, we define an M(x, y)-strongly concave function, and then apply

this definition to log det(·) to find an upper bound on the log determinant

of a convex combination of arguments (analogous to the lower bound in [15,

Lemma 15]). This is then applied in a similar manner to the proof of Theorem

4.2.1 to give a result about θ(·) outside of the concave region.

Definition 4.4.1: A twice differentiable function f : dom f → R is M(x, y)-

strongly concave between x, y ∈ dom f if ∇2f(tx+ (1− t)y) ≤M(x, y)I for

all t ∈ [0, 1].

Lemma 4.4.2: For all t ∈ [0, 1], an M(x, y)-strongly concave function f

satisfies

tf(x) + (1− t)f(y) ≤ f(tx+ (1− t)y) + t(1− t)M(x, y)

2
|x− y|2. (4.32)

The proof of this lemma is largely the same as the proof of [Lemma 30] [15]

but tackles the problem from the other side (that is, to give an upper bound

rather than their lower bound).

70



4.4. Outside the concave region

Proof. The Taylor series expansion of f for any two points x, y ∈ domf yields

f(x) =f(y) + 〈∇f(y), y − x〉

+
1

2
〈y − x,∇2f(t0a+ (1− t0)b)(y − x)〉 (4.33)

≤f(y) + 〈∇f(y), y − x〉+
M(x, y)

2
|y − x|2, (4.34)

where Equation (4.33) holds for some t0 ∈ [0, 1] and Equation (4.34) follows

from Definition 4.4.1. Let w = tx + (1 − t)y, for t ∈ [0, 1]. Then applying

the above inequality to f(x) and f(y) gives

f(x) ≤ f(w) + 〈∇f(w), w − x〉+
M(w, x)

2
|w − x|2 (4.35)

f(y) ≤ f(w) + 〈∇f(w), w − y〉+
M(w, y)

2
|w − y|2. (4.36)

Summing t(4.35) + (1− t)(4.36) yields

tf(x) + (1− t)f(y) ≤ f(w) +
t(1− t)2M(x,w) + t2(1− t)M(y, w)

2
|y − x|2.

(4.37)

By definition of w, M(x,w) ≤ M(x, y) and M(y, w) ≤ M(x, y) and

therefore Equation (4.37) may be bounded above by

f(tx+ (1− t)y) + t(1− t)M(x, y)

2
|y − x|2 (4.38)

which proves the lemma.

We now give an upper bound for log det(·) for convex combinations, this

is analagous to the lower bound of Lemma 4.3.1.

Lemma 4.4.3: For positive definite matrices A, B and t ∈ [0, 1],

log det(tA+ (1− t)B) ≤t log det(A) + (1− t) log det(B)

+
t(1− t)

2 min{λ2min(A), λ2min(B)}
‖A−B‖2F . (4.39)

71



Chapter 4. The Secrecy Capacity of a MIMOSE Wiretap Channel

For ease of notation, we denote

Cmin(A,B) =
1

2 min{λ2min(A), λ2min(B)}
. (4.40)

Again, the proof closely follows that given in [15] for their equivalent

Lemma, but uses the concavity of log det(·) rather than the convexity of

− log det(·).

Proof. Since f(·) = log det(·) is strictly concave and twice differentiable for

positive semidefinite matrices, we may apply Lemma 4.4.2 to f . Therefore

log det(tA+ (1− t)B) ≤ t log det(A) + (1− t) log det(B)

+ t(1− t)M(A,B)

2
‖A−B‖2F . (4.41)

Since ∇2f(C) = C−1 ⊗ C−1, where ⊗ denotes the Kronecker product

(Definition 1.3.14). The maximum eigenvalue of this product is given by

1/λmin(C) (since eigenvalues of X ⊗ Y are the products of eigenvalues of X

and eigenvalues of Y .). By the definition of M(A,B) we have the following

upper bounds

M(A,B) ≤ max
t∈[0,1]

1

λ2min (tA+ (1− t)B)
(4.42)

≤ 1

min{λ2min(A), λ2min(B)}
, (4.43)

where Equation (4.43) follows by the concavity of the minimum eigenvalue.

Combining Equations (4.41) and (4.43) gives

log det(tA+ (1− t)B) ≤t log det(A) + (1− t) log det(B) (4.44)

+ t(1− t) 1

min{λ2min(A), λ2min(B)}
‖A−B‖2F

as desired.

Using definitions and properties, we give a result describing the behaviour

of θ(·) outside the concave region.
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Theorem 4.4.4: Given st, let Qt be the corresponding optimal covariance

matrix. Then

θ(st) ≤ tθ(s(Q1)) + (1− t)θ(s(Q2)) (4.45)

for any positive semidefinite matrices Q1, Q2 such that Qt = tQ1 + (1− t)Q2

if the matrices KB and KE from Equations (4.2) and (4.3) satisfy

s(Q1)

‖K−1B K2
EK

−1
B ‖F

− 1 ≤ min{λmin(HBQ1H
∗
B), λmin(HBQ2H

∗
B)}. (4.46)

Simulation results showing the cutoff points for the convex and concave

regions can be seen as red markers in Figure 4.4. It can be seen that there

is a gap between these two, and this is expected since in the proofs some

conservative bounds are applied however, this is only a small region which

can easily be searched across.

Analogously to the proof of the concave region, the main steps of this

proof will be roughly the same.

1. Finding an upper bound for f(Qt) using Theorem 4.4.3.

2. Minimising the difference between the bound found in the first step

with the desired convexity bound.

3. Rewriting these bounds in terms of symmetric matrices and applying

properties of the Frobenius norm.

4.4.1 Step 1

Let Qi denote the matrix which achieves the maximum value of θ for si.

Recall the definition of s(Qi) = INE
+HEQiH

∗
E, and for optimal Qi, we have

that s(Qi) = si. Choose st and the corresponding Qt. For some t ∈ [0, 1],

write

st = ts(Q1) + (1− t)s(Q2) (4.47)
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Figure 4.4: θ(s) vs s for a particular channel, showing the cut off points for

the inequalities in Theorems 4.2.1 and 4.4.4.

(s(Q1) ≥ s(Q2)) where Qt = tQ1 + (1 − t)Q2. Here we use the notation Qi

to distinguish this matrix from the optimal matrix Qi.

By applying Lemma 4.4.3, and using the optimality of Qt we may bound

θ(st) as follows

θ(st) =f(Qt) = log det(I +HBQtH
∗
B)− log st

≤t log det(A) + (1− t) log det(B) + t(1− t)Cmin(A,B)− log st (4.48)

for A = I+HBQ1H
∗
B and B = I+HBQ2H

∗
B. Equivalently, the upper bound
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of Equation (4.48) may be bounded by

tf(Q1) + (1− t)f(Q2) + t(1− t)Cmin(A,B)

+ t log(s1) + (1− t) log(s2)− log(st) (4.49)

≤ tθ(s1) + (1− t)θ(s2) + t(1− t)Cmin(A,B)

t log(s1) + (1− t) log(s2)− log(st) (4.50)

where Equation (4.50) follows by the definition of Q1,2 and the fact that θ(·)
is a maximum.

4.4.2 Step 2

We require the following Lemma.

Lemma 4.4.5: For all t ∈ [0, 1],

t log(s1)+(1− t) log(s2)− log(ts1 + (1− t)s2)

≤ −t(1− t)κ(s1, s2), (4.51)

for

κ(s1, s2) =
(s1 − s2)2

2s21
. (4.52)

Proof. Following the proof of Lemma 4.3.2, this is a matter of showing that

the equivalent function g is convex in the interval for this value of κ.

4.4.3 Step 3

The desired convexity constraints follows by combining Lemma 4.4.5 and

Lemma 4.4.3. The desired bound is held if

t(1− t)
2 min{λ2min(A), λ2min(B)}

≤ κ(s1, s2) (4.53)

≤ (s1 − s2)2

2s21
. (4.54)
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And so the result follows by the definitions of R and T given in the proof of

Theorem 4.2.1.

4.5 Discussion

Although the expression for the secrecy capacity is known for the Gaussian

wiretap channel, it is not generally known how to solve the optimisation

problem for the covariance matrix, Q. The method presented in this chapter

gives an efficient way to search for the secrecy capacity of a MIMO system and

a corresponding covariance matrix for the transmission. The use of existing

convex optimisation schemes makes the problem presented in Equation (4.1)

manageable. We show that it is possible to efficiently search numerically for

the maximum using linear combinations of variables.

For a fixed channel, the norm ‖T‖F is simple to compute. To find the

secrecy capacity, it is a case of picking a value of s1 and s2 and checking

the constraint in Equation (4.31). If the criteria is satisfied, then these are

in the concave region. It is therefore sufficient to use a standard concave

optimisation technique, such as those outlined in Section 1.3.2. If Equation

(4.31) is not satisfied, then an algorithm may be implemented to choose a

different value until we are in the concave region.

The transmission scheme corresponding to this covariance matrix will be

information theoretically secure since the user is guaranteed to be transmit-

ting at or below the secrecy capacity.

This scheme is specific to the case with NE = 1 and NB ≥ NA. This is due

to the requirements which arise in the derivation of the proof. Despite these

restrictions, this work covers a family of MIMO systems which are not fully

understood at the time of writing. For the situation with multiple antennas

at the eavesdropper, the current state of the art is the algorithmic approach

outlined by [51]. When the number of antennas at Eve is greater than 1, the
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Base station Mobile user

Uplink

Downlink

Figure 4.5: Massive MIMO basestations will have a far greater number of

antennas than the mobile users

problem of the secrecy capacity cannot be written in the equivalent convex

format as outlined in this chapter and the problem becomes far more difficult.

In the Gaussian setup, multiple single antenna eavesdroppers behave in the

same way as a multiple antenna eavesdropper. It is unclear whether this

helps in this particular scenario, but is an avenue for future investigation.

In order to achieve the desired capacity gains for 5G, massive MIMO

systems are a key technology [2]. This means that modern and future systems

using massive MIMO will have a high number of antennas at the base station.

Therefore the NB ≥ NA constraint in Theorem 4.2.1 would imply that these

results are limited to the uplink for a massive MIMO system, as in Figure

4.5 since mobile users will have far fewer antennas. In future work, it would

be interesting to generalise to the downlink of such channels.

It is important to note that this work assumes a static environment.

Since the work considers the Gaussian wiretap channel with full channel

state information (CSI), there is an inherent assumption that the channel

statistics are fixed. Thus these results hold within the coherence time of

the channel therefore the channel is fairly static, they are valid for a longer
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period of time. If we no longer assume a static channel, and instead suppose

that the channel matrices are unknown, or fading, then the dimensions of

the problem increase dramatically. For different types of fading, Equation

(3.14) is no longer the agreed formula for the secrecy capacity, and there are

far more degrees of freedom in the problem.

A practical limitation of any capacity result stemming from Shannon’s

work is the asymptotic nature of the results. While it is important to under-

stand the fundamental measures of systems, there is evidence that the ca-

pacity of a system may be significantly lower for finite blocklength as shown

in [60]. This means that the secrecy capacity could be an overestimate, par-

ticularly for low power devices with short blocklength such as internet of

things devices.

Theorem 4.4.4 is a weaker statement than that in Theorem 4.2.1. This

is because in finding the upper bound, and thus the concavity of θ(·), firstly

s1 and s2 are picked and then a convex combination st = ts1 + (1 − t)s2 is

taken. Since θ(·) is a maximum of f(Q) taken over all Q, we may upper

bound our statement by θ(st). In the proof of Theorem 4.4.4, firstly st is

picked. From here, it is not immediate that a value of s1 and s2 exist under

the given constraints, and so the Theorem statement is looser.
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Chapter 5

Eavesdropping a MIMO-NOMA

Scheme

In this chapter, we consider a central base station communicating to many

users by sharing their resource. As well as the typical security and low error

constraints on the communication system, there is also a sense of ‘fairness’

which the base station must achieve. Our users may have multiple antennas,

including the eavesdropper, and their Gaussian channels will vary in quality

depending on their distance from the base station.

5.1 Introduction

Multiple access (MA) schemes enable many users to be served while sharing

the same resource. Rather than the classic two user case considered in Chap-

ter 4, a realistic scenario will consist of numerous users with a finite resource

such as bandwidth or power. A base station in a city centre, for example,

will be expected to serve all of the users on their network and must do so in a

way which is fair, and provides a reasonable quality to all users. On the other

hand, users aren’t necessarily aware of the location of the base station, and

will expect their phone signal to remain intact despite their physical location

being at the cell edge.

The multiple access scheme in this chapter is Non-Orthogonal Multi-

ple Access (NOMA), which is particularly useful for systems where users

have highly different channel characteristics, for example near and far users.
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NOMA is a multiplexing technique which is in the 5G specification, previ-

ously defined in Section 2.4.2. It has been discussed in Chapter 4 and Section

2.4.1 that Multiple-Input Multiple-Output (MIMO) systems unlock higher

capacities and are being adopted in the communication systems of today. It

is therefore natural to consider combining MIMO with NOMA. The NOMA

system may utilise the channel differences to increase the throughput, while

the MIMO exploits the additional degrees of freedom (DoF) to further en-

hance this.

Given the promise of both MIMO and NOMA, it is logical to ask about

their security at physical layer. The work in this chapter demonstrates the

robustness of a combined MIMO-NOMA scheme (outlined in Section 2.4.3) at

physical layer, when in the presence of a passive eavesdropper. Bounds on the

eavesdropper performance are presented and it is shown heuristically that,

as the number of users and antennas increases, the eavesdropper’s signal to

interference and noise ratio (SINR) becomes small, regardless of how ‘lucky’

they may be with their channel.

We consider the scheme of [23] from the point of view of an eavesdrop-

per. To implement NOMA, the base station applies a precoding scheme to

the signal vector. This precoding gives a signal alignment to each user de-

pending on their channel. Owing to the inherent randomness of the wireless

medium we will assume that an eavesdropper has an independent randomly

chosen channel and as a result, the eavesdropper is extremely unlikely to

see the same signal alignment as the legitimate receivers. Hence, unlike the

legitimate receivers, an eavesdropper cannot easily remove interfering mes-

sages meant for other receivers, and will see an inherently noisier signal. In

other words, we argue that from the viewpoint of physical layer security,

the MIMO-NOMA scheme [23] protects its messages from eavesdroppers by

design. Further, from a Massive MIMO viewpoint, as the numbers of users

and antennas grow, the eavesdropper’s job becomes harder, and security is
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further enhanced.

5.2 Setup

We will look at a downlink (base station to user) NOMA setup, and use the

same model and signal alignment scheme as [23, Section II.A]. Consider a

base station equipped with M antennas and a collection of receivers each

equipped with N antennas, where N > M/2 to allow for the use of signal

alignment.

Definition Symbol

Number of antennas each user N

Number of basestation antennas M

Number of user pairs M

Distance of user m dm

Precoding matrix P

Path loss funcion L(·)
Power allocation coefficient for user m αm

Table 5.1: Notation for Chapter 5.

Since we are considering near and far users, the channel gains are mod-

elled to be worsened with distance from the base station. Assume the chan-

nel matrices from the base station to the particular users are of the form

Gm/
√
L(dm) for a certain path loss function L which depends on the dis-

tance dm. For brevity, we let Lm denote L(dm) for user m.

We select M ‘near’ users (within a radius r1 of the base station) and

M ‘far’ users (between r1 and r2 from the base station) and pair them up

randomly. This setup can be seen in Figure 5.1. In particular, we consider

pairing near users m and far users m′ and creating an M × 1 message vector
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s of the form

s =



α1s1 + α1′s1′
...

αmsm + αm′sm′
...

αMsM + αM ′sM ′


where si is the signal intended for the ith user, and αi are power allocation

coefficients with α2
m + α2

m′ = 1. Since user m′ is further away, they require a

greater power allocation and therefore αm′ > αm.

The key to the scheme of [23] is the construction of an M ×M precoding

matrix P , which is designed to make it possible to remove interference at

each pair of receivers, and to reduce the problem to standard 2-user NOMA

by use of an appropriate detection vector v. This is formed via constructing

a matrix G = [g1 g2 . . .gM ]∗, with gm being a particular vector in the

intersection of the row spaces of Gm and Gm′ given by g∗m = v∗mGm for a

certain vm. Then P := G−1F , where F is a diagonal matrix chosen to ensure

power control conditions are met at the base station1.

The base station transmits the precoded signal, which is given by the

product P s and user m receives (see [23, Eq. (2)]):

ym =
Gm√
Lm

(P s) + n (5.1)

=
Gm√
Lm

(
M∑
i=1

(αmsm + αm′sm′) pi

)
+ n (5.2)

where N × 1 vector n is circularly symmetric Gaussian noise with covariance

proportional to σ2 6= 0. Note that the scheme in [23] has a factor ρI denoting

1Note this is different to [23, Eq. (10)] which defines P = G−∗D for a different diagonal

matrix. Since G has rows g∗i , and P has columns pj , the necessary condition [23, Eq. (9)]

that g∗i pj = 0 for i 6= j is achieved by taking GP diagonal. Here F = diag(f) where

g∗i pi = fi.
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User u1 User u′1

User um

User u′m

User uM

User u′M

BS

Figure 5.1: User pairings in the NOMA setup based on [23].

shot noise (noise from interference); for the purposes of this work we will

assume there is no shot noise (ρI=0). If an eavesdropper cannot succeed

without interference, then they cannot succeed with the additional noise.

An N × 1 detection vector u is applied to ym. In [23], the choice u = vm

is made, where the construction of the precoding matrix P ensures that

v∗mGmpi = 0 for i 6= m and v∗mGmpm = g∗mpm = fm. This means that

interference is removed and the problem is reduced to a one-dimensional
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NOMA problem at each receiver, with

ym := v∗mym =
fm√
Lm

(αmsm + αm′sm′) + n (5.3)

where n := v∗mn is Gaussian noise.

5.3 Analysis of Eavesdropper Channel

Consider a passive eavesdropping receiver observing messages sent within

the system. We will assume that the eavesdropper has the same number of

antennas as the legitimate users. The eavesdropper has an N × M chan-

nel matrix of the form K/
√
LE, where K has independent and identically

distributed (IID) Rayleigh elements and LE = L(dE) applies the same path

loss function L to the eavesdropper distance from the base station. Without

loss of generality, we will assume that the eavesdropper is listening into the

message intended for Users 1 and 1′. Since User 1′ is further away, their sig-

nal receives a greater power allocation and thus will be easier to eavesdrop.

If they are unsuccessful in obtaining the message for User 1′, they will be

unsuccessful in obtaining the message for User 1. We aim to show that, with

high probability, the eavesdropper cannot gain useful information from the

message for User 1′.

The eavesdropper receives the N × 1 vector

ye =
K√
LE

(P s) + n

=
1√
LE

(
M∑
i=1

(αmsm + αm′sm′)wi

)
+ n (5.4)

where N × 1 vector wi is the ith column of W := KP and the other param-

eters and noise are as in Equation (5.1).
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5.3.1 Optimal Detection Vector

We will consider the SINR for the eavesdropper, under the assumption that

the signals si are independent with E|si|2 = ρσ2 for transmit SNR ρ. Consider

trying to decode message s1′ with detection vector u. The eavesdropper will

view all other signals as noise. The overall SINR for the communication in

Equation (5.4) becomes

SINRE =
ρ|u∗w1|2α2

1′

ρ|u∗w1|2α2
1 + ρ

∑M
j=2 |u∗wj|2 + LE

∑N
i=1 |ui|2

. (5.5)

Given the assumption that the interference noise is 0, note that this is also

the SNR.

Theorem 5.3.1: The optimal eavesdropper SINR is of the form

SINRE =
ρα2

1′

ρα2
1 +

(
w∗1

(
ρ(WW

∗
) + LEIN

)−1
w1

)−1 . (5.6)

Proof. We can find the optimal detection vector by fixing

u∗w1 = w∗1u = |u∗w1|2 = 1 (5.7)

and looking to minimise

ρ
M∑
j=2

|u∗wj|2 + LE

N∑
i=1

|ui|2. (5.8)

The first term may be rewritten as ρ multiplied by

M∑
j=2

(
M∑
r=1

u∗rVrj

)(
M∑
s=1

usV
∗
sj

)
=

M∑
r,s=1

u∗rus

M∑
j=2

VrjV
∗
sj (5.9)

=
M∑

r,s=1

u∗rus(WW
∗
)rs (5.10)

= u∗(WW
∗
)u, (5.11)
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where W = W −w1 ⊗ (1, 0, . . . , 0) is the matrix W with its first column set

to zero.

Hence, a Lagrangian formulation gives

L(u, λ) = u∗
(
ρ(WW

∗
) + LEIN

)
u− λu∗ (w1w

∗
1) u, (5.12)

since this is a complex Hermitian quadratic form, we may apply Theorem

1.3.15 to give

∂L(u, λ)

∂u
= 2(ρWW

∗
+ LEIN)u− 2λw1w

∗
1u = 0. (5.13)

And therefore the SINR (Equation (5.5)) may be written as

SINR =
ρα2

1′

ρα2
1 + u∗

(
ρ(WW

∗
) + LEIN

)
u∗

(5.14)

=
ρα2

1′

ρα2
1 + λu∗ (w1w∗1) u∗

=
ρα2

1′

ρα2
1 + λ

. (5.15)

Since LE 6= 0, the matrix
(
ρ(WW

∗
) + LEIN

)
is invertible. Hence, after

some algebraic manipulation, the result follows.

Remark 5.3.2: Note that the corresponding analysis will give the optimal

detection vector and SINR for the legitimate user. In general this will not

coincide with the choice u = vm made above in the analysis of Equation (5.1),

since that choice removes interference potentially at the cost of increased

noise, whereas our analysis considers interference and noise together.

From the point of view of Physical Layer Security, if the eavesdropper

channel has smaller SINR than the legitimate channel, the true message can

be protected by transmitting at the relevant rate. In order to compare the

two channels, we will compare the optimal SINR in each case, though note

that the expression [23, Eq. (15)] gives a tractable upper bound on the

optimal legitimate SINR.
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5.3.2 Bounding the Eavesdropper SINR

While Equation (5.6) gives a closed form expression for the optimal SINR, it

is stated in terms of the random quantities w1 and W . Hence, it is desirable

to find an upper bound not dependant on these quantities.

Writing Z = ρ(WW
∗
) + LEIN , and R(·) for the Rayleigh quotient (Defi-

nition 1.3.11), note that

w∗1

(
ρ(WW

∗
) + LEIN

)−1
w1 = w∗1w1R(Z−1; w1)

≤ w∗1w1

λmin(Z)

=
w∗1w1

ρλmin(WW
∗
) + LE

(5.16)

≤ w∗1w1

LE
. (5.17)

This gives a conservative bound, since it considers the worst case and not

the average case. However direct application of Equation (5.17) means that

the SINR in Equation (5.6) is bounded above by

SINR ≤ ρα2
1′w

∗
1w1

ρα2
1w
∗
1w1 + LE

≤ ρα2
1′EW

ρα2
1EW + LE

, (5.18)

where EW is the expectation of w∗1w1, and the second inequality follows

by Jensen’s inequality. We plot this result in Figure 5.2, which shows how

eavesdropper SINR decays with distance as expected, and that (owing to

lack of signal alignment) the eavesdropper performs worse than a legitimate

receiver at the same distance.

5.4 Large Antenna Limits

To examine how the system fares in a massive MIMO setup, we consider the

SINR of the eavesdropper as the number of antennas increases. We can also
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Figure 5.2: SINR vs User distance for M = 7, N = 5, ρ = 5 and legitimate

users as in [23, Example 1]. We plot the upper bound on eavesdropper SINR

from (5.18) in blue, the empirical eavesdropper SINR from simulation in red,

and the legitimate SINR in green.
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Figure 5.3: SINR vs User distance for M = 50 base station antennas.

argue heuristically in the large antenna limit, representing a Massive MIMO

setup.

Proposition 5.4.1: In the limit of N = γM for 1
2
< γ < 1 then SINRE → 0

at a rate of O
(

1
M

)
.

Proof. Recall that N > M/2, so as M increases so does N . Thus we can

apply the Marčenko–Pastur theory [53], in a regime where the number of

antennas M is large and N/M → γ (for some 1/2 < γ < 1), we have that

λmin(WW
∗
) ' c(1−√γ)2M (5.19)
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for some positive constant c. Hence for any fixed distance LE, for M suffi-

ciently large the λmin term will become the dominant one in Equation (5.16)

which may be estimated as

w∗1

(
ρ(WW

∗
) + LEIN

)−1
w1 ≤

w∗1w1

ρλmin(WW
∗
) + LE

(5.20)

' w∗1w1

ρc(1−√γ)2M + LE
(5.21)

which is a scalar value. Consequently, the SINR of the eavesdropper will be

bounded by

SINRE =
ρα2

1′

ρα2
1 +

(
w∗1

(
ρ(WW

∗
) + LEIN

)−1
w1

)−1 (5.22)

≤ ρα2
1′

ρα2
1 +

ρc(1−√γ)2M+LE

w∗1w1

, (5.23)

which becomes arbitrarily small for large M . That is, from any position,

with enough antennas and user pairs, no eavesdropping is possible.

5.5 Discussion

Schemes combining MIMO and NOMA provide great promise for the de-

mands of 5G new radio and are likely to appear in real life systems immi-

nently. Since security is a key factor in any communication system, it is vital

to investigate their robustness to a passive eavesdropper. This work exam-

ined the combination of MIMO and NOMA in the system proposed by [23]

where the message is precoded according to the legitimate user channels.

This means that the message is easy to recover by a legitimate user, but

difficult for users with a different channel.

It may seem that the eavesdropper could become lucky and, if well aligned

with the legitimate user, they could obtain the message. Proposition 5.4.1
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shows that as the number of user pairs increases, this is untrue and, regardless

of position, the SINR of the eavesdropper tends to zero and thus they can

obtain no useful information from their eavesdropping. The results in this

chapter assume that an eavesdropper treats messages other than the specific

one they are eavesdropping, as noise. This means the results in this chapter

look at the SINR rather than the secrecy capacity. It remains to consider

the problem of a more sophisticated eavsdropper who may employ successive

decoding, for example, based on their strongest channel.

A significant drawback of a standard NOMA system is that each user

must decode the messages intended for all other users [36]. The scheme

presented in [23] overcomes this through their choice of precoding. However,

this drawback remains for the eavesdropper, therefore the scheme exploits a

weakness of NOMA to the advantage for secrecy.

These results are promising for the inherent security of MIMO NOMA

systems. Since 5G networks are expecting to be dense [2] and the number

of devices continuing to grow, it can be expected that base stations will

be required to serve a high number of user pairs. The results in Section

5.3.2 are particularly relevant for such systems, and show promise for the

inherent security of MIMO NOMA. In the downlink, as the number of user

pairs increases, so does their number of antennas due to the setup of the

system based on [23]. A mobile user is unlikely to be equipped with a large

number of antennas so the heuristic bounds in Section 5.4 is not immediately

applicable to dense systems, although hints at their robustness. These results

are, however, applicable in the uplink which the scheme of [23] is applicable

to.

Since it is assumed that the eavesdropper views all signals as noise ex-

cept for the one they are trying to decode, the scope of this work is limited

to studying the SINR. If a more sophisticated eavesdropper is considered,

perhaps one using successive decoding based on their signal strengths, the

91



Chapter 5. Eavesdropping a MIMO-NOMA Scheme

overall system security could be reduced.
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Chapter 6

Secure channel coding scheme

In this chapter, we introduce a novel coding scheme which is robust to time

dispersion and eavesdropping. Multiple users share the channel and time

resource giving an almost duplex scenario. So far in this thesis, we have

discussed achievable secrecy but have not specified a coding scheme. Here,

we present a coding scheme with secrecy at the forefront of the design.

Definition Symbol

Number of legitimate users K

Channel length L

Size of codebook per user N

Number of active codes per user n

Transmission length M

Weight of codes m

Table 6.1: Notation for Chapter 6

6.1 Introduction

Time dispersive environments, as introduced in Section 2.3.1, are common in

urban environments, in this chapter we propose a novel and secure channel

coding scheme to thrive in such an environment. Combining elements from

the papers of [59], [38] and [62] we present a scheme which exploits charac-

teristics of time dispersive environments to efficiently encode and transmit
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information using elements of the legitimate channel, making it robust to

eavesdropping.

The key papers are outlined below:

• The scheme of [59], which is called Combinatorial Channel Signature

Modulation (CCSM), portrays the information content in the choice

of the codeword combination, rather than the codewords themselves.

The signal is constructed by selecting a subset of n codewords from

a codebook of size N to be ‘active’ (where n � N). Constructing

the signal in such a way, and using sparse codewords, gives a scheme

which is robust to time dispersion, and in fact excels in dispersive

environments. Their work builds on the similar work of [75] but reduces

the complexity by their choice of signal structure.

• The secrecy scheme in [38] is an antenna rotation scheme where

the Multiple-Input Multiple-Output (MIMO) users generate a pair of

indices and secure their message using the indices. Specifically the le-

gitimate channel calculates an antenna and constellation rotation value

based on the legitimate channel characteristics. Since the eavesdrop-

pers’ channel is modelled as statistically independent from the legiti-

mate channel, the eavesdropper does not have access to the rotation

values. They therefore cannot undo the rotation and therefore may not

recover the original message. They prove that the eavesdroppers best

strategy is to guess, and thus perfect secrecy is achieved.

• The paper of [62] designs a codebook of constant weight codewords.

Their scheme gives an encoding procedure for constant weight code

constructions using arithmetic encoding techniques. The encoding and

decoding procedures outlined use simple logical and arithmetic opera-

tions and thus they can construct codes with long codelength.
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In our scheme, each user creates a codebook based on their channel,

where each codeword is sparse - allowing users to transmit simultaneously

and overcoming the need for complex timetabling protocols which are usually

required for a full duplex system. It is a hybrid of the above outlined schemes,

combining several of their advantages and thus our scheme is:

• Resilient to time dispersion,

• Does not need complex time scheduling,

• Efficient error detection due to constant weight coding and

• No requirement for a collision avoidance technique as users have access

to a shared channel.

We maintain the combinatorial aspect of the CCSM signal structure

from [59] in our scheme, as this was shown this to be effective in dispersive

environments presented by scattering effects. We also adopt their notion of

turning channel state information into codewords.

Each user generates a codebook where each codeword has a fixed weight

m and length M where m�M . Here, the constant weight aspect is based on

[62], but used in reverse meaning that a short channel realisation is encoded

to a longer constant weight codeword. Typically, one would use arithmetic

coding to compress data and not expand however we wish to generate long,

sparse codewords and therefore employ this in reverse.

6.2 System model

Consider a system with K active, legitimate users, all transmitting broad-

cast messages in the presence of a passive eavesdropper, Eve, who does not

transmit.
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User i transmits a message x(i) which is passed through the dispersive

channel and convolved with the channel impulse response. The channel be-

tween user i and user j is denoted by a vector of complex entries

h(i,j) =
(
h
(i,j)
1 , . . . , h

(i,j)
L

)

of length L where L is the channel length.

Each user has a codebook of size N , and their contents is referred to as

their codeword span. Each codeword is constructed to be of a fixed weight,

m, and length M . The codebook is designed based on the channel state

information (CSI) between users. The sparsity provided by the requirement

that the weights m � M allows for an efficient decoding scheme and for

the system to behave as though it is full duplex, despite users only being

equipped with half duplex transmitters/receivers.

The combinatorial method of [59] is adopted, meaning that the messages

are encoded in the choice of combination of n out of N of the codewords span

rather than in the codewords themselves. Here n � N and thus there are

(N
n) choices for the signal. This means that the information rate is agnostic

to the type of modulation, as the useful information is in the choice of the

codeword combination.

To visualise this, we give a toy example where N = 6 and n = 2, the

signal construction may be seen in Figure 6.1. Here, the active codewords

(indices 1 and 5) are highlighted and summed to give the signal which is

transmitted. There are (6
2) = 15 choices for this signal.

The receiver then uses its knowledge of the channel and performs a max-

imum likelihood (ML) estimate to find the most likely combination of code-

words that made up x(i). This is discussed in more detail in Section 6.3.2.
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Codeword 
span

Transmitted 
codeword

Figure 6.1: Example codebook and signal construction, the codewords in red

are active. Here the codewords are of length M = 100 and weight m = 2.

The codebook size, N , is 6 and the number of active codewords, n, is 2.

6.3 Constructing the codebook

We wish for the codebook to be some function of the legitimate user channel

to reduce Eve’s chance of success. Using channel quantisation, the legitimate

users derive a set of indices from their channel. This set of indices is then used

to permute the agreed codebook. This idea is related to, and generalises, the

successful secrecy enhancing scheme of [38], where they rotate the antenna

indices and prove that this obtains perfect secrecy. Eve has access to the

agreed codebook and the scheme used to permute the codebook however has

no knowledge of the channels used to perform the permutation and therefore

cannot succeed at decoding.

6.3.1 Code construction

Arithmetic coding, introduced in Section 1.1.2, maps a string of symbols with

an underlying probability distribution to a unique interval and corresponding

binary codeword. This method of compression means that high probability

variables are mapped to shorter codewords and low probabilities are assigned

longer words.
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We wish to create a codebook where each of the codewords is of a fixed

constant weight, following the constructions of [62]. An advantage of constant

weight coding is the simplicity of the error check. If the codeword is not of

a specific weight, an error has certainly been made. This can be tested at

virtually no cost to a decoder. Here, constant weight refers to the Hamming

weight. That is, the number of symbols not zero is constant.

Definition 6.3.1: A codeword c = c1 · · · cM is a constant weight codeword

of weight m if the Hamming weight of c is m we will denote this as w(c) = m.

In Example 1.1.12, we saw constant weight strings compressed into shorter

binary strings, for our scheme we wish to implement this in reverse. That is, a

binary string is elongated to a binary codeword of a fixed weight. In Example

1.1.12 the constant weight strings 10000, 01000 and 00100 are encoded to the

shorter strings 111, 101 and 1000 respectively. In our scheme, we would take,

for example, the string 111 and encode this to the constant weight codeword

10000 corresponding to the decoding the above scheme.

The codebook is entirely determined by the channel and the process for

doing this is outlined in Algorithm 2. Algorithm 3 details the reverse arith-

metic coding scheme to obtain a single codeword.

Example 6.3.2: Suppose we have a constant weight codeword c obtained

from a channel vector h by Steps 1-3 above. Examples of how to carry out

step 4 include:

• Let r = arg maxi‖hi‖, and apply a cyclic shift of order r to c.

• For i = 1, . . . , L let ri be the order index of the entry hi. The vector

(r1, . . . , rL) defines a permutation, which may be applied to c. This is

the method used in the simulations for this chapter, unless explicitly

stated otherwise.

Remark 6.3.3: The codebook generation outlined above is dependent on

98



6.3. Constructing the codebook

Algorithm 2: Generating the codebook.
Input : Channel realisation h of length L, desired codebook size N ,

codeword lengths M and weights m.

Result: {c1, . . . , cN} of length M and weight m.

Initialise;

1. Quantise h to a binary string v;

2. Apply Algorithm 3 to v to output constant weight codeword c;

3. Modulate c according to the modulation scheme of choice to give c1;

4. Derive a permutation or rotation index from h;

for i = 2 : N do
5. Apply the permutation derived in line 4 to ci−1 to give ci.

end

the legitimate channel state information (CSI). Without access to the correct

CSI, the codebook is difficult to recover. This is exemplified in Figure 6.2

where the example codebook seen earlier (Figure 6.1) is generated once with

correct CSI, and once with noisy CSI. Here, the correct channel is h and the

noisy channel is h + δ where δ is Gaussian noise with noise power of one

tenth of the transmit power, showing that even small changes in the channel

lead to an entirely different codebook. This is a property we will revisit when

considering the security of this scheme.

6.3.2 Decoding process

Each legitimate user has access to all codebooks and therefore any receiver

also has an effective codebook. That is, a codebook where the codewords

have been convolved with the channel. Users are not fully duplex, therefore

they cannot transmit and receive simultaneously.

Definition 6.3.4: To capture this, we define an erasure pattern for user j
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Codeword 
span

Transmitted 
codeword

Figure 6.2: A correct codebook overlayed with a codebook generated from

an incorrect channel (dotted lines).

to be the vector e(j) with entries

e
(j)
i =

0 if x
(j)
i 6= 0

1 if x
(j)
i = 0

(6.1)

for i = 1, . . . ,M .

The effect of the erasure pattern is a ‘puncturing’ of the signal, where the

received signal vector has zeros in the timeslots where they have transmitted.

User j receives

y(j) = e(j)

(
K∑
i=1

h(i,j) ? x(i) + z(j)

)
, (6.2)

where z(j) is the additive Gaussian noise vector for their channel and the

multiplication of e(j) is elementwise (and thus y(j) is a vector of length M).

Due to the dispersive nature of the channel, there will be a self interference

factor spread across multiple time slots, not just during their ‘on’ slots and

thus the user may subtract any self interference (the i = j term in the

summation) to obtain

ỹ(j) = e(j)

(
K∑

i=1,i 6=j

h(i,j) ? x(i) + z(j)

)
. (6.3)
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x(1) x(2) . . . . . . x(K−1) x(K)

h(1,j) h(2,j) . . . . . . h(K−1,j) h(K,j)

Signals are summed

Self interference is removed

Erasure pattern is applied

ỹ(j)

. . . . . .x̃(2)x̃(1) x̃(K−1) x̃(K)

Figure 6.3: Decoding system for user j
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Chapter 6. Secure channel coding scheme

In this setting, a maximum likelihood decoder would be too complicated,

and given the sparsity of the messages we instead follow the CCSM paper [59]

and implement a sparse recovery solver. User j has to solve the problem

X̃ = arg min

∥∥∥∥∥ỹ(j) −
K∑

i=1,i 6=j

h(i,j) ? x(i)

∥∥∥∥∥
2

, (6.4)

Such that w(x(i)) = mn for all i

where X̃ represents an M × K − 1 matrix where column i is xi and the

minimum is taken over all possible x(1), . . . ,x(j−1),x(j+1), . . . ,x(K).

Since the codewords are sparse and each signal x(i) consists of exactly n

codewords, the above decoding problem becomes a sparse recovery problem.

In [59, Algorithm 1] they reduce the complexity of the problem by removing

the requirement that exactly nm entries of each x(i) are non-zero. Rather

they solve using a Lasso algorithm and take the indices of the nm strongest

values, setting the remaining entries to 0 afterwards. That is, we solve the

problem

X = arg min

∥∥∥∥∥ỹ(j) −
K∑

i=1,i 6=j

h(i,j) ? x(i)

∥∥∥∥∥
2

, (6.5)

Such that ‖x‖2 ≤ mn for all i

It is important to understand the effect of the codeword length, M , on

the performance of the scheme. As the codeword length increases the effect

of the signal puncturing occuring from the erasure pattern (Definition 6.3.4)

lessens.

Figure 6.4 shows an increased performance for a longer transmission

length, due to fewer clashes in transmitting and receiving.
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6.4. Secrecy analysis

Figure 6.4: Error rate vs SNR for differing transmission lengths, where code-

words have a fixed weight of 25 with 10 users. Here, N = 32 and n = 4.

6.4 Secrecy analysis

The design of the codebook in Section 6.3, is such that knowledge of the

legitimate channels are required to find the codebook. As demonstrated in

Figure 6.2, a small error in the channel can lead to a large error in the

codebook. Since the performance of an eavesdropper is inherently linked

to their knowledge of the codebook, this scheme promises security for the

legitimate users. However, the eavesdropper is passive and does not have

to content with self interference or the erasure patterns. In this section we

show that the eavesdropper is unlikely to do well and through a series of
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simulations, that their error probability is close to 1 unless they are given a

large (and unrealistic) advantage.

The received message at the eavesdropper is

y(E) =
K∑
i=1

h(i,E) ? x(i) + z(E), (6.6)

where ? represents convolution. In other words, the signal received by the

eavesdropper in time slot t is

y
(E)
t =

K∑
i=1

L−1∑
j=0

h
(i,E)
j x

(i)
t−j + zt, (6.7)

where zt are independent complex Gaussians with mean 0 and variance σ2
E.

A maximum likelihood decoder looks to solve the problem

min
u(1),··· ,u(K)

∥∥∥∥∥y(E) −
K∑
i=1

h(i,E) ? u(i)

∥∥∥∥∥
2

, (6.8)

where the minimum is taken over sets of possible messages.

Following the paper of [48], we consider the case where a particular re-

ceived message set is decoded to some other message. We suppose the true

transmitted message set was x(1), . . . ,x(K) then the eavesdropper makes a

mistake when the decoder incorrectly selects at least one of the u(j). In gen-

eral this is difficult to deal with, due to the size of the problem space so we

instead consider the case where exactly one message is incorrectly decoded.

Proposition 6.4.1: Consider a system with K legitimate users, who have

transmitted the message set
{
x(1), . . . ,x(K)

}
and suppose that an eavesdrop-

per decodes these to
{
u(1), . . . ,u(K)

}
where

u(j) = x(j)if j 6= l, (6.9)

and ∆ = x(j) − u(j).
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Then using an ML decoder, the eavesdropper will make a mistake when

∥∥h(l,E) ?∆
∥∥2 ≤ 2

∥∥h(l,E) ?∆
∥∥ z(E), (6.10)

where h(l,E) denotes the channel between User l and the eavesdropper and

z(E) denotes the additive noise for the eavesdropper channel.

Proof. Equation (6.8) means that the ML decoder will make a mistake when

the following inequality holds∥∥∥∥∥y(E) −
K∑
i=1

h(i,E) ? u(i)

∥∥∥∥∥
2

≤

∥∥∥∥∥y(E) −
K∑
i=1

h(i,E) ? x(i)

∥∥∥∥∥
2

. (6.11)

The argument of the lower bound may be rewritten to give

y(E) −
K∑
i=1

h(i,E) ? u(i) = y(E) −
K∑
i=1

h(i,E) ? x(i) + h(l,E) ?∆ (6.12)

= z(E) − h(l,E) ?∆ (6.13)

by Equation (6.6) and assumptions made above. And similarly, the argument

of the upper bound of (6.11) is z(E).

Inserting Equation (6.13) into Equation (6.11) and rearranging gives that

the decoder will make a mistake when

∥∥z(E) − h(l,E) ?∆
∥∥2 ≤ ∥∥z(E)

∥∥2 . (6.14)

By the Complex Polarisation Identity (Theorem 1.3.12), Equation (6.14)

holds if and only if Equation (6.10) holds and so the proof is complete.

Remark 6.4.2: If strict inequality holds in Equation (6.10), the decoder

will definitely make a mistake, if equality holds, the decoder can’t do better

than guess so will make a mistake with probability at least 1/2.
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h(l,E) ?∆

z

z− h(l,E) ?∆

θ

Figure 6.5: Equation (6.10) holds when the angle, θ, is acute.

Proposition 6.4.1 can be interpreted as how well aligned the noise is with

the mixture h(l,E) ?∆, which is represented geometrically in Figure 6.5.

In reality, using a maximum likelihood decoder is not practical for this

scheme due to the size of the problem space. However if an eavesdropper

cannot succeed with a maximum likelihood decoder, they certainly cannot

succeed with another decoder.

6.4.1 Eavesdropper channel model

When the eavesdropper is modelled independently to the legitimate users

they do not have access to the channel in order to generate the correct

codebook. This assumption relies on the fact that they are over one half

wavelength away from the legitimate user, which is likely.

We use the Cholesky decomposition of a correlation matrix (recall Def-

inition 1.3.13) to generate an eavesdropper channel which is correlated to

the main channel. The legitimate channel is generated, as before, with IID

Gaussian entries. The eavesdropper channel is then designed according to
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the correlation model proposed by [38] as follows:

h(i,E) = ρh(i,j) +
√

(1− ρ2)g(i,E) (6.15)

where ρ ∈ [0, 1] and g(i) denotes an independent channel vector. Note that

this model is similar to a channel with an estimation error (as shown in [3]).

Under this model, the error probability for differing values of ρ is shown in

Figure 6.6. Here, it can be seen that the eavesdroppers probability of error

is at, or very close to, 1 each time. We infer that under this channel model,

without the legitimate system being compromised, the eavesdropper may not

succeed.

Results for a system with 10 users are shown in Figure 6.7. Here, the

eavesdropper has access to different numbers of the legitimate codebooks

meaning that their decoding problem has varying levels of difficulty. The

error probability is taken across all 10 users, so if they were correctly decoding

5 out of 10 users, we would expect ot see an error probability of 0.5. These

simulation results show that even in the unlikely case where the eavesdropper

has perfect access to 9 out of 10 of the users codebooks, they still make errors

at a rate greater than 0.2. In other words, they are incorrectly decoding more

than one user, despite only missing one users codebook. From a legitimate

users viewpoint, this is a pessimistic scenario, which would require perfect

CSI for each compromised user, and full knowledge of the coding scheme.

This is compounded as user numbers increase, and the broadcast nature of

the system enhances security in this sense.

6.5 Discussion

This chapter introduces a novel channel coding and multiplexing method for

time dispersive channels. This is particularly applicable to wireless ad-hoc

networks since there is no one user ‘in charge’ in such systems. The broadcast
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Figure 6.6: Error rates for a system with 10 legitimate users and one eaves-

dropper, with their channel generated as in Equation (6.15) for varied ρ.

Here, M = 300, m = 25, N = 32 and n = 4.

nature of the system reduces the complexity requirements for access control,

while the use of the channels in the encoding naturally enhances the security.

As the length of the codewords used increases, so does the performance of the

system since users are less likely to interrupt one another. This allows the

non duplex transmitters and receivers to behave in a duplex manner, which

increases the efficiency.

In order to compromise the system, Eve would need access to all users

codebooks, and not just one. In this way, the broadcast nature of this scheme

not only increases efficiency but also provides an additional layer of resilience
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Figure 6.7: Error rates for a system with 10 legitimate users with different

numbers of codebooks compromised to an eavesdropper. Here, M = 300,

m = 25, N = 32, n = 4 and ρ = 0.5.

against eavesdropping. If just one codebook is compromised, the eavesdrop-

per still has to contend with a large amount of uncertainty and fails with

high probability, as is exemplified in Figure 6.7.

It remains to fully quantify the secrecy of the scheme. In Proposition 6.4.1

we presented results for the case where the eavsedropper correctly decodes

all but one signal. To further generalise this is a non trivial problem and this

is discussed in Chapter 7.
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Algorithm 3: Generating a constant weight codeword using a re-

verse arithmetic coding scheme.
Input : v of length L, length of desired codeword M and weight m.

Result: c of length M and weight m.

Initialise;

a = 0;

b = 1;

p1 = (M −m)/M ;

cdf = [0,p1, 1];

for i = 1 : M do

if vi = 0 then

Let r = 0;

end

else
r = 1.

end

Update a = a + r2−(i+1).

end

Update b = a + 2−L;

if a ≥ p1 then

c1 = 1;

Update p1 = p1 + (M −m + 1)/(M − 1).

end

else
c1 = 0;

end

for j = 2 : M do

if a ≥ p1 and
∑j−1

i=1 ≤ m then

cj = 1;

Update p1 = p1 + (M −m +
∑j

i=1 cj)/(M − j).

end

else
cj = 0.

end

end
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Chapter 7

Conclusions and open problems

The work in this thesis considers topics in physical layer security for future

telecommunications technologies. The closed form of the secrecy capacity of

the Gaussian Multiple-Input Multiple-Output (MIMO) wiretap channel has

remained an open problem in the general case. This thesis contributes to the

(NA, NB, 1) configuration, showing that the secrecy capacity is equivalent to

the maximum of a provably concave region of a function. We examined the

robustness of an innovative MIMO-NOMA system, showing that the eaves-

dropper SINR diminishes with a large number of users and with eavesdropper

distance. Finally, a channel coding scheme which performs well in a time dis-

persive regime. It is shown that this scheme is robust to eavesdropping and

interference. With the increasing use of multiple antenna systems, and con-

sidering power limitations, physical layer security provides an important way

to improve and compound network security, and this thesis has presented

novel ways to analyse the performance of such methods. A detailed conclu-

sion and outline of the open problems are given for each topic below.

In Chapter 4 we presented results on the concavity for the (NA, NB, 1)

MIMO wiretap channel, giving a provably concave and convex region (Theo-

rems 4.2.1 and 4.4.4 respectively). These results are notable since the current

literature does not address a general case (that is, a case where the transmit

regime is not constrained) other than with algorithmic and computational

results. Our results are validated in Section 4.2.2 by considering the (2, 2, 1)

configuration. Simulation results agree with the theoretical secrecy capacity

found by Shafiee et al. in [66].
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Our results hold for the case where NA ≤ NB, providing a baseline for

future work without this restriction. In the process of calculating the cutoff

points, there is a matrix inversion which introduces this requirement. To

find an analogous result for the general antenna configuration, results on the

channel matrices may be imposed.

Open problems: For a multiple antenna eavesdropper, the derivations in

our work are no longer concave and the proof does not follow. In the Gaussian

case, the multiple antenna eavesdropper is equivalent to multiple single an-

tenna eavesdroppers colluding. Hence the MIMOME wiretap channel could

be seen as a compound MIMOSE wiretap channel (see [44]).

The secrecy capacity, as with any capacity result, is an asymptotic re-

sult. These results are derived from blocklengths tending to infinity. Results

by [60] show that for a finite blocklength, the realistic system capacity can

be far lower than the asymptotic result.

In Chapter 5 a scheme combining NOMA, a multiple access scheme, with

MIMO is presented. Both are enabling technologies for 5G and future wire-

less, and thus these results are particularly relevant to current and upcoming

architectures. We showed that the system is inherently secure in the sense

that the eavesdropper has a low probability of obtaining the message sent

by the legitimate user. Further, the eavesdropper SINR diminishes with an

increase in the number of users - representing a dense network, shown in

Proposition 5.4.1.

As the number of user antennas increases, representative of a massive

MIMO system, the eavesdropper SINR tends to zero. This shows that the

shift towards massive MIMO for future wireless adds further levels of security

to systems.

Open problems: We presented results for one eavesdropper, where multi-

ple colluding eavesdroppers would be a valuable extension to the work. As
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discussed previously, one multiple antenna eavesdropper is equivalent to mul-

tiple single antenna eavsdroppers from a theoretical viewpoint. However, the

system in Chapter 5 is affected by the positioning of the users. Therefore,

multiple single antenna eavesdroppers may be able to optimise their location

to detect the strongest signals.

In Chapter 6 we presented a novel and secure channel coding scheme.

The scheme works particularly well in dispersive environments, where other

schemes may fail. The information is transmitted in sparse codewords of

constant weight where the information is encapsulated in the choice of the

codewords rather than the codewords themselves. This allows for simple er-

ror detection at the receivers and means the scheme is independent of the

modulation scheme used, making it applicable to a multitude of scenarios.

Simulation showed that the systems performance is enhanced as the code-

words become increasingly sparse (see Figure 6.4), due to the effect of erasures

caused by a user transmitting (and therefore being unable to receive) being

largely mitigated.

Open problems: It remains to quantify the secrecy in terms of the entropy.

Proposition 6.4.1 considered the case where the eavesdropper only has to de-

code one message, and gave criteria for the success of the eavesdropper. That

is, we considered the event where any codeword ui has a higher probability

than the real codeword x given the received signal, y. For a specific codeword

ui, the probability of this type of error is bounded by

p(ui | x,y) ≤ p(y)

p(y | x)
, (7.1)

where this corresponds to [48, Equation (2)] and is found by applying the

Markov inequality. To bound the general case, we consider Equation (7.1)

for all pairwise errors. By applying the union bound, Lomnitz and Feder
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bound this as follows

p
(⋃

ui | x,y
)
≤ 2MN p(y)

p(y | x)
(7.2)

where N is the size of the codebooks and M is the length of the codewords.

Given that the received codewords are not IID, and have a block de-

pendency by their construction, we can’t apply the law of large numbers to

Equation (7.2) as is the next step in [48]. The quantity which they obtain

( [48, Equation 4]) is the same as the metric of interest in [60], the informa-

tion density. This work was previously outlined as a future research avenue

for Chapter 4. The information density is

− log
p(y)

p(y | x)
, (7.3)

and measures the amount of independence between the variables. The ex-

pectation of Equation (7.3) gives the mutual information. The problem of

bounding the eavesdroppers failure rate is now the case of finding the in-

formation density. If the requirements for a secrecy metric are relaxed, to

consider IID codewords, the problem of finding a bound is more tractable. In

the interim, results for non-optimal decoders could be compared to provide

insight to the general case.
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