1,206 research outputs found

    Induction motor control: multivariable analysis and effective decentralized control of stator currents for high performance applications

    Get PDF
    Adequate control of the stator currents is a fundamental requirement for several high-performance induction motor (IM) control schemes. In this context, classical linear controllers remain widely employed due to their simplicity and success in industrial applications. However, the models and methods commonly used for control design lack valuable information –which is fundamental to guarantee robustness and high performance. Following this line, the design and existence of linear fixed controllers is examined using individual channel analysis and design. The studies here presented aim to establish guidelines for the design of simple (time-invariant, low order, stable, minimum-phase and decentralized), yet robust and highperformance linear controllers. Such characteristics ease the implementation task and are well suited for engineering applications, making the resulting controllers a good alternative for the stator currents control required for high-performance IM schemes; e.g., field oriented, passivity-based and intelligent control. Illustrative examples are presented to demonstrate the analysis and controller design of an IM, with results validated in a real-time experimental platform. It is shown that it is possible to completely decouple the stator currents subsystem without the use of additional decoupling elements

    Stability Analysis and Robust Controller Design of Indirect Vector Controlled Induction Motor

    Get PDF
    The thesis considers stability analysis and controller design through different performance measures for indirect vector controlled induction motor (IVCIM).These problems are known to be complex due to nonlinearity, large order and multi-loop scenario. Some new approaches and results on IVCIM are proposed in this work. IVCIM dynamics is well known for having different bifurcation behavior, viz., saddle-node, Hopf, Bogdanov–Takens and Zero–Hopf bifurcations due to rotor resistance variation. These bifurcations affect the control performance and may lead to stalling or permanent damage of motor. A numerical analysis of these bifurcations for proportional integral (PI) controlled IVCIM is made in this thesis using full-order induction motor model (stator dynamics is included). This analysis aids to determine the allowable bifurcation parameter variation range as well as suitable choice of speed-loop gains to avoid these. Some new observations on the bifurcation behavior are made. Simulation and experimental results are presented validating the bifurcation behaviors. For improving dynamic performance in the presence of load torque and rotor resistance variation, a new method for designing PI gains is proposed for IVCIM. The inner-loop current PI controllers are tuned simultaneously along with the speed controller. This method is implemented using a static output feedback scheme in which iterative linear matrix inequality (ILMI) based∞control technique is employed. Such a design makes stator currents and speed response to be robust against rotor resistance and load variations. A comparison between proposed design and a conventional one is shown using simulation and experimental results that validate the superiority of the proposed approach. Owing to multi-loop and nonlinear system behavior, IVCIM dynamics is known to have coupling in between the two inner-loop stator current components (flux and torque). Such coupling affects the dynamic torque output of the motor. Decoupling of the stator currents are important for smoother torque response of IVCIM. Conventionally, additional feedforward decoupler is used to take care of the coupling that requires exact knowledge of the motor parameters and additional circuitry or signal processing. A method is proposed to design the regulating PI gains while minimizing coupling without any requirement of additional decoupler. The variation of the coupling terms for change in load torque is considered as the performance measure. The same ILMI based∞control design approach is used to obtain the controller gains. A comparison between the conventional feedforward decoupling and proposed decoupling scheme is presented through simulation and experimental results that establish the effectiveness of the proposed method riding over its simplicity. Finally, since the PI controller can yield limited performance, a dynamic controller is designed for the IVCIM drive system. In the design process, iron-loss dynamics are incorporated into induction motor model to fetch benefit through better performance. A sequential design method is used for the controller design in which, first, the inner-loop controllers are designed. The designed inner-loop controllers is then used for designing the outer speed-loop controller. The proposed design employs ILMI based∞control design for dynamic output feedback controller that makes stator currents and speed response to be robust against disturbances. A comparison among proposed dynamic controller design, PI controller and compensator design is shown using simulation and experimental results demonstrate enhanced performance of the proposed controller and suitability for industrial purpose

    Speed -Sensorless Estimation And Position Control Of Induction Motors For Motion Control Applications

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2006High performance sensorless position control of induction motors (IMs) calls for estimation and control schemes which offer solutions to parameter uncertainties as well as to difficulties involved with accurate flux and velocity estimation at very low and zero speed. In this thesis, novel control and estimation methods have been developed to address these challenges. The proposed estimation algorithms are designed to minimize estimation error in both transient and steady-state over a wide velocity range, including very low and persistent zero speed operation. To this aim, initially single Extended Kalman Filter (EKF) algorithms are designed to estimate the flux, load torque, and velocity, as well as the rotor, Rr' or stator, Rs resistances. The temperature and frequency related variations of these parameters are well-known challenges in the estimation and control of IMs, and are subject to ongoing research. To further improve estimation and control performance in this thesis, a novel EKF approach is also developed which can achieve the simultaneous estimation of R r' and Rs for the first time in the sensorless IM control literature. The so-called Switching and Braided EKF algorithms are tested through experiments conducted under challenging parameter variations over a wide speed range, including under persistent operation at zero speed. Finally, in this thesis, a sensorless position control method is also designed using a new sliding mode controller (SMC) with reduced chattering. The results obtained with the proposed control and estimation schemes appear to be very compatible and many times superior to existing literature results for sensorless control of IMs in the very low and zero speed range. The developed estimation and control schemes could also be used with a variety of the sensorless speed and position control applications, which are challenged by a high number of parameter uncertainties

    Design of permanent magnets to avoid chaos in doubly salient PM machines

    Get PDF
    This paper analyzes the effect of permanent magnets (PMs) on the formation of chaos in doubly salient PM (DSPM) machines. Based on the newly derived nonlinear system dynamical equation, the corresponding Poincaré map and bifurcation diagram show that the sizing of PMs significantly affects the stability of DSPM machines. Chaos may be resulted if the PMs are not properly designed. Both computer simulations and experimental results are provided to support the theoretical derivation.published_or_final_versio

    Improved homoclinic predictor for Bogdanov-Takens bifurcation

    Get PDF
    An improved homoclinic predictor at a generic codim 2 Bogdanov-Takens (BT) bifucation is derived. We use the classical "blow-up" technique to reduce the canonical smooth normal form near a generic BT bifurcation to a perturbed Hamiltonian system. With a simple perturbation method, we derive explicit rst- and second-order corrections of the unperturbed homoclinic orbit and parameter value. To obtain the normal form on the center manifold, we apply the standard parameter-dependent center manifold reduction combined with the normalization, that is based on the Fredholm solvability of the homological equation. By systematically solving all linear systems appearing from the homological equation, we remove an ambiguity in the parameter transformation existing in the literature. The actual implementation of the improved predictor in MatCont and numerical examples illustrating its eciency are discussed

    LQG/LTR control of induction motor

    Get PDF
    Induction motors are the most rugged electrical equipment which are widely used in the industry. Owing to the non-linearity in its behaviour, it is not a trivial problem to solve and hence we are interested in using it as a control platform. Through several decades of research a wide number of control schemes have been developed for implementing the closed loop control. Based upon the merits and demerits of various schemes we choose a control scheme called the indirect vector control of Induction motor. Using the electrical dynamics of the motor model we design a LQG/LTR controller. We employ a discretized model for the controller design. A step by step procedure has been outlined considering the two possible cases of minimum phase and non minimum phase systems. Finally the speed tracking capability of the design is tested in Matlab Simulink using SimPowerSystem toolbox

    In-depth cross-coupling analysis in high-performance induction motor control

    Get PDF
    High-performance field oriented control (FOC) of induction motors (IMs) relies on the accurate control of their electrical dynamics. In particular, perfect decoupling control of the stator currents should be ideally achieved for a FOC scheme to be efficient. However, the decoupling effectiveness afforded by most stator currents controllers may be influenced not only by the parameters and the operating condition, but also by the specific controller structure and the adopted coordinate system. A measure to assess decoupling effectiveness is non-existent in the IM control literature. To bridge this gap, an in-depth analysis of the cross-coupling inherent characteristics of the electrical subsystem of IMs under different well-known control structures is presented in this paper. Specifically, four control strategies previously studied and experimentally validated in the literature are critically assessed in this work: 1) stationary frame proportional-integral (PI) control, 2) synchronous frame PI control, 3) synchronous frame PI control with decoupling networks, and 4) improved stationary frame diagonal control. The decoupling capabilities of controllers in stationary and synchronous coordinates are examined, with a detailed insight on the role of decoupling methods. The analysis is performed in the frequency domain under the framework of individual channel analysis and design (ICAD). By application of ICAD, the decoupling effectiveness of FOC schemes is clearly exposed and quantified, with an assessment of the effects of parametric uncertainty being carried out for completeness. The effect of the inverter dynamics over cross-coupling is also treated using digital simulations. The results are useful to determine the conditions in which each control strategy has either advantages or disadvantages. Additionally, it is possible to determine the effect of several operating parameters over the stator currents cross-coupling such as nominal flux and torque level
    corecore