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ABSTRACT

High performance sensorless position control of induction motors (IMs) calls for 

estimation and control schemes which offer solutions to parameter uncertainties as well 

as to difficulties involved with accurate flux and velocity estimation at very low and zero 

speed. In this thesis, novel control and estimation methods have been developed to 

address these challenges. The proposed estimation algorithms are designed to minimize 

estimation error in both transient and steady-state conditions over a wide velocity range, 

including very low and persistent zero speed operation. To this aim, initially single 

Extended Kalman Filter (EKF) algorithms are designed to estimate the flux, load torque, 

and velocity, as well as the rotor, R /  or stator, Rs resistances. The temperature and 

frequency related variations of these parameters are well-known challenges in the 

estimation and control of IMs, and are subject to ongoing research. To further improve 

estimation and control performance in this thesis, a novel EKF approach is also 

developed which can achieve the simultaneous estimation of R /  and Rs for the first time 

in the sensorless IM control literature. The so-called Switching and Braided EKF 

algorithms are tested through experiments conducted under challenging parameter 

variations over a wide speed range, including under persistent operation at zero speed. 

Finally, in this thesis, a sensorless position control method is also designed using a new 

sliding mode controller (SMC) with reduced chattering. The results obtained with the 

proposed control and estimation schemes appear to be very compatible and many times 

superior to existing literature results for sensorless control of IMs in the very low and 

zero speed range. The developed estimation and control schemes could also be used with 

a variety of the sensorless speed and position control applications, which are challenged 

by a high number of parameter uncertainties.
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Chapter 1:

General Introduction

1.1 The objective of the thesis

The objective of this thesis is to develop robust estimation and control methods for the 

sensorless position and speed control of induction motors (IMs) to address the well- 

known challenges of parameter uncertainties and problems related to wide speed range 

operation, particularly persistent operation at and around zero speed.

Mechanical uncertainties, mainly due to the load torque and friction and electrical 

uncertainties mostly arising from the temperature and frequency dependent variations of 

the rotor and stator resistances, have well-known performance degrading effects on the 

accurate estimation of flux and velocity in the sensorless motion control applications of 

IMs over a wide speed range.

An additional challenge in IM sensorless position and velocity control exists at very low 

and zero speed in steady-state under no-load condition. In this case, the stator current, 

which is the only source of feedback, ceases to convey information on the rotor angular 

velocity, thereby giving rise to significant estimation and control errors.

Another ongoing problem is to improve the dynamic behavior of the IM control system, 

which constitutes a highly nonlinear and fifth order system. To this aim, controllers that 

are robust to the parameter, load, and model uncertainties of the IM have to be designed.

Five journal and two conference papers are prepared within the context of this thesis to 

address the above problems, which are the estimation and control objectives of this work. 

The studies performed in the scope of this dissertation are listed below:
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- Study 1: EKF based estimation of [isa isp y/sa Wsp (On (l Rs] for the direct torque 

control of IM is proposed in Chapter 2. This is the first reported study performing 

the simultaneous estimation of the stator fluxes, yrsa and y/sp, angular velocity, 

(dm, load torque, tL, and the stator resistance, Rs, of the IM besides the stator 

currents, isa and isp, (referred to the stator stationary frame), which are also 

measured as output.

- Study 2: EKF based estimation of [isa isp Yra Wrp (On tL jRs] for the sensorless direct 

vector control of IMs is proposed in Chapter 3. This is the first reported study 

performing the simultaneous estimation of the rotor fluxes, y/ra and y/rp, angular 

velocity, (On, load torque, tL, and the stator resistance, Rs, of the IM besides the 

stator currents, isa and isp, (referred to the stator stationary frame), which are also 

measured as output.

- Study 3: EKF based estimation of [isa isp Vra y/rp (On h  Rs] & look up table -  Rr' 

for the sensorless direct vector control (DVC) of IMs is proposed in Appendix A. 

This is the first study using the combined EKF and look-up table approach for the 

speed-sensorless control of IMs in real-time experiments.

- Study 4: Switching EKF for the estimation of [isa isp Wra tyrp din tL Rs]  & [isa isp 

y/ra y/rp (On tL R r ]  in the sensorless rotor flux oriented DVC of IMs is proposed in 

Chapter 4. This is the first reported study estimating Rs and R f  for the sensorless 

rotor flux  based control of IMs both in the transient and steady state in 

simulations, while also estimating the unknown load torque, velocity, rotor flux 

and stator current components without the need for signal injection or algorithm 

changes as in most previous studies.
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- Study 5: Braided EKF based estimation of [isa isp Wra Wrp (Ok h  #<] & [isa hp Wra 

Wrp (Ok tL R/] for the sensorless rotor flux oriented DVC of IMs is proposed in 

Chapter 5. This is the first reported study estimating Rs and R /  for the sensorless 

rotor flux  hased control of IMs hoth in the transient and steady state in real-time 

experiments besides the accurate estimation of the unknown load torque, velocity, 

rotor flux and stator current components without the need for signal injection or 

algorithm changes as in most previous studies.

- Study 6: Braided EKF for the estimation of [isa isp Wsa W*P (°m h. Rs] & Us a isp Wsa 

Wsp (On h  /?/] is proposed in Appendix B. This is the first reported study 

estimating Rs and Rr' for the sensorless stator flux hased control of IMs both in 

the transient and steady state in simulations and real-time experiments, while also 

estimating the unknown load torque, velocity, rotor flux and stator current 

components without the need for signal injection or algorithm changes as in most 

previous studies.

- Study 7: Sensorless position control of IMs integrating a novel reduced chattering 

sliding-mode controller (SMC) with Braided EKFs is proposed in Chapter 6. This 

is the first reported study presenting a novel reduced chattering SMC law which 

combines the concept of the power rate reaching law and the average-equivalent 

control law for the sensorless position control of IMs.

The major contributions of this thesis are the following:

* Novel single EKF schemes are developed to estimate Rs or R /  as well as the load 

torque, velocity and flux. These schemes yield improved results over existing 

sensorless IM control literature results in terms of estimation and control 

accuracy.
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* Novel “switching” and “braided” EKF techniques are developed which benefit 

from the high convergence rate, persistency of excitation, and smoothing 

performance inherent in EKFs. However, these multi-EKF techniques also offer a 

solution to the well-known problem of single EKFs in estimating a high number 

of parameters. With the design of these novel estimation techniques, the 

simultaneous estimation of Rs and R /  has been possible for the first time in the 

sensorless IM control literature, without the need for signal injection. The results 

demonstrate an improved estimation accuracy over the whole speed range, 

particularly at and around zero speed, even under challenging parameter 

uncertainties and load variations. The resulting peer-reviewed journal 

publications (Barut et al., 2006b; Barut et al., 2006c; Barut et al., 2006d) and 

conference publications (Barut et al., 2005c; Barut and Bogosyan, 2007) are 

presented in the main body of the thesis, and Bogosyan et al. (2006a) and 

Bogosyan et al. (2006b) are presented in the Appendix section.

* A novel sliding mode control (SMC) technique with reduced chattering is 

developed for the sensorless position control of IMs. The approach demonstrates 

improved performance against parameter and load variations in comparison to 

another high performance chattering-free SMC technique used for sensorless IM 

position control (Sahin et al., 1995) and other demanding motion control 

applications (Bogosyan et al., 1997; Bogosyan et al., 1999). The chattering-free 

SMC taken as benchmark has already proven to outperform classical control 

methods in motion control, such as proportional-integral-derivative (PID) control.

1.2 Induction motors

Induction motors (IMs) are the well-known work horses of the industry. This is due to 

their low cost and longevity in addition to their simplicity in terms of manufacturing. 

Another attraction of IMs is that the motor and drive system requires very little or no 

maintenance.
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IMs are represented by the “standard” per phase sinusoidal steady-state (equivalent 

circuit) model based on the concept of a “rotating transformer” shown in Fig. 1.1 (Barnes 

and Gross, 1995). Here, Lu and Rs are the stator leakage inductance and resistance, 

respectively. L// and R /  are the rotor leakage inductance and resistance, referred to the 

stator side, respectively. Lm is the magnetizing inductance. Vs and Is are the amplitude of 

stator voltage and current. 7/ is the amplitude of rotor current referred to the stator side 

and s is the slip.

7 -  R, L,s l̂r  ̂r
▲ ii

J
1 s

-► Airgap power

Fig. 1.1 Per phase sinusoidal steady-state (equivalent circuit) model of the IMs

This model is valid when the IM runs in the steady state with constant rotor speed and 

under sinusoidal supply voltage. If an IM is used within a closed-loop motion control 

application, its transient behavior also has to be taken into consideration (Bose, 2002). 

Therefore, high performance control of the IMs calls for using a dynamic model of the 

IM, which is known as the two-phase or fundamental IM model, described by

d
dt
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Here, Ls =Lis+Lm and L / = L;/+Lm are the stator and rotor inductance, respectively. 

La = o L = {L s - ? f )  is the stator transient inductance. £7 is the leakage factor. vsa and vsp

are the stator stationary axis components of stator voltages. isa and isp are the stator 

stationary axis components of stator currents. y/ra and y/rp are the stator stationary axis 

components of rotor flux. (Dm is the angular velocity. pp is the pole pair. tL is the load 

torque. Ji is the total inertia. Bi is the total viscous friction coefficient.

Eq. (1.1) is valid both in the steady-state and transient state. Considering this model, an IM 

is a dynamic system due to the differential operations, an uncertain time-varying system 

due to the variations in load torque and other system parameters, such as temperature and 

frequency based variations of rotor and stator resistances, and a nonlinear system due to 

the products of the states (Shi, 2001). Therefore, the control of IMs presents significant 

challenges due to this highly nonlinear and coupled fifth order dynamics of the system 

under strong parameter and model uncertainties, and with only three state variables ( isa, 

isp and (Om) that are available for measurement. In this respect, IMs represent a

theoretically attractive and practically significant class of nonlinear systems and their 

control is regarded as a benchmark problem in the area of nonlinear control (Ortega et 

al., 2001). That is why high performance control and estimation techniques of IMs (Bose, 

1997) have been developing very fast and receiving a lot of attention in the literature.

1.3 Control methods for induction motors

Induction motor control methods are classified into two major categories: scalar and 

vector control (Buja and Kazmierkowski, 2004). Fig. 1.2 demonstrates the general 

classification of the variable frequency methods. In this figure, control methods within 

the scope of this thesis are drawn with bold lines.

Fig 1.3 shows the closed-loop scalar control (V/Hz) strategy. In this figure, the difference 

between the reference rotor angular speed value, afm, and the actual rotor angular
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velocity, cô , which is speed error, is processed through a controller, usually a

proportional-integral (PI) controller, and a limiter to obtain the slip-speed reference, corsl.

Then, the slip-speed reference and electrical rotor angular velocity are added together to 

generate the fundamental stator frequency reference. Thereafter, the fundamental stator 

frequency reference also determines the amplitude of the fundamental stator voltage 

reference, V/. Namely, in the scalar control (V/Hz) principle, IM is fed with a 3-phase

Fig. 1.2 Classification of IM control methods (Buja and Kazmierkowski, 2004)

O Enc.
Fig. 1.3 Closed-loop IM drive with constant V/ Hz control strategy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8

sinusoidal voltage whose amplitude is proportional to the frequency, except below the 

boost frequency and over the rated frequency, as shown in Fig. 1.3.

However, scalar control (V/Hz) of IMs results in quasi steady-state control (Martins and 

Carvalho, 2001). The most important variables, such as torque and flux, are neither 

directly nor indirectly controlled in this case (Nash, 1997; Martins and Carvalho, 2001). 

The control is provided with a frequency and voltage reference generator which produces 

an output of constant volts per hertz and, hence, drives a pulse width modulation (PWM). 

Although simple, two of the main drawbacks are limited speed accuracy, especially in 

the low speed range, and poor torque response (Nash, 1997; Martins and Carvalho,

2001). The reaction of the motor to the applied frequency and voltage governs flux and 

torque levels which are not under the control of the drive. Briefly, this control principle 

allows using a sinusoidal steady-state model of the IMs (AYR494, 2005) which is not 

valid for the transient state. Therefore, it satisfies only moderate dynamic demands and 

performances (Holtz, 2002).

On the contrary, vector control uses a state space model of the IMs. Therefore, it 

provides the control of not only the magnitude and frequency (angular velocity) of the 

voltage, current, and flux, but also instantaneous positions of their space vectors. Hence, 

the vector control method offers the correct orientation of these vectors both in transient 

and steady state (Buja and Kazmierkowski, 2004). That is why vector control is called a 

high-performance control method.

As stated by the definition above, vector control is a general control philosophy that can 

be performed in many different ways (Buja and Kazmierkowski, 2004). The greatest 

breakthrough, known as field-oriented control (FOC) or vector control (VC), has been 

proposed by Hasse in 1969 and Blaschke in 1971 in Germany (Buja and Kazmierkowski, 

2004). The utilization of the FOC method, which converts the control of the IM to that of 

a separately excited DC motor by keeping the rotor (or stator) flux constant on the d-axis,
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has brought a renaissance (Bose, 1997) to the high performance control of IMs. This 

approach helps to decouple the flux and torque (speed or position), hence transforming 

the nonlinear system into a linear one. The new coordinates for the IM equations after the 

transformation are called field coordinates (Buja and Kazmierkowski, 2004).

There are two kinds of FOC: direct and indirect (Barut et al., 2002a). The direct field- 

oriented control of IMs seen in Fig. 1.4 necessitates accurate information on the rotor 

speed, as well as (rotor) flux as referred to the stator stationary frame.

■JVra+tffl + I
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** V e lo c ity  e *  
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A depicts estimated states
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*— f * r
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Fig. 1.4 Sensorless direct field oriented (vector) control of IMs

On the other hand, for the indirect field-oriented control of IMs demonstrated in Fig. 1.5, 

accurate knowledge of the slip frequency (calculated as a function of the rotor time 

constant) is required in addition to the rotor speed. Moreover, the main difference 

between the FOC methods is based on the calculation of the decoupling angle or field

angle of the oriented flux, which is 6rf and 0rf in Fig. 1.4 and 1.5, respectively.

However, the performance of both field orientation methods depends primarily on 

accurate values of the motor parameters used in field orientation (Shieh et al., 1998).
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Fig. 1.5 Indirect field oriented (vector) control of IMs

A drawback of FOC is the assumption of a constant rotor flux that leads to an only 

“asymptotically” decoupled rotor velocity from the flux (Bodson et al., 1994). From the 

theoretical perspective, it is possible that a variety of coordinate or nonlinear 

transformations can be proposed to obtain decoupling and linearization of the IM 

equations (Buja and Kazmierkowski, 2004). This has originated in methods known as 

modem nonlinear control. In studies such as Krzeminski (1987), Marino et al. (1990), 

and Marino et al. (1993) a nonlinear transformation is developed which aims at the 

independent control of the speed and rotor flux magnitude in the new coordinates by the 

use of the so-called input-output linearization (feedback linearization or input-output 

decoupling) controller (or by a SMC (Sabanovic and Izosimov, 1981)) (Novotnak et al., 

1999; Buja and Kazmierkowski, 2004). Although the decoupling condition is always 

kept in this method, the performance of the feedback linearization methods depends on 

how well the system parameters are known (Wang and Chen, 2005).

The FOC or feedback linearization control provides the IM with almost the same 

dynamic behavior as in the case of a separately excited dc motor, but both of the control
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schemes are sensitive to parameter and load torque variations of the IM. Furthermore, 

globally defined control laws are required for FOC of IMs (Wang and Chen, 2005).

The passivity approach is another scheme for stability analysis of feedback systems. In 

the passivity based control (PBC) approach, an IM is described in terms of the Euler- 

Lagrange equations expressed in generalized coordinates (Buja and Kazmierkowski, 

2004). Although the controller in PBC is globally stable, the control performance is still 

affected by the parametric uncertainties and external disturbances like the load torque of 

the IM (Wang and Chen, 2005).

In the mid-80s, the direct-torque control (DTC) method was proposed by Takahashi and 

Noguchi (1986), and Depenbrock (1988), which departs from the idea of coordinate 

transformation and the dc motor control analogy (Buja and Kazmierkowski, 2004). DTC 

replaces the decoupling control with hysteresis band comparators, which is highly 

suitable for the on-off operation of inverters in IM control. This control strategy is 

commonly referred to as DTC. Depenbrock’s control method, also called direct self­

control, is preferable in the high power range applications, where a lower inverter 

switching frequency can justify higher current distortion (Casadei et al., 2002). In this 

thesis, the attention will be mainly focused on Takahashi and Noguchi’s control scheme, 

as shown in Fig 1.6, which is more suitable in the small and medium power range 

applications and is also called DTC.

DTC has three distinctive properties (Ortega et al., 2001):

1) It concentrates on stator (instead of rotor) flux regulation.

2) Contrary to classical FOC, it does not aim at an asymptotically stable nonlinear 

transformation (and thus it does not involve additional current control loops).

3) It simply takes into account the discrete nature of the control actions, which 

resembles a switching logic.
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Fig. 1.6 Sensorless direct torque control (DTC) of IM

Currently, both FOC and DTC drives are widely used and are made available on the 

market by several producers (Schofield, 1995; Tiitinen and Surandra, 1996; Casadei et 

al., 2002), but their robust (to parameter and model uncertainties) and speed-sensorless 

solutions, generally established for different applications that require very low or zero 

speed, still do not exist. However, in spite of theoretical issues to be solved, there is a 

noticeable interest from industry, transportation and civil applications for low cost and 

precise speed-sensorless systems able to efficiently drive IMs at very low speed and, 

specifically, at zero speed (Consoli et al., 2003).

1.4 Direct torque control vs. field oriented control

The DTC method (Fig. 1.6) involves the direct choice of the appropriate optimum 

switching modes in order to keep the flux and torque errors within a predetermined band 

limit (in a hysteresis band) (Casadei et al., 2002). The errors are defined as the difference 

between the reference and the measured (estimated) values of flux and torque.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

Unlike FOC methods (Fig. 1.4 and 1.5), the DTC technique requires utilization of 

hysteresis band comparators instead of flux and torque controllers, Pis. To replace the 

coordinate transformations and pulse width modulation (PWM) signal generators of 

FOC, DTC uses look-up tables to select the switching procedure based on the inverter 

states. Therefore, the configuration of the DTC is much simpler than the FOC system 

(Idris and Yatim, 2004). Because of the delays removed in DTC, which are related to the 

PWM modulator stage and Pis (current control loops), torque response is better than that 

available with either dc or field oriented control (Schofield, 1995; Nash, 1997; Casadei et 

al., 2002).

However, the response during steady-state operation of DTC drives includes 

considerable torque, flux, and current ripples or spikes, and acoustical noise arises during 

operation. Actually, the two major problems associated with DTC drives have been 

addressed in the literature: the variation of the switching frequency of the inverter used in 

the drives with operating conditions and the high torque ripple (Idris and Yatim, 2004). 

However, using space-vector modulation (SVM), instead of the switching logic in the 

conventional DTC, offers better control and helps improve the steady-state behavior of 

the drive (Lascu et al., 2004a). Finally, DTC drives with SVM provide excellent 

performance in terms of reduced torque and flux pulsations, reliable startup and low 

speed operation, a well-defined harmonic spectrum, and quiet operation (Lascu et al., 

2004a; Buja and Kazmierkowski, 2004). Thus, the switching frequency is constant and 

the switching pattern can be further optimized.

1.5 Requirements for speed or position-sensorless FOC and DTC systems of IMs

Both control methods could be developed with reference to stator, air-gap and rotor flux. 

However, rotor oriented control that allows for the independent control of flux and torque 

is preferred for FOC. Stator based control, which is less sensitive to parameter variations 

offers a simpler solution and is, therefore, more adequate for DTC (Barut et al., 2005a).
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To achieve high efficiency control, both FOC and DTC require the accurate knowledge 

of the amplitude and angular position of the flux with reference to the stationary stator 

axis (in Cartesian coordinates). Additionally, information on the rotor angular velocity is 

required for velocity control over a wide speed range and in the low and zero-speed 

range for position control applications. In the conventional approach, the flux vector is 

obtained utilizing the Hall effect or search coil sensors, while incremental encoders are 

used for rotor angular velocity (Barut et al., 2005a). A problem with the utilization of 

measurement devices is the increased hardware complexity and cost. Additionally, those 

sensors are usually affected by mechanical vibrations and high temperatures of the 

operating environment. Thus, it is often more practical to attain the states by observers or 

estimators. However, the fifth-order nonlinear and time-varying nature of the 

mathematical model of the IM poses some problems in the observer design, mainly 

arising from modeling errors, parameter uncertainties and changing operating conditions. 

Finally, all requirements for the velocity and position control applications of the speed or 

position-sensorless FOC and DTC IM drives are summarized in Table 1.1 (Casadei et al., 

2002; Wai, 2002; Consoli et al, 2003; Buja and Kazmierkowski, 2004).

Table 1.1 Summary of requirements for speed or position-sensorless FOC and DTC

of IMs
Indirect FOC Direct FOC DTC

Flux information - / /

Speed information / V

Summary of control task 1) To obtain robust 

estimations of speed and 

rotor time constant in the 

ranges of zero, low and high 

velocities for both in steady 

and transient states of IM.

1) To obtain robust 

estimations of speed and flux  

in the ranges of zero, low and 

high velocities for both steady 

and transient states of IM.

1) To obtain robust 

estimations of speed and flux  

in the ranges of zero, low and 

high velocities for both steady 

and transient states of IM.

2) To design robust 

controllers like PI/PID or 

other type

2) To design robust 

controllers like PI/PID or 

other type

2) To design robust 

controllers like PI/PID or 

other type

PI is a proportional-integral controller.

PID is a proportional-integral-derivative controller
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1.6 Problems associated with observer/estimator design for IMs

The design of reliable observers and estimators for highly uncertain, time-varying, high 

order, nonlinear and dynamic systems such as IMs is a difficult task due to temperature 

and frequency dependent system parameters as well as instantaneous variations of load 

torque and velocity. Uncertainties in the IM parameter estimates are the most crucial 

factors in the design of an observer or estimator. From the general point of view, 

uncertainties in an electric motor can be classified in two groups—electrical and 

mechanical. The stator and rotor resistances are the most important sources of electrical 

uncertainty in an IM due to their dependence on temperature and frequency. For the 

stator side, the variation of the resistance could be determined by measuring or 

estimating the temperature (Al-Tayie and Acamley, 1997), but there are physical 

difficulties in determining the rotor resistance in a squirrel cage IM. The performance of 

speed-sensorless control systems is also affected by mechanical uncertainties related to 

load torque and friction. Therefore, uncertainties related to the resistances and the 

mechanical side should be identified or estimated simultaneously to achieve an improved 

control performance.

On the other hand, the performance of estimation and hence speed-sensorless control still 

constitutes a persisting challenge at low and zero speed (Holtz, 2006). Besides parameter 

uncertainties, problems arise due to increased noise-to-signal ratios in measured output 

voltage and input currents, especially under low or no load conditions. An additional 

difficulty is encountered at zero speed in steady-state, when the stator currents, which are 

measured as output in sensorless control, cease to convey information on the rotor 

angular velocity around zero stator frequency (Holtz, 2000; Holtz and Quan, 2003). This 

is mainly due to the fact that all flux estimation methods rely on the effect of the rotor 

induced voltages on the measured variables of the stator side and those effects almost 

vanish with decreasing stator frequency (Holtz, 2000; Holtz, 2006). Thus, in the design 

of observers for sensorless control of IMs, not only robustness against parameter and
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model uncertainties must be achieved, but solutions must be sought for operation at and 

around zero speed.

1.7 Observers/estimators designed for the speed-sensorless control of IMs

In the conventional estimation approach, the flux vector is obtained from the voltage (V­

I) model using the measured stator voltages and currents and/or the current (I-co) model 

requiring the measured stator current and rotor angular velocity (Jansen and Lorenz, 

. 1994). The V-I estimator utilizing open-loop pure integration suffers from increased 

noise on voltage and current and quantization errors in the digital system, in addition to 

problems related to the offset, gain and conversion factors especially in the low speed 

operation range (Vas, 1998), even with the correct knowledge of the stator resistance. As 

a solution to the problem, the integrator is replaced by a low-pass filter. However, in this 

case, as the stator excitation frequency approaches the corner frequency of the filter, the 

filter gain decreases and more importantly, because the 90° phase shift is not maintained, 

the accurate determination of the flux position with respect to the stationary stator axis is 

not possible (Holtz, 2002). The I-co estimator, on the other hand, is highly sensitive to 

rotor time constant variations, particularly in the high velocity range (at no-load) where 

slip rate assumes very small values and small errors in the velocity measurement give 

rise to considerable errors in the determination of flux position (Habetler et al., 1998). In 

velocity control applications, the design of both I-co and V-I flux estimators require 

knowledge of the rotor mechanical velocity. However, open-loop flux and velocity 

estimators (Vas, 1998) designed to meet this requirement are highly sensitive to 

parameter variations. Therefore, closed-loop parameter and state estimators are 

developed for an improved performance against errors in the initial values of the states as 

well as parameter and model uncertainties.

Among the first reported studies on closed-loop velocity estimation, Schauder (1992) 

takes a Model-Reference Adaptive System (MRAS) approach based on Popov’s stability 

criterion assuming the slower variation of velocity with respect to the electrical states.
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Improvements have been made to this study in terms of parameter variation and 

integration in Fang-Zheng and Fukao (1994). However, the estimation performance in 

Schauder (1992), and Fang-Zheng and Fukao (1994) and in a more recent study (Vasic 

and Vukosavic, 2001), is not quite satisfactory in the very low or zero speed region due 

to the open loop flux estimation and/or the utilization of the back electro-motive force 

(EMF) vector for the estimation of velocity.

To achieve an improved performance, closed-loop estimators and observers have been 

designed for the determination of flux as well as velocity. Among the first reported 

studies taking this approach, Sangwongwanich et al. (1990) uses SMC, Tajima and Hori 

(1993) develops a Gopinath’s reduced-order observer, while Kubota et al. (1993) and 

Yang and Chin (1993) utilize the Lyapunov and Popov criteria, respectively. Stable 

observers have not been achieved with these approaches, for the very low and zero 

frequency range in the regenerative region (Sangwongwanich et al., 1990; Tajima and 

Hori, 1993; Kubota et al., 2002; Suwankawin and Sangwongwanich, 2002), except in 

Hinkkanen (2004). Additionally, with the speed adaptive full-order flux observer in 

Kubota et al. (1993) and Yang and Chin (1993), the observer gain matrix requires 

adjustment to suppress the oscillations on the estimated velocity resulting from the 

variation of velocity references and load conditions in the steady-state (Kojabadi et al.,

2002). Sliding-Mode Observers (SMO), as in Utkin (1993) and Sahin et al. (1995), have 

also been designed with the error correction term reflected in the observer model as a 

multiplicative term. In theory, the switching frequency should be infinite to prevent 

chattering on the sliding surface (Rodic and Jezemik, 2002), which poses problems in 

some applications. A recent study given in Lascu et al. (2004a) uses a sliding-mode flux 

observer with chattering that does not require speed adaptation and SMO based stator 

resistance adaptation for speed-sensorless control. Satisfactory results are presented in 

the 3-6 rpm operation region, but no results are presented in the zero speed region. 

Derdiyok et al. (2002) present a chattering-free SMO observing the rotor flux and
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velocity as well as the rotor time constant. However, persistent operation at zero speed 

has not been addressed.

Another method utilized for the closed-loop state and parameter estimation of IMs is the 

Extended Luenberger Observer (ELO). In studies, such as Du et al. (1995), the velocity is 

reflected in the model as a slow varying or constant parameter. In spite of an improved 

performance in the steady-state, this approach has given rise to a significant observer 

error in the velocity during the transient state. Additionally, to improve the system 

response for various speeds, the observer gain matrix is adjusted based on the rotor 

speed. Differently, in Du and Brdys (1993), the estimation of the angular velocity is 

carried out using the equation of motion. However, similar to other ELO based studies on 

speed-sensorless control, performance in the low speed region has not been addressed.

To address the problems in the low and zero speed range, the motor anisotropies are 

exploited, either via the injection of continuous high frequency signals or by direct use of 

the inverter PWM signals, which cause repetitive transient excitation (Holtz and Quan,

2003). These methods using the anisotropic properties of the machine (Holtz, 2006; 

Caruana et al., 2006) and model based methods using induction motor state equations 

have been competing for the improvement of the zero and low speed performance of 

sensorless IM drives (Holtz, 2006). Speed-sensorless control methods based on the signal 

injection are capable of long-term stability at zero stator frequency. However, they are 

highly sophisticated and require customized designs for a particular motor drive (Holtz 

and Quan, 2003; Holtz, 2006). Because of these restrictions, improving the estimation 

accuracy of the fundamental model becomes highly attractive again.

Therefore, for the solution of the problem at zero and very low speed, new model based 

estimation methods have been proposed recently, such as those in Cirrincione and Pucci 

(2005), Cirrincione et al. (2006), and Edelbaher et al. (2006), specifically addressing 

persistent operation at zero speed. Among those studies, Cirrincione and Pucci (2005)
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use MRAS based linear neural networks presenting results with a maximum velocity 

estimation error of 95 [rpm] during a persistent operation interval of 60 [sec] at zero 

speed. Cirrincione et al. (2006) use a total least square (TLS) based speed adaptive flux 

observer which enables zero stator frequency operation over an interval of 60 [sec], with 

mean and maximum estimation error values of 1.34 [rpm] and 38 [rpm], respectively, at 

zero load. Edelbaher et al. (2006) utilize a continuous sliding mode approach, for which 

zero stator frequency results are obtained under load and presented only for a very short 

interval of 4 [sec].

As is well known, temperature and frequency based variations of stator (Rs) and rotor 

(/?/) resistances play an important role in the rotor and stator oriented IM models and 

their variations influence the estimation and control performance significantly besides 

variations in load torque. Some studies seeking an observer-based solution to the 

problem of the parameter variations could be listed as follows. In Lascu et al. (2004a), 

besides a speed estimator, a sliding mode based flux observer and an online sliding-mode 

adaptation for the stator resistance is designed for the DTC of IMs, but the speed 

estimator and the resistance adaptation suffer from variations of the rotor resistance and 

the load torque, respectively. In the speed-sensorless study based on a speed adaptive 

flux observer (Guidi and Umida, 2000), the stator resistance has been estimated based on 

a two-time scale approach, while in the ELO in Du and Brdys (1993), the rotor fluxes 

and rotor velocity are estimated, as well as the step-type load torque. However, no 

estimation has been conducted for the stator resistance. Also, neither of the studies in 

Guidi and Umida (2000) and Du and Brdys (1993) have taken the rotor resistance into 

consideration. On the other hand in Faiz and Sharifian (2001), the angular velocity and 

slip frequency (reflecting in the effect of the load torque) have been taken into account in 

addition to the rotor resistance, only with an initial value of R/(0)=0.S5 Rm'.

Among studies reported so far on Rs and Rr' estimation, Faiz and Sharifian (2001) state 

that the simultaneous estimation of the stator and rotor resistances gives rise to instability
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in the speed-sensorless case. On the other hand, in studies such as Ha and Lee, (2000), 

and Tajima et al. (2002) the speed and rotor flux are estimated besides stator resistance 

and rotor resistance by injecting high frequency signals to the flux and magnetizing 

current commands, respectively. However, in Ha and Lee (2000), the algorithm 

identifying the resistances used in a feedback linearization controller is applicable only 

when the sensorless speed control system is in steady state, but not when the load torque 

is varying largely or when the speed command is being changed, as stated by the authors. 

On the other hand, in Tajima et al. (2002), it is stated that persistent operation at zero 

frequency is not possible and that the proposed drive can compete with a speed sensor 

equipped drive only if accuracy in steady-state is not essential and operation under high 

loads is not a requirement. Zhen and Xu (1998) present a MRAS based on 3 models, one 

of which is used for the estimation of the rotor time constant via high frequency signal 

injection. The other 2 models are used interchangeably, by enabling the stator resistance 

estimation only during short intervals, during which the rotor speed has reached the 

steady state. Recently, Edelbaher et al. (2006) present a sensorless control scheme using 

an open-loop estimator to calculate R /  and a model reference adaptation for Rs. 

However, the performance of the parameter estimation is not demonstrated and only 

evaluated indirectly via the estimated velocity and flux. Among other studies performing 

Rs and R /  estimation, in Cirrincione et al. (2006), Lascu et al. (2005), Ohyama et al. 

(2005), Lascu et al. (2004a) and Lascu and Trzynadlowski (2004b), R,' estimation is 

conducted by adjusting its value in proportion to the estimated Rs.

In addition to the above mentioned group of studies taking a deterministic approach to 

the design of closed-loop observers, there are also Extended Kalman Filter (EKF) based 

applications in the literature, taking a stochastic approach for the control of IMs with 

velocity sensors (Lin, 1996; Wade et al., 1997; Finch et al., 1998) and without sensors.

The Kalman filter (KF) is a well-known recursive algorithm that takes the stochastic state 

space model of the system into account, together with measured outputs to achieve the
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optimal estimation of states (Chen and Dunnigan, 2002) in multi-input, multi-output 

systems. The system and measurement noises are considered to be in the form of white 

noise. These noises represent computational inaccuracies, modelling errors and errors in 

the measurements. The optimality of the state estimation is achieved with the 

minimization of the covariance of the estimation error. For nonlinear problems, such as 

IMs, the KF is not strictly applicable, since linearity plays an important role in its 

derivation and performance as an optimal filter. The EKF attempts to overcome this 

difficulty by using a linearized approximation where the linearization is performed about 

the current state estimate (Goodwin and Sin, 1984). This process requires a discrete 

model of the IM, which can be given in the following general form:

Here /  is the nonlinear function of the states. xe is the extended state vector. Ae is the

system matrix. ue is the control input vector. Be is the input matrix. he is the function of 

the outputs. H_e is the measurement matrix, yv, and w2 are the process and measurement 

noise, respectively.

As mentioned before, EKF involves the linearized approximation of the nonlinear model 

(1.2-1.3) and uses the current estimation of states x e(k) and inputs ue{k) in linearization

xe{k + \) = t e{xe{k\ue{k))+ m {k )

=  A e  (X e  i k ) ) * e  M + R e U e  { k )  +  m i k )
(1.2)

Z{k) = he(xe{k))+w2(k) 
= K exe(k)+w2{k)

(measurement equation) (1.3)

by using,

(1.4)
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Different from standard EKF applications, in this thesis the EKF scheme is derived with 

the consideration of control input error for increased estimation accuracy, based on a 

study (Bogosyan et al., 2001) on EKF applications to motion control systems. This 

approach involves the addition of the following term:

due(k)
(1.5)

With this addition, the EKF algorithm can be given in the following recursive relations:

N(k) = F e (k)P(k)Fe ( k f  + F u {k)Du F u ( k f + Q  (1.6a)

P{k + l) = N{k)~ N{k)HTe (d # + H eN{k)KTe Y U M * )  (1 -7b)

X.{k +1) = l e(xe( 4 ue(k)) + P{k +1 )HTe D f 1 {Z{k)- H exe{k)) (1,8c)

Here, Q is the covariance matrix of the system noise, namely model error. is the 

covariance matrix of the output noise, namely measurement noise. Du is the covariance 

matrix of the control input noise ( vsa and vsfj), namely input noise. P and N  are the 

covariance matrix of state estimation error and extrapolation error, respectively.

The algorithm involves two main stages: prediction and filtering. In the prediction stage, 

the next predicted states /  (.) and predicted state error covariance matrices, P(.) and

N_(.) are processed, while in the filtering stage, next estimated states, xe(/c+l), obtained as 

the sum of the next predicted states and the correction term (2nd term in (1.8c)) are 

calculated.

The EKF algorithm utilizes the extended or augmented model in (1.2) and (1.3) to 

generate all states required for the sensorless control system, by using the measured
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phase currents, is ap, and voltages, vs afj. The schematic representation of the algorithm is 

given in Fig. 1.7.

Fig. 1.7 Structure of EKF algorithm for speed-sensorless estimation in IMs.

Different from the other methods, the model uncertainties and nonlinearities inherent in 

IMs are well suited to the stochastic nature of EKFs (Wade et al., 1995; Cupertino et al., 

1999). With this method, it is possible to make the online estimation of states while 

performing the simultaneous identification of parameters in a relatively short time 

interval (Salvatore et al., 1993), by also taking system and process and measurement 

noises directly into account. This is the reason why the EKF has found wide application 

in sensorless control of IMs, in spite of its computational complexity. However, with the 

developments in high performance processor technology, the computational burden and 

speed of EKF has ceased to be a problem. Among recent sensorless studies using EKF 

estimation for IMs, Kim et al. (1994) and Shi et al. (2002) estimate the flux and velocity, 

while Lee and Chen (1998) uses an adaptive flux observer in combination with a reduced
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second order Kalman filter for the same purpose. None of these studies estimate the load 

and motor resistances, resulting in a performance that is sensitive to the variation of these 

parameters. In the reduced order EKF studies in Wenqiang et al. (2001), Qiongxuan and 

Zhiyue (2000), Garcia Soto et al. (1999), and El Moucary et al. (1999), the velocity is 

estimated as a constant parameter, which gives rise to a significant estimation error in the 

velocity during the transient state, especially under instantaneous load variations, 

although the performance is improved in the steady state. While Wenqiang et al. (2001), 

Qiongxuan and Zhiyue (2000), and Garcia Soto et al. (1999) methods are sensitive to the 

resistance variations, El Moucary et al. (1999) also estimate the rotor resistance only. 

However, the estimation of rotor resistance is performed by the injection of low 

amplitude, high frequency signals to the flux reference in the direct vector control (DVC) 

of IMs. This has caused fluctuations in the motor flux, torque and speed. The other 

studies such as Chen and Dunnigan (2002) with speed sensors, and Du and Brdys (1993) 

without speed sensors compare the results of EKF using the IM model in the rotating 

axes (the synchronous frame) with that of SMO and ELO for high speed operation, 

respectively. Finally, Zhou and Lai (2000) perform the low speed performance 

comparison of open-loop speed estimator, MRAS, ELO, and EKF based estimators. A 

common feature in all these studies is the estimation of velocity, which is taken into 

consideration as a slow varying or constant parameter, except in Du and Brdys (1993). 

Although good results have been obtained in those studies in the relatively low and high 

speed operation region, the performance at zero stator frequency or at very low speed is 

not satisfactory or not addressed at all.

Finally, our previous studies on the sensorless velocity control of IMs, which estimate all 

states required for speed-sensorless FOC or DTC of the IM, as well as the load torque 

including viscous friction (Barut et al., 2002b; Barut et al., 2003a; Barut et al. 2003b; 

Barut et al., 2004; Barut et al., 2006a) or the load torque and rotor resistance (Barut et al., 

2002a; Barut et al., 2003c; Barut et al., 2003d; Barut et al., 2005a, Barut et al., 2005b), 

demonstrate improved results both in simulations and experiments performed in a wide
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speed range, including high, low and zero speed. In these studies, the velocity has been 

estimated via the consideration of the equation of motion in the EKF models. However, 

all of the results in our previous studies are noted to be sensitive to variations in stator 

resistance, especially at very low velocity and zero speed.

1.8 Controllers designed for the sensorless position control of IMs

As mentioned previously in Section 1.5, control objectives mainly involve the 

development of robust controllers against parameter and model uncertainties. This could 

be achieved by adaptive feedback linearization methods provided the system model and 

parameters are known accurately. However, considering the uncertainties involved with 

the IM model, SMC based robust control methods may be viewed as more viable 

solutions for sensorless IM control.

PID controllers are widely used in motor control and other industrial applications 

because they provide simple structure, design and implementation, while also ensuring a 

good control performance (Astrom and Hagglund, 2001; Kukolj et al., 2001; Kim and 

Han, 2006). However, the parameter-tuning of the controller is quite a difficult task for 

highly nonlinear systems, such as IMs under parameter variations and external 

disturbances, when the aim is to track desired dynamics (Heber et al., 1997; Wai, 2003). 

Therefore, artificial intelligence based studies as in Wai (2003), Wai and Chang (2004), 

and Khaorapapong and Ariyadirek (2004) recently have also been proposed for the 

position control of IMs. However, these methods need computationally complex 

algorithms, network architecture or fuzzy rules which are constructed by a time­

consuming trial-and-error tuning procedure.

The SMC is a very effective approach for the solution of the problem due to its well- 

established design criteria, easy implementation, fast dynamic response, and robustness 

to parameter variations, when a system is in a sliding mode (Utkin, 1993; Hung et al., 

1993; Kaynak et al., 2001; Shiau and Lin, 2001). However, the well-known drawback of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

the SMC is chattering, which is due to high-frequency control activity and may excite 

unmodeled plant dynamics. Thus, to reduce the chattering, several modifications have 

been proposed in previous work related to the sliding mode position control of IMs. 

Dunnigan et al. (1998), Xia et al. (2000), Goh et al. (2004), and Wang and Chen (2005) 

use Slotine’s sliding mode control approach, first-order low-pass filter (LPF), a pseudo 

sliding technique, and an adaptive law for estimating the load torque disturbance, 

respectively. In Dunnigan et al. (1998), the tracking error is kept in a thin boundary layer, 

while the work of Xia et al. (2000) gives a sluggish response in the transient state. While 

electrical uncertainty effects on performance of the controller were not addressed at all in 

Goh et al. (2004), the method used in Wang and Chen (2005) is sensitive to variations in 

the rotor time constant and no sinusoidal tracking control results were presented. 

Moreover, in all studies mentioned above, position sensors have been used.

Among previous studies using SMC for the sensorless position control of IMs, Sahin et 

al. (1995) present a chattering-free SMC based on the average-equivalent control 

approach. The simulation results have been obtained under variations of 20% and %8 in 

rotor and stator resistance at rated load, respectively. However, zero load-zero speed 

operation, which is very critical in the sensorless position control of IMs, has not been 

addressed at all. Moreover, it should be noted that there is a trade-off between robustness 

and chattering reduction (Suyitno et al., 1993).

1.9 Studies performed in the scope of this thesis

In this thesis, to meet the challenges in sensorless position control, initially methods are 

sought to address problems related to accurate estimation of parameters and states, 

particularly at low and zero speed within the context of sensorless velocity control. To 

this aim, first, two new EKF based observers (Barut et al., 2005c; Barut et al., 2006b) are 

developed for speed-sensorless DTC and direct FOC (or also called DVC) in order to 

improve the estimation performance at very low and zero speed operation by achieving 

robustness against variations in the stator resistance and load torque. The differences
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between these two studies are the proposed IM models used in each EKF algorithm and 

their simulation based testing for DTC in the former, and DVC in the latter paper in order 

to evaluate the performance of the obtained EKF algorithm. To provide solutions for 

both types of flux orientations, Barut et al. (2005c) provide the independent control of 

flux and torque for DVC, while Barut et al. (2006b) consider the stator flux based IM 

model offering a simpler solution by DTC. Hence, the results obtained with different 

sensorless control methods in both studies indicate that the proposed EKF based 

observers perform well with different switching procedures of inverters required by the 

control methods in each study. Additionally, due to the system noise (model errors) 

inherently introduced in EKF schemes, there has been no need to add white noise to the 

measured states (in this case stator currents). The estimation of the motor velocity via the 

equation of motion in combination with the PWM originated dynamics of the current 

help reflect the rotor information to the stator side via the mechanical torque. This aspect 

of EKF becomes particularly useful in sensorless estimation in the problematic low and 

zero speed operation region. For improved estimation accuracy, The proposed EKF 

algorithms also take into consideration the control input error due to the limited 

wordlength of the analog-to-digital converter (ADC), as first implemented for high 

precision motion control in Bogosyan et al. (2001). Thus, both Barut et al. (2005c) and 

(2006b) have yielded good results through simulations by removing the deteriorating 

effects of stator resistance and load torque uncertainties, particularly in low and zero 

speed operation, without the need for signal injection as is commonly the case in 

previous studies. However, the results have also demonstrated that the frequency and 

temperature uncertainties related to the rotor resistance are significant throughout the 

whole velocity range. Hence, they should also be estimated to improve estimation 

accuracy for high performance sensorless motion control.

Thus, as a simple solution, in Bogosyan et al. (2006a) an algorithm is developed, which 

combines the estimations of the stator resistance, Rs, load torque, ti, velocity and rotor 

flux with an offline-estimation of rotor resistance, R /. To this aim, the extended model is
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continuously updated with Rr' values from a look-up table, which is constructed via the 

EKF estimation in Barut et al. (2005b). As demonstrated by the successful experimental 

results obtained with the combined EKF and look-up table approach, the estimated states 

and parameters undergo a very short transient and attain their steady-state values 

accurately, with no need for signal injection due to the inherent noise introduced by EKF. 

The significant improvement achieved with the estimation scheme over a wide speed 

range motivates the utilization of the approach in practice, in cases where one single EKF 

might not be adequate to handle the high number of parameters to be estimated, thereby 

compromising estimation accuracy. However, the performance of the approach should be 

further improved by increasing the “sensitivity” of the Rr' look-up table to velocity, 

torque and temperature variations or better yet by incorporating a second on-line EKF 

scheme, which runs in parallel (or consecutively) with the first, to estimate the additional 

parameters. This solution also addresses the well-known limitations of a single EKF 

estimating a high number of parameters.

Estimation of a high number of parameters and states was first implemented by using the 

parallel processing capability of supercomputers in Bogosyan (2004) and promising 

results were obtained. However, due to the practical aims of the sensorless IM control 

and considering the limitations of current microcontroller technologies, the consecutive 

use of the EKF algorithms (instead of parallel) was seen as a more realistic option in this 

thesis. Thus, another novel concept of EKF implementation has been introduced in Barut 

et al. (2006c) and Barut et al. (2006d), leading to the first reported studies for the 

simultaneous on-line estimation of the stator and rotor resistances in sensorless control of 

IMs.

The resulting Switching and Braided EKF estimation techniques offer different variations 

for the implementation of multiple EKF algorithms to estimate accurately a higher 

number of parameters than would be possible with any single EKF or other algorithm. 

The technique is based on the consecutive execution of two EKF algorithms having
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exactly the same configuration and being derived based on the same extended model, 

except for one state where Rs in one is replaced by R /  in the other. The number of 

sampling periods, n, is determined based on the desired system performance. The 

Switching EKF approach thus applied provides the accurate estimation of an increased 

number of parameters than would be possible with a single EKF algorithm. The Braided 

EKF, on the other hand, intends to keep a “close eye” on the estimation error in case of 

faster or unmatching parameter variations (uncertainties occurring in parameters that are 

not estimated in that interval), and switches the EKF algorithms on and off at every 

sampling period. Both Braided and Switching EKF algorithms perform the simultaneous 

and accurate estimation of rotor, R /  and stator, Rs resistances, both in the transient and 

steady state, and in both high and low or zero speed operation, which is seen as an 

important challenge in speed-sensorless IM control. Both methods are tested with 

simulations and experiments under challenging variations of the load torque, velocity 

references and with both matched and unmatched parameter variations. The new 

algorithms yield improved Rr' and Rs estimation performance, both in the transient and 

steady state of speed and load torque variations, over previous methods requiring signal 

injection and algorithm changes for different parameters at constant speed.

The major difference between Barut et al. (2006d) and Bogosyan et al. (2006b) is that in 

the latter braided technique, the two EKFs use their own covariance matrix of state 

estimation error, which is different from previous studies (Barut et al., 2006c; Barut et 

al., 2006d) where the two EKF algorithms running in turn use the same covariance 

matrix of state estimation error. Another difference is that while Barut et al. (2006d) is 

tested experimentally for the DVC control strategy and mostly in low and high speed 

regions, Bogosyan et al. (2006b) is tested experimentally for DTC of IMs and in the 

whole speed range, with particular emphasis on persistent operation in the zero speed 

range and under no load conditions. All EKF schemes also estimate the velocity via the 

equation of motion, and not as a constant term as is common with most past studies.
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Lastly, a novel reduced chattering SMC law is developed for the sensorless position 

control of IMs (Fig. 1.8) in Barut and Bogosyan (2007).
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Fig. 1.8 The proposed sliding-mode position control system.

The developed control combines the concept of the power rate reaching law in Hung et 

al. (1993) and the average-equivalent control law in Bogosyan et al. (1997) and 

Bogosyan et al. (1999). In the proposed control law, the equivalent control represents the 

average control signal which is required to keep the switching variable on the switching 

surface. The power rate switching term is considered to make the controller robust 

against matched uncertainties and to attain sliding mode in a short time interval. 

However, although the control law is robust against parameter variations, in sensorless 

control, the performance is very much dependent on how well the states are estimated. 

This, in turn, calls for reliable estimation methods that can account for stator and rotor 

resistance variations as well as the load torque. To this aim, the developed controller is 

combined with the novel Braided EKF estimation technique developed in Barut et al. 

(2006d). Finally, the obtained simulation results show that the proposed SMC and
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estimator combination provides a superior performance over the SMC and observer in 

Sahin et al. (1995).

Below is a per paper summary of the main contributions of the thesis:

- Study 1: EKF based estimation o f [isa isp y/sa y/sp (Om tL / y  for the DTC oflM.

The major contribution of this study is the development of an Extended Kalman Filter 

(EKF) based speed-sensorless direct torque control (DTC) of induction motors (IMs) 

for an improved performance, especially at low and zero speed operation by achieving 

robustness against variations in the stator resistance and load torque. This is achieved 

by the EKF based simultaneous estimation of the stator fluxes, y/sa ar|d y/sp, angular 

velocity, (On, load torque, tL , and the stator resistance, Rs, as well as the stator currents, 

isa and isp, (referred to the stator stationary frame), which are also measured as output. 

Resulting conference papers: Barut, M., Bogosyan, S. and Gokasan, M. (2005c) (in 

Chapter 2).

- Study 2: EKF based estimation o f [isa isp y/ra y/rp (On tL R f  for the sensorless DVC of 

IMs.

The major contribution of this study is the development of an EKF based rotor flux 

oriented speed-sensorless direct vector control (DVC) system of induction motors 

(IMs). The approach taken in the study increases robustness against stator resistance, 

Rs, and load torque, tL, uncertainties, the effects of which are known to give rise to 

performance deteriorations in the sensorless control of IMs, especially at very low and 

zero speed operation. This is achieved by the EKF based simultaneous estimation of 

the rotor fluxes, y/ra and y/rp, angular velocity, (On, load torque, C, and the stator 

resistance, Rs, of the IM besides the stator currents, isa and isp, (referred to the stator 

stationary frame), which are also measured as output.

Resulting journal papers: Barut, M., Bogosyan, S. and Gokasan, M. (2006b) (in 

Chapter 3).
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-  Study 3: EKF based estimation o f [isa isp y/ra y/,p (On h  & look up table -  R f  for the 

sensorless DVC o f IMs.

The major contribution of this study is the development of an EKF based scheme, 

which aims to solve the Rs and R f  estimation problem in IM sensorless control. This is 

achieved by the combined EKF and look-up table approach for the speed-sensorless 

control of IMs in real-time experiments. That is, to further improve estimation 

accuracy, the extended model of the EKF algorithm is continuously updated with R /  

values from a look-up table, which is also constructed via a self-commissioning EKF 

scheme.

Resulting journal papers: Bogosyan, S., Barut, M., and Gokasan, M. (2006a) (in 

Appendix A).

-  Study 4: Switching EKF fo r the estimation o f [isa isp tyra typ (Qn tL Rs] & [ha isp tyra typ 

(On tL Rr'] in the sensorless rotor flux oriented DVC o f IMs.

The major contribution of this study is the development of a “switching” EKF based 

estimation technique, which aims at the accurate estimation of an increased number of 

parameters both in the transient and steady state for sensorless control of IMs. It is 

based on two EKF algorithms that are switched on and off every n sampling periods 

(nxT). The novel technique is specifically used for the estimation of rotor and stator 

resistances, R /  and Rs, besides the unknown load torque, velocity, rotor flux and stator 

current components without signal injection, and performs the simultaneous estimation 

of Rs and R /  for the sensorless rotor flux based control of IMs both in the transient and 

steady state in simulations. The proposed algorithm is run in combination with the 

speed-sensorless rotor flux oriented direct vector control (DVC) of IMs.

Resulting journal papers: Barut, M., Bogosyan, S. and Gokasan, M. (2006c) (in 

Chapter 4)

- Study 5: Braided EKF based estimation o f [isa isp y/ra y/rp (On tL .̂v] & isp tym Yrp °Vi 

tL Rr'] for the sensorless rotor flux oriented DVC o f IMs.
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The major contribution of this study is the development of a “braided” EKF based 

observer approach for the speed-sensorless rotor flux based control of IMs. The 

observer involves the consecutive use of two EKF algorithms at every time step and 

achieves the simultaneous estimation of Rs and R j  as well as flux, torque and velocity, 

without the need for signal injection or algorithm changes as in most previous studies. 

In this study, the effectiveness of the method is demonstrated by real-time experiments 

in the low and high speed range.

Resulting journal papers: Barut, M., Bogosyan, S. and Gokasan, M. (2006d) (in 

Chapter 5).

- Study 6: Braided EKF for the estimation o f [isa isp Wsa WsP tQn & [isa isp Wsa WsP 

(Om tL Rr ] •

The major contribution of this study is the development of the Braided EKF technique 

for speed-sensorless stator flux  based control of IMs. The algorithm is once again used 

for the simultaneous estimation of Rs and R f  to improve the estimation accuracy of flux 

and velocity both in the transient and steady state. The performance of the Braided 

EKF technique is demonstrated using simulations and real-time experiments over a 

wide speed range, and particularly for persistent operation at zero speed. It has been 

noted that the new algorithm outperforms, or is at least comparable to the few past 

studies in all speed ranges and particularly at and around zero speed.

Resulting journal papers: Bogosyan, S., Barut, M., and Gokasan, M. (2006b) (in 

Appendix B).

- Study 7: Sensorless position control o f IMs integrating a novel reduced chattering 

sliding mode controller (SMC) with Braided EKFs.

The major contribution of this study is the development of a sensorless sliding mode 

position control method for the rotor flux oriented DVC of IMs. The reduced-order 

sliding mode controller (SMC) combines the power rate reaching law with the average- 

equivalent control law. In this study, the new SMC is integrated with the Braided EKF
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to demonstrate the performance of the combined estimation and control for the 

sensorless position control of IMs. The simulation results demonstrate a very promising 

performance over a wide speed range, including persistent operation at zero speed 

under no load.

Resulting conference papers: Barut, M., Bogosyan, S. and Gokasan, M. (2007) (in 

Chapter 6)

1.10 Organization of the thesis

The thesis is organized as follows. After a discussion of previous literature on sensorless 

estimation and control of IMs in Chapter 1, Chapter 2 proceeds with the “EKF Based 

Sensorless Direct Torque Control o f IMs in the Low Speed Range”. Next, Chapter 3 

introduces “Sensorless Low/Zero Speed Control o f Induction Motors with EKF 

Estimation”. Chapter 4 describes “Switching EKF Technique for Rotor and Stator 

Resistance Estimation in Speed-Sensorless Control o f IMs”. Chapter 5 offers 

“Experimental Evaluation o f Braided EKF for Sensorless Control o f Induction Motors”, 

followed by Chapter 6 presenting “Sensorless Sliding Mode Position Control o f 

Induction Motors Using Braided Extended Kalman Filters”. The obtained results, 

contributions, and future directions are discussed in Chapter 7, and finally, “Sensorless- 

Estimation o f Induction Motors in Wide Speed Range”, “Braided Extended Kalman 

Filters for Sensorless Estimation in Induction Motors at High-Low/Zero”, and 

“Definitions o f Acronyms”, are presented in Appendix A, Appendix B, and Appendix C, 

respectively.
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Chapter 2: 

EKF Based Sensorless Direct Torque Control of IMs in the Low Speed Range*

Abstract— This study aims to improve the performance of the speed-sensorless 

direct-torque control (DTC) of induction motors (IMs), specifically in low and zero 

speed operation. To this aim, the estimation of the stator resistance is performed using an 

Extended Kalman filter based estimator, which also performs the estimation of the stator 

flux, angular velocity and load torque. Simulation results demonstrate a good 

performance and robustness.

Index Terms— Induction motor, Extended Kalman Filter, estimator, observer, 

identification, load torque, stator resistance, sensorless control, low speed operation.

2.1 Introduction

High efficiency control and estimation techniques related to induction motors (IM’s) 

have been finding more and more application fields with Blaschke’s well-known field- 

oriented control (FOC) established in 1971. There has been an intensive amount of work 

to improve the dynamic response and reduce the complexity of FOC methods. One such 

method is the Direct Torque Control (DTC) method developed by Takahashi in 1984 [1], 

and it has been getting increased attention due to the improved dynamic performance and 

simplified control strategy that it offers with respect to the FOC methods. However, both 

FOC and DTC require the accurate knowledge of the amplitude of the controlled flux and 

angular position (with respect to the stationary stator axis) in addition to the angular 

velocity for velocity control applications.

As it is well known, speed sensors like tachometers or incremental encoders increase 

the size and cost of systems unnecessarily. Similar problems arise with the addition of

* Barut, M., Bogosyan, S. and Gokasan, M. (2005c), “EKF Based Sensorless Direct Torque Control of IMs 
in the Low Speed Range”, Proceedings o f  the IEEE International Symposium on Industrial Electronics 
(ISIE 2005), Vol. 3, pp. 969-974.
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search coils or Hall effect sensors to the motor for the measurement of flux, hindering 

functionality in terms of implementation. In addition to those considerations, various 

factors such as temperature and mechanical vibrations arising from the operation of the 

IM have undesirable effects on sensors; thus, to improve the overall system performance, 

state estimators and observers are usually more preferable than physical measurements.

However, the design of reliable observers and estimators for this highly nonlinear [2], 

5th order system is a difficult task due to temperature [3] and frequency [4] dependent 

system parameters as well as instantaneous variations of torque and velocity and remains 

a challenge in the low velocity range, particularly at zero speed. The problems are due to 

parameter uncertainties, signal acquisition errors and noise [5, 6 ] in the very low speed 

range, with an additional difficulty encountered at zero speed in steady-state, when the 

stator current ceases to convey information on the rotor angular velocity [7]. Another 

feature affecting the performance at low speed operation is the information on the stator 

resistance; therefore, its estimation becomes crucial for the accurate estimation of 

velocity [8 ].

Current state-of-the-art close-loop techniques conducting simultaneous stator flux and 

velocity estimation in the low speed operation of the DTC include Sliding Mode 

Observers (SMO) as in [9], Adaptive Flux Observers (AFO) as in [10], Extended 

Luenberger Observers [11], and Extended Kalman Filters (EKF). Unlike the other 

methods, model uncertainties and nonlinearities inherent to IM’s are well-suited to the 

stochastic nature of EKFs [12], With this method, it is possible to make an on-line 

estimation of states while simultaneously performing identification of parameters in a 

relatively short time interval [13-15], also taking system process and measurement noises 

directly into account. This is the reason why EKF has found wide application in the 

sensorless control of IM’s, in spite of its computational complexity. Among previous 

EKF based DTC studies, [16] estimates the stator flux components and velocity under 

the assumption of known load, while in [17, 18], the velocity is estimated as a constant 

parameter. In spite of an improved performance in the steady-state, the latter approach 

has given rise to a significant observer error in the velocity during the transient state. In
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our previous study in [19], additional estimation of the load torque is performed. 

However, all these studies are sensitive to variations in stator resistance.

The major contribution of this study is the development of an EKF based speed- 

sensorless DTC system for improved performance, especially at low and zero speed 

operation, by achieving robustness against variations in the stator resistance and load 

torque. The developed EKF algorithm involves the estimation of stator flux, angular 

velocity, load torque and stator resistance in addition to the stator currents (referred to the 

stator stationary frame), which are also measured as output. With the square shaped 

voltage obtained by switching the inverter on and off, there has been no need for the 

addition of white noise to the measured states; thus, a more realistic approach has been 

taken to the solution of the problem. The performance of the control system with the 

proposed EKF algorithm has been demonstrated with simulations, taking into 

consideration load torque variations that are step like or linearly varying with the rotor 

velocity.

The paper is organized as follows. After the introduction in Section I, the mathematical 

model of the IM is presented in Section II. Next, the development of the EKF algorithm 

and the DTC scheme are given in Section III and IV, respectively. Finally, simulation 

results and conclusions are presented in Section V and Section VI, respectively.

2.2 Mathematical Model of the IM

The discrete model of the IM in the stator stationary axis can be given as follows:

*e (k + 1)= f e ke {klHe (k)) + *1 (*)

= Ae(Ae{k ))Xe{k ) + BeUe{k ) + m {k ) (2.1)

y(k) = he (xe(k))+ w2 (k) (measurement equation) 

= K ex e(k)+w2{k) (2.2)
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*«(*) = L (*) lJ k) v j k )  Ysp{k) 0)m{k) tL{k) Rs{k)}, ue{k) = [vsa{k) vsp{k)}

a\ ~ T/ (Ls ~Lm/Lr ), u2 — Rr / Lr, cij — ciy(x2, — Lsa2, a5 — ppT , a6 — p pciy,

a7 = 1.5a5 / J L , as = T / J L

where /  is the nonlinear function of the states. xe is the extended state vector. Ae is 

the system matrix. ue is the control input vector. Be is the input matrix. he is the 

function of the outputs. H_e is the measurement matrix. wx and w2 are the process and 

measurement noise, respectively. p p is the number of pole pairs. Ls and Rs are stator

inductance and resistance, respectively. Lr and Rr are the rotor inductance and 

resistance, referred to the stator side, respectively. Lm is the magnetizing inductance. vsa 

and vsp are the stator stationary axis components of stator voltages. y/sa and y/sp are the 

stator stationary axis components of stator flux. isa and isp are the stator stationary axis 

components of stator currents. com is the angular velocity. tL is the load torque. T is the 

sampling time. J i  is the total inertia.
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2.3 Development of the EKF Algorithm

The Kalman filter is a well-known recursive algorithm that takes the stochastic state 

space model of the system together with measured outputs to achieve the optimal 

estimation of states [20] in multi-input, multi-output systems. The filter takes system and 

measurement noises into account in the form of white noise. The optimality of the state 

estimation is achieved with the minimization of the mean estimation error. In this study, 

EKF, which is a form of a Kalman filter that could be used for nonlinear systems is used 

for the estimation isa, isfi, y/ sa, y/ sP, t, and Rs.

dxe(k)
(2.3)

£,(*)■&(*)

a u e ( k )
(2.4)

ie(k)̂ e(k)

Thus, the EKF algorithm can be given in the following recursive relations [14]:

K(k) = F ,(k)p{k)F,(k)T + F ,{ k )D ,F ,(k f  + S  (2.5a)

P(k + l)= M k )-N (k )H l(D e + H M k ) H T,Y H ,N ( k )  (2.5b)

xAk + l ) = l r( x M t ( k ) ) + P ( k  + l ) H j ^ i ' ( z ( k ) - H , x M  (2.5c)

Here, Q is the covariance matrix of the system noise, namely model error. Dg is the 

covariance matrix o f the output noise, namely measurement noise. D u is the covariance 

matrix of the control input ( vsa and vJ/0) noise, namely input noise. P(.) and N(.) are the 

covariance matrix of state estimation error and extrapolation error, respectively.
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2.4 The Speed-Sensorless DTC System

Fig. 2.1 demonstrates the speed-sensorles DTC system. Here, 6^ stands for the

position of the flux with reference to the stationary axis. The velocity controller given in 

the diagram is a conventional PID controller. The development of the sector selector and 

the switching table is based on Takahashi’s study presented in [1].

± * r p >

a A n

+ LT A
VdcILJ l

' J K r
pulses f J c

t Torque Switching 
comp. Table

IM
&t ft*e m

Fig. 2.1 The speed-sensorless DTC system.

2.5 Simulation Results and Observations

To test the performance of the estimation method, simulations were performed on an 

IM with the following rated parameters:

RsN= 2.283Q , RrN = 2.133Q , LS= 0.23H , Lr =Q.23H, Lm=0.22H  ,

JL = 0.005 kg.m2, p = 2 , tw  =20 N m , NmN = 1430 rpm

j8l = 0.001 Nm/(rad/s) (total viscous friction coefficient),
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a system covariance matrix, Q = d ia ^ l0 9 10 9  10- 9  10 9  10“ 9  10 5  10"5},

and variances, -d iag{  10“ 6  10”6} Du =diag{ 10“ 5  10“5}.

The bandwidth (b¥ ) of the flux comparator is 0.02, while that of the torque comparator 

(b ) is 0.01. Simulations are performed for 13 different scenarios, aiming to force the

developed algorithm with random variations imposed on the system. For this purpose, 

random variations are given to the reference velocity, stator resistance and load torque as 

illustrated in Fig. 2.2-2.3(a). Fig. 2.4 depicts the stator flux. Fig. 2.2(b), (c), (d) and (e) 

depict the variations of \y/s\ ,  nm, tL, and Rs, while Fig. 2.3(b), (c), (d), (e) and (f) show

the variations of |^ , | - |^ , | , nm- n m, tL- t L, Rs - R s and \y/s\ - \ f s\ , respectively. The e()

error signals illustrate the deviation between the actual and the estimated parameter or 

state.

Analysing the simulation results, the following observations are made:

- With initial values taken as zero, it has been demonstrated that the EKF based 

estimation and control perform quite well even in spite of instantaneous variations in 

the load, velocity and stator resistance both in the high and in the low and zero speed 

region.

- Another advantage of the developed scheme is the ability to account for various other 

constant uncertainties (the viscous friction, in this case), within the estimated constant 

load value. For the viscous friction coefficient j3L = 0.001 used in the model, but 

considered as {3L = 0 in the EKF,

=  2/r(l 500.4 -1.06 x 10-5)/ 60 =  157.1215 [rad/s] (2.6)

and

etL=-j3L0}m(oo) -> -0.1571==-0.001x157.1215

-0.157l[Am] = -0.1571215[Am], (2.7)
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Fig. 2.2 Simulation results for the estimations of the EKF based estimator and the DTC 
system
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¥ sa [V.s]

Fig. 2.4 Trajectory of y/sa and yrsp

etL is equal to - 1dLa)m, as can be seen in the second time interval (1-2 s) of Fig. 2.3(d) 

and as expected.

- A hysteresis based flux comparator and switching table result in high-frequency 

switching activity; therefore, noise limited with the band of the hysteresis comparator 

exists in Fig. 2.2b, 2.3b and 2.4. Moreover, the trajectory of y/sa and y/sp in Fig- 2.4

are obtained in a circular form, as expected, because of their sinusoidal variations.

- Considering the limitations of previous model based estimations of IMs [5, 21], 

simulation results, especially those obtained at the zero velocity and load torque (worst 

set of conditions for state and parameter estimations of IMs) are quite satisfactory.

- The developed algorithm is sensitive to variations in the unestimated rotor resistance, 

Rr . Thus, it is noted that Rr estimation should also be included into the algorithm.

In summary, the speed-sensorless DTC system has demonstrated a good performance, 

in the whole velocity range, also including zero speed, in the face of instantaneous 

variations in stator resistance and step-like and linear variations of the load torque with 

the angular velocity.

2.6 Conclusion

In this study, we present results demonstrating improved performance in the speed- 

sensorless DTC of IMs, especially in the low and zero speed region. For this purpose, an 

EKF algorithm is designed estimating the stator as well as the load torque. The
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simulation results have demonstrated good performance and robustness throughout a 

wide velocity range, including low and zero speed operation under challenging variations 

of the load and stator resistance. However, the experiments have also demonstrated the 

well-known effect of the rotor resistance; therefore, its estimation should also be 

performed with an EKF algorithm or otherwise.
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Chapter 3: 

Sensorless Low/Zero Speed Control of Induction Motors with EKF Estimation*

Abstract— This study aims at improved estimation performance for the speed- 

sensorless control of induction motors (IMs) over a very low to zero speed range. For 

this purpose, an Extended Kalman Filter (EKF) observer is designed to overcome the 

difficulties of flux and speed estimation at and around zero speed. The estimation 

problems related to low speed operation are further emphasized due to stator resistance, 

Rs uncertainties. Thus, the observer is designed to estimate the stator resistance, load 

torque and velocity, which is taken into account via the equation of motion. With this 

approach, the rotor flux information is reflected to the stator, thus improving the 

estimation accuracy. The simulation results obtained for the EKF approach in 

combination with the Direct Vector Control (DVC) of an IM, indicate improved 

performance.

Index Terms— Induction motor, Extended Kalman Filter, sensorless control, low and 

zero speed operation, stator resistance and load torque estimation.

3.1 Introduction

Sensorless vector control [1] and direct torque control (DTC) [2] of induction motors 

(IMs) require the accurate estimation of speed and torque, as well as the rotor or stator 

flux. The performance of estimation and hence, control in IMs is also dependent on 

system parameters [3, 4] that vary significantly with temperature and frequency. 

Additional problems arise with estimation at very low and zero speed, mainly due to the 

fact that the stator currents which are measured as output in sensorless control cease to 

convey information on the reduced levels of rotor currents and voltages around zero

* Barut, M., Bogosyan, S. and Gokasan, M. (2006b), “Sensorless Low/Zero Speed Control of Induction 
Motors with EKF Estimation,” WSEAS Transactions on Systems, Vol. 5 No. 11, pp. 2530-2535.
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stator frequency [5]. Parameter sensitivity also becomes more relevant with sensorless 

control at very low speeds.

Model based methods that model the induction motor by its state equations and signal 

injection methods based on exploited anisotropic properties of the machine have been 

competing in the zero and very low speed performance of sensorless IM drives [6 ]. 

Although speed-sensorless control based on the signal injection methods are capable of 

long-term stability at zero stator frequency, they are highly sophisticated, and their 

design is not general as it must be customized for a particular drive motor [6 ].

Recently, for the solution of the problem at zero and very low speed, studies using model 

based estimation methods using Adaptive Flux Observers (AFO) as in [7], Model 

Reference Adaptive Systems (MRAS) as in [8 ], Sliding Mode Observers (SMO) as in [9] 

and Extended Kalman Filters (EKFs) as in [10] have been proposed. Unlike the other 

methods, model uncertainties and nonlinearities inherent to IMs are well-suited to the 

stochastic nature of EKFs [11]. With this method, it is possible to make the on-line 

estimation of states while simultaneously performing identification of parameters in a 

relatively short time interval [ 1 2 ], also taking system process and measurement noises 

directly into account. This is the reason why EKF has found wide application in the 

sensorless control of IM’s, in spite of its computational complexity.

In this study, the problems of parameter sensitivity and low and zero speed operation in 

IMs is addressed with an EKF algorithm which estimates stator resistance, Rs as its 

temperature dependent uncertainties have well-known performance degrading effects on 

estimation at low speeds. The EKF also estimates the load torque, Tl as well as angular 

velocity, 0 )m, which is taken into account with the equation of motion, unlike most past 

studies taking the velocity into account as a constant. This approach helps the estimation 

performance by conveying the rotor-stator relationship which is otherwise lost at low and 

zero speed as is the case with most estimators used in past studies. The simulation results
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demonstrate the good performance of the EKF observer used in combination with the 

direct vector control of IMs.

3.2 Mathematical Model of the IM

The discrete model of IM in stator stationary axis can be given as follows:

ik  +  l ) =  f e k e  M He M) +  m  {k)

= Ae(xe{k))xe(k) + Beue(k)+wl(k) (3.1)

y (k) = he (xe (k))+ w2 (k) (measurement equation)

= Ke^e{k)+W2{k) (3.2)

\ - a xRs(k ) -a 2 0 a2 a3com(k) 0 0 0

0 l-flj/?s(fc)-a 2  ~<h®m(k) a2 0 0 0

o.̂ 0 l - a 4 ~ a60)m(k) 0 0 0

0 $ 5 1  - a 4 0 0 0

-«7 ¥ r p { k ) “ i v M 0 0 1 — a 8 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

[a, 0  0  

~ e ~  0  ax 0

0  0  0  o ' 
0  0  0  0

T r
f l  0

, H e =
0  1

0  0  0  

0  0  0

0

0

1 
1 

O 
O

Xe{k)=[isa(k) isp{k) Wraik) ¥rp{k) 0)m{k) tL{k) Rs{ k ) f , ue( k ) = [ v j k )  vsp{ k f

a2 = ^m K a JL 2r , a2=LmPpa J L r , ^ = 4 ^ ,

<k =PpT ’ «7= l 5 V 5 W l ) .  as = T /J l
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where /  is the nonlinear function of the states. xe is the extended state vector. Ae is

the system matrix. ue is the control input vector. Be is the input matrix. he is the 

function of the outputs. H_e is the measurement matrix, w, and w2 are the process and 

measurement noise, respectively. p p is the number of pole pairs. Ls and Rs are stator 

inductance and resistance, respectively. Lr and Rr are the rotor inductance and 

resistance, referred to the stator side, respectively. Lm is the magnetizing inductance. vsa 

and vsj} are the stator stationary axis components of stator voltages. y/ra and y/rp are the 

stator stationary axis components of rotor flux. isa and isfj are the stator stationary axis 

components of stator currents. aom is the angular velocity, t, is the load torque. T is the 

sampling time. Jl is the total inertia.

3.3 Development of the EKF Algorithm

The Kalman filter is a well-known recursive algorithm that takes the stochastic state 

space model of the system together with measured outputs to achieve the optimal 

estimation of states [13] in multi-input, multi-output systems. The filter takes system and 

measurement noises into account in the form of white noise. The optimality of the state 

estimation is achieved with the minimization of the mean estimation error. In this study, 

an EKF estimator is developed, which is a form of a Kalman filter that could be used for 

nonlinear systems. The filter performs the estimation of the extended vector

x.:«(*) = [*,«(*) hfifc) Vraik ) Y rp{k) 0)m{k) tL(k) R ,(k)} as below [3]

p  ^ ^ f eke (k l “e(k ))
(3.3)

p  d / e(&(*).&(*)) (3.4)
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Thus, the EKF algorithm can be given in the following recursive relations [14]:

N ( k h F , ( k ) P ( k ) E , ( k J  + E , ( k ) D , F , ( k J  + Q  

P(k  +  l ) = N ( k ) - N { k ) H l ( D ( + H , N { k ) H T, Y H , N

L ( k  + \ ) = i ' k A k \ t ( k ) ) + A k  + l ) H l D i ' ( Z ( k ) - H , ^ ( k ) )  (3.5)

Here, Q is the covariance matrix of the system noise, namely model error. is the 

covariance matrix of the output noise, namely measurement noise. Du is the covariance 

matrix of the control input ( vsa and vv/9) noise, namely input noise. £(.) and 7V(.) are the 

covariance matrix of state estimation error and extrapolation error, respectively.

3.4 The Speed-Sensorless DVC system

Fig. 3.1 demonstrates the rotor oriented direct vector control (DVC) system. Here, 6^

stands for the position of the flux with reference to the stationary axis, while is the

Fig. 3.1 The rotor oriented sensorless DVC system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6 6

angular velocity of the rotating d-q axis. The velocity, field and torque controllers given 

in the diagram are conventional proportional-integral controllers (Pis).

3.5 Simulation Results and Observations

To test the performance of the estimation method, simulations were performed on an IM 

with the following rated parameters;

RsN= 2.283 Q , RrN = 2.133 Q , LS= 0.23H , Lr = 0.23H , Lm= 0.22H ,

J L = 0.005 kg.m2, p p = 2, tm  = 20 Nm , = 1430 rpm

J3l = 0.001 Nm/(rad/s) (total viscous friction coefficient),

Covariance matrixes are selected as below:

Q = d ia g { l ( f  l ( f  l ( f  l ( f  104 104 1(T5}, P=diag {9 9 9 9 9 9 9}, 

D4 = diag {l0^’ 1 ^ } , D U = diag {l0“5 10“5}.

The simulations are performed considering four different group of scenarios for certain 

time intervals:

i) Start-up and transition to zero speed: (0 < t < 3 sec)

ii) Persistent operation at zero speed under variations of Rsn and non-zero tp.

(3sec< t<69sec)

iii) Persistent operation at zero speed with linear Rs variations and zero tp

(69sec<r<135sec)

iv) Demonstration of repeatability (135 sec < t < 137 sec)

For this purpose, scenarios are developed by incurring simultaneous changes to the 

velocity reference, load torque value and stator resistance values used in the extended
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model as demonstrated in Fig. 3.2-3.3(a). Both step-type and linear variations are given 

to Rs, although it is taken into consideration as a constant parameter in the EKF scheme. 

The resulting system performance for all scenarios is given with Fig. 3.2(b), (c), (d), (e),

(f), and (g), which represent the estimated values of the velocity ( hm), load torque ( tL),

stator resistance (Rs), a-component of the rotor flux (y/ra), ft -component of the rotor

flux (y/rp ), and the position of the flux with reference to the stationary axis ( 0^). Fig.

3.3(b), (c), (d), (e), (f), (g) and (h) demonstrate the variations of estimation errors for the 

estimated states and parameters and the errors of the velocity and the flux controller 

inputs given as eHm =nm- n m, et/ = tL- t L, eR =RS- R S, =y/ra-y/ra, = y/rf} - y/ rfS,

nm ~ K  > and VrT1 “  W » respectively.

Analysing the simulation results, the following observations are made:

- With no a priori information on the initial values and by taking them as zero, it has been 

demonstrated that the EKF based estimation and control perform quite well despite 

instantaneous variations in the load, velocity and stator resistance both in the high and 

in the low to zero speed region.

- Another advantage of the developed scheme is the ability to account for various other 

constant uncertainties (the viscous friction, in this case), within the estimated constant 

load value, tL. Therefore, etL should be expected to be equal to -  PLcom, and as can be 

seen in the first time interval (0-2 sec.) of Fig. 3.3(c)

O)m(oo) = d)m(°°) + eiam(„) =2^(10.1945 —2.4xl0“6) /60 = 1.0676 [rad/s] (3.6)

!

-0.001=-0.00lxl.0676 ->-0.001 [Nm] = -0.0010676[Nm] (3.7)
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Fig. 3.2 Simulation results for the estimations of the EKF based estimator and the DVC 
system.
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- The limitations of model based estimations of IMs in [5] is true when considering the 

fundamental frequency component only. However, the effect of current harmonics 

incurred by the PWM operation should also be taken into account. In this study, to 

increase the information transfer from the rotor to the stator side, the velocity is taken 

into account with the equation of motion unlike most previous studies taking velocity 

into consideration as a constant state in the extended model. With the equation of 

motion in the extended model, the harmonic components of the current and flux in the 

torque term reflect the rotor information to the stator side, which in turn helps the 

estimation of the velocity by the EKF algorithm. To highlight this feature of the 

proposed algorithm, the motor is operated at nrf  = 0  and tL = 0  in the interval of 

69 sec <t <135 sec. The simulation results are quite satisfactory under this set of 

conditions which is recognized to be the major challenge in the sensorless estimation of 

IMs.

- The EKF scheme is also tested for estimation in the high to very low speed range. 

However, those results are not presented here due to space limitation.

- The developed algorithm is sensitive to variations in the unestimated rotor resistance, 

Rr . Thus, it is noted that Rr estimation should also be included into the algorithm.

In summary, the EKF based speed-sensorless DVC system has demonstrated a good 

performance, in the whole velocity range including at zero speed, in the face of 

instantaneous variations in stator resistance and the load torque.

3.6 Conclusion

In this study, an Extended Kalman Filter (EKF) algorithm is developed for the rotor 

oriented sensorless direct vector control system.
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The major contribution of the study is the approach taken to increase robustness against 

stator resistance, Rs, and load torque, tL uncertainties, the effects of which are known to 

give rise to performance deteriorations in the sensorless control of IMs, especially at very 

low and zero speed operation. This is achieved by the EKF based estimation of Rs, tL and 

tDm, which is taken into account through the use of the equation of motion and not as a 

constant state as in most past studies. The PWM based switching and resulting flux and 

current fluctuations that reflect the rotor information to the stator side via the mechanical 

torque in the equation of motion are the benefits of this approach, particularly in the very 

low and zero speed region. Simulation results obtained over a large speed range indicate 

the expected benefits of the approach, also including zero speed, zero load torque 

operation depicted as being problematic in most past literature [5, 6 ] on sensorless 

control. The results can further be improved by also taking into account the well-known 

frequency and temperature uncertainties related to the rotor resistance. Hence, an 

approach that combines the estimation of both stator and rotor resistances should be 

considered for high performance sensorless motion control.
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Chapter 4: 

A Switching Technique for Rotor and Stator Resistance Estimation 

in Speed-Sensorless Control of IMs*

Abstract— High performance speed-sensorless control of induction motors (IMs) 

calls for estimation and control schemes which offer solutions to parameter uncertainties 

as well as to difficulties involved with accurate flux and velocity estimation at very low 

and zero speed. In this study, a new Extended Kalman Filter (EKF) EKF based 

estimation algorithm is proposed for the solution of both problems and is applied in 

combination with speed-sensorless Direct Vector Control (DVC). The technique is based 

on the consecutive execution of two EKF algorithms, by switching from one algorithm to 

another at every n sampling periods. The number of sampling periods, n, is determined 

based on the desired system performance. The Switching EKF approach thus applied 

provides the accurate estimation of an increased number of parameters than it would be 

possible with a single EKF algorithm. The simultaneous and accurate estimation of rotor, 

Rr and stator, Rs resistances, both in the transient and steady state, is an important

challenge in speed-sensorless IM control and reported studies achieving satisfactory 

results are only a few, if any. With the proposed technique in this study, the sensorless 

estimation of Rr and Rs is achieved in transient and steady state and in both high and 

low speed operation, while also estimating the unknown load torque, velocity, flux and 

current components. The performance demonstrated by the simulation results at zero 

speed, as well as at low and high speed operation is very promising when compared with 

individual EKF algorithms performing either Rr or Rs estimation or with the few other 

approaches taken in past studies, which require either signal injection and/or change of

* Barut, M., Bogosyan, S. and Gokasan, M. (2006c), “A Switching Technique for Rotor and Stator 
Resistance Estimation in Speed-Sensorless Control of IMs”, Energy Conversion and Management 
(Elsevier). (In review)
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algorithms based on the speed range. The results also motivate the utilization of the 

technique for multiple parameter estimation in a variety of control methods.

Index Terms— Induction motor; Extended Kalman Filter with switching; sensorless 

control; load torque estimation, rotor resistance and stator resistance estimation; zero 

speed operation.

4.1 Introduction

Industry workhorse induction motors (IMs) constitute a theoretically interesting and 

practically important class of nonlinear systems, and hence, a benchmark problem for 

nonlinear control [1]. IMs enjoy several inherent advantages, like simplicity, reliability, 

low cost, and almost maintenance-free electrical drives [2]. However, the speed- 

sensorless high performance control of IMs currently continues to be a challenge due to 

the highly coupled nonlinearities and the multi-input, multi output nature of the motor 

model. The problem has been addressed by a variety of methods such as, field-oriented 

control (FOC) or vector control [3], direct torque control (DTC) [4], input-output 

linearization (feedback linearization) control [3, 5], sliding mode control (SMC) [6 ] and 

passivity-based control (PBC) [3], each of which aims at independent control of the 

torque and flux. Additional difficulties are due to unknown load disturbances, and 

parameter uncertainties mostly related to the stator and rotor resistances varying with the 

operating conditions. There are also well-known problems related to high performance 

control, particularly in the very low and zero speed region, mainly due to lost rotor 

information on the stator side as well as noise and signal acquisition errors [1, 7, 8 ]. In 

this regard, it is essential to design estimation and control methods that provide 

robustness predominantly against the variations of Rs ,R r, and t , , while also providing 

solutions to problems at and around zero speed.

Some recent studies seeking an observer-based solution to the problem of parameter 

variations are listed as follows. In [9], beside a speed estimator, a sliding mode based
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flux observer and an online sliding-mode adaptation for the stator resistance is designed 

for DTC of IMs, but the speed estimator and the resistance adaptation suffer from 

variations of the rotor resistance and the load torque, respectively. In the speed-sensorless 

study based on speed adaptive flux observer in [ 1 0 ], the stator resistance has been 

estimated based on a two-time scale approach, while in the Extended Luenberger 

observer (ELO) in [11], the rotor fluxes and rotor velocity are estimated, as well as the 

step-type load torque; however, no estimation has been conducted for the stator 

resistance. Also, neither of the studies in [10] and [11] have taken the rotor resistance 

into consideration. On the other hand in [12], the angular velocity, and slip frequency 

(reflecting in the effect of the load torque) have been taken into account in addition to the 

rotor resistance only with an initial value of Rr(0)-0.S5Rm .

There are also Extended Kalman Filter (EKF) applications in the literature for the control 

of IMs with velocity sensors [13-15] and without sensors. Different from the other 

methods, the model uncertainties and nonlinearities inherent in IMs are well suited to the 

stochastic nature of EKFs [16]. With this method, it is possible to make the online 

estimation of states while performing the simultaneous identification of parameters in a 

relatively short time interval [17-19], by also taking system process and measurement 

noises directly into account. This is the reason why the EKF has found wide application 

in sensorless control of IMs, in spite of its computational complexity. Among recent 

sensorless studies using EKF estimation for IMs, [20] and [21] estimate the flux and 

velocity, while [2 2 ] uses an adaptive flux observer in combination with a second order 

Kalman filter for the same purpose. None of these studies estimate the load and motor 

resistances, resulting in a performance that is sensitive to the variation of these 

parameters. In [23-25], the velocity is estimated as a constant parameter, which gives 

rise to a significant estimation error in the velocity during the transient state, especially 

under instantaneous load variations, although the performance is improved in the steady 

state. While [23] and [24] are sensitive to rotor resistance variations, [25] also estimates 

the rotor resistance. However, the estimation of rotor resistance is performed by the
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injection of low amplitude, high frequency signals to the flux reference in the DVC of 

IMs. This has caused fluctuations in the motor flux, torque and speed. Finally, recent 

studies of the authors [26, 27] estimating the velocity via the consideration of the 

equation of motion in the EKF model, together with the estimation of rotor resistance and 

mechanical uncertainties demonstrate improved results. However, the results are 

sensitive to variations of stator resistance, indicating the necessity of an approach that 

estimates rotor resistance and stator resistance simultaneously and accurately beside the 

load torque for high performance control in a wide operation range, including very low 

and zero speed.

Among studies reported so far on Rs and Rr estimation, [12] states that the simultaneous 

estimation of the stator and rotor resistances gives rise to instability in the speed- 

sensorless case. On the other hand, in studies such as [28] and [29], the stator and rotor 

resistances are estimated by injecting high frequency signals to the flux and magnetizing 

current commands, while also estimating the speed and rotor flux. However, in [28], the 

algorithm identifying the resistances used in a feedback linearization controller is 

applicable only when the sensorless speed control system is in steady state, but not when 

the load torque is varying largely or when the speed command is being changed, as stated 

by the authors. On the other hand, in [29], it is stated that persistent operation at zero 

frequency is not possible and that the proposed drive can compete with a speed sensor 

equipped drive only if accuracy in steady-state is not essential and operation under high 

loads is not a requirement. In [30], a model reference adaptive system (MRAS) is 

presented based on 3 models, of which one is used for the estimation of rotor time 

constant via high frequency signal injection. The other 2 models are used 

interchangeably, by enabling the stator resistance estimation only during short intervals, 

during which the rotor speed has reached the steady state. As for the remaining few 

studies performing Rs and Rr estimation, as in [31], [32] and [33], Rr estimation is 

conducted only by adjusting its value in proportion to the estimated Rs .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



77

The major contribution of this study is the development of a novel EKF based estimation 

technique, which aims at the accurate estimation of an increased number of parameters 

both in the transient and steady state for sensorless IM control. The technique does not 

require signal injection and/or algorithm changes for different parameters or speed ranges 

as is commonly practised in similar past studies. It is based on two EKF algorithms that 

are switched on and off every n sampling periods, the output parameters and states of 

which are used in the direct-vector control (DVC) of IMs. In this study, the accurate 

estimation of both Rs and Rr is achieved as a novelty in sensorless control of IMs, 

together with the unknown load torque, velocity, flux and current components. 

Simulation results are presented using the new algorithm for the DVC of IMs with the 

switching period taken as lOOxT for the desired transient and steady-state performance. 

The results highlight the significant improvement achieved with the simultaneous 

estimation of Rs and Rr , over EKF results obtained by either Rs or Rr estimation only.

This paper is organized as follows. After the introduction in section I, section II gives the 

extended mathematical models considered at each step of the EKF estimation. Next, 

section III describes the development of the EKF algorithm, followed by section IV 

presenting a brief description of the Direct Vector Control (DVC) scheme. The 

performance of the proposed approach is tested by simulations with results presented in 

section V and finally, conclusions are listed in section VI.

4.2 Extended Mathematical Models of the IM

The sensorless DVC scheme developed for IMs requires the estimation of stator flux 

components, y/ ra, y/ rp, angular velocity , com and stator current components isa and is[i, 

which are also measured as output. In this study, two extended models are developed, 

one which includes the rotor resistance, Rr and one, with the stator resistance, Rs . The 

rest of the variables are the same for both extended vectors, x ei, used in the two EKF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



78

algorithms which run consecutively. The extended models can be given (as referred to 

the stator stationary frame) in the following general form:

X ei M  =  Lei fed  M  W ) +  ̂  W  =  Aei fed  (Ofarf W  +  « e (O'+  ™il W  C4 -1)

) = heifed(0) + —i2 (0 = H.ex ei(t)+Wi2 D  (measurementequation) (4.2)

Where, i = 1,2, extended state vector x ei represents the estimated states and load torque, 

tL, which is included in the extended state vector as a constant state with the assumption 

of a slow variation with time. /  . is the nonlinear function of the states and inputs; A ei

is the system matrix. ue is the control input vector. Be is the input matrix. wa is the 

process noise. hei is the function of the outputs. H_e is the measurement matrix. wi2 is 

the measurement noise.

Based on the general form in (4.1) and (4.2), the detailed matrix representation of the two 

IM models can be given as below:

Model 1: Extended model of IM derived for the estimation of Rs , (Model- Rs):
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Model 2: Extended model of IM derived for the estimation of Rr, (Model- R[ ):
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Here, p p is the number of pole pairs. La = oLs is the stator transient inductance. 

<7 = 1 -  —7 - is the leakage or coupling factor. L and R are the stator inductance andL.L.
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resistance, respectively. Lr and Rr are the rotor inductance and resistance, referred to 

the stator side, respectively. vsa and vs[j are the stator stationary axis components of 

stator voltages. isa and isji are the stator stationary axis components of stator currents. 

y/ra and y/rp are the stator stationary axis components of rotor flux. J L is the total 

inertia of the IM and load. 0)m is the angular velocity; As can be seen from (4.3)-(4.4) 

and (4.5)-(4.6), the only difference between the two extended vectors, x el and x e2 » are 

the constant states Rs and Rr , respectively. Additionally, as in both algorithms isa and 

is/3 are the measured variables, the measurement noises, wl2 and w22, are equal.

4.3 Development of the Switching EKF Algorithm

An EKF algorithm is developed for the estimation of the states in the extended IM model 

given in (4.1) and (4.2), to be used in the sensorless DVC of the IM. The Kalman filter is 

a well-known recursive algorithm that takes the stochastic state space model of the 

system into account, together with measured outputs to achieve the optimal estimation of 

states [34] in multi-input, multi-output systems. The system and measurement noises are 

considered to be in the form of white noise. The optimality of the state estimation is 

achieved with the minimization of the covariance of the estimation error. For nonlinear 

problems the KF is not strictly applicable since linearity plays an important role in its 

derivation and performance as an optimal filter. The EKF attempts to overcome this 

difficulty by using a linearized approximation where the linearization is performed about 

the current state estimate [35]. This process requires the discretization of (4.3) and (4.4) -  

or (4.5) and (4.6) as below:

*ei (k + !) = f ei (*« (k l a e (k )) + H!n (k ) (4.7)

Z(k) = H ex ei(k)+wi2(k ) (4.8)
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As mentioned before, EKF involves the linearized approximation of the nonlinear model 

(4.7-4.8) and uses the current estimation of states x ei(k) and inputs ue(k) in linearization 

by using,

dxei(k )

„  /. x d f  j x ei(k),ue{k))
F ui{k) = -

(4.9)

due{k)
(4.10)

Zei(k),ue{k)

Thus, the EKF algorithm can be given in the following recursive relations;

£ 1W  = £ „ W £ I(* )£ „ W  + E j k ) D , F j k J  +Q  (4.11a)

P t t + l ) = K M - K t t ) H l f e i  + H M k ) H l Y l L ,N l(k) (4.11b)

U k  + ̂ ) = t ^ M t ( k ) ) + P i k  + l ) H l D f ' ( Z ( k ) - H , i M )  (4.11c)

Here, Q. is the covariance matrix of the system noise, namely model error. is the

covariance matrix of the output noise, namely measurement noise. D u is the covariance 

matrix of the control input noise ( vsa and vs/j), namely input noise. Pt and N_t are the 

covariance matrix of state estimation error and extrapolation error, respectively.

The algorithm involves two main stages: prediction and filtering. In the prediction stage, 

the next predicted states /  (.) and predicted state error covariance matrices, P, (.) and

N_,{) processed, while in the filtering stage, the next estimated states, xei(k+1 ),

obtained as the sum of the next predicted states and the correction term (2 nd term in 

(4.1 lc)) are calculated.
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Fig. 4.1 Flow-chart of the novel Switching EKF algorithm

The schematic representation of the new EKF based switching estimation algorithm is 

given in Fig. 4.1. As can be seen in Fig. 4.1, two EKF algorithms with two different 

extended models are run consecutively, -one for the estimation of Rs and one for the

estimation of Rr in this case. Thus, both algorithms estimate the same state variables 

except for the resistances. Therefore, one of the EKFs estimates the rotor resistance 

during one switching period and the other estimates the stator resistance in the next
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switching interval and so on. After the initialization of the states and determination of 

tstart and tswhch, which is the start time and duration of the EKF algorithms, respectively, 

the algorithms are run by switching them on and off, consecutively and for equal 

durations. The final values of Pt(k + l) and x ei(k + 1) calculated at the end of each 

switching period are passed over to the next EKF algorithm at the end of the period, as 

the initial values of the covariances and states for the new switching period, during which 

the other algorithm will be running. The estimated resistance during the previous period 

is also passed on to the new algorithm and is assumed constant in the other EKF model 

throughout the whole switching period, during which the other resistance value is 

calculated as well as the state variables.

4.4 The Speed-Sensorless DVC System

Fig. 4.2 demonstrates the speed-sensorless DVC system based on rotor flux. Here, 6^ 

stands for the position of the flux with reference to the stationary axis, while -^0^ is the
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angular velocity of the rotating d-q axis. The velocity, field, and torque controllers given 

in the diagram are conventional Proportional-Integral (PI) controllers.

4.5 Simulation Results and Observations

To test the performance of the proposed estimation method, simulations are performed 

on an IM with the rated parameters given in Table 4.1.

Table 4.1 Rated values and parameters of the induction motor used in the experiments

P [kW] /[H z] J L [kg.m2] Bl [Nm/(rad/s)] Pp v[v] I  [A]

3 50 0.006 0 . 0 0 1 2 380 6.9

R, M Rr [Q] Ls [H] L \ H] M h ] N m [rpm] Te [Nm]

2.283 2.133 0.2311 0.2311 0 . 2 2 1430 2 0

The values of system parameters and covariance matrix elements have a significant effect 

on the performance of the EKF estimation. In this study, to avoid computational 

complexity, the covariance matrix of the system noise Q. is chosen in diagonal form,

also satisfying the condition of positive definiteness. According to the Kalman filter 

theory, the Q., Dg (measurement error covariance matrix) and Du (input error

covariance matrix) have to be obtained by considering the stochastic properties of the 

corresponding noises [36]. However, since these are usually not known, in most cases the 

covariance matrix elements are used as weighting factors or tuning parameters. In this 

study, for both EKF algorithms, the tuning of the initial values of the Pt and Q, is done

by trial-and-error to achieve a rapid initial convergence and the desired transient and 

steady state behaviors of the estimated states and parameters, while the D^ and Du are

determined taking into account the measurement errors of the current and voltage sensors 

and the quantization errors of the ADCs as given below:
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For Model- Rs ;

Qx =diag{l(f[A2\ 1(T9 [a2] l ( f [ w ]  l(J^[w^] 1Ĉ [{rad/sf} 10T4 [(iVm)2] lff^O2]} 

Px =diag{9[A2] 9[a 2] 9\wb2] 9\wb2] 9 \r a d ls f \  9[(Am)2] 9[q2]}

For Model- Rr \

Q2=diag{l(f[A2\ 1 (f[A2] l C ^ M  1(T [̂W ]̂ KT^rad/s)2] lCr^Am)2] 10r5 [a2f  

P2 =diag{9[A2] 9[A2] 9\wb2] 9\wb2] 9 \ra d ls)2} 9[(iVm)2] 9[q2]}

For both models,

- ^ { l O - 6^ 2] 1 0 -6 [a2]}

Du =diag{ l O ^ H  10“6 [y 2 J} 

and sampling time T = 100 /is .

As can be seen from the time axis in Fig. 4.3, seventeen different scenarios are created to 

test the performance of the estimation and control algorithm in the time interval of 

0< r< 24sec.

These scenarios are developed with simultaneous changes imposed on the stator and the 

rotor resistance (Fig. 4.3a), on the velocity reference (Fig. 4.3b), and the load torque 

values (Fig. 4.3c) used in the simulation model.

As it is well-known, it is difficult to obtain the initial value of the rotor resistance in a 

squirrel-cage IM, but that of the stator resistance can easily be determined by the DC test. 

Therefore, it is assumed that the initial value of the stator resistance is known at the 

outset of the scenarios while the estimation of the other parameters and all the states is 

started with an initial value of zero, as a more reasonable approach. Thus, the EKF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8 6

1  4  o
3

I I I I I I I I I ! ! i i i i

- 2 * R sn =  2.283*2 = 4.566 -

2.283 2.283
-

I ... i ...... i i l l ................................. i i I .. J...... .

Ex:O

i i i

switching

i i i i i i i i i

2 * R m = 2.133*2 = 4.266

....... -  T i i

begins
-  r ----------- ►1 -

12.133 2.133

- i  ......i............ 1 1 1 1 1 1 1 1 1 l i l l
0 1 2 4 6 7 8 9 10 11 12 13 14 16 18

(a) Variation of the stator/rotor resistances, Rs/ Rr

(b) Variation of the reference speed value, n ref
m

22 23 24 t[s]

(c) Variation of the applied load torque, tL

Fig. 4.3 Variation of the stator/rotor resistances, Rx / Rr , the reference speed value, n r̂f , 
and applied load torque, tL
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algorithm for the Model- Rr is started, and after tstart = 1 [sec] as shown in Fig. 4.3, the 

two EKF algorithms are used consecutively by switching from one to the other at the end 

of a constant time interval of duration, tswitch, in order to estimate the rotor and stator 

resistances beside all the other variables required by the control scheme. For the desired 

transient and steady-state performance criteria of this system, the tswitch is selected as

lOOxT ( T : sampling period). The switching duration, tm4tch is determined based on the 

following procedure:

i) Tune P, and Q until the desired estimation performance is achieved by each

EKF algorithm; namely EKF- Rs and E K F -P '.

ii) After the tuning stage, increase tswitch= n xT  (where n = 1,2,3-•• and T :

sampling period) by increasing n , until the desired estimation performance is 

reached.

In this study, tmitch is increased to lOOxP in order to achieve an improved performance 

in transient and steady-state under unmatched variations of Rs and Rr , which is the most

challenging case for both EKF algorithms. Intervals with unmatched variations describe 

intervals during which, while one type of resistance is being estimated, the other one is 

given a major variation. In this study, the best is also determined under unmatched
A. ,

variations with the following scenario given in Fig. 4.3, in which EKF-/?r is switched on 

at t = 2.01 [sec] when Rs : 2 * Rm —> Rm or similarly EKF- Rs is switched on at 

t = 4 [sec] when Rr :Rm - ^ 2 * R m.

The resulting system performance for all scenarios is given with Fig. 4.4a representing 

the velocity estimate, hm, with Fig. 4.4b depicting the velocity error, ( n"f  - h m) and Fig. 

4.4c giving the estimation error, nm- h m.
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Fig. 4.4 Simulation results for the estimation of velocity obtained with the Switching 
EKF estimator and DVC system
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The variation of the applied and estimated load torque is given in Fig. 4.5a, with Fig. 

4.5b representing the estimation error, ( tL- t L) for tL.

(a) Variation of the tL and tL

20 -

I I I I I r

n 1------- 1------- r

-0.1569 0.1540 0.1571

i i i
f

-0.1571
r

-0.1571

♦|
-0.1571

I I
0.1571

ti
- 0.0021

-0 . 0 0 2 1

II
V *

t

-0.0G21

"70-x

-0.1570-V

~Tj
0.0224

_ 23 24 t[s]
J  L J I I I I I I Ly u j  y cu la m ji j  vji iu c  ts L iiu a in jn  t u v j i  u i  l ^  , c ; — t j  — i ^

Fig. 4.5 Simulation results for the estimation of the load torque using the Switching EKF 
estimator

The variations related to the Rs are given in Fig. 4.6a and Fig. 4.6b, with the former plot 

representing the actual and estimated variations of Rs, while the latter plot represents the
A

estimation error, R —R .
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Fig. 4.6 Simulation results for the estimation of the stator resistance using the Switching 
EKF estimator

As for the rotor resistance, Rr , the actual and estimated variation of Rr with the initial

value of zero, and the estimation error, Rr- R r are demonstrated with Fig. 4.7a and Fig. 

4.7b, respectively. Finally, Fig. 4.8a, 8 b and 8 c represent the estimated flux magnitude,

V r the error between the reference and actual (estimated) flux magnitude, v .

and the flux estimation error, (\y/r\ -  ij/r ) respectively.
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Fig. 4.7 Simulation results for the estimation of rotor resistance using the Switching EKF 
estimator

Finally, the system performance in the zero speed range under the scenarios given in Fig. 

4.9a is demonstrated in Fig. 4.9b for the estimation error, nm- h m, and in Fig. 4.9c for 

the variation of the estimated 8^  , which is the position of the flux with reference to the 

stator stationary axis.

Analysing the simulation results, the following observations are made:
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Fig. 4.8 Simulation results for the estimation of flux obtained with the Switching EKF 
estimator and DVC
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Fig. 4.9 Simulation results for combined Switching EKF estimation and DVC for the 
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♦ In spite of no a priori information on the estimated states and parameters, except for 

stator resistance initialization in the interval of 0 - 1  [sec], the estimation performances 

of the Switching EKFs are quite good, even under challenging variations of velocity 

reference and the load torque as well as matched and unmatched resistance variations.

♦ As mentioned before, the estimation and control algorithms are challenged with the 

unmatched variations. Even under extreme conditions, it has been demonstrated that 

the proposed estimation algorithm combined with sensorless DVC performs quite well 

as can be seen at t = 2.01 [sec] and t = 4 [sec] under the scenarios given in Fig. 4.3. On 

the other hand, with matching algorithms and parameter variations, better transient and 

steady state performances are obtained with the proposed algorithm as can be seen at 

t -1 4  [sec], when Rs : 2 *Rsn —> Rm, while Rs estimation is on and at t = 16.01 [sec],

when Rr : 2 * Rm —> Rrn while Rr estimation is active.

♦ The new estimation technique has performed quite well also with problematic zero 

speed operation [37], as can been seen in the time interval of 18[sec]<f <22[sec] for 

the scenarios given in Fig. 4.3, and in the interval of 2[sec]<f <17[sec] for the 

scenarios given in Fig. 4.9a. Moreover, it has been observed that the source of the 

estimation error of the velocity, eHm =nm- n m, in the time interval

11 [sec]<r <17[sec] is the step shaped extreme variations of the Rr , 

Rr : Rrn —» 2 * Rmor Rr : 2 * Rrn —» Rrn, which also affect the estimation of tL, 

especially when tL = 0  [Nm] and nm =0[rpm]. However, this error also converges to

zero as can be seen in Fig. 4.9b. Additionally, in the time interval of 

7[sec]<t<17[sec] in Fig. 4.9c, which constitutes the dc condition, it can be observed 

that the proposed estimation technique has performed well under the most challenging 

operating condition inherent to the speed-sensorless control of IMs.
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♦ The tL is considered constant in the EKF extended models and the algorithm is 

challenged with a linear tL variation in the time interval ll[sec]<f <13[sec]. In spite 

of this mismatch, satisfactory results have been obtained with the new technique.

♦ The proposed scheme also facilitates the indirect evaluation of uncertainties that have 

the same variation as the state or parameter that is being estimated. In this study, the 

viscous friction (Fv =Pi com) is taken into account in the simulation model 

representing the system but not in the extended model; thus, the estimated tL as a 

constant state is expected to include also the viscous friction value once the steady- 

state is reached. This fact can be demonstrated easily as follows:

In the intervals, l[sec] <?<7[sec], 13[sec]< r< 18[sec] and 23[sec]<f<24[sec], during 

which both the velocity reference and load torque are given positive constant values, 

the error in the torque estimation is et =-0.1571 or etf =-0.0021. In the interval

9[sec] <7<1 l[sec], where both the velocity and torque reference are given negative 

values, the error is found to be et =0.1571. Thus, considering the viscous friction

coefficient, (3, = 0 . 0 0 1  used in the model and the interval l[sec]<r< 2 [sec] (high 

speed range), the actual angular velocity is calculated as

0)m{ o o )  = ci)m ( ° o )  + e^ (oo) = 2;r(l 500.5-0.3223)/60 = 157.0982 [rad/s] (4.12)

In the steady-state, e should be equal to the friction taken into account in the model; 

hence,

]
e,L =- PL°>m (°°)

I
-  0.1571 = -  0.001 x 157.0982 —>—0.1571 [Nm] = -0.1570982 [Nm]. (4.13)
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which is almost equal to the e in Fig. 4.5(b) at t = 2 [sec].

Similar analysis can be conducted in the interval 16[sec]<t<18[sec] (the very low 

speed range) during which,

Q)m( oo) = fl>m(°o) + eflJU(oo) = 2;r(l9.8785-0.1875)/60 = 2.0620[rad/s] (4.14)

j
e t L = ~  P l ® ^ 0 0 )

- 0 . 0 0 2 1  =-0.001x2.0620

-  0.0021 [Nm] s  -0.0020620 [Nm]. (4.15)

This fact should also be taken into consideration in the evaluation of the load torque 

estimation. By inspecting the tL estimation, it can be observed that linear variations 

and reversals of tL give rise to some estimation error for relatively short transient 

durations; however, in the intervals with constant velocity reference and constant tL, 

this error is much lower and almost zero, once the Fv component is subtracted from

♦ Simulations are performed to compare the performance of the Switching EKF 

algorithm with the individual EKF-fi, (with Rs estimation only) and EKF-.fi’ (with 

fir estimation only) for both high and low velocity operation as can be seen in Fig. 

4.10. Two switching durations are considered to this purpose: l x T  and lOOxfi, the 

latter of which gives rise to a lower estimation error, enm =nm- h m. As the highest

velocity estimation error has occurred at the rated load torque, tw , this value is 

considered in the simulation model for the comparative scenarios. Also, it is 

demonstrated that the initial performance of the switching operation is independent of
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the initial value of the Rs estimation, which is taken as 0 and Rsn in the simulations to 

demonstrate this property.

Inspection of the results demonstrates the improved performance of the new 

algorithms in both the high and low velocity range. The performance deterioration is 

also obvious with individual E K F - a n d  EKF- Rr algorithms particularly when the

speed reference approaches zero, as can be seen with calculations at 6 [sec] based on 

the data given in Fig. 4.10a.

For n rm =1500 [rpm],

e„m(%) of EKF- Rr = M 5 X100= 5.0425% [rpm]

enm(%) of EK F-4  = " w a x l00=  -4.1635%  [rpm]

(%) of the proposed method = ^ p X l 0 0 = 0.0181% [rpm]

For nrm = 100 [rpm],

e„m(%) of EKF- R r = ^ f i x l 0 0 =  21.5239% [rpm] 

enJ% )  of E K F - = ^ « x l 0 0 =  -64.0109% [rpm] 

e„m (%) of the proposed method =-2 y^axl00= 0.1178% [rpm]

4.6 Conclusion

In this study, a Switching EKF algorithm is developed for the estimation of two 

parameters which are critical for the high performance sensorless control of IMs, namely 

Rs and Rr . The estimation of these two parameters is often reported as a challenge in

sensorless IM control. The switching algorithm developed to this aim also estimates the 

uncertain load torque and velocity as well as the flux and current components. In this
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study, the proposed algorithm is run in combination with the speed-sensorless direct 

vector control (DVC) of IMs; however, it could be used with a variety of other methods 

applied for the sensorless control of IMs.

Besides the proper updates of Rs and Rr which improve the flux and speed estimation,

the performance of the switching algorithm also benefits from the estimation of velocity 

via the equation of motion, as opposed to its estimation as a constant in most past studies. 

This approach helps restore the lost rotor information on the stator side, hence, 

improving the very low and zero speed operation. This aspect of the study is an extension 

of the authors’ previous research presented in [26] and [27].

The performance of the algorithm is tested in the very low and zero speed region and also 

evaluated with 17 scenarios developed by giving step-type and linear variations to the 

load torque and angular velocity reference. The robustness of the algorithm to stator 

resistance, Rs , and rotor resistance, Rr variations is tested with step-type changes

imposed on Rs and Rr . As a result, the estimation of both Rs and Rr with the new

algorithm has yielded a better performance in comparison to individual EKF-/?S and

EKF- Rr algorithms, which conduct Rs or Rr estimation only.

The system performance is observed to be quite well under step-type variations and 

reversals in the load-torque and step and linear changes and reversals in the angular 

velocity. The system has also demonstrated the expected robustness to step-type 

variations forced on Rs and Rr , and acceptable errors are obtained even with the linear 

variations and reversals of the load torque. The estimation of the load torque, tu as a 

constant state in this algorithm, also accounts for mechanical uncertainties which is the 

viscous friction torque in this case, thereby, improving the estimation performance.
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Finally, an important advantage of the proposed method over previous methods is that 

Rs and Rr estimations can be performed both in transient and steady state without signal

injection and/or algorithm changes based on parameters or speed. Other multiple model 

based methods, such as [28], [29] and [30] are executable only during the steady state 

and cannot handle large load torque or speed variations as also stated by the authors. 

Moreover, when considering studies such as [31], [32] and [33], it should be noted that 

adjusting the value of Rr with respect to the estimated Rs means using only an

approximate value of the actual Rr , which does not include the frequency based 

variations in Rr . Thus, the proposed Switching EKF method addresses all the above 

deficiencies by demonstrating a good performance under large uncertainties and load or 

speed variations in the transient and steady state.
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Chapter 5: 

Experimental Evaluation of Braided EKF for Sensorless Control of 

Induction Motors*

Abstract— Temperature and frequency dependent variations of the rotor (R r ) and 

stator (Rs ) resistances pose a challenge in the accurate estimation of flux and velocity in

the sensorless control of induction motors (IMs) over a wide speed range. Solutions have 

been sought to the problem by signal injection and/or by the use of different algorithms 

for the different parameters and states of the same motor. In this study, a novel Extended 

Kalman Filter (EKF) based estimation technique is developed for the solution of the 

problem based on the consecutive operation of two EKF algorithms at every time step. 

The proposed “braided” EKF technique is experimentally tested under challenging 

parameter and load variations in a wide speed range, including low speed. The results 

demonstrate a significantly increased accuracy in the estimation of Rs and Rr , as well as

load torque, flux, and velocity in transient and steady state, when compared with single 

EKFs or other approaches taken to estimate these parameters and states in the sensorless 

control of IMs. The improved results also motivate the utilization of the new estimation 

approach in combination with a variety of control methods which depend on accurate 

knowledge of a high number of parameters and states.

Index Terms— Induction motor, Extended Kalman Filter, speed-sensorless control, 

rotor resistance and stator resistance estimation, load torque estimation.

5.1 Introduction

Induction motor (IM) parameters vary significantly with operating conditions. Besides 

the load torque that can vary from no load to full load, stator (Rs ) and rotor (/?’)

* Barut, M., Bogosyan, S. and Gokasan, M. (2006d), “Experimental Evaluation of Braided EKF for 
Sensorless Control of Induction Motors”, IEEE Transactions on Industrial Electronics. (In press)
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resistances change with temperature and frequency, while inductances tend to saturate at 

high current levels. The effects of parameter and model uncertainties become even more 

relevant with speed-sensorless control, calling for sophisticated methods for the 

estimation of flux and velocity. The benefits of sensorless control are the increased 

reliability of the overall system with the removal of mechanical sensors, thereby reducing 

sensor noise and drift effects as well as cost and size. However, to exploit the benefits of 

sensorless control, the developed estimation methods must achieve robustness against 

parameter and model uncertainties over a wide speed range. Parameters of particular 

concern in the sensorless control literature are the frequency dependent, Rr , temperature 

dependent, Rs and the load torque, all of which are very effective on the accurate 

estimation of flux and velocity.

To address the parameter sensitivity problem in IM sensorless control, a variety of 

approaches have been proposed and problems have been reported. Studies based on 

sliding mode observers with [1] estimating the Rr and [2] estimating the Rs , studies on 

speed adaptive flux observers as in [3], in which Rs is also estimated, and [4], [5] and [6 ], 

which adjust the value of Rr in proportion to the estimated Rs have been reported in the 

literature.

There are also Extended Kalman Filter (EKF) applications in the literature for the 

sensorless control of IMs. Model uncertainties and nonlinearities inherent in IMs are well 

suited to the stochastic nature of EKFs [7]. With this method, it is possible to make the 

online estimation of states while performing the simultaneous identification of 

parameters in a relatively short time interval [8 - 1 0 ], by also taking system and process 

and measurement noises directly into account. This is the reason why the EKF has found 

wide application in sensorless control of IMs, in spite of its computational complexity. 

Among recent sensorless studies using EKF estimation for IMs, [11], [12] and [13] 

estimate the flux and velocity, while [14] uses an adaptive flux observer in combination
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with a second order Kalman filter for the same purpose. None of these studies estimate 

the load torque and motor resistances, resulting in a performance that is sensitive to the 

variation of these parameters. In [11], [12], [13], and [15-17] which present reduced- 

order estimators, the velocity is estimated as a constant parameter, which gives rise to a 

significant estimation error in the velocity during the transient state, especially under 

instantaneous load variations, although the performance is improved in the steady state. 

While [15] and [16] are sensitive to rotor resistance variations, [17] also estimates the 

rotor resistance. However, the estimation of rotor resistance is performed by the injection 

of low amplitude, high frequency signals to the flux reference in the direct vector control, 

(DVC) of IMs. This has caused fluctuations in the motor flux, torque and speed. Finally, 

recent studies of the authors [18, 19] estimating the velocity via the consideration of the 

equation of motion in the EKF model, in addition to the estimation of rotor resistance 

and mechanical uncertainties demonstrate improved results over a wide speed range. 

However, the results are sensitive to the variations of stator resistance, indicating the 

necessity of an approach to estimate rotor resistance and stator resistance simultaneously, 

as well as the load torque.

Studies achieving the simultaneous estimation of Rs and Rr in the sensorless control of 

IMs are only a few; in fact, [20] states that simultaneous estimation of Rs and Rr give

rise to instability in the speed-sensorless case. As a solution, [21] presents a model 

reference adaptive system based on 3 models, of which one is used for the estimation of 

the rotor time constant via high frequency signal injection and the other 2  models are 

used interchangeably by enabling the stator resistance estimation only during short 

intervals, during which the rotor speed has reached the steady state. In studies such as

[22] and [23], the speed and rotor flux are estimated as well as the stator resistance and 

rotor resistance by injecting high frequency signals into the flux and magnetizing current 

commands. However, in [22], the algorithm identifying the resistances, which is used in 

a feedback linearization controller is applicable only when the sensorless speed control 

system is in steady state, and not when the load torque is varying largely or when the
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speed command is being changed, as also stated by the authors. On the other hand in

[23], it is stated that the proposed drive can compete with a speed sensor equipped drive 

only if accuracy in steady-state is not essential and operation under high loads is not a 

requirement. Recently, [24] presented a sensorless control scheme using an open-loop 

estimator to calculate Rr and a model reference adaptation for Rs . However, the

performance of the parameter estimation is not demonstrated and only evaluated 

indirectly via the estimated velocity and flux. The above listed studies, to the authors' 

best knowledge, are among the most significant reported IM sensorless control studies 

estimating Rs and Rr simultaneously as the two most effective parameters on estimation

and control performance. However, the results require either signal injection or design of 

different algorithms based on the velocity range or based on the parameters and states to 

be estimated, Rs or Rr .

The major contribution of this study is the development of an EKF based novel observer 

approach, which achieves the simultaneous estimation of Rs and Rr and hence, the

accurate estimation of flux, torque and velocity for the speed-sensorless control of 

induction motors without the need for signal injection or algorithm changes as in most 

previous studies. The observer involves the consecutive use of two EKF algorithms at 

every time step by what could be called a “braided” technique. The two EKF algorithms 

have exactly the same configuration and are derived based on the same extended model 

except for one state; therefore, Rs in one is replaced by Rr in the other. Persistency of

excitation required for parameter convergence in the steady state and provided by signal 

injection in most previous methods, is thus fulfilled by the system noise (or modeling 

error), which is inherently taken into account in all EKFs. The Braided EKF technique 

exploits this characteristic as well as the fast convergence property of EKFs. The 

proposed approach also offers a solution against the well known decreased estimation 

accuracy problem faced when a high number of states and parameters are to be estimated 

with a single EKF. The fast convergence rate and high estimation accuracy demonstrated
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in the experimental results indicate that the proposed technique can address the challenge 

of Rs and Rr estimation in the sensorless control of IMs and improve estimation of flux 

and velocity over a wide speed range.

The study is organized as follows. After a discussion of previous literature on sensorless 

estimation and control in Section I, Section II proceeds with the derivation of the 

extended models for the new EKF algorithm. Next, the development of the multiple- 

model Braided EKF is introduced in Section III, which is followed by experimental 

results presented for various scenarios in Section IV. Finally, conclusions and future 

directions are discussed in Section V.

5.2 Extended Mathematical Models for Braided EKF

Sensorless schemes developed for IMs require the estimation of rotor flux components, 

Yra» Vrp ’ angular velocity , com and stator current components isa and is/j, which are

also measured as output. However, as mentioned in Section I, the accurate estimation of 

these states is very much dependent on how well the system parameters are known, 

particularly the rotor ( Rr ) and stator ( Rs) resistances over a wide speed range. To this 

purpose, in this study, two extended models are developed: one which is developed for 

the estimation of the rotor resistance, Rr and the other, for the stator resistance, Rs , with

an additional set of estimated states which are the same in both models. The extended 

models to be used in the development of the two EKF algorithms can be given (as 

referred to the stator stationary frame) in the following general form:

L i ( 0  = f ei (*ei (0> He (t)) + Wn (f )

=  A ei k e i  ( O k ,  { t )  +  R eH e { t ) +  W,1 ( 0 (5.1)

Z(t) = hel{ x jt))  + wi2(t) (measurement equation) 

= K exei(t)+ wl2{t) (5.2)
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Where, i - 1,2, extended state vector xei represents the estimated states. /  . is the 

nonlinear function of the states and inputs. A ei is the system matrix; ue is the control 

input vector. B e is the input matrix. wa is the process noise. hei is the function of the 

outputs. H_e is the measurement matrix. wn is the measurement noise.

Based on the general form in (5.1) and (5.2), the detailed matrix representation of the two 

IM models can be given as below:

Model 1: Extended model of IM derived for the estimation of Rs , (Model- Rs):
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Model 2: Extended model of IM derived for the estimation of Rr , (M odel-/?'):
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+ W2 2 W (5.6)

Where, p p is the number of pole pairs. La = oLs is the stator transient inductance;

jr2
(7 = 1 -  -A- is the leakage or coupling factor. Ls and Rs are the stator inductance and

resistance, respectively. Lr and /?’ are the rotor inductance and resistance, referred to 

the stator side, respectively. vsa and vs/J are the stator stationary axis components of 

stator voltages. isa and isjj are the stator stationary axis components of stator currents. 

y/ra and y/rj3 are the stator stationary axis components of rotor flux. J L is the total 

inertia of the IM and load. com is the angular velocity. As can be seen from (5.3)-(5.4) 

and (5.5)-(5.6), the only differences between the two extended vectors, x el and x e2, are
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the constant states Rs and Rr , respectively. isa and isfj are the measured variables in

both algorithms. The load torque and stator or rotor resistances are assumed to have a 

slow variation with time and therefore, are taken into consideration as constant 

parameters.

5.3 Development of the Braided EKF Algorithm

In this section, the two EKF algorithms used in the Braided EKF technique will be 

derived using the extended model in (5.3-5.4) and (5.5-5.6 ). For nonlinear problems such 

as the one in consideration, the Kalman Filter (KF) method is not strictly applicable, 

since linearity plays an important role in its derivation and performance as an optimal 

filter. The EKF technique attempts to overcome this difficulty by using a linearized 

approximation where the linearization is performed about the current state estimate. This 

process requires the discretization of (5.3) and (5.4) -or (5.5) and (5.6) as below;

*«■ (* + !) = f ei kei {k\\Le (*))+JKn (k ) (5.7)

Z{k) = H ex ei{k)+wi2{k) (5.8)

For the linearization of (5.7-5.8 ), the current estimated states, x ei(k) and inputs ue(k) 

are used as below;

(5.9)

(5.10)

Thus, the EKF algorithm can be given in the following recursive relations:
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E,(k) = F M P M F TAk)+F,,(k)D,Fl,(k)+Q.

£■(* +1 ) = K M - N , ( k ) H T, { p s +  H , N , ( k ) ! L T, T l L M k ) (5.11b)

(5.11c)

(5.11a)

Here, Q is the covariance matrix of the system noise, namely model error. is the

covariance matrix of the output noise, namely measurement noise. Du is the covariance 

matrix of the control input noise ( vsa and v^), namely input noise. Pt and N t are the 

covariance matrix of state estimation error and extrapolation error, respectively.

The algorithm involves two main stages: prediction and filtering. In the prediction stage, 

the next predicted states /  (.) and predicted state error covariance matrices, P, (.) and

iV;(.) are processed, while in the filtering stage, the next estimated states, xCT(/c+l),

obtained as the sum of the next predicted states and the correction term (2 nd term in 

(5.11c)) are calculated.

The flowchart of the Braided EKF algorithm is given in Fig. 5.1, demonstrating the 

consecutive use of the two EKF algorithms. While one algorithm estimates Rs and the

other, Rr , both algorithms also estimate load torque, velocity, flux and current 

components as the common states. After the initialization of the states, the algorithms are 

run by switching them on and off consecutively and at each time step. The final values of 

Pt{k +1) and xei(k + 1) calculated for one EKF algorithm at the end of each switching 

period are passed over to the next EKF algorithm as the initial values of the covariances 

and states. The resistance, Rs or Rr , estimated during the previous period is also passed 

on to the next EKF algorithm and is assumed to be constant in the new EKF model 

throughout the whole switching period.
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reset tim er, t  = tmUch 

se t tim er <— t______

/ read \ , v s/

k  + 1|

reset tim er, t = t.M  

se t tim er <— t______

C ompute  (5.9), (5.10) and (5.11) for m odel 1 
K eep  P , (k + 1), x el {k + 1)

N  ^  Y
J im e r  ~ - t .

R, Rs(k+i)
P 2{ k )< -P i { k + 1) 

x e2 (k)<r~ x el (k  + 1) except f o r  R s (k  + 1)

Fig.5.1 Flow-chart of the Braided EKF algorithm.

5.4 Experimental Results and Observations

In this section, the performance of the Braided EKF will be evaluated against the single 

EKF algorithms designed for Rr estimation ( E K F -R r) and Rs estimation ( EKF - R s).

The experimental setup used for the sensorless estimation tests is presented in Fig. 5.2. 

The induction motor under consideration is 3 phase, 8  pole, 3 [HP]/2.238 [kW], with its 

specification details given in Table 5.1a The EKF algorithm and all analog signals are 

developed and processed on a Power PC based DS1104 Controller Board, offering a 4- 

channel, 16-bit (multiplexed) ADC and four 12-bit ADC units. The controller board
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processes floating-point operations at a rate of 250 [MHz]. A torque transducer rated at 

50 [N.m] and an encoder with 3600 [counts/rev], are also used for the verification of the 

load torque and velocity estimation and hence, for the performance evaluation of the 

Braided EKF. The phase voltages and currents are measured with high band voltage and 

current sensors from LEM Inc.

vsb

AC Drive

&
Voltage
Sensors

4

<=c>
Controller Board DS1104 

with PowerPC

Current
Sensors

31

Fig. 5.2 Schematic representation of the experimental setup.

Table 5.1a Rated values and parameters of the induction motor used in the experiments.

p jk w ] /[H z] * J L Lkg-m2J Pp v [v ] /[A ]

2.238 60 0.2595 4 230 1 2

R,[G\ * ;[« ] M h ] Lr [H] £ „ [h ] N m [rpm] tL [Nm]

0.6619 0.7322 0.0375 0.0376 0.0334 850 25.1

* J L is the total inertia in the experimental test-bed.

The load is generated through a DC machine operating in generator mode coupled to the 

IM. An array resistor connected to the armature terminals of the dc machine is used to
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vary the load torque applied to the IM based on the relationship as tL = kf a /  R , where kt

is the torque constant of the dc machine; a) is angular velocity and R is the total 

resistance (switched array + armature). The value of the resistance is adjusted to 7.8 [Q] 

to generate a load torque, ti , of 20.73 [N.m], at approximately 819 [rpm]. The parameters 

for the DC generator used in experiments is listed in Table 5.1b.

Table 5.1b Rated values and parameters of the DC machine used in the experiments.

P[kW] v [ v ] /[A ] N m [rpm] h  tNm]

3 125 24 1150 24.91

The initial values of the P ( and Q in the EKF algorithms are found by trial-and-error to

achieve a rapid initial convergence as well as the desired transient and steady state 

performance for the estimated states and parameters; while the D^ and Du, on the other

hand, are determined taking into account the measurement errors of the current and 

voltage sensors and the quantization errors of the ADCs, respectively.

For Model-1 ( EKF -  Rs),

Qx =diag\<r*[A2] 10~8 [a2] 4x10~1 7 [(V.s)2] 4x10“1 7 [(V.s)2] 10~u [(rad/sf]

1 0 -1 5 [(iVm)2] 1 0 h 6 [q2]}

P, =diag{\[A2] 1 [A1] l[(V..s) 2 ] l[(y..s)2] 1 \ r a d ls f]  l[(iVm)2] l[Q2]}

For Model-2 ( EKF -  Rr ):

Q2 =diag\.5x\Q Tn [A2] 1.5x10“u [a 2] o[(y.^)2] o[(V.5 )2] \QTu \rad I s ) 2 \ 

7x l0 " 1 5 [(Am)2] 1 0 ~1 6 [q2]}

P2 =diag{l[A2] 1  [A2] l[(y..v)2J l[(y..v)2J l[{rad /sf\ \[(Nmf\ \[n 2}

For both models,
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De = d ia & .6 x lO^A2] 2.6x10^[a2| ,  Du =diag{2.3xlO-5 [v2] 2.3xlO“5 [v2]}

For a realistic evaluation, the performance of the IM is tested in open-loop with PWM 

input voltages and currents as can be seen in Fig. 5.3. The EKF algorithms take as input 

the transformed components of the current and voltage. The following is a generalized 

description of this transformation; xa —xa\ Xp={l/43)(xb- x c) where: x : i and v for 

current and voltage, respectively.

0.01 0 .02  0 .03  t[s] 0 0.01 0 .02  0 .03  t[s]

(C) (d)

Fig. 5.3 Stator currents and voltages applied to the IM through the AC drive.

Fig. 5.3 demonstrates the transformed current and voltage at 60 [Hz], 230 [V] for a ti of 

approximately 21.06 [N.m].

To test the performance of the Braided EKF against the conventional EKF - R s and 

EKF -  Rr algorithms, five scenarios are developed, which impose challenging Rs, Rr ,
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load torque and velocity variations on the motor in the high and low speed range. All 

algorithms are started with initial parameter and state estimations of zero. The sampling 

period for all algorithms is Tsample =110 [us].

The resulting performances are presented with the variations of nm& nm, tind & tL, y/ ra,

Yrp, K> e.M& V  enm- nm - K  and e.L “ I  namely, the measured and

estimated velocity, the induced torque as obtained from the torque-meter and estimated 

load torque, the estimated a  and components of the rotor flux, estimated rotor 

resistance, estimated stator resistance, estimation errors in (isa) and {isp), and estimation 

errors of velocity and load torque, respectively.

Scenario I  -  Load torque & stator resistance variations for EKF - R r, (Fig. 5.4):

This scenario aims to test the performance of E K F -R r, under Rr and Rs variations. To 

this purpose, while the IM is running at 849.5 [rpm] under no-load, and the switched 

array resistance of 7.8 [£2] is connected to the armature, the field supply of the dc 

generator is switched on at t =1.8 [sec]. The IM is loaded with 20.2 [N.m] at 817.2 [rpm], 

which also causes an increase in Rr . To also test the algorithm under Rs uncertainties, the 

following variations are given to Rs at t = 16.2 [sec], Rs : Rsn —» 2 x R m , at t = 24.7 [sec], 

x R sn —> Rsn. Finally, the scenario is switched back to its initial status at t = 31.75

[sec].

Inspecting the results, it can be seen that due to the instantaneous switching effects 

created by the challenging variations, the maximum errors of isa and isfj jump to peak

values of 3.1 [mA], however, the errors of both currents remain within a band of ± 2 

[mA], The estimated values of velocity and load torque also track their measured values 

quite closely with a reasonable relationship observed between the load torque estimation 

error and that of the velocity. In the time interval of 0[sec]<t<16.2[sec] and
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31.75[sec]<r<40[sec] in Fig. 5.4 (e), it can be noted that the estimated rotor resistance, 

Rr , has demonstrated a variation in harmony with the rotor frequency which is close to 

linear, and consequently, with the load torque, as has been stated in [19], [25]. However, 

under the challenging Rs variation Rs : Rsn —> 2 x Rm at t = 16.2 [sec], a considerable 

amount of error occurs in the estimated load torque and, consequently, in the estimated 

velocity and flux. The error is corrected at t = 24.7 [sec], when the Rs value is switched 

back to its nominal value, Rsn used in the extended model. While the operation of the IM 

over a long duration is expected to cause a similar increase in the Rs value even at high 

speeds, the temperature dependent increase in Rs is even more critical at low speeds. 

Therefore, proper and continuous updates of Rs are essential for the EKF -  Rr algorithm 

throughout the whole speed range for accurate estimations of flux, load torque and 

velocity.

Scenario II -  Load torque & rotor resistance variations for EKF — Rs, (Fig. 5.5):

In this section, the EKF - R s algorithm will be tested for load torque and rotor resistance 

variations. To this aim, while the IM is running at 849.5 [rpm] under no-load, and the 

switched array resistance of 7.8 [Q] is connected to the armature, the field supply of the 

dc generator is switched on at t = 2 [sec.]. The IM is loaded with 20.9 [N.m] at 815.5 

[rpm]. The variation of the load torque inherently varies Rr , and since the extended 

model of EKF -  Rs assumes Rr to be constant, a considerable amount of error occurs in 

the estimated load torque and, consequently, in the estimated velocity and flux. However, 

isa and is/} errors remain within a very small band of ± 0.4 [mA], as can be seen in Fig.

5.5(f). The resulting performance of this scenario is presented in Fig. 5.5(a), (b), (c), (d), 

(e), (f), (g) and (h).

To demonstrate the importance of proper Rr updates for the performance of the
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EKF - R s algorithm, starting at t = 13.3 [sec] the algorithm is updated with the accurate 

Rr values, obtained from EKF - R r in Scenario I. The velocity and torque estimation
/V ,

errors, which were at a significant level prior to Rr updates at 13.3 [sec], start converging 

towards zero. Thus, this scenario indicates the importance of accurate Rr values for the 

performance of the EKF -  Rs algorithm and also emphasizes the need for simultaneous 

Rs and Rr updates.

Scenario III-L o a d  torque & rotor resistance variations under Braided EKF, (Fig. 5.6): 

In this section, the performance of the Braided EKF algorithm will be evaluated under 

rotor resistance variations. To this aim, while the IM is running at 849.5 [rpm] under no­

load, and the switched array resistance of 7.8 [Q] is connected to the armature, the field 

supply of the dc generator is switched on at t = 7.2 [sec.]. The IM is loaded with 20.74 

[N.m] at 818.7 [rpm], which also causes an increase in Rr . At t = 19 [sec.], the scenario 

is switched to its initial status by switching off the DC generator field supply. The 

resulting performance is given in Fig. 5.6(a), (b), (c), (d), (e), (f), (g) and (h).

Inspecting the results, it can be seen that, the Braided EKF has in fact achieved a 

significantly improved performance over individual EKFs, with the simultaneous 

estimation of Rs and Rr throughout the operation. Hence, in spite of Rr variations 

between t = l  and 19 [sec], the estimation errors are significantly lower (and almost zero) 

in comparison to the errors obtained with EKF -  Rs only, which performs Rs estimation

only while Rr variations are taking place.

Scenario TV -  Stator resistance variations under Braided EKF, (Fig. 5.7):

In this section, the performance of the Braided EKF will be evaluated under Rs 

variations. To this aim, the scenario is started with an incorrect initialization of 

Rs (o +) = 2x Rsn, while only E K F -R r is running and at t -  7.27 [sec.], the Braided
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algorithm starts. The resulting performance of this scenario is given in Fig. 5.7(a), (b), 

(c), (d) and (e).
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Inspecting the results, the following can be noted: the estimation error obtained in the 

initial period when only the E K F -R r algorithm is on under a variation in Rs, is

significantly reduced as soon as the Braided EKF algorithm is switched on. As can be 

seen from Fig. 5.7, all errors quickly approach zero as soon as the Braided EKF is 

switched on, in spite of the variation in Rs.

Scenario V -  Low speed operation under Braided EKF (Fig. 5.8):

Finally, the performance of the Braided EKF algorithm is tested in low speed operation. 

While the IM is running at 821.7 [rpm] under a load torque of 19.17 [N.m], the velocity 

and load torque are decreased to 54.5 [rpm] and 2.85 [N.m], respectively, with a linear 

variation given to the velocity reference on the ac drive. At t = 22 [sec] the scenario is 

switched back to the initial status. The resulting performance is given in Fig. 5.8(a), (b),

(c), (d), (e), (f), (g) and (h).

Inspecting the estimation errors of the velocity and load torque in Fig. 5.8(f) and (g), 

respectively, it can be noted that the Braided EKF outperforms the individual EKF -  Rs

and E K F -R r algorithms. Hence, the benefits of the Braided EKF algorithm over 

individual EKF algorithms are evident in the whole velocity range, especially under 

unmatched Rs and Rr variations, therefore, Rr variations while EKF -  Rs is running or

Rs variations when the estimator is EKF — Rr. The switching action provided by the

Braided algorithm at every time step ensures better prediction and correction against all 

uncertainties and parameter variations.

5.5 Conclusion

The proper estimation of temperature and frequency based uncertainties of Rs and Rr is 

known to be essential for the accuracy of flux and velocity estimation in IM sensorless 

control; however, the simultaneous estimation of Rs and Rr' has frequently been reported 

as a challenge in previous literature on sensorless IM control.
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There have been only a few studies achieving the simultaneous estimation of Rs and Rr

in sensorless control, -either by the use of open-loop estimators or by developing 

different estimation techniques for different states and parameters in the IM model or by 

signal injection, which requires additional and customized measures to be taken. In this 

study, a more flexible approach is proposed to the solution of the problem that does not 

require signal injection or algorithm changes and is based on the consecutive use of two 

EKF algorithms of the same nature and configuration for the simultaneous estimation of 

Rs and Rr in addition to the load torque, flux and velocity.

The solution offered by the braided approach exploits the fast convergence rate of EKFs 

as well as the persistent excitation properties introduced by the model (or system) noise 

and measurement noise inherent to EKF, increasing estimation accuracy in steady-state 

and eliminating the need for external signal injection. However, the computational 

complexity and deteriorated performance of EKFs with the increased number of 

estimated states is also a well-known fact. To overcome this problem in this study, the 

two EKF algorithms estimating Rs and Rr are utilized in a braided manner, thus

achieving the accurate estimation of a high number of parameters and states than would 

have been possible with a single EKF algorithm.

Experimental results taken under challenging scenarios demonstrate the performance 

achieved by the proposed algorithm in a wide speed range with significantly increased 

accuracy in the estimation of flux and velocity, in comparison to single EKF algorithms 

which estimate Rs or Rr only or other approaches taken in previous studies. The results 

also motivate the utilization of the proposed estimation technique in combination with a 

variety control methods for IMs or other electrical machines which require the accurate 

knowledge of a large number of parameters.
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Chapter 6: 

Sensorless Sliding Mode Position Control of Induction Motors 

Using Braided Extended Kalman Filters *

Abstract■— This study is aimed at designing a sensorless sliding mode position control 

system for the rotor flux oriented Direct Vector Control (DVC) strategy of induction 

motors (IMs). For this purpose, a novel sliding mode controller (SMC) with reduced 

chattering is designed for the control of the flux and angular position of the motor. All 

the states required for DVC in addition to the step-shaped load torque, stator resistance 

and rotor resistance are estimated using Braided EKF based observers. The performance 

of the new SMC is compared against a previously developed chattering-free SMC 

scheme. The simulation results demonstrate an improved robustness in the system 

response against parameter and load variations. It has also been demonstrated that the 

new Braided EKF technique used in the proposed sliding mode position control system 

also increases estimation accuracy of estimations when compared with chattering-free 

SMC under challenging variations of 100 % in the load and stator & rotor resistance.

Index Terms— Sliding mode control, reduced chattering, position control, sensorless 

vector control, Extended Kalman filter, induction motor, estimator, observer.

6.1 Introduction

The development of sensorless induction motor (IM) drives based on vector control or 

field-oriented control (FOC) has reached a level of maturity in recent years. However, 

the ongoing problem is to improve the dynamic behaviour of the drive under load and 

parameter variations for a wide speed range including zero speed for motion control 

applications of IM, such as robots, manipulators, electric vehicles, elevators, cranes, and

* Barut, M. and Bogosyan, S. (2007), “Sensorless Sliding Mode Position Control of Induction Motors 
Using Braided Extended Kalman Filters”, Proceedings o f  the IEEE International Symposium on 
Industrial Electronics (ISIE 2007). (To be submitted)
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numerically controlled (NC) machine tools. Therefore, control tasks can be summarized 

as

-design of robust controllers against parameter/model uncertainties of IMs 

-design of robust estimators for the determination of IM states and parameters for 

sensorless control.

PID controllers are widely used in motor control and other industrial applications 

because they provide a simple structure, design and implementation, while also ensuring 

a good control performance [1, 2, 3]. However, the parameter-tuning of the controller is 

quite a difficult task for highly nonlinear systems, such as IMs under parameter 

variations and external disturbances, when the aim is to track a desired dynamics [4, 5]. 

Therefore, artificial intelligence based studies, as in [5-7], have also been proposed 

recently for the position control of IMs. Although these methods improve performance of 

the designed controller, generally speaking, they need computionally complex 

algorithms, network architecture or fuzzy rules, which are constructed by a time­

consuming trial-and-error tuning procedure.

The SMC is a very effective approach for the solution of the problem due to its well- 

established design criteria, easy implementation, fast dynamic response, and robustness 

to parameter variations when a system is in a sliding mode [8 , 9, 10, 11]. However, the 

well-known drawback of the SMC is chattering, which is due to high-frequency control 

activity, and may excite unmodeled plant dynamics. Thus, to reduce chattering, several 

modifications have been proposed in previous studies related to the sliding mode position 

control of IMs: [12, 13, 14, 15] use Slotine's SMC approach, first-order low-pass filter 

(LPF), a pseudo sliding technique, an adaptive law for estimating the load torque 

disturbance, respectively. In [12], the tracking error is kept in a thin boundary layer; 

while [13] gives a sluggish response in transient state. Electrical uncertainty effects on 

performance of the controller have not been addressed at all in [14], while [15] is 

sensitive to variations in the rotor time constant. This study also does not address the 

sinusoidal tracking performance of the controller. Moreover, in all studies mentioned 

above, position sensors have been used. Among previous studies using SMC for the
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sensorless position control of IMs, [16] presents a chattering-free SMC based on the 

average-equivalent control approach. The simulation results have been obtained under 

variations of 2 0 % and % 8  in rotor and stator resistance at rated load; however, the 

performance of the scheme step-type references has not been addressed at all, while step

noted that there is a trade-off between robustness and chattering reduction as point out in

In this study, a novel reduced chattering SMC law is developed for the sensorless 

position control of IMs. The developed control combines the concept of power rate 

reaching law in [9] and average-equivalent control law in [16], [18] and [19]. In the 

proposed control law, the equivalent control represents the average control signal which 

is required to keep the switching variable on the switching surface. The power rate 

switching term aims to make the controller robust against matched uncertainties and to 

attain sliding mode in a short time. However, although the control law is robust against 

parameter variations, in sensorless control, the performance is very much dependent on 

how well the states are estimated. This, in turn calls for reliable estimation methods that 

can account for stator and rotor resistance variations as well as the load torque. To this 

aim, the developed controller is combined with the novel Braided EKF estimation 

technique developed in [20], Finally, the obtained simulation results show that the 

proposed SMC and estimator combination provides a superior performance over the 

sliding mode based control and observer in [16].

6.2 Mathematical Model of the IM

The model of IM in sychronous axis (dq) can be given as follows:

performance is known to be critical in the sensorless control of IM. Moreover, it should

[17].

* * = L =  - K h d  +  +  K  Y r d  +  +  K v sd

!?- = *«,- klhq ~ toshd + KWrq ~ KtomVd + KVsq

(6 . 1 a)

(6 . 1 b)

(6 .2 a)

(6 .2 b)
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dcom
dt = 6)m=k1 (y /Jsq -  y/ isd) -  k%com -  k9tL (6.3)

f, _  f/?S I I U — AA U — A»Pp h- — _1_ £  — 1L  T • t  — i t .  t  — 3 ?P A»
*1 - _ l ^ +  Lff4 2 / ’ 2 -  ^  ,  « 3  -  jJ , 4 L„ ’ K 5 -  L;  m ’ K 6 ~  £  > K 7 “  2 7 t  ^  ’

h. - A .  A - _ L
8 JL * 9 JL

Where p p is the number of pole pairs. Ls and jRs are the stator inductance and 

resistance, respectively. Lr and i?’ are the rotor inductance and resistance, referred to the 

stator side, respectively. LCT = oLs is the stator transient inductance ( <j = 1  -  is the 

leakage or coupling factor). vsd and v are the stator stationary axis components of 

stator voltages. y/rd and y/rq are the dq- components of rotor flux. isd and isq are the dq- 

components of stator currents. com is the angular velocity. tL is the load torque+Coulomb 

friction. JL is the total inertia. pL is the viscous friction coefficient of load + motor.

6.3 Proposed Position Control System

Fig. 6.1 demonstrates the proposed sliding mode position control system based on 

sensorless rotor flux oriented Direct Vector Control (DVC) strategy. Here, A denotes

estimated states or parameters. 0^ stands for the position of the flux with reference to the 

stator stationary { otfd) axis.

Fig. 6 .1 The proposed SM position control system.
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A. Design of SMCs design with reduced chattering

In this section, two sliding mode controllers (SMCs) are designed; one for the flux 

control, and one for the position control. To this aim, initially a sliding manifold is 

defined for each:

i) = \¥,\'S

a) -& „ )+ < & ? -« .)= « ,  + « ,  <c > ° )

The conrollers to be designed must take the controlled states to the manifolds and keep 

them there as the errors go to zero in spite of parameter and model uncertainties. To 

ensure stability conditions, the derivations of the controllers are based on Lyapunov 

Theory; to this aim, a positive definite Lyapunov function is chosen as below:

V = i  e ]  + i a]  -> V = <rd&d + d q&q (6.5)

At this point, the following selection is made to ensure that V is negative definite and 

consequently, that the sliding mode will occur in the intersection of the surfaces with, 

Gd = 0 and Gq = 0:

(6 .6 a) 

(6 .6 b)

By using (6.2a), (6.3), (6.4a) & (6.4b), d d and <7q can be found as follows:

&d = ~ khd ~ M 5hd + KWrd + (®v -PpM,n) Vu, = -h h d  + fd 0  (6'7a)

• 7 I 11 / I | . , 1  | 1 /nd . .
W d  = ~kd Pd Pd I ^  <*d = Pd | sgn{ad)

= ~kqPd
il !nn |1 Ina

s§nK )

(where kd > 0 ,k  > 0 , 0  <nd < 1  and 0  < n < 1 )

(6.4a)

(6.4b)
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^  = C f -Oim+ceq

= -^7VrdKq + k7y rqisd + M 7  ^  )+^ 8 ft»m+ V L

= - * 7 k r ^ + /,(•)  (6 Jb )

(where fes and kn are known; Ak5  and M 7  unknown)

When the control input isd (or isq) attains its equivalent value ( isd = isd{eq}; isq = isq{eq)), 

&d (or aq) becomes zero. Therefore, isd{eq) and isq(eq) are determined by

/.(•)

* ? w '
'«W) = r & -  (6'8b)

Substituting (6 .8 a) and (6 .8 b) into (6.7a) and (6.7b), &d and &q can be rewritten as

<7d =k5(isd{eq)- i sd) (6.9a)

(6-% )

Finally, using the backward Euler discrete time versions of (6 .6 a) & (6.9a) and (6 .6 b)

& (6.9b) under the assumptions of isd(eq){k) = isd(eq){k - l )  and isq(eq){k)= isqieq){ k - 1), the

control laws for the flux and position are determined as

isd (k) = isd (* - ! )+  (6 . 1 0 a)

crg(fc)-crg(fc-l) kq\trq (k f ' nq sga(crg(k))  

hT\yrr\,ef

(where T is sampling time.)

= i„ ( f c - l ) + + (6 . 1 0 b)
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B. Braided EKF Based Observers

In this section, the Braided EKF technique proposed in [20] is used to estimate the 

states required by the developed SMC; however, to improve the performance of 

sensorless estimation, the Rs and Rr parameters are also estimated with the braided 

technique. The extended model of induction motor used in each EKF algorithm is 

defined as follows [2 0 ]:

-Modell with xel=[isa: is/3 \j/ra y/rfj cqn iL l^]r (For the estimation of Rs), which 

is obtained by taking cos = 0 in Eq. la, lb, 2a, 2b and 3, and by taking ^  - i L =0 

and ^ t  = Rs =0-

-Model2 with xe2=[isa hp ¥a ¥p  4  (For the estimation of Rr ),

which is obtained by taking 0)s = 0  in Eq. la, lb, 2a, 2b and 3, and by taking 

3 - = »t = 0 a n d i  = R ; = 0 .

The estimation process requires the discretization of model 1 and model2 as below;

*ei (k  +  !) =  f ei (*ei (k \ H e  ik )) +  IHil {k ) (6-1 la )

Z{k) = H exei{k) + wi2(k) (6.11b)

( i = 1 ,2 ; extended state vector x ei representing the estimated states. wn is the 

process noise. wi2 is the measurement noise. H_e is the measurement matrix.)

For the linearization of (6.12a-b), the current estimated states, x ei{k) and inputs ue(k) 

are used as below;
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r  /.x aj{xei{k \u e{k)) 
F ei{k) = -

d x j k )

17 ( l\  df M e i ( k l^e(k))
F ui{k ) = ̂ =L due{k) Zei(k),ue{k)

(6.12a)

(6 . 1 2 b)

Thus, the EKF algorithm can be given in the following recursive relations;
' !

K A k) = F A k ) r t t ) F l ( k ) + F m(k)D ,F l(k)+ Q . (6.13a)

PAk+l)=NAk)-NAk)Hl{De + H M k )U lY H ,N ,(k )  (6-13b)

& (* + l)= iW * ).» ,W )+ £ (* + lK fl{ ''(z ( t)-a & W ) ' (6.13c)

Where, Q is the covariance matrix of the system noise, namely model error. is the

covariance matrix of the output noise, namely measurement noise. D u is the covariance 

matrix of the control input noise ( vsa and vsj3), namely input noise. Pt and N_(:

covariance matrix of state estimation error and extrapolation error, respectively.

The flowchart of Braided EKF algorithm [20] is given in Fig. 6.2, demonstrating the 

consecutive use of the two EKF algorithms; thus, while one algorithm estimates Rs and

the other, Rr , both algorithms also estimate load torque, velocity, flux and current 

components as the common states. After the initialization of the states, the algorithms are 

run by switching them on and off consecutively and at each sampling interval. The final 

values of Pi (k + 1) and xei(k + 1) calculated for one EKF algorithm at the end of each 

switching period are passed over to the next EKF algorithm as the initial values of the 

covariances and states. The resistance, - Rs or Rr - estimated during the previous period is

also passed on to the next EKF algorithm and is assumed to be constant in the new EKF 

model throughput the whole switching period.
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Fig. 6.2 Flow-chart of the Braided EKF algorithm.

6.4 Simulation Results and Observations

To test the performance of the proposed SM position control system, simulations were 

performed on an IM with the following rated parameters;

RsN = 2.283Q , RrN = 2.133Q , LS= 0.23H , Lr = 0.23H , Lm=0.22H  ,

J L = 0.005 kg.m2, p p = 2, tLN= 20 N m , NmN = 1430 rpm 

PL = 0.001 Nm/(rad/s) (total viscous friction coefficient),
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For a good evaluation of the novel reduced chattering SMC, its performance is 

compared with the chattering-free SMC (CF-SMC) developed in [16] with the following 

control input laws;

• (u \_ : (k i \ i [(i+yKW-M*-1)]
l sq\K )  sq \ l )  k i T \K \ *

(where Dd > 0, Dq > 0, and T is sampling time.)

Design parameters for the SMCs are as below:

kd =0.015, kq =0.010, nd =nq = 0.5, c = 17, Dd = 1, Dq -  50

The system covariance matrixes used in the Braided EKF algorithm are follows: 

Q.=diag( 1 0 “ 9  1 0 " 9  1 (T9  1 0 “ 9  1 0  4  1 0  4  1 0 -5)

P, =diag(9 9 9 9 9 9 9)

Variances, = d ia g ilO ^A 2] 1 0  6 [a 2 J} and Du = diag{l0-6\v 2\ 10“6[v2J} 

Sampling time, T = 100 fJs.

To test the performance of the developed schemes, simulations are performed for 3

different scenarios; In the first scenario, the position reference, 6 rf i , is stepped up

gradually from 0.5 [rad] to 1.5 [rad] with rated load and rated parameters of the IM. 

Moreover, in order to test the performance of the controllers under parameter variations

at t=2 [sec], k5 = ^ L m and are increased to 5 x k 5 and 5x k 7. The resulting

performances of the two SMC schemes for position and flux control are demonstrated in 

Fig. 6.3 (a) and (b), respectively.

(6.14a)

(6.14b)
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Fig. 6.3 Step-type tracking performance for proposed SMC and CF SMC

While Fig. 6.3 (c) depicts position tracking errors, e^ , estimation errors for flux and 

position, e$ and e- , are given in Fig. 6.3 (d). The error signals, e(), give the deviationsYd (7m •

between the actual and estimated states. Comparing the performances of both SMCs 

under step-type changes in the position reference and parameters, it can be noted that the
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proposed SMC demonstrates improved performance robustness under uncertainties 

imposed onto the system.

The controllers are also tested for sinusoidal type position references with similar 

changes in the reference and parameters as before. The results depicted in Fig. 6.4 

demonstrate the improved performance of the proposed SMC particularly in transient 

state.

~o
CO

a) Trajectory tracking with proposed SMC and CF SMC

o 0.5 1 2
b) Flux tracking with proposed SMC and CF SMC

0.8 
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g 0 2  

O 0  
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■ I "I
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i i i

\ I

I
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' A
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i i

^ C F  SMC
I I I i
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c) Trajectory tracking errors for proposed SMC and CF SMC

0.05

- 0

0 0.5 1 1.5 2 2.5 3 t[s]
d) Estimation errors of Braided EKF for position and flux

Fig. 6.4 Sinusoidal tracking performance for proposed SMC and CF SMC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



143

T3&

<S>

/ "  1.005 
— P ro p o s e d  S M C

0.9950 5 1 2 3
i

0.5 1 2
a) Position tracking with proposed SMC

3 t[s]

7*--------------------------------------------1.05
4 — P ro p o s e d  S M C .. biiiifiiiiii

0.95
0.5 1

0.5 1 2
b) Flux tracking with proposed SMC

3 t[s]

c) Variation of the actual and estimated load torque

£
O 4
<as"
'os"

0.5 1 2
d) Variation of the actual and estimated rotor resistance

3 t[s]

E
.eO

<aj 
4  2

2.2830 2.2830 2.2831
4.5660 -

....
T

.
1

0 0.5 1 2 3 t[s]
e) Variation of the actual and estimated stator resistance

■o
<0

EKF with mode!2
Braided EKF

1  A
0.01

0

- 0.01 EKF with modeM
Jk

0 0.5 1 1.5 2 2.5 3 t[s]
f) Position estimation error with the Braided EKF, EKF with 

model 1 and EKF with model2

Fig. 6.5 The performance of the proposed SM control system under variation of stator 
resistance, rotor resistance and load torque variations.
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Finally, simulations are performed to evaluate the proposed SMC performance under 

varaitions of 100 % in stator resistance, rotor resistance and load torque. To this aim, the 

IM is given a start for a unit step reference under no-load at rated parameters. Then, t  

and Rs & Rr are stepped up to tL-  tLN at 1 [sec] and at 2 [sec]

Rs 2 x RsN & R r -> 2 x R rN, respectively. After 0.5 [sec], EKF with model 1 and EKF

with model2 are run by switching them on and off consecutively. The resulting position 

and tracking performance of the proposed SMC are given in Fig. 6.5 (a) and (b), 

respectively. Fig. 6.5 (b), (c), (d), and (e) depict the variations of the actual and estimated

load torque ( tL&tL), actual and estimated rotor resistance (Rr & Rr), and actual and
A

estimated stator resistance (RS& R S), respectively. Fig. 6.5 (f) demonstrates the 

comparative performance of the Braided EKF scheme, EKF with model 1 ( Rs estimation 

only) and EKF with model2 (with Rr estimation only). Inspection of the results 

demonstrates that the proposed SMC scheme combined with the Braided EKF estimation 

technique yields superior performance even under zero frequency, zero load conditions 

as can be seen in the interval 0  < t < 1 .

6.5 Conclusion

In this study, a sensorless sliding mode position control method is developed for the 

rotor flux oriented Direct Vector Control (DVC) of IM. The new sliding mode controller 

is a combination of power rate reaching law and average-equivalent control law, and 

aims to maintain robustness and increased accuracy by decreasing the chattering effect. 

The obtained simulation results for step- and sinusoidal-type reference trajectories 

demonstrate that the proposed sensorless sliding mode position control system can 

perform well even under 1 0 0  % variations of the stator resistance, rotor resistance and 

load torque. The method is also demonstrated to be more robust in comparison to the 

chattering-free SMC used in the sensorless position control of IMs in [16],
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Chapter 7: 

General Conclusion

In this thesis, novel control and estimation algorithms were developed to address the 

well-known problems related to the sensorless position and velocity control of induction 

motors (IMs). Challenges holding the low cost, low maintenance IMs back from being a 

more viable choice, in comparison to their high cost permanent-magnet rotor 

competitors, in demanding high performance motion control applications are the 

following characteristics inherent to IMs and their control:

• Position control requires reliable performance particularly in low and zero speed 

operation, with and without load. The major challenge in IM sensorless position and 

velocity control lies in the fact that the sole source of feedback, which is the stator 

current, ceases to convey information on the rotor due to the reduced levels o f rotor 

currents and voltages around zero stator frequency. Therefore, most past studies in 

sensorless position control present no results for zero speed and zero load operation 

although good results are obtained under different combinations o f load torque and 

velocity.

• Significant parameter variations exist in an already highly nonlinear system with 

model uncertainties, the most effective o f which are the temperature and frequency 

based variations o f the stator and rotor resistances. This is defined as the major source 

of IM model uncertainties on the electrical side. Most past studies in sensorless IM  

estimation and control take into consideration either one o f the two uncertainties and 

only very few  deal with both.

• There are mechanical uncertainties related to load torque and various types o f friction, 

which is common to all motion control systems. Although several studies have dealt 

with load torque uncertanties in IMs, to the authors’ knowledge, there is no IM  

sensorless position control study addressing problems related to friction.
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• Conditions and challenges arise related to the simultaneous estimation o f a high 

number o f parameters due to the lack o f persistency of excitation in steady-state and 

hence, the loss o f estimation accuracy. The few studies with acceptable results in 

simultaneous Rs and R ' estimation have used different algorithms for different 

parameters and/or used signal injection, which is a source for other problems.

• Signal acquisition errors and noise, particularly at low and zero speed operation are

also a problem.

Resulting performances and outcomes of the proposed algorithms are:

♦ Results obtained over a large speed range via Studies 1 & 2 indicate the expected 

benefits of the approach, also including zero speed, zero load torque operation, 

which was depicted as being problematic in most past literature (Holtz, 2000; Holtz 

2006) on sensorless control. However, the experiments have also demonstrated the 

well-known effects of the rotor resistance uncertainties, indicating a requirement for 

the estimation of both resistances in high performance sensorless motion control with 

IMs.

♦ A significant improvement has been achieved with the estimation scheme in Study 3 

which combines the EKF scheme with a look up table for /?/. Experimental results 

taken under challenging parameter and load variations over a whole velocity range, 

including zero speed, motivate the utilization of the approach in practice, in cases 

where one single EKF might not be adequate to handle the high number of parameters 

to be estimated, thereby compromising estimation accuracy. Nevertheless, the 

performance of the approach has to be further improved by increasing the “sensitivity” 

of the Rr' look-up table to velocity, torque and temperature variations or, even better, 

by incorporating a second on-line EKF scheme which runs in parallel or consecutively 

with the first, to estimate the additional parameters.
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♦ The performance of the novel Switching EKF algorithm in Study 4 to address the 

above mentioned problems is tested in the high, very low and zero speed regions with 

different scenarios developed by giving step-type and linear variations to the load 

torque and angular velocity reference beside the step-type changes imposed on Rs and 

Rr in simulations. As a result, the simultaneous estimation of Rs and Rr' with the new 

algorithm has yielded a better performance in comparison to individual EKF- Rs and 

EKF-i?r algorithms, which conduct Rs or R /  estimation only.

The motivation for the development of the novel EKF scheme based on the switching 

of algorithms every n sampling periods (nxT) is mostly to perform the estimation of a 

high number of parameters, preferably with relatively slow variation rates; however, 

the motivation also stems from an interest to investigate the limits of the switching 

algorithm when the number of EKFs are increased beyond two. Thus, the good results 

obtained for lOOxF also suggest the possibility of using more than two EKFs in the 

switching algorithm if it is required to estimate a higher number of parameters.

♦ The Braided EKF technique developed in Studies 5 and 6 aims for an even higher 

estimation accuracy when fast changing parameters are involved, such as rotor 

resistances. Experimental results taken with this method in the low and high speed 

range for the DVC of IMs in Study 5, and also at zero speed for DTC of IMs in Study 

6 demonstrate the expected performance of the braided algorithm in a wide speed 

range with significantly increased accuracy in the estimation of flux and velocity, in 

comparison to other approaches taken in previous studies or the single EKF 

algorithms which estimate Rs or R '  only.

The results obtained with both Braided and Switching EKF schemes motivate the 

utilization of the proposed estimation technique in combination with a variety of
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control methods for IMs or other motion control applications which require the 

accurate knowledge of a large number of parameters.

♦ An important advantage of the proposed method, which includes more than one EKF 

algorithm, over previous methods is that Rs and R,' estimations can be performed both 

in transient and steady state under large load and speed variations without any signal 

injection.

♦ For all of the estimation methods developed in this thesis, it has been observed that the 

estimation of the velocity via the equation of motion is another factor that helps reflect 

the rotor information to the stator side, especially at zero speed and zero load torque 

operation, without the need for injecting any high frequency signal and white noise. 

This issue has been depicted as being problematic in most of the previous literature 

(Holtz, 2000; Holtz, 2006) on sensorless control of IMs.

♦ Another benefit of the proposed estimation techniques in this thesis is the approach 

taken for the estimation of the viscous and Coulomb friction at constant velocity in 

steady-state. The estimation of the load torque as a constant state in all EKF schemes 

also helps in the accurate determination of the friction effects in steady-state, which is 

known to be a performance deteriorating factor in motion control.

♦ The new reduced chattering SMC in Study 7 is compared against a previously 

developed chattering-free SMC, which is proven to be effective in various motion 

control applications as well as in sensorless position control of IMs. The simulation 

results demonstrate an improved robustness in the system response against parameter 

and load variations. The new Braided EKF technique used in combination with the 

proposed sliding mode position control also gives rise to higher robustness when 

compared with the chattering-free SMC in Sahin et al. (1995), under challenging 

variations of 100% in load and stator and rotor resistance, and also at persistent zero
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speed operation. This operation mode is not addressed at all in Sahin et al. (1995), 

which combines chattering-free SMC and estimation.

Some suggestions for future work are listed below:

♦ Uncertainties of the magnetizing inductance and inertia also have important effects on 

the high performance motion control of IMs. In this dissertation, all velocity and 

position control applications consider a constant and well-known inertia value and 

negligible saturation. However, in most motion control applications inertia variation is 

to be expected. Also, the magnetizing inductance of IMs tends to decrease with 

saturation; this effect becomes crucial especially at very low and zero speed. 

Therefore, for certain motion control applications, Braided or Switching EKF 

algorithms should be developed to estimate the inertia and magnetic inductance as 

well.

♦ An interesting point open for research is the determination of the covariance matrix 

related to the model error in EKFs. In order to achieve a desired transient and steady 

state performance for the estimated states and parameters, values of the covariance 

matrix usually have been found by trial-and-error methods as in this thesis. This 

procedure may become highly time consuming as the number of estimated states and 

parameters increase. Hence, the development of a systematic method of determining 

these matrix components could be an important breakthrough for EKF algorithms in 

general.

♦ Additional improvements could be made in calculating the control design parameters 

for the SMC based on adaptive or intelligent methods.

In summary, this thesis offers novel and flexible solutions for sensorless speed or

position control of IMs in order to increase robustness to the variations in rotor or/and

stator resistance beside load torque including friction effects, particularly Coulomb and
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viscous friction at the steady-state. The proposed methods offer solutions for estimation 

and control over the whole speed range including persistent zero speed operation, which 

is regarded as highly problematic (Holtz, 2000; Faiz and Sharifian, 2001; Holtz, 2002; 

Holtz and Quan, 2003; Rashed and Stronach, 2004; Holtz, 2006).

Finally, the novel EKF based estimation techniques in the scope of this work could be 

used with a variety of other methods applied to the sensorless speed and position control 

of IMs or other electrical machines, which require the accurate knowledge of a large 

number of parameters. Similarly, the developed SMC scheme with reduced chattering 

could offer high robustness and accuracy in many demanding motion control 

applications.
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Sensorless Estimation of Induction Motors in Wide Speed Range* 

Abstract:

Purpose -  This study aims an improved performance in the estimation of velocity and 

flux in the sensorless control of induction motors (IM) over a wide speed range, 

including low and zero speed.

Design/methodology/approach -  Temperature and frequency dependent variations of 

stator ( Rs ) and rotor (R r ) resistances are very effective on estimation performance in 

sensorless control over a wide speed range. To this aim, an Extended Kalman Filter 

(EKF) is designed, which estimates the stator resistance, Rs , load torque, tL, velocity

and flux. To provide robustness against Rr variations, the extended model is also 

continuously updated with Rr values from a look-up table, built via EKF estimation 

(Barut et al., 2005).

Findings -  As demonstrated by the experimental results, the estimated states and 

parameters undergo a very short transient and attain their steady-state values accurately, 

with no need for signal injection due to the inherent noise introduced by EKF.

Originality/value -  The value of this study is in the development of an EKF based 

scheme, which solves the Rs -R r estimation problem in IM sensorless control. The

successful experimental results obtained with the combined EKF and look-up table 

approach also offer a solution to all EKF based estimation schemes which involve a high 

number of estimated parameters, hence, compromising estimation accuracy.

Appendix A:

* Bogosyan, S., Barut, M., and Gokasan, M. (2006a), “Sensorless estimation of induction motors in wide 
speed range”, The International Journal fo r  Computation and Mathematics in Electrical and Electronic 
Engineering (COMPEL). (In review)
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Index Terms -  EKF estimation, sensorless-speed control, low/zero speed operation, 

stator resistance and load torque estimation, rotor resistance, look-up table.

A .l Introduction

Sensorless vector control (Guidi and Umida, 2000) and direct torque control (DTC) 

(Lascu et al., 2004) of induction motors (IMs) require the accurate estimation of speed 

and torque, as well as the rotor or stator flux. The performance of estimation and hence, 

the success of sensorless control in IMs is also dependent on the accurate knowledge of 

parameters such as stator (Rs ) (Holtz 2005) and rotor resistances ( Rr) (Barut et al., 

2002; Wang et al. 2005) that vary significantly with temperature and frequency, 

respectively.

In this study, for the accurate estimation of velocity and flux in IM sensorless control 

over a wide speed range, an EKF scheme is developed to estimate Rs and load torque 

( tL), beside velocity and flux. To further improve estimation accuracy, the extended 

model of the EKF algorithm is continuously updated with Rr values from a look-up 

table, also built using EKF estimation from the authors' previous study (Barut et al., 

2005). The experimental results taken under challenging parameter and load variations 

demonstrate the improved estimation accuracy of velocity and flux achieved with the 

EKF based estimation scheme.

A.2 Extended Mathematical Model of the IM

Speed-sensorless control schemes developed for IM require the estimation of rotor flux 

components, y/ra, y/rp, angular velocity , com and stator current components isa and isp, 

which are also measured as output. In this study, an EKF based estimation algorithm is 

developed against Rs , Rr and tL variations, which are known to degrade the control 

performance. Rs is estimated on-line along with tL, velocity, y/ra, y/rp, isa and isp. The
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latter two are also measured as outputs. The extended model is continuously updated 

from a look-up table developed via an EKF algorithm estimating Rr .

The extended model is derived as follows;

x e (?) = f  e (x e { t\u e (0)'+ m  (?)

= Ae A  (?))*. (?) + B.eiLe(t) + TEl (?) (A-l)

Here, the extended state vector is the xe = ( isa is/} y/ra ¥ rp °)m h  b ) T- f  e 

nonlinear function of the states and inputs. Ae is the system matrix. ue is the control 

input vector. B e is the input matrix. wx is the process noise representing modeling error 

due to the uncertain parameters/states.

The constant state used for the load torque aims to capture system uncertainties of 

constant nature i.e. Coulomb and viscous friction at steady-state:
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Z{t) -  he A (?))+ 1 ^ 2 (?) (measurement equation) = K eA t ) + J 2̂ (?)
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+ w2{t) (A-3)

where he is the function of the outputs. H_e is the measurement matrix. w2 is the 

measurement noise (error). p p is the number of pole pairs. La = <rLs is the stator 

transient inductance, o  is the leakage or coupling factor. Ls and Rs are the stator 

inductance and resistance, respectively. Lr and Rr are the rotor inductance and 

resistance, referred to the stator side, respectively. vsa and vs/} are the stator stationary 

axis components of stator voltages.

A.3 Development of the EKF Algorithm

An EKF algorithm is developed for the estimation of the states in the extended IM model 

given in (A-2) and (A-3), to be used in the sensorless control of the IM using measured 

phase currents and voltage values. The Kalman filter is a well-known recursive algorithm 

that takes the stochastic state-space model of the system together with measured outputs 

to achieve the optimal estimation of states (Chen and Dunnigan, 2002) in multi-input, 

multi-output systems. The filter takes system and measurement noises into account in the 

form of white noise. The optimality of the state estimation is achieved with the 

minimization of the mean estimation error. The process requires the discretization of (A- 

2) and (A-3) as below;

2Ee(^ + l) = / e( i eW .« eW ) + WiW (A-4)

Z{k) = H ex e(k) + w2(k) (A-5)

1 0 0 0 0 0 0 
0 1 0 0 0 0 0

H.

V
V ra

VrP

G)m
H
R.
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The EKF uses the current estimation of states x e(k) and ue(k) to derive the Jacobien 

matrices for the linearization of (A-4) and (A-5), as below;

_ d f  a{xe{k \u e{k))
Le\k) = -

E u{k) =

dxe{k)

3 /  (xe{k),ue{k))

(A-6)

due(k)
(A-7)

Jt (*)•«<? W

Thus, the EKF algorithm can be given in the following recursive relations (Bogosyan et 

al., 2001):

K{k) = F e{k)p{k)Fe{k)T + E u{k)DuF u{k)T +Q  (A-8a)

P{k + l) = N {k )-N (k )H l(D f+ H eN { k )H lY H eN{k) (A-8b)

i e(^ + l) = / e(xe(fc),Me(A:)) + P(A: + l ) H l ^ - 1( z ( ^ ) - ^ J e(A:)) (A-8c)

Here, Q : covariance matrix of the system noise, namely model error; D g : covariance 

matrix of the output noise, namely measurement noise; Du: covariance matrix of the 

control input noise ( vsa and vS/9), namely input noise; P , N  : covariance matrix of state 

estimation error and extrapolation error, respectively.

The algorithm involves two main stages: prediction and filtering. In the prediction stage, 

the next predicted states /  (.) and predicted state error covariance matrices, P(.) and

N(.) are processed, while in the filtering stage, next estimated states, xe(&+l), obtained as 

the sum of the next predicted states and the correction term (2nd term in (A-8c)) are 

calculated. The schematic representation of the new EKF algorithm is given in Fig. A-l. 

The algorithm also takes into account the frequency and temperature dependent
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variations (Barut et al., 2005) of Rr , by updating its value in the extended model via the 

interpolation look-up table as given in Table A-l. The (2-D) table is developed via the 

EKF algorithm in Barut et al. (2005) for the estimation of Rr .

Fig. A-l Structure of the proposed EKF algorithm

Table A-l. An interpolation (2-D) table with prelook-up index search to obtain

variations in rotor resistance.

tdN m V
/  nm[rpm] 1.435 3.7 5.1 7.21 9.45 11.65 13.85 14.9 17.2 19.4
8.5 0.0850 0.0850 0.0850 0.0850 0.0850 0.0850 0.0850 0.0850 0.0850 0.0850
150 0.1130 0.1150 0.1150 0.1210 0.1210 0.1230 0.1250 0.1250 0.1260 0.1260

200 0.130 0.1350 0.1350 0.1360 0.1450 0.1460 0.1460 0.1480 0.1490 0.1510

300 0.180 0.1850 0.190 0.1950 0.20 0.2050 0.210 0.2150 0.220 0.2250

400 0.250 0.260 0.2620 0.2650 0.270 0.2850 0.2950 0.2950 0.3050 0.3150

500 0.3350 0.3450 0.350 0.3550 0.3660 0.3750 0.3850 0.390 0.4050 0.415

600 0.4450 0.4550 0.460 0.470 0.480 0.4950 0.510 0.5150 0.5350 0.550

700 0.5750 0.5820 0.590 0.6050 0.6150 0.6350 0.650 0.660 0.6850 0.710

800 0.6950 0.70 0.7050 0.710 0.730 0.7550 0.7750 0.7950 0.8350 0.8850

816 0.7050 0.710 0.710 0.7150 0.7450 0.7650 0.8050 0.820 0.8750 0.9150
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A.4 Hardware Configuration

The experimental test-bed for the EKF based estimator is given in Fig. A-2. The IM in 

consideration is a 3 phase, 4 poles, 3 HP/2.238 kW motor, the detailed specifications of 

which will be given in the experimental results. The EKF algorithm and all analog 

signals are developed and processed on a Power PC based DS1104 Controller Board, 

offering a 4-channel, 16-bit (multiplexed) ADC and four 12-bit ADC units. The 

controller board processes floating-point operations at a rate of 250 MHz. A torque 

transducer rated at 50 N.m and an encoder with 3600 counts/rev, is also used, but for 

evaluation purposes only and for the verification of the load torque and velocity 

estimations. The phase voltages and currents are measured with high band voltage and 

current sensors from LEM.

Fig. A-2 Schematic representation of the experimental setup

In the experiments, the EM is fed via an ac drive with a constant V/f PWM voltage 

instead of a sinusoidal input voltage to achieve a more realistic performance test. By 

using an ac drive in open-loop, voltages with different frequency values can be varied 

linearly with the acceleration and deceleration times of the driver, which also allows
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velocity reversal. The load is generated through a DC machine operating in generator 

mode coupled to the IM. An array resistor connected to the armature terminals of the dc 

machine is used to vary the load torque applied to the IM, as tL = kf 0)/R , where kt is

torque constant of dc machine, a  is angular velocity and R is the total resistance 

(switched array + armature). The value of the resistance is adjusted to 7.8 [O] to generate 

a load torque, ti of 20.73 [N.m], at approximately 819 [rpm].

A.5 Experimental Results and Observations

The parameters for the IM and DC generator used in experiments are listed in Table A-2a 

and Table A-2b;

Table A-2a. Rated values and parameters of the induction motor used in the experiments.

P[kW] / M * J L [kg.m2] Pp v [v ] /[A ]

2.238 60 0.2595 4 230 12

x ,  M i,[H ] A,[H] N m [rpm] h  [Nm]

0.6619 0.7322 0.0375 0.0376 0.0334 850 25.1

* J L : total inertia in the experimental test-bed.

Table A-2b. Rated values and parameters of the DC machine used in the experiments.

P[kW] v [v ] /[A ] Nm [rpm] h  tNm]

3 125 24 1150 24.91

The values of system parameters and covariance matrix elements are very effective on 

the performance of the EKF estimation. In this study, to avoid computational complexity, 

the covariance matrix of the system noise Q . is chosen in diagonal form, also satisfying

the condition of positive definiteness. According to the Kalman filter theory, the Q ,

(measurement error covariance matrix) and Du (input error covariance matrix) have to
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be obtained by considering the stochastic properties of the corresponding noises (Vas, 

1998). However, since these are usually not known, in most cases the covariance matrix 

elements are used as weighting factor or tuning parameters. In this study, for both EKF 

algorithms, the tuning of the initial values of the Pt and Q. is done by trial-and-error to

achieve a rapid initial convergence and the desired transient and steady state behaviors of 

the estimated states and parameters, while the and D u are determined taking into

account the measurement errors of the current and voltage sensors and the quantization 

errors of the ADCs, as given below:

Q = diag{10~10[a2] 1CT10[a2] 4x10“17[(V.s)2] 4x l(T 17[(V.s)2] 10-u [{rad/s)2 

10~15 [(iVm)2] 10“16[q2]}

P = diag{l[A2] 1 [A2] 1 [(V.s)2] l[(V.s)2] 1 [(rad/s)2] l[(Am)2] l[Q2]}

D^=diag{2.6x\Q)A[A2} 2.6x10“4[a2]}

Du =diag{2.3xl0-5\v2] 2.3xl0“5[v2}

The performance of the IM is tested in open-loop with PWM input voltages/currents 

given in Fig. A-3. The EKF algorithm takes as input the transformed components of the 

current and voltage. The following is a generalized description of this transformation;

where x  represents i and v for current and voltage, respectively. Fig. A-3 demonstrates 

the transformed current and voltage at 60 [Hz], 230 [V] for a ti of approximately 21.06 

[N.m],

First, the performance of the developed algorithm is experimentally evaluated under four 

scenarios at a sampling rate, Tsample =110 [as].
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0.01 0 .02  0 .03 t[s]

(d)
Fig. A-3 Stator currents and voltages applied to the IM through the AC drive

To demonstrate the need for Rs estimation for an improved estimation performance in IM 

sensorless control (even when Rr' is being updated), in scenarios where no Rs estimation 

is involved the EKF scheme developed in the authors' previous study (Barut et al., 2005) is 

used to update R /  instead of the less dynamic look-up table. Thus, it is aimed to 

emphasize the need for Rs updates even when a more dynamic approach is taken towards 

Rr' updates. In scenarios or intervals where EKF based Rs estimation is switched on, the 

scheme uses R /  updates from the look-up table instead of taking R /  estimation from the 

EKF_ Rr' algorithm, as the high performance controller can not accommodate 2 EKF 

schemes running in parallel. The estimation of all states and parameters are started with 

an initial value of zero.

Scenario I -  Performance o fR s -estimation with and without R /  updates:

This scenario is developed to demonstrate the importance of R /  updates on the 

performance of the EKF estimation scheme. To this aim, the IM is initially run at 849.6
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[rpm] under no-load with Rs estimation only and using a constant initial value for R,'. At 

t = 13.3 [sec.], the IM is loaded with 20.1 [N.m] via the dc generator, giving rise to a 

drop in the velocity to 818 [rpm]. To show the importance of R /  updates on estimation 

performance, at t=35.1 [sec.], the Rr'~ look-up table is switched on to provide continuous 

updates of R /  and finally at t = 58.6 [sec.], the IM operation is switched to no-load by 

switching Off the DC generator field supply.

The resulting performance is given in Fig. A-4(a), (b), (c), (d), (e), (f), (g), (h) and (i),

*  A A ' A. A. /Vwhich demonstrate the variations of nm& hm, tind & tL, Rs, Rr , tj/ ra, y/ rp, eHm -  nm -  nm, 

e,L = tind -  tL and the variation of & et ; namely, the measured and estimated velocity,

the induced torque as obtained from the torque-meter and estimated load torque, 

estimated stator resistance, estimated rotor resistance, the estimated a  and (3 

components of the rotor flux, estimation error of velocity, estimation error of load torque 

and the estimation errors in (im) and (isp), respectively.

As can be seen from Fig. A-4(a), an error of 10 [rpm] has occurred in the estimation of 

velocity (with a corresponding error in the calculation of tL) in the interval of

13.3[sec.]<t<35.1 [sec.]; in this interval no updates are used for Rr . However, once the

look-up table is switched on for Rr at t=35.1 [sec.], a significant improvement is 

achieved with the estimation of tL and hence, with velocity.

Scenario II- Performance in 4 region operation:

This scenario aims to demonstrate the performance of the algorithm under ramp-type 

velocity/torque reversals. To this aim, the velocity/load torque are reversed by changing 

the input frequency from 60 [Hz] to -60 [Hz], while the motor is running at 816.5 [rpm] 

under 19.8 [N.m]. Then, the scenario is switched to its initial status by changing the input 

frequency from -60 [Hz] to 60 [Hz]. The slope of these variations is determined with the
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Fig. A-4 Experimental results demonstrating Rr update requirement: (a) Variation of nm 

and hm; (b) variation of tmd and tL; (c) variation of Rs; (d) variation of Rr ; (e) 
variation of y/r0!; (f) variation of y/rp ; (g) variation of eHm ; (h) variation of e,L;

and (i) variation of <?, & e,v '  ha hp
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Fig. A-5 Experimental results demonstrating 4 region operation: (a) Variation of hm; (b) 
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arbitrary choice of the acceleration/deceleration rate given as an option on the ac drive. 

Fig. A-5(a), (b), (c), (d), (e), (f), (g), (h) and (i) demonstrate the variations of nm&hm,

tind & h . K  > Vra, Vrp , ^  ~ n m- h m, -  tind -  iL and the variation of eia & .

Inspecting the results of this scenario, it can be noted that the load torque and velocity 

estimations track the variations of the measured torque/velocity in steady-state; however, 

during the transient state at velocity reversal, there is a maximum error of 48 [rpm] and 

16.55 [N.m] in the estimation of the velocity and load torque, respectively. This is 

because the induced torque, tind , which is obtained through the torque transducer for 

verification, also includes the acceleration/deceleration torque together with total load 

torque. Another reason for the increase in the tL estimation error is that the load torque 

is considered as a constant state in the EKF algorithm. The variation in the rotor 

resistance, Rr , in Fig. A-5(d), demonstrates a decline with the decreasing rotor 

frequency, f r, in the low velocity range, and an incline as the rotor frequency increases. 

This result is also in harmony with the Rr -  f r relationship as stated in Proca and 

Keyhani (2002) and Barut et al. (2005).

Scenario III -  Performance with and without Rs estimation in high speed region:

As is well-known with induction motors, Rs undergoes significant variations with 

temperature, ranging from 0.7 to 1.7 of the rated Rm value, around rated speed (Byeong- 

Seok and Krishnan, 1998). Two scenarios are run in this section, -one without Rs 

estimation and with Rs estimation- to highlight the importance of accurate Rs updates 

on the estimation performance. In both scenarios, arbitrary variations are imposed on Rs 

by the external addition of resistances to the phase windings, since an increase in Rs is 

normally expected due to heating over long periods of operation. In the scenario with the 

EKF estimation of Rs , Rr values are provided from the EKF scheme in Barut et al., 

(2005).
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Fig. A-6 Experimental results at high speed with EKF- Rr and without Rs estimation: (a) 

Variation of nm; (b) variation of tind and tL; (c) variation of \j/ ra; (d) variation 

of y/ r/}; (e) variation of Rr ; (f) variation of ; (g) variation of et/; and (h)
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First, while the IM is running at 820.2 [rpm] under a load torque of 19.4 [N.m], at t=8.6 

[sec.], the Rs is increased to 1.4 Q (approximately 2 Rsn) by connecting additional 

resistors to the IM terminals. At t=42.7 [sec.] the additional resistors are shorted via a 

switch. Fig. A-6(a), (b), (c), (d), (e), (f), (g) and (h) demonstrate the variations of

«»& «». tind& tL, R'r , y/ra, y/rp, = nm- h m, et/ =tind - t L and the variation of

ei & e- .
ls a  ls0

Inspecting the results in Fig. A-6, it can be noted that when Rs variations are occuring, R/  

estimation alone is not sufficient to achieve a good estimation performance and hence, 

considerable errors occur in the estimation of velocity and all other states/parameters; 

however, system stability is still maintained.

In the next section, the scenario is repeated with similar variations imposed on Rs, but 

with the EKF based Rs estimation switched on, as well as R/  updates from the look-up 

table. The results indicate that Rs estimation is also necessary for improved performance 

even for the less problematic high speed operation. Fig. A-7 presents the results obtained 

with EKF based Rs estimation and R /  updates from the look-up table. Fig. A-7(a), (b),
A  a  ,

(c), (d), (e), (f), (g), (h) and (i) demonstrate the variations of nm& nm, tind & tL, Rs, Rr ,

W r a  > W r p  > * tL ~  f ind ~  h  and the variation of e in  & .

As can been from the results, the EKF estimation of Rs improves the estimation of

velocity and all other estimated variables/parameters significantly. It can also be

observed that the estimated Rs has attained its accurate value, which can easily be 

verified by measurements.

Scenario IV Performance with and without Rs estimation at low and zero speed:

This scenario aims to demonstrate the importance of Rs estimation in the problematic low
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Fig. A-7 Experimental results at high speed with Rs estimation and Rr look-up table: (a)
A  A

Variation of hm; (b) variation of tmd and tL; (c) variation of Rs; (d) variation of 
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of e, ; and (i) variation of e, & e-
v  7 lsa  lsB
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speed region, where no Rs estimation is provided, but only R /  updates from the look-up 

table.

Initially, when the motor is running at 51 [rpm] under a load torque of 3.9 [N.m], at t=7.8 

[sec.], the Rs is increased to 1.4 [Q] by connecting additional resistors to the IM 

terminals. Fig. A-8(a), (b), (c), (d), (e), (f), (g) and (h) demonstrate the variations of 

tind& tL, Rr , \frra, y/rp, enm = nm- n m, e,L=tind- i L and the variation of

e, &e, .
ls a  lsp

As can be seen from Fig. A-8, the effect of Rs uncertainties becomes more significant in 

low speed operation, deteriorating overall estimation performance when there is only Rr 

estimation, and no Rs estimation.

Next, the improvement achieved with the EKF based Rs estimation is demonstrated for 

very low and zero speed operation, by switching on Rs estimation in addition to Rr 

updates. For this purpose, while the IM is running at 28 [rpm] under a load torque of 2.3 

[N.m], at t=5.5 [sec.], nm is stepped down to 0 [rpm]. Next, at t=14.4 [sec.], the Rs is

increased to 1.4 Q by connecting additional resistors to the IM terminals and at t=53.7 

[sec.], the resistors are shorted via a switch. The resulting performance given in Fig. A-9

(a), (b), (c), (d), (e), (f), (g),'(h) and (i) demonstrate the variations of nm& nm, tind & tL,

K ’ K ’ V r a  > trfi > «nm ~ n m- n m, etL -  hnd ~ h  and the variation of eia & ̂ .

Inspecting the results, it can be noted that during the zero speed operation interval of 

approximately 58.5 [sec], the increase in Rs to 1.4 [Q] is very closely tracked by

estimation, resulting in an overall improved estimation performance for velocity and load 

torque in Fig. A-9(g) and (h).
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Fig. A-8 Experimental results at very low speed without Rs estimation: (a) Variation of 

hm; (b) variation of tind and tL ; (c) variation of y/ra; (d) variation of \}frj}; (e) 

variation of Rr ; (f) variation of eKm ; (g) variation of et[; and (h) variation of 

e: & e,
lsa  lsfi
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Fig. A-9 Experimental results at very low/zero speed with Rs estimation: (a) Variation of 

; (b) variation of tind and tL; (c) variation of Rs ; (d) variation of Rr ; (e) 
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A.6 Conclusion

The major contribution of this study is the development and experimental 

implementation of an EKF based scheme which provides on-line estimates for Rs and

continuous updates for Rr from a look-up table for an improved estimation performance 

in IM sensorless control over a wide speed range. The look-up table is built via the EKF 

estimation of Rr from the authors' previous study (Barut et al., 2005). The temperature 

and frequency related uncertainties of both Rs and Rr are known to be very effective on

sensorless estimation and control performance in IMs. In that sense, to the authors' best 

knowledge, this is the first known study in the sensorless control of induction motors, 

using both Rs and Rr estimations simultaneously, for improved performance.

The significant improvement achieved with the estimation scheme over a wide speed 

range motivates the utilization of the approach in practice, in cases where one single EKF 

might not be adequate to handle the high number of parameters to be estimated, thereby 

compromising estimation accuracy.

The performance of the approach can be further improved by increasing the “sensitivity” 

of the Rr look-up table to velocity, torque and temperature variations or even better by 

incorporating a second on-line EKF scheme which runs in parallel or consecutively with 

the first, to estimate the additional parameters.
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Braided Extended Kalman Filters for Sensorless Estimation in Induction Motors

at High-Low/Zero Speed*

Abstract—In this study, an Extended Kalman Filter (EKF) based estimation approach 

is developed for the simultaneous estimation of rotor (Rr) and stator (Rs) resistances, the 

uncertainties of which are commonly known to cause problems in flux and velocity 

estimation for sensorless control over a wide speed range. The proposed “braided” EKF 

approach in this paper is based on the consecutive operation of two EKF algorithms 

running in turn, at each sampling interval and is the first reported study in IM sensorless 

control achieving the accurate estimation of Rs, Rr, which is reported as a challenge in the 

literature. The Braided EKF also improves the estimation of flux and velocity over a 

wide range, including persistent operation at zero speed. The proposed algorithm is tested 

with simulations and experiments at high, low and zero speed under challenging load 

torque, velocity and Rs, Rr variations. A significant improvement is achieved over 

conventional single EKF schemes and compatible, if not better results are obtained with 

previously reported sensorless estimation methods, with no need for signal injection or 

for different algorithms for different parameters and speed ranges.

Index Terms—Induction motor, Braided Extended Kalman Filters, sensorless control, 

rotor resistance and stator resistance estimation, load torque estimation, zero speed 

operation.

B .l Introduction

The benefits of sensorless control are increased reliability of the overall system with the 

removal of mechanical sensors, thereby reducing sensor noise and drift effects as well as

* Bogosyan, S., Barut, M., and Gokasan, M. (2006b), “Braided Extended Kalman Filters for Sensorless 
Estimation in Induction Motors at High-Low/Zero Speed”, IEE Proceedings Control Theory & 
Applications. (In review)

Appendix B:
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cost and size. However, the effect of parameterization errors and model uncertainties 

become more relevant with speed/position-sensorless control and require sophisticated 

estimation methods. Speed/position-sensorless control of IMs also gives rise to control 

and estimation problems at and around zero stator frequency. This is mainly due to the 

fact that all flux estimation methods rely on the effect of the rotor induced voltages on 

the measured variables of the stator side and that those effects almost vanish with 

decreasing stator frequency [1]. Increased noise-to-signal ratios in measured output 

voltage and input currents, especially under low or no load conditions, also affect the 

performance negatively at low/zero speed operation. Moreover, the persistency of 

excitation of the input signal, which is essential for accurate estimation/identification, is 

also reduced at low speeds, giving rise to erroneous steady-state performance and drifts, 

particularly when a high number of parameters are to be estimated. Thus, in the design of 

observers for sensorless control of IMs not only robustness against parameter and model 

uncertainties must be achieved, but solutions must be sought for operation at and around 

zero speed.

To address the problems in the low and zero speed range, some reported studies exploit 

the motor anisotropies either via the injection of high frequency signals [2], [3] or by 

direct use of the inverter PWM signals [4]. A major disadvantage of the former approach 

is the requirement for additional high frequency signals, dependence on system 

parameters, dynamic delay caused by phase-locked loop (PLL), low-signal-to-noise ratio 

and magnetic saturation due to the fundamental field. The PWM approach, on the other 

hand, makes use of the high frequency components of the inverter PWM signals, thereby 

providing a higher signal-to-noise ratio and is quite effective for the position control of 

IMs (in the very low and zero speed region); however, it requires special measures to be 

taken in the high speed region.

Recently, for the solution of the problem at zero/very low speed, model based estimation 

methods have also been proposed such as in [5], [6] and [7], specifically addressing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



179

persistent operation at zero speed. Among those studies, [5] uses a total least square 

(TLS) based speed adaptive flux observer which enables zero stator frequency operation 

over an interval of 60 sec., with mean and maximum estimation error values of 1.34 

[rpm] and 38 [rpm], respectively at zero load; [6] uses model reference adaptive system 

(MRAS) based linear neural networks presenting results with a maximum velocity 

estimation error of 95 [rpm] during a persistent operation interval of 60 [sec] at zero 

speed; [7] utilizes a continuous sliding mode approach, for which zero stator frequency 

results are obtained under load and presented only for a very short interval of 4 sec.

Temperature and frequency based variations of and stator (Rs) and rotor (Rr) resistances 

play an important role in the rotor and stator oriented IM models and their variations 

influence the estimation and control performance significantly.

To address this problem in IM sensorless control, a variety of approaches have been 

proposed and problems have been reported. To mention a few, the study in [8] states that 

simultaneous estimation of the stator, Rs and rotor resistances, Rr, give rise to instability. 

In another study [9], taking a model reference adaptive approach the individual 

estimation of com with Rs or Rr has yielded good results, while the simultaneous Rs, Rr and 

com estimation has led to inaccurate estimation values. Studies based on sliding mode 

(SM) observers (SMO), such as [10] estimate the Rr and [11] estimate the Rs and [12] 

estimate the Rs and develop a SM flux observer that does not require speed adaptation. 

Satisfactory results are obtained in the 3-6 rpm operation region. Some studies develop 

speed adaptive flux observers, such as [13] in which Rs is also estimated and [14], [12] 

and [15] which adjust the value of Rr in proportion to the estimated Rs. None of those 

studies address persistent operation at zero speed, except [14], as already discussed under 

zero speed studies.

Model uncertainties and nonlinearities inherent to IMs are also well suited for the 

stochastic nature of Extended Kalman Filters (EKFs). With this method, it is possible to
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make the on-line estimation of states while simultaneously performing identification of 

parameters in a relatively short time interval. The EKF is also known for its high 

convergence rate, which improves transient response significantly. Moreover, EKFs meet 

the requirement of high frequency signals for accurate estimation and convergence in 

steady-state with the model and measurement noises inherently included in the extended 

model of EKFs. On the other hand, the major limitations of the EKF technique appear to 

be its computational complexity and reduced estimation accuracy when a high number of 

parameters are to be estimated with a single EKF with limited number of measurements 

as is the case with sensorless control. While the former issue is no longer a problem 

thanks to the high performance processors of our day, the latter issue remains a problem 

and requires that special measures be taken, as is the case in this study.

In spite of the numerous EKF studies in IM sensorless control, only those which are most 

relevant to the presented study will be mentioned here due to space limitations: i.e. [16],

[17], [18], [19], [20], [21], are some studies estimating the flux and velocity; [22] 

estimates the rotor resistance by injecting of low amplitude, high frequency signals to the 

flux reference giving rise to fluctuation in the flux, torque and speed. Most of these 

studies estimate the velocity as a constant parameter, giving rise to a poor estimation 

performance in transient state. Recently, the authors' studies in [23] and [24] estimating 

the velocity via the consideration of the equation of motion in the EKF model, in 

addition to the estimation of rotor resistance and mechanical uncertainties demonstrate 

improved results over a wide speed range. However, the results are sensitive to the 

variations of stator resistance, indicating the necessity of an approach to estimate rotor 

resistance and stator resistance simultaneously, as well as the load torque. To the authors' 

best knowledge, simultaneous Rs-Rr estimation and/or persistent operation at zero speed 

in sensorless IM control have yet not been reported in any EKF based sensorless 

estimation study.
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In IM sensorless control, only a few studies have achieved the simultaneous estimation 

of Rs and Rr; among these studies, [25] presents a model reference adaptive system 

(MRAS) based on 3 models, of which one is used for the estimation of rotor time 

constant via high frequency signal injection and the other 2 models are used 

interchangeably by enabling the stator resistance estimation only during short intervals, 

during which the rotor speed has reached the steady state. In studies such as [26], [27] the 

speed and rotor flux are estimated as well as the stator resistance and rotor resistance, by 

injecting high frequency signals to the flux and magnetizing current commands. 

Recently, [28] presents a sensorless control scheme using an open-loop estimator to 

calculate Rr and a model reference adaptation for Rs. However, the performance of the 

parameter estimation is not demonstrated and only evaluated indirectly via the estimated 

velocity and flux. The above listed studies, to the authors' best knowledge, are the only 

reported IM sensorless control studies estimating Rs and Rr simultaneously as the two 

most effective parameters on estimation and control performance; however, the results 

require either signal injection or the design of different algorithms based on the velocity 

range or based on the parameters/states to be estimated, Rs or Rr.

The major contribution of this study is the development of a novel EKF implementation 

technique, which achieves the simultaneous estimation of Rs and Rr, hence improving the 

accuracy of estimated flux, torque, and velocity in IM sensorless estimation over a wide 

speed range, including persistent operation at zero speed. The developed “braided” EKF 

approach involves the consecutive use of two EKF algorithms at every sampling interval; 

the two EKF algorithms have exactly the some configuration and are derived based on 

the same extended model and estimated states except for one state; i.e. Rs in one model is 

replaced by Rr in the other. Both EKFs also estimate velocity, load torque, stator flux and 

current components. The algorithm is tested using simulations and experiments in 

different velocity ranges under challenging parameter and load variations and very 

promising results have been obtained, without the need for signal injection or algorithm 

changes as in most previous studies yielding acceptable performance.
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B.2 Extended Mathematical Models of the IM

In this study, two extended models are developed for the EKF based estimation scheme. 

Both models estimate stator flux components, y/sa and y/sp , angular velocity, (Om, the

load torque, and stator current components isa and zv/?, which are also measured as

output. Additionally, one of the models includes Rs, while the other has Rr - with both 

resistances and load torque taken into consideration as constant variables under the 

assumption of slow variation in time. Thus, the so-called extended models developed in 

this study can be obtained (as referred to the stator stationary frame) in the following 

general form:

M = L ei ««• W’ ̂  (0 )+ w<i (0

= Aeiixei{t))xei{t)+Beu e{t)+wil{t) (B-l)

Z{t) = hei{xei{t))+ wi2 (t) (measurement equation)

= B-,x„ (t)+ m  2(t) (B-2)

Here, x„, is the extended state vector for both models, f  is the nonlinear function of— tl ~ei

the states and inputs. A ei is the system matrix. ue is the control input vector. B e is the 

input matrix. wn is the process noise. hei is the function of the outputs. H_e is the 

measurement matrix. wi2 is the measurement noise.

Based on the general form in (B-l) and (B-2), the detailed matrix representation of the 

two IM models can be given as below:

Model for Rs Estimation, Model-/?*:
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(B-3)

(B-4)

(B-5)



Here, p p is the number of pole pairs. La = aLs is the stator transient inductance, a  is 

the leakage or coupling factor. Ls, Lr \ stator and rotor inductances, respectively. vsa, 

vsfj: stator voltages. J L: total inertia of the IM and load.

As can be seen from (B-3), (B-4) and (B-5), (B-6), the difference between the two 

extended vectors, x el and x e2 is due to the consideration of Rs or Rr. Since for both

models im and is/} are the measured variables, the measurement noises wl2 and w22 are

equal.

B.3 Development of Braided EKF Algorithm

In this section, the derivation of the EKF algorithm is given, using the two extended 

models, - Model_/?< and Model_i?r developed in Section II:

The Kalman filter is a well-known recursive algorithm that takes the stochastic state 

space model of the system into account, together with measured outputs to achieve the 

optimal estimation of states in multi-input, multi-output systems. The system and 

measurement noises are considered to be in the form of white noise. The optimality of 

the state estimation is achieved with the minimization of the covariance of the estimation 

error. As is the well known, the Kalman Filter (KF) is not strictly applicable to nonlinear 

systems, such as IMs, since linearity plays an important role in its derivation and 

performance as an optimal filter. The EKF attempts to overcome this difficulty by using
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a linearized approximation where the linearization is performed about the current state 

estimate. This process requires the discretization of (B-3) and (B-4) -or (B-5) and (B-6) 

as below;

£„• (k + 1)= f ei (*ei M  (k ))+En (k ) (B-?)

Z(k) = H ex ei(k)+ w a (k) (B-8)

As mentioned before, EKF involves the linearized approximation of the nonlinear model 

(B-7 and B-8) and uses the current estimation of states x ei(k) and inputs ue(k) in 

linearization by using,

F ei{k) = - =

„ , d f  { x jk ) ,u e{k))
Eui{k )=-=-

(B-9)
xel(k),ue(k)

due{k)
(B-10)

xd(k),ue{k)

Thus, the EKF algorithm can be given in the following recursive relations:

NJ ( k ) = F €l{ k ) P l{k ) F„ ( k ) T + F M D , E M  + g  (B-l la)

£,(* + l) = & ( * ) - & M a r ( s { + H M k ) H T, T H M k ) (B-l lb)

U k  + l ) = iM M £ A k ) ) + P A k  + l ) K l D f ' ( Z ( k ) - H , x M  (B-l lc)

Here, Q. is the covariance matrix of the system noise, namely model error. is the 

covariance matrix of the output noise, namely measurement noise. D u is the covariance
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matrix of the control input noise ( vsa and vsji), namely input noise. P, and N { are the 

covariance matrix of state estimation error and extrapolation error, respectively.

The algorithm involves two main stages: prediction and filtering. In the prediction stage, 

the next predicted states /  (.) and predicted state error covariance matrices, P, (.) and 

Af(.) are processed, while in the filtering stage, next estimated states, xg((&+l), obtained

as the sum of the next predicted states and the correction term (2nd term in (B-llc)), are 

calculated.

The Braided EKF scheme is comprised of two EKF algorithms running consecutively, 

with each EKF estimating the same set of variables, but a different resistor value, Rs or 

Rr. This estimated resistance value is passed on to the other EKF model in the next step, 

which, in turn, estimates the other resistance value. The rest of the variables and 

covariances are calculated by each EKF algorithm and passed to the control scheme 

along with the updated resistance values. A flow chart of the Braided EKF can be seen in 

Figure B-l.
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B.4 Simulation and Experimental Results

To test the performance of the Braided EKF technique, proposed estimation method, 

simulations and experiments are performed on an induction motor with a DC machine 

providing the load, the parameters for which are given in Table B-l and Table B-2, 

respectively.

Table B-l a. Rated values and parameters of the induction motor used in the experiments.

P [kW] /[H z] * J L [kg-m2] Pp v [ v ] /[A ]

2.238 60 0.2595 4 230 12

U h ] Lr [H] LmiH] N m [rpm] tL [Nm]

0.6619 0.7322 0.0375 0.0376 0.0334 850 25.1

* J L : total inertia in the experimental test-bed.

Table B-lb. Rated values and parameters of the DC machine used in the experiments.

P [kW] v [ v ] /[A ] N m [rpm] h  [Nm]

3 125 24 1150 24.91

Tests are performed over the whole speed range, with special emphasis on the 

performance at and around zero speed. For a realistic evaluation of the proposed method, 

the results are compared with those obtained with EKF algorithms estimating either Rr or 

Rs, EKF-Rr and EKF-R, respectively. Both algorithms also estimate the velocity, load 

torque, flux and current components and are tested under step type and linear variations 

of the velocity and load torque. Rr and Rs values are given increases of twice their rated 

values as well as half the rated value for Rr to further challenge the performance of the 

proposed method. A sampling time of 7=100 |isec is used.
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Simulation Results:

High speed operation under load torque and RJR«■ variations:

In this section, the performance of the Braided EKF is compared with the individual 

EKF-/?r and EKF-/?S algorithms for high speed operation and velocity and load torque 

reversals. To this aim, in the interval 0<t<20[sec], different load torque variations, 

velocity reversals as well as Rr and Rs variations of twice their rated values are imposed 

on the system and the obtained velocity estimation errors are compared for all three 

algorithms. As can be seen in Fig. B-2(c) and (d), the Braided EKF algorithm 

demonstrates an improved performance over EKF-/?, and EKF-/?S, particularly for 

unmatched parameter variations.

(c)

(d)

(e)

t [sec]
Fig B-2 Variation of velocity estimation errors, enm, at high speed operation under load 

torque variations, for three methods: a )N"tf , tL, b) Rs, Rr, c) and d) enm with 
braided and EKF-/?,, ((c) detailed variation), e) enm with braided and EKF-RS
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Persistent operation at zero speed under zero load torque and Rr / R, variations:

In this section, a similar comparison is performed between the three algorithms, while the 

velocity and load torque references are kept at zero and random decreases/increases are 

given to Rr and Rs. As can be seen in Fig. B-3, in the interval 0<t<30 [sec], during which 

both Rr and Rs stepwise decreased from their rated values, the braided algorithm 

outperforms the EKF-Rr and EKF-/?*, as depicted by the velocity estimation error in Fig. 

B-3(c) and (d).
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Fig. B-3 Variation o f enm for zero speed and zero load for three methods: a) N r̂ , tL, b) 
Rs, Rr, c) and d) enm with braided and EKF-/?,, ((c) detailed variation), e) enm 
with braided and EKF-/?*

To provide a better explanation for the variations imposed on the system, per unit (pu) 

values are used for the results.
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Experimental Results and Observations

The experimental setup depicted in Fig. B-4 includes a squirrel cage induction motor and 

driver, a host PC computer, a dS1104 Power PC processor and interface board, current 

and voltage sensors, a DC generator and resistor bank serving as the mechanical load and 

a torque transducer and encoder for the validation of estimated load torque and velocity.

Fig. B-4 Schematic representation of the experimental setup.

High speed operation using EKF-Rr :

The experiments at high speed operation are initially conducted using the EKF-/?r 

algorithm only, which performs the estimation of Rr, velocity, load torque, stator flux and 

current components. To this aim, while the motor is operating at its rated speed under 

75% load, the load torque is increased by 10%. This has naturally given rise to a drop in 

the measured velocity, while a faulty increase is obtained in the estimated velocity as can 

be seen in Fig. B-5(a). When the load torque assumes its original value, the velocity 

estimation error also drops to zero, as depicted in Fig. B-5(b). The measured and 

estimated torque, torque estimation error, estimated Rr (pu), estimation error of the 

current and flux components are given in Fig. B-5(c), (d), (e), (f) and (g), respectively.
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Persistent operation at zero speed and load using EKF-/?r:

In this section, the performance EKF-Rr is also tested in zero speed operation. Initially, 

the velocity reference is maintained at low speed level (~ 0.04 pu) in Fig. B-6(a) and a 

constant value is obtained for the estimated Rr with an acceptably low velocity estimation
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error (Fig. B-6(b)). However, when the velocity is given a stepwise decrease to zero, the 

estimated Rr and hence, the velocity estimation error start to drift (Fig. B-6(d)) due to the 

lack of updates of Rs.
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Fig. B-7 EKF-RS results for low/zero speed operation; variations of a) nn 

nm~nm, c) tind, tL, d) tind - t L, e) Rs , f) eisa and , g) y/ sa, y/sP
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Fig. B-8 EKF-7?S results for high speed operation; variations of a) measured, nm and 
estimated speed, hm, b) speed estimation error, nm- h m, c) induced torque, 

tind and estimated torque, tL t , , d) torque error, tind - t L, e) estimated stator
/ V

resistance, Rs , f) observer errors ( eisa and e(s/?), g) estimated flux 

components, y/sa and y/s/3
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Persistent operation at zero speed and zero load using EKF-/?,:

In this section, experiments are performed for zero speed operation using the EKF-i?s 

algorithm, since the Rs uncertainties are more effective in low speed operation. To further 

challenge the algorithm, the Rs value is instantaneously increased to 2.5 times its rated 

value by connecting serial resistances externally to the stator windings (Fig. B-7(e)). The 

EKF-/?V algorithm performs quite well in spite of the challenging Rs variation, yielding a 

very low velocity estimation error (Fig. B-7(b)).

High speed operation performance with EKF-/?t:

In this section the EKF-/?V algorithm is tested in high speed operation, under load torque 

and hence rotor resistance variations. In the interval where the load torque variation is 

imposed, a significant increase has occurred in the velocity estimation error as can be 

seen in Fig. B-8(b).

The experimental results obtained with individual EKF-/?r and EKF-I?V indicate that for 

an acceptable performance in sensorless estimation for IMs over the whole speed range, 

both Rr and Rs should continuously be updated. This observation motivates the 

development of the Braided EKF scheme.

High speed operation performance with the Braided EKF:

In this section, the Braided EKF algorithm is tested for high speed operation under load 

torque variations (from 5% to 85% of the rated load) as can be seen in Fig. B-9(c). From 

the figures, it can be seen that the load torque variations have also given rise to Rr 

variations in Fig. B-9(f), while the variations of Rs are much less in the high speed range, 

it can be seen in Fig. B-9(e). The experimental results indicate also that the Braided EKF 

performs very well under those variations yielding a very low estimation error for the 

velocity as can be seen in Fig. B-9(b). The very low estimation errors obtained for the 

current 9(g), velocity 9(a) and the torque 6(d) also indicate the accurate estimation of the 

flux components given in Fig. B-9(h).
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Persistent zero speed and zero load operation using Braided EKF:

In this section, the Braided EKF is also tested for persistent operation at zero speed under 

challenging external variations impressed on Rs (Fig. B-10(d)), which is increased to 2.4 

Rsn. It can be noted that the velocity estimation error remains within a very low error 

band, it can be seen in Fig. B-10(b), while velocity is zero (in Fig. B-10(a)).

In conclusion, it can be noted that the Braided EKF is superior to the individual EKF 

algorithms in terms of overall performance. The braided scheme also demonstrates a 

compatible and, most of the time, a better performance in one-on-one comparison with 

EKF-Rr in high speed, and with EKF-i?v in zero speed operation. Although stopped the 

end of 40 seconds, the experiments have also indicated that the persistent operation at 

zero speed can be extended over longer intervals, without causing drift or instability.

B.5 Conclusion

Temperature and frequency based variations of Rs and Rr induction motors become very 

effective on the estimation performance, particularly when speed-sensorless control is 

aimed. Due to problems arising from lack of persistency of excitation and decreased 

accuracy when a single algorithm is used to estimate a high number of parameters and 

states, the simultaneous estimation of Rs and Rr is often reported as a challenge in IM 

sensorless control. The problem of sensorless estimation is even more compounded at 

low and zero speed operation due to the decreased excitation in the input signals. The 

few reported studies overcoming these problems in the literature either use signal 

injection or different estimation methods for different states/parameters with a limited 

number of measurements as in sensorless control, in different speed ranges.

In this study, a multiple EKF based observer technique is developed for the estimation of 

Rs and Rr for use in the sensorless control of IMs. The approach is based on the 

consecutive use of two EKF algorithms derived from two extended models, which are 

comprised of one common and one different set of parameters. Thus the resulting
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algorithm achieves the accurate estimation of a higher number of parameters than would 

be possible with a single EKF algorithm.

The Braided EKF technique exploits the model and measurement noise inherent to EKFs 

for the persistency of excitation required for convergence in steady-state. With the use of 

multiple EKFs in estimation, it also overcomes the limitation of a single EKF in 

estimating a high number of parameters with limited number of measurements, as is the 

case in sensorless control.

The simulation and experimental results obtained for sensorless estimation at high and 

low speed, as well as in persistent operation at zero speed, demonstrate significantly 

improved results over single EKF algorithms. The performance is comparable, if not 

better, than that for most previous studies, in terms of offering a more general and 

flexible solution over the whole speed range. The developed method can be extended to 

the estimation of any other set of parameters/states in IM sensorless control and may also 

be used with other control methods which require the accurate knowledge of a high 

number of parameters.
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Appendix C:

Definitions of Acronyms

ADC Analog-to-Digital Converter

AFO Adaptive Flux Observer

CF-SMC Chattering-Free Sliding-Mode Controller

DC Direct Current

DTC Direct-Torque Control

DVC Direct Vector Control

EKF Extended Kalman Filter

ELO Extended Luenberger Observer

EMF Electro-Motive Force

FOC Field-Oriented Control

IM Induction Motor

KF Kalman Filter

LPF Low-Pass Filter

MRAS Model-Reference Adaptive System

PBC Passivity-Based Control

PC Personal Computer

PI Proportional-Integral controller.

PID Proportional-Integral-Derivative controller

PLL Phase-Locked Loop

PWM Pulse Width Modulation

SM Sliding-Mode

SMC Sliding-Mode Controller (or Control)

SMO Sliding-Mode Observer

SVM Space-Vector Modulation

TLS Total Least Square

VC Vector Control
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